

Available online at www.sciencedirect.com

Procedia IUTAM 7 (2013) 135 – 140

Procedia IUTAM

www.elsevier.com/locate/procedia

Topological Fluid Dynamics: Theory and Applications

The vortex filament equation in any dimension

Boris Khesin*

Department of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada

Abstract

We present the vortex filament (or localized induction approximation) equation in any dimension. For an arbitrary $n \ge 3$ the evolution of vorticity supported on vortex membranes of codimension 2 in \mathbb{R}^n is described by the skew (or binormal) mean-curvature flow, which generalises to any dimension the classical binormal equation in \mathbb{R}^3 . This paper is a brief summary of the results in Khesin (2012) and Shashikanth (2012) [4, 6].

© 2013 The Authors. Published by Elsevier B.V. Selection and/or peer-review under responsibility of the Isaac Newton Institute for Mathematical Sciences, University of Cambridge

Keywords: Vortex filament equation; LIA, vorticity Euler equation, mean curvature.

1. The vortex filaments, membranes, and skew-mean-curvature flow

The vortex filament (or binormal) equation is the evolution equation

$$\partial_t \gamma = \gamma' \times \gamma'',\tag{1}$$

of an arc-length parametrized space curve $\gamma(\cdot, t) \subset \mathbb{R}^3$, where $\gamma' := \partial \gamma / \partial \theta$. For an arbitrary parametrisation the filament equation reads $\partial_t \gamma = k \cdot \mathbf{b}$, where k and $\mathbf{b} = \mathbf{t} \times \mathbf{n}$ stand, respectively, for the curvature value and binormal unit vector of the curve γ at the corresponding point.

This binormal equation is known to be Hamiltonian with the Hamiltonian function given by the length functional $H(\gamma) = \text{length}(\gamma) = \int_{\gamma} \|\gamma'(\theta)\| d\theta$ and relative to the *Marsden-Weinstein symplectic structure* on non-parametrized oriented space curves in \mathbb{R}^3 , see e.g. [2, 5]. At a curve γ this symplectic structure is

$$\omega_{\gamma}^{MW}(V,W) := \int_{\gamma} i_V i_W \mu = \int_{\gamma} \mu(V,W,\gamma') \, d\theta \tag{2}$$

where V and W are two vector fields attached to the curve γ and regarded as variations of this curve, while the volume form μ is evaluated on the three vectors V, W. Equivalently, the Marsden-Weinstein symplectic structure can be defined by means of the operator J of almost complex structure on curves: any variation V is rotated by the

2210-9838 © 2013 The Authors. Published by Elsevier B.V.

Selection and/or peer-review under responsibility of the Isaac Newton Institute for Mathematical Sciences, University of Cambridge doi:10.1016/j.piutam.2013.03.016

^{*} E-mail address: khesin@math.toronto.edu

operator J in the planes orthogonal to γ by $\pi/2$ in the positive direction (which makes a skew-gradient from a gradient field).

Furthermore, the Hasimoto transformation at any time t sends a curve $\gamma(\theta)$ with curvature $k(\theta)$ and torsion $\tau(\theta)$ to the wave function $\psi(\theta) = k(\theta) \exp\{i \int^{\theta} \tau(\zeta) d\zeta\}$ satisfying the 1-dimensional focusing nonlinear Schrödinger equation (NLS):

$$i\partial_t\psi + \psi'' + \frac{1}{2}|\psi|^2\psi = 0.$$

In particular, the binormal equation is an infinite-dimensional integrable system.

A natural extension of the binormal equation to higher dimensions is as follows. Consider a closed oriented embedded submanifold (membrane) P of codimension 2 in \mathbb{R}^n (or more generally, in a Riemannian manifold M^n) with $n \ge 3$. The Marsden-Weinstein symplectic structure ω^{MW} on membranes of codimension 2 in \mathbb{R}^n (or in any *n*-dimensional manifold) with a volume form μ is defined similar to the 3-dimensional case: two variations of a membrane P are regarded as a pair of normal vector fields attached to the membrane P and the value of the symplectic structure on them is

$$\omega_P^{MW}(V,W) := \int_P i_V i_W \mu \,.$$

Here $i_V i_W \mu$ is an (n-2)-form integrated over P. Note that this symplectic structure can be thought of as the 'total' averaging of the symplectic structures in each normal space $N_p P$ to P. (The Marsden-Weinstein structure in higher dimensions was studied in [2, 3].)

Furthermore, define the Hamiltonian function on those membranes by taking their (n-2)-volume:

$$H(P) = \text{volume}(P) = \int_P \mu_P$$

where μ_P is the volume form of the metric induced from \mathbb{R}^n to P. (For a closed curve γ in \mathbb{R}^3 this Hamiltonian is the length functional discussed above.)

Theorem 1.1. In any dimension $n \ge 3$ the Hamiltonian vector field for the Hamiltonian H and the Marsden-Weinstein symplectic structure on codimension 2 membranes $P \subset \mathbb{R}^n$ is

$$v_H(p) = C_n \cdot J(\mathbf{MC}(p)),$$

where C_n is a constant, J is the operator of positive $\pi/2$ rotation in every normal space N_pP to P, and $\mathbf{MC}(p)$ is the mean curvature vector to P at the point p.

This statement holds for any Riemannian manifold M. The expression of v_H via the trace of the second fundamental form without reference to the mean curvature appeared in [3], Proposition 3. For 4D this theorem was obtained in [6] and for higher dimensions in [4], where we refer to for the proof. Here and below we use the notation C_n for some constant depending on the dimension in the case of \mathbb{R}^n (above $C_n = 4 - 2n$), or on the geometry of M^n in the general case.

Recall the definition of the mean curvature vector field for a smooth submanifold of any dimension.

Definition 1.2. a) Let P be a smooth submanifold of dimension l in the Euclidean space \mathbb{R}^n . Its second fundamental quadratic form at a point $p \in P$ is a map from the tangent space T_pP to the normal space N_pP . The *mean curvature vector* $\mathbf{MC}(p) \in N_pP$ is the normalized trace of the second fundamental form at p, i.e. the trace divided by l.

b) Equivalently, the *mean curvature vector* $\mathbf{MC}(p) \in N_p P$ is the mean value of the curvature vectors of geodesics in P passing through the point p when we average over the sphere S^{l-1} of all possible unit tangent vectors in $T_p P$ for these geodesics.

Definition 1.3. The *higher vortex filament equation* on submanifolds of codimension 2 in \mathbb{R}^n is given by the *binormal* (*or skew*) *mean-curvature flow*:

$$\partial_t P(p) = -J(\mathbf{MC}(p)). \tag{3}$$

Note that the skew mean-curvature flow differs by the $\pi/2$ -rotation from the mean-curvature one. Respectively, it does not stretch the submanifold while moving its points orthogonally to the mean curvatures. In particular, the volume of the submanifold P is preserved under this evolution, as it should, being the Hamiltonian function of the corresponding dynamics.

For dimension n = 3 the mean curvature vector is the curvature vector $k \cdot \mathbf{n}$ of a curve γ : $\mathbf{MC} = k \cdot \mathbf{n}$, while the skew mean-curvature flow becomes the binormal equation: $\partial_t \gamma = -J(k \cdot \mathbf{n}) = k \cdot \mathbf{b}$. Unlike the case n = 3, for larger $n \ge 4$ the skew mean-curvature flow is apparently non-integrable.

It would be very interesting to find an analogue of the Hasimoto transformation for any n relating the higher vortex filament equation with the higher-dimensional (and already non-integrable) nonlinear Schrödinger equation; (for n = 4 this question was posed in [6]).

2. The vorticity Euler equation

To describe the relation of the skew mean-curvature to hydrodynamics we start by recalling the vorticity form of the Euler equation. Consider an inviscid incompressible fluid filling a Riemannian manifold M. The fluid motion is described as an evolution of its velocity field v in M governed by the classical Euler equation:

$$\partial_t v + (v, \nabla)v = -\nabla p \,. \tag{4}$$

Here the field v is assumed to be divergence-free (div v = 0) with respect to the Riemannian volume form μ and tangent to the boundary of M. The pressure function p is defined uniquely modulo an additive constant by these restrictions on the velocity v. The term $(v, \nabla)v$ stands for the Riemannian covariant derivative $\nabla_v v$ of the field v in the direction of itself.

Definition 2.1. The vorticity (or Helmholtz) form of the Euler equation is

$$\partial_t \xi + L_v \xi = 0, \tag{5}$$

where L_v is the Lie derivative along the field v and which means that the vorticity field $\xi := \operatorname{curl} v$ is transported by (or 'frozen into') the fluid flow. In any dimension the vorticity of a fluid motion geometrically is the 2-form defined by $\xi := dv^{\flat}$, where v^{\flat} is the 1-form obtained from the vector field v by the metric lifting of indices. (In 3D the vorticity field ξ can be thought of as a vector field, while in 2D it is a scalar vorticity function.)

The Euler equation has a Hamiltonian formulation on the dual space to the Lie algebra $\mathfrak{g} = \operatorname{Vect}_{\mu}(M)$, which consists of smooth divergence-free vector fields in M tangent to the boundary ∂M , see e.g. [1, 2, 5]. The natural 'regular dual' space for this Lie algebra is the space of vorticities ξ , i.e. exact 2-forms on M. As the dual space to a Lie algebra, this space of vorticities $\operatorname{Vect}_{\mu}(M)^* = \{\xi\}$ has the natural Lie-Poisson structure. Its symplectic leaves are co-adjoint orbits of the corresponding group $\operatorname{Diff}_{\mu}(M)$ of volume-preserving diffeomorphisms of M, which are sets of fields with diffeomorphic vorticities. There exists the corresponding (Kirillov-Kostant) symplectic structure ω^{KK} on these orbits in $\operatorname{Vect}_{\mu}(M)^*$. The Euler equation is Hamiltonian with respect to this structure ω^{KK} and the Hamiltonian function given by the energy $E(v) = \frac{1}{2} \int_M (v, v)\mu$ for $v = \operatorname{curl}^{-1} \xi$.

Regular vorticities ξ have support of full dimension, i.e. of codimension 0 in M, while singular ones can have support of codimension 1 or 2. Vortex sheets are singular vorticities with support of codim = 1. Below we discuss vortex membranes, which are singular vorticities with support of codim = 2. The main types of singular vorticities, as well as related to them symplectic structures and Hamiltonian equations studied below, are summarized in the following table, see more details in [4]. (Note that the Marsden-Weinstein symplectic structure on membranes coincides with the Kirillov-Kostant symplectic structure on coadjoint orbits of singular vorticities ξ_P supported on membranes P.)

The Euler equation (5) is nonlocal in terms of vorticities, since so is the operation of finding $v = \text{curl}^{-1}\xi$. The localized induction approximation (LIA) of the vorticity motion is a procedure which allows one to keep only the local terms in the Euler equation for singular vorticity, as we discuss below.

support codim	vorticity types	symplectic structure	evolution equation	Hamiltonian
0	smooth vorticities ξ	$= \int_{M}^{KK} (V, W) \\ = \int_{M}^{KK} \xi \wedge i_{V} i_{W} \mu$	vorticity Euler equation $\partial_t \xi = -L_v \xi$	energy $H = \frac{1}{2} \int_M (v, v) \mu$
1	vortex sheets $\partial_{\Gamma} \wedge \alpha$	$\omega_{\partial_{\Gamma} \wedge \alpha}(V, W) = \int_{\Gamma} \alpha \wedge i_{V} i_{W} \mu$	Euler \Rightarrow Birkhoff-Rott LIA – ?	H = ?
2	$\frac{2\text{D: point vortices}}{\sum \kappa_j \delta_{z_j}}$ 3D: filaments $C \cdot \delta_{\gamma}$	$= \frac{\sum_{\gamma}^{\omega_{(\kappa_j, z_j)}} \kappa_j dy_j \wedge dy_j}{\sum_{\gamma}^{MW} (V, W)}$ $= \int_{\gamma} i_V i_W \mu$	Euler \Rightarrow Kirchhoff LIA=0 LIA: binormal eqn $\partial_t \gamma = \gamma' \times \gamma''$	H = Kirchhoff Hamiltonian \mathcal{H} $H = \text{length}(\gamma)$
	any D: membranes (higher filaments) $C \cdot \delta_P$	$\omega_P^{MW}(V,W) = \int_P i_V i_W \mu$	LIA: skew mean curvature flow $\partial_t P = J(\mathbf{MC}(P))$	H = volume(P)

3. The localized induction approximation (LIA) in any dimension

Let $P^{n-2} \subset \mathbb{R}^n$, $n \geq 3$ be a closed oriented submanifold of codimension 2. Consider the vorticity 2-form ξ_P supported on this submanifold: $\xi_P = C \cdot \delta_P$. We will call P a higher(-dimensional) vortex filament or membrane. Note that the exactness of the 2-form ξ_P implies that the membrane strength C is constant.

We would like to find the divergence-free vector field v which has a prescribed vorticity 2-form ξ , i.e. $\xi_P = dv^b \in \Omega^2(\mathbb{R}^n)$. In dimension 3, where vorticity can be regarded as a vector field, the corresponding vector potential v in \mathbb{R}^3 is reconstructed by means of the Biot-Savart formula, and now we are looking for its analogue in any dimension $n \geq 3$. Denote by G(q, p) the Green function of the Laplace operator in \mathbb{R}^n , i.e. given a point $q \in \mathbb{R}^n$ one has $\Delta_p G(q, p) = \delta_q(p)$, the delta-function supported at q.

Theorem 3.1. (see [6] for 4D and [4] for any n) For any dimension $n \ge 3$ the divergence-free vector field v in \mathbb{R}^n satisfying curl $v = \xi_P$ (i.e. $\xi_P = dv^{\flat}$) in the distributional sense is given by the following generalized Biot-Savart formula: for any point $q \notin P$ one has

$$v(q) := C_n \cdot \int_P J\left(\operatorname{Proj}_N \nabla_p G(q, p)\right) \, \mu_P(p) \,,$$

where $\operatorname{Proj}_N \nabla_p G(\cdot, p)$ is the orthogonal projection of the gradient $\nabla_p G(\cdot, p)$ of the Green function $G(\cdot, p)$ to the fiber $N_p P$ of the normal bundle to P at $p \in P$, the operator J is the positive rotation around p by $\pi/2$ in this 2-dimensional space $N_p P$, and μ_P is the induced Riemannian (n-2)-volume form on the submanifold $P \subset \mathbb{R}^n$.

Note that as the point q approaches the membrane P the vector field v(q) may go to infinity. Consider the following truncation of the integral above. For $q \in P$ and given $\epsilon > 0$ take the above integral not over P but over all points $p \in P$ also satisfying $||q - p|| \ge \epsilon$, i.e. at the distance at least ϵ from q:

$$v_{\epsilon}(q) := C_n \cdot \int_{\substack{p \in P, \ \|q-p\| \ge \epsilon}} J\left(\operatorname{Proj}_N \nabla_p G(q, p)\right) \ \mu_P(p)$$

Furthermore, consider the energy Hamiltonian $E(v) = \frac{1}{2} \int_{\mathbb{R}^n} (v, v) \mu$ on fast decaying divergence-free velocity vector fields v. As before, let ξ be the vorticity 2-form of the field v, i.e. $\xi = dv^{\flat}$. If the vorticity $\xi = \xi_P$ is supported on a membrane $P \subset \mathbb{R}^n$ of codimension 2, the corresponding energy E(v) for the velocity v defined by $\xi_P = dv^{\flat}$ is divergent and requires a regularisation. Let the *regularised energy* be

$$E_{\epsilon}(v) := \frac{1}{2} \int_{\mathbb{R}^n} (v, v_{\epsilon}) \, \mu$$

where v_{ϵ} is here understood as a smooth extension of the above field v_{ϵ} from P to \mathbb{R}^n . The regularised energy E_{ϵ} depends on this extension, but its principal term does not, as the following theorem shows.

Theorem 3.2. (see [6] for 4D and [4] for any n) For any dimension $n \ge 3$ and a membrane $P \subset \mathbb{R}^n$

i) the velocity field v defined in Theorem 3.1 and satisfying $\xi_P = dv^{\flat}$ has the following asymptotics of the truncation v_{ϵ} : for $q \in P \subset \mathbb{R}^n$ one has

$$\lim_{\epsilon \to 0} \frac{v_{\epsilon}(q)}{\ln \epsilon} = C_n \cdot J\left(\mathbf{MC}(q)\right)$$

ii) the regularised energy $E_{\epsilon}(v)$ for the velocity of P has the following asymptotics:

$$\lim_{\epsilon \to 0} \frac{E_{\epsilon}(v)}{\ln \epsilon} = C_n \cdot \int_P \mu_P = C_n \cdot \text{volume}(P)$$

By reparametrising the time variable $t \to -(C_n \cdot \ln \epsilon)t$ to absorb the logarithmic singularity we come to the following LIA equation for a membrane $P \subset \mathbb{R}^n$.

Corollary 3.3. The LIA approximation for a vortex membrane (or higher filament) P in \mathbb{R}^n coincides with the skew mean-curvature flow:

$$\partial_t P(q) = -J \left(\mathbf{MC}(q) \right) ,$$

where $\mathbf{MC}(q)$ is the mean curvature vector at $q \in P$. In particular, the LIA equation is Hamiltonian with respect to the Marsden-Weinstein symplectic structure ω^{MW} and Hamiltonian function H(P) given by the volume of the membrane P.

We refer to [6, 4] for proofs and more detail.

Remark 3.4. The hydrodynamical Euler equation remains Hamiltonian under the local induction approximation. Indeed, the LIA takes the Hamiltonian Euler equation on $\operatorname{Vect}_{\mu}(M)^*$ into the Hamiltonian skew mean-curvature equation on the space of membranes $\{P\}$ by 'keeping only the logarithmic divergences' given by the local terms.

Note that we are looking for a vector potential v induced by the vorticity ξ_P . Since $v_{\epsilon}(q) = C_n \cdot J(\mathbf{MC}(q)) \ln \epsilon + \mathcal{O}(1)$, the points remote from q contribute to $\mathcal{O}(1)$, while the leading term in the expansion is determined by points in P that are ϵ -close to q. Thus keeping only the leading term corresponds to *local* contribution in this approximation, and hence the term of the *localized induction approximation* or *LIA*.

The LIA evolution is close to the actual Euler evolution of a vortex filament only for a short time (when the local term in dominant). For large times the LIA filament may, e.g., self-intersect, while the incompressible Euler dynamics has a frozen-in vorticity and it does not allow topology changes of the filaments.

Acknowledgements

I am grateful to the Isaac Newton Institute in Cambridge, UK, for its kind hospitality. This work was partially supported by an NSERC research grant.

References

- Arnold, V.I. (1969) The Hamiltonian nature of the Euler equation in the dynamics of rigid body and of an ideal fluid. Uspekhi Matem. Nauk 24:3, 225–226.
- [2] Arnold, V.I., Khesin, B.A. (1998) Topological Methods in Hydrodynamics. Applied Mathematical Sciences, vol. 125, Springer-Verlag, New York, 374pp.
- Haller, S., Vizman, C. (2003) Nonlinear Grassmannians as coadjoint orbits. Preprint arXiv: math.DG/0305089, 13pp, which is a longer version of Math. Ann. 329:4, 771–785.
- [4] Khesin, B. (2012) Symplectic structures and dynamics on vortex membranes. Moscow Math. Journal, 12:2, 413–434; (arXiv:1201.5914)
- [5] Marsden, J., Weinstein, A. (1983) Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Physica D, 7:1-3, 305–323.
- [6] Shashikanth, B.N. (2012) Vortex dynamics in \mathbb{R}^4 . J. Math. Phys., 53:1, 013103 (22pp); (arXiv:1110.2717)