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Abstract

We show that the averaged equation  for a one-frequency fast-oscillating 

Hamiltonian system is the result of symplectic reduction of a certain natural 

system on the corresponding S1-bundle with respect to the circle action. 

Furthermore, if the reduced configuration space happens to be a group, then 

under natural assumptions the averaged system turns out to be the Euler 

equation on a central extension of that group. This gives a new explanation of 

the drift, common in averaged system, as a similar shift is typically present in 

symplectic reductions and central extensions.
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1. Introduction

Dynamical systems with fast-oscillating conditions are ubiquitous in physics: they naturally 

arise in mechanics, astrophysics, fluid and air dynamics, and many other domains. They often 

exhibit surprising properties, a beautiful example of which is the inverted pendulum, which 

stabilizes via fast vibration of its pivot. The standard way of analyzing such equations includes 

a procedure of constructing an averaged system, whose solutions remain close to those of the 

original system for very long time (see e.g. [1, 2, 7, 10]).

In many examples of Hamiltonian one-frequency oscillating systems one obtains an 

additional term, a drift in the averaged equation. A similar drift (or shift) is observed in 
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hydrodynamical-type systems, including the β-plane equation in meteorology (see e.g. [6]), 

infinite-conductivity equation for electron flows [8], and the Craik–Leibovich equation for an 

ideal fluid confined to a domain with oscillating boundary [5, 14]. In those hydrodynamical 

systems such a shift is often related to the consideration of a central extension of an appropri-

ate Lie algebra [13].

Below we explain this phenomenon by building a general connection between the averag-

ing method and symplectic reduction in appropriate, possibly nontrivial, S1-bundles. Namely, 

one starts with symplectic reduction of the cotangent bundle over a circle action, which is 

one of the most studied objects in symplectic geometry. One observes two features for the 

reduction over a nonzero value of the momentum map: the appearance of a twisted symplectic 

structure (similar to how the curvature arises in the description of gyroscopes on surfaces [4]), 

where a new magnetic term supplements the canonical symplectic form of the reduced space, 

and the appearance of an amended potential function, see section 2. It turns out that exactly 

these two phenomena occur in the averaging procedure. This can be summarized in the fol-

lowing statement (which is a combined version of theorems 3.6 and 5.4):

Theorem 1.1. For a natural slow-fast Hamiltonian system the resulting slow (averaged) 
system coincides with the one obtained by space averaging over the fibers of an appropriate 
S1-bundle and performing the symplectic reduction of the corresponding cotangent bundle 
over S1-action at the momentum value related to the fast frequency. The averaged system turns 
out to be a natural Hamiltonian system with an amended potential function with respect to a 
twisted (magnetic) symplectic structure.

Furthermore, central extensions appear whenever the base of the reduction turns out to 

be a group by itself, as discussed in section 4. This can be regarded as a manifestation of the 

reduction by stages developed in [11]. The second main result of the paper is the following 

abbreviated version of theorem 4.3:

Theorem 1.2. If the slow manifold is a group G and the perturbed Hamiltonian system is 
invariant relative to the G-action, then the second reduction of such a fast oscillating system 
gives an Euler equation, Hamiltonian with respect to the Poisson–Lie bracket on a central 
extension ĝ  of the corresponding Lie algebra g.

The essence of the paper is described in the diagram in figure 1: we show how to view the 

fast time averaging approximation on the left by going via the averaging on the top and reduc-

tion in the right column of the diagram. We describe this averaging-reduction procedure in 

section 3, and compare its result with the one obtained by using the classical fast-time averag-

ing method in section 5.

In section 6 we describe three examples by using the averaging-reduction procedure devel-

oped in this paper: the vibrating pendulum manifests the appearance of the amended potential, 

the Craik–Leibovich equation for oscillating boundary is related to the magnetic term in the 

symplectic structure and a central extension, while the motion of particles in rapidly oscillat-

ing potentials has both a magnetic term and an additional potential present upon averaging. 

(Note that, instead of the classical approach of applying ingenious canonical transformations 

[3], the present paper gives an alternative method of averaging natural Hamiltonian systems: 

one can average the metric, which contains all relevant information, and then obtain the aver-

aged natural system directly from that metric.)

While the symplectic reduction part of this paper is also valid for a high-dimensional torus 

action, i.e. a for many-frequency case, the approximation theorem does not work in this gen-

erality, as for several frequencies resonances can appear unavoidably in such systems, as e.g. 
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KAM theory manifests. Note also that in many examples the two contributions appearing in 

averaging, the magnetic term and the potential amendment, are of different order in the small 

parameter of perturbation. It would be interesting to see if it is always the case.

2. Symplectic reduction of cotangent bundles

We start by recalling (following [11]) general results on the symplectic reduction. Consider 

an action of an abelian group T := S1 (or more generally, a torus T = Tk) common in averag-

ing, while the results with appropriate amendments hold for a reduction by any Lie group. 

Assume that the group T acts on a configuration space Q (from the right) properly and freely, 

so that the quotient space Q/T is a manifold. Our first goal is to reduce Q by the T-action and 

describe structures on the reduced phase space. The quotient projection π : Q → B := Q/T 

defines a principal fiber bundle over the base B. It turns out that the curvature of this T-bundle 

enters the symplectic structure of the reduced manifold. The gyroscope example below can be 

regarded as an illustration of the abstract reduction procedure.

Namely, the group T acts on T∗Q by cotangent lifts, and we denote the momentum map of 

this action by J : T∗Q → t
∗. The momentum map is a natural projection of T∗

q Q at any q ∈ Q 

to the cotangent space to the fiber, t∗. For an arbitrary value µ ∈ t
∗ of the momentum map 

consider the reduced phase space4 (T∗Q)µ := J−1(µ)/T.

Theorem 2.1 (See e.g. [11]). Let T be an abelian group acting on a manifold Q so that 
π : Q → Q/T =: B is a principal fiber bundle, and fix µ ∈ t

∗. Let A : TQ → t be a principle 
connection one-form on this bundle. Then

 (i)  for µ = 0 there is a symplectic diffeomorphism between (T∗Q)0 and T∗B = T∗(Q/T) 
equipped with the canonical symplectic form ωcan; 

 (ii)  for µ �= 0 there is a symplectic diffeomorphism between (T∗Q)µ and T∗B, where the lat-

Figure 1. Diagram.

4 For an arbitrary Lie group the reduced space is defined as J−1(µ)/Tµ where Tµ is the stationary subgroup of µ. 

In this section we use the fact that T is abelian, and hence the stationary group Tµ coincides with the full group: 

Tµ = T.
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ter is equipped with symplectic form ωµ := ωcan − βµ. Here the two-form βµ := π∗

Pσµ on 
T∗B is obtained by the pull-back via the cotangent bundle projection πP : T∗B → B from 
the two-form σµ on B. The latter two-form is the µ-component of the curvature of the 
principal fiber bundle Q over B, namely π∗σµ = d 〈µ,A〉 .

Proof outline. We just recall an explicit form of the isomorphism between (T∗Q)µ and 

T∗(Q/T), see theorem 2.3.3 in [11] for more detail.

The isomorphism ϕ0 : (T∗Q)0 → T∗(Q/T) is defined by noting that

J−1(0) = { pq ∈ T∗Q : 〈pq, ξQ(q)〉 = 0 for all ξ ∈ t},

where ξQ is the vector field on Q corresponding to the infinitesimal action ξ, i.e. vectors ξQ(q) 
span the vertical subspace at q. Thus the map Φ : J−1(0) → T∗(Q/T) given by

〈Φ( pq),π∗(vq)〉 = 〈pq, vq〉 (1)

is well defined. The map Φ is T-invariant and surjective, and hence induces a quotient map 

ϕ0 : (T∗Q)0 → T∗(Q/T).
The isomorphism ϕµ : (T∗Q)µ → T∗(Q/T) is the composition ϕµ = ϕ0 ◦ shiftµ of 

ϕ0 with the isomorphism shiftµ : (T∗Q)µ → (T∗Q)0 defined as follows. Introduce a map 

Shiftµ : J−1(µ) → J−1(0) by

Shiftµ( pq) = pq − 〈µ,A(q)〉

for any pq ∈ J−1(µ). It is T-invariant, so it drops to a quotient map shiftµ : (T∗Q)µ → (T∗Q)0. 

The t-valued two-form dA is the curvature of the (abelian) connection A, while to construct 

the two-form σµ one uses its µ-component, see [11]. □ 

Remark 2.2. The isomorphism between (T∗Q)µ and T∗B = T∗(Q/T) is connection-de-

pendent. The reduced symplectic form on T∗B is modified by the curvature two-form σµ on B, 

which is traditionally called a magnetic term, since it also appears in the description of motion 

of a charged particle in a magnetic field on B.

Definition 2.3. Let the space Q be equipped with a T-invariant metric. This metric defines 

an invariant distribution of horizontal spaces: at each point q ∈ Q there is a subspace of TqQ 

orthogonal to the fiber (i.e. the T-orbit) at q. Hence the metric defines an invariant connection 

one-form A : TQ → t on this fiber bundle. This one-form is called a mechanical connection.

Consider a natural system on T∗Q with Hamiltonian H(q, p) = (1/2)( p, p)q + U(q) 
invariant with respect to the T-action. (Here and below (., .)q stands for the metric on Q, 

i.e. the inner product on TQ, or the induced one on T∗

q Q, depending on the context. The 

Euclidean inner product in Rn is denoted by dot.) This system descends to a Hamiltonian 

system on the quotient (T∗Q)µ with respect to the symplectic structure ωµ = ωcan − βµ. The 

new Hamiltonian Hµ is obtained from H by applying the map Shiftµ and the corresponding 

potential U(q) acquires an additional term, as we discuss below.

Example 2.4. The following example of a spinning disk (a gyroscope) on a curved surface 

shed the light on the geometry behind the symplectic reduction above. Cox and Levi proved 

in [4] that the motion of the disk center coincides with the motion of a charged particle in a 

magnetic field which is normal to the surface and equal in magnitude to the Gaussian curva-

ture of the surface.
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To explain their result in the context of reduction theory, let q = (q1, q2) be orthogo-

nal local coordinates on a surface B ⊂ R
3, so that metric on the surface is given by 

ds2 = a11(q)dq2
1 + a22(q)dq2

2. When the disk is not spinning, its kinetic energy is a function of 

its position q and linear velocity q̇, i.e. a function on TB. It is given by

E0 =
m

2
(Gq̇, q̇) +

Id

2
h(q̇, q̇),

where G = diag(a11, a22), h is the second fundamental form of B, and Id is the moment of 

inertia of the disk along its diameter. Denote by Ia the moment of inertia about the disk axis.

Theorem 2.5 ([4]). For a spinning disk on a surface B the angular momