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Abstract

We present the vortex filament (or localized induction approximation) equation in any dimension. For an arbitrary n ≥ 3 the evo-

lution of vorticity supported on vortex membranes of codimension 2 in R
n is described by the skew (or binormal) mean-curvature

flow, which generalises to any dimension the classical binormal equation in R
3. This paper is a brief summary of the results in

Khesin (2012) and Shashikanth (2012) [4, 6].
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1. The vortex filaments, membranes, and skew-mean-curvature flow

The vortex filament (or binormal) equation is the evolution equation

∂tγ = γ′ × γ′′ , (1)

of an arc-length parametrized space curve γ(·, t) ⊂ R
3, where γ′ := ∂γ/∂θ. For an arbitrary parametrisation the

filament equation reads ∂tγ = k · b, where k and b = t× n stand, respectively, for the curvature value and binormal

unit vector of the curve γ at the corresponding point.

This binormal equation is known to be Hamiltonian with the Hamiltonian function given by the length functional

H(γ) = length(γ) =
∫
γ
‖γ′(θ)‖ dθ and relative to the Marsden-Weinstein symplectic structure on non-parametrized

oriented space curves in R
3, see e.g. [2, 5]. At a curve γ this symplectic structure is

ωMW
γ (V,W ) :=

∫
γ

iV iWμ =

∫
γ

μ(V,W, γ′) dθ (2)

where V and W are two vector fields attached to the curve γ and regarded as variations of this curve, while the

volume form μ is evaluated on the three vectors V,W . Equivalently, the Marsden-Weinstein symplectic structure

can be defined by means of the operator J of almost complex structure on curves: any variation V is rotated by the
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operator J in the planes orthogonal to γ by π/2 in the positive direction (which makes a skew-gradient from a gradient

field).

Furthermore, the Hasimoto transformation at any time t sends a curve γ(θ) with curvature k(θ) and torsion τ(θ)

to the wave function ψ(θ) = k(θ) exp{i ∫ θ
τ(ζ) dζ} satisfying the 1-dimensional focusing nonlinear Schrödinger

equation (NLS):

i∂tψ + ψ′′ +
1

2
|ψ|2ψ = 0 .

In particular, the binormal equation is an infinite-dimensional integrable system.

A natural extension of the binormal equation to higher dimensions is as follows. Consider a closed oriented

embedded submanifold (membrane) P of codimension 2 in R
n (or more generally, in a Riemannian manifold Mn)

with n ≥ 3. The Marsden-Weinstein symplectic structure ωMW on membranes of codimension 2 in R
n (or in

any n-dimensional manifold) with a volume form μ is defined similar to the 3-dimensional case: two variations of a

membrane P are regarded as a pair of normal vector fields attached to the membrane P and the value of the symplectic

structure on them is

ωMW
P (V,W ) :=

∫
P

iV iWμ .

Here iV iWμ is an (n− 2)-form integrated over P . Note that this symplectic structure can be thought of as the ‘total’

averaging of the symplectic structures in each normal space NpP to P . (The Marsden-Weinstein structure in higher

dimensions was studied in [2, 3].)

Furthermore, define the Hamiltonian function on those membranes by taking their (n− 2)-volume:

H(P ) = volume(P ) =

∫
P

μP ,

where μP is the volume form of the metric induced from R
n to P . (For a closed curve γ in R

3 this Hamiltonian is the

length functional discussed above.)

Theorem 1.1. In any dimension n ≥ 3 the Hamiltonian vector field for the Hamiltonian H and the Marsden-Weinstein
symplectic structure on codimension 2 membranes P ⊂ R

n is

vH(p) = Cn · J(MC(p)) ,

where Cn is a constant, J is the operator of positive π/2 rotation in every normal space NpP to P , and MC(p) is
the mean curvature vector to P at the point p.

This statement holds for any Riemannian manifold M . The expression of vH via the trace of the second fundamen-

tal form without reference to the mean curvature appeared in [3], Proposition 3. For 4D this theorem was obtained

in [6] and for higher dimensions in [4], where we refer to for the proof. Here and below we use the notation Cn for

some constant depending on the dimension in the case of Rn (above Cn = 4− 2n), or on the geometry of Mn in the

general case.

Recall the definition of the mean curvature vector field for a smooth submanifold of any dimension.

Definition 1.2. a) Let P be a smooth submanifold of dimension l in the Euclidean space R
n. Its second fundamental

quadratic form at a point p ∈ P is a map from the tangent space TpP to the normal space NpP . The mean curvature
vector MC(p) ∈ NpP is the normalized trace of the second fundamental form at p, i.e. the trace divided by l.

b) Equivalently, the mean curvature vector MC(p) ∈ NpP is the mean value of the curvature vectors of geodesics

in P passing through the point p when we average over the sphere Sl−1 of all possible unit tangent vectors in TpP for

these geodesics.

Definition 1.3. The higher vortex filament equation on submanifolds of codimension 2 in R
n is given by the binormal

(or skew) mean-curvature flow:

∂tP (p) = −J(MC(p)) . (3)
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Note that the skew mean-curvature flow differs by the π/2-rotation from the mean-curvature one. Respectively,

it does not stretch the submanifold while moving its points orthogonally to the mean curvatures. In particular, the

volume of the submanifold P is preserved under this evolution, as it should, being the Hamiltonian function of the

corresponding dynamics.

For dimension n = 3 the mean curvature vector is the curvature vector k · n of a curve γ: MC = k · n, while the

skew mean-curvature flow becomes the binormal equation: ∂tγ = −J(k · n) = k · b. Unlike the case n = 3, for

larger n ≥ 4 the skew mean-curvature flow is apparently non-integrable.

It would be very interesting to find an analogue of the Hasimoto transformation for any n relating the higher

vortex filament equation with the higher-dimensional (and already non-integrable) nonlinear Schrödinger equation;

(for n = 4 this question was posed in [6]).

2. The vorticity Euler equation

To describe the relation of the skew mean-curvature to hydrodynamics we start by recalling the vorticity form of

the Euler equation. Consider an inviscid incompressible fluid filling a Riemannian manifold M . The fluid motion is

described as an evolution of its velocity field v in M governed by the classical Euler equation:

∂tv + (v,∇)v = −∇p . (4)

Here the field v is assumed to be divergence-free (div v = 0) with respect to the Riemannian volume form μ and

tangent to the boundary of M . The pressure function p is defined uniquely modulo an additive constant by these

restrictions on the velocity v. The term (v,∇)v stands for the Riemannian covariant derivative ∇vv of the field v in

the direction of itself.

Definition 2.1. The vorticity (or Helmholtz) form of the Euler equation is

∂tξ + Lvξ = 0 , (5)

where Lv is the Lie derivative along the field v and which means that the vorticity field ξ := curl v is transported by

(or ‘frozen into’) the fluid flow. In any dimension the vorticity of a fluid motion geometrically is the 2-form defined by

ξ := dv�, where v� is the 1-form obtained from the vector field v by the metric lifting of indices. (In 3D the vorticity

field ξ can be thought of as a vector field, while in 2D it is a scalar vorticity function.)

The Euler equation has a Hamiltonian formulation on the dual space to the Lie algebra g = Vectμ(M), which

consists of smooth divergence-free vector fields in M tangent to the boundary ∂M , see e.g. [1, 2, 5]. The natural

‘regular dual’ space for this Lie algebra is the space of vorticities ξ, i.e. exact 2-forms on M . As the dual space to

a Lie algebra, this space of vorticities Vectμ(M)∗ = {ξ} has the natural Lie-Poisson structure. Its symplectic leaves

are co-adjoint orbits of the corresponding group Diffμ(M) of volume-preserving diffeomorphisms of M , which are

sets of fields with diffeomorphic vorticities. There exists the corresponding (Kirillov-Kostant) symplectic structure

ωKK on these orbits in Vectμ(M)∗. The Euler equation is Hamiltonian with respect to this structure ωKK and the

Hamiltonian function given by the energy E(v) = 1
2

∫
M
(v, v)μ for v = curl−1 ξ.

Regular vorticities ξ have support of full dimension, i.e. of codimension 0 in M , while singular ones can have sup-

port of codimension 1 or 2. Vortex sheets are singular vorticities with support of codim = 1. Below we discuss vortex

membranes, which are singular vorticities with support of codim = 2. The main types of singular vorticities, as well

as related to them symplectic structures and Hamiltonian equations studied below, are summarized in the following

table, see more details in [4]. (Note that the Marsden-Weinstein symplectic structure on membranes coincides with

the Kirillov-Kostant symplectic structure on coadjoint orbits of singular vorticities ξP supported on membranes P .)

The Euler equation (5) is nonlocal in terms of vorticities, since so is the operation of finding v = curl−1ξ. The

localized induction approximation (LIA) of the vorticity motion is a procedure which allows one to keep only the

local terms in the Euler equation for singular vorticity, as we discuss below.
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support vorticity symplectic evolution Hamiltonian

codim types structure equation

smooth ωKK
ξ (V,W ) vorticity energy

0 vorticities ξ =
∫
M

ξ ∧ iV iWμ Euler equation H = 1
2

∫
M
(v, v)μ

∂tξ = −Lvξ

vortex ω∂Γ∧α(V,W ) Euler ⇒ Birkhoff-Rott

1 sheets ∂Γ ∧ α =
∫
Γ
α ∧ iV iWμ LIA – ? H =?

2D: point vortices ω(κj ,zj) Euler ⇒ Kirchhoff H = Kirchhoff∑
κjδzj =

∑
κj dxj ∧ dyj LIA=0 Hamiltonian H

——————— ——————— ——————— ———————

2 3D: filaments ωMW
γ (V,W ) LIA: binormal eqn

C · δγ =
∫
γ
iV iWμ ∂tγ = γ′ × γ′′ H = length(γ)

——————— ——————— ——————— ———————

any D: membranes ωMW
P (V,W ) LIA: skew mean

(higher filaments) =
∫
P
iV iWμ curvature flow H = volume(P )

C · δP ∂tP = J(MC(P ))

3. The localized induction approximation (LIA) in any dimension

Let Pn−2 ⊂ R
n, n ≥ 3 be a closed oriented submanifold of codimension 2. Consider the vorticity 2-form ξP

supported on this submanifold: ξP = C · δP . We will call P a higher(-dimensional) vortex filament or membrane.

Note that the exactness of the 2-form ξP implies that the membrane strength C is constant.

We would like to find the divergence-free vector field v which has a prescribed vorticity 2-form ξ, i.e. ξP = dv� ∈
Ω2(Rn). In dimension 3, where vorticity can be regarded as a vector field, the corresponding vector potential v in

R
3 is reconstructed by means of the Biot-Savart formula, and now we are looking for its analogue in any dimension

n ≥ 3. Denote by G(q, p) the Green function of the Laplace operator in R
n, i.e. given a point q ∈ R

n one has

ΔpG(q, p) = δq(p), the delta-function supported at q.

Theorem 3.1. (see [6] for 4D and [4] for any n) For any dimension n ≥ 3 the divergence-free vector field v in R
n

satisfying curl v = ξP (i.e. ξP = dv�) in the distributional sense is given by the following generalized Biot-Savart
formula: for any point q 	∈ P one has

v(q) := Cn ·
∫
P

J (ProjN∇pG(q, p)) μP (p) ,

where ProjN∇pG(·, p) is the orthogonal projection of the gradient ∇pG(·, p) of the Green function G(·, p) to the
fiber NpP of the normal bundle to P at p ∈ P , the operator J is the positive rotation around p by π/2 in this
2-dimensional space NpP , and μP is the induced Riemannian (n− 2)-volume form on the submanifold P ⊂ R

n.

Note that as the point q approaches the membrane P the vector field v(q) may go to infinity. Consider the following

truncation of the integral above. For q ∈ P and given ε > 0 take the above integral not over P but over all points

p ∈ P also satisfying ‖q − p‖ ≥ ε, i.e. at the distance at least ε from q:

vε(q) := Cn ·
∫

p∈P, ‖q−p‖≥ε

J (ProjN∇pG(q, p)) μP (p) .
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Furthermore, consider the energy Hamiltonian E(v) = 1
2

∫
Rn(v, v)μ on fast decaying divergence-free velocity

vector fields v. As before, let ξ be the vorticity 2-form of the field v, i.e. ξ = dv�. If the vorticity ξ = ξP is supported

on a membrane P ⊂ R
n of codimension 2, the corresponding energy E(v) for the velocity v defined by ξP = dv� is

divergent and requires a regularisation. Let the regularised energy be

Eε(v) :=
1

2

∫
Rn

(v, vε)μ ,

where vε is here understood as a smooth extension of the above field vε from P to R
n. The regularised energy Eε

depends on this extension, but its principal term does not, as the following theorem shows.

Theorem 3.2. (see [6] for 4D and [4] for any n) For any dimension n ≥ 3 and a membrane P ⊂ R
n

i) the velocity field v defined in Theorem 3.1 and satisfying ξP = dv� has the following asymptotics of the truncation
vε: for q ∈ P ⊂ R

n one has

lim
ε→0

vε(q)

ln ε
= Cn · J (MC(q)) ;

ii) the regularised energy Eε(v) for the velocity of P has the following asymptotics:

lim
ε→0

Eε(v)

ln ε
= Cn ·

∫
P

μP = Cn · volume (P ) .

By reparametrising the time variable t → −(Cn · ln ε)t to absorb the logarithmic singularity we come to the

following LIA equation for a membrane P ⊂ R
n.

Corollary 3.3. The LIA approximation for a vortex membrane (or higher filament) P in R
n coincides with the skew

mean-curvature flow:
∂tP (q) = −J (MC(q)) ,

where MC(q) is the mean curvature vector at q ∈ P . In particular, the LIA equation is Hamiltonian with respect
to the Marsden-Weinstein symplectic structure ωMW and Hamiltonian function H(P ) given by the volume of the
membrane P .

We refer to [6, 4] for proofs and more detail.

Remark 3.4. The hydrodynamical Euler equation remains Hamiltonian under the local induction approximation.

Indeed, the LIA takes the Hamiltonian Euler equation on Vectμ(M)∗ into the Hamiltonian skew mean-curvature

equation on the space of membranes {P} by ‘keeping only the logarithmic divergences’ given by the local terms.

Note that we are looking for a vector potential v induced by the vorticity ξP . Since vε(q) = Cn ·J (MC(q)) ln ε+
O(1), the points remote from q contribute to O(1), while the leading term in the expansion is determined by points in

P that are ε-close to q. Thus keeping only the leading term corresponds to local contribution in this approximation,

and hence the term of the localized induction approximation or LIA.

The LIA evolution is close to the actual Euler evolution of a vortex filament only for a short time (when the local

term in dominant). For large times the LIA filament may, e.g., self-intersect, while the incompressible Euler dynamics

has a frozen-in vorticity and it does not allow topology changes of the filaments.
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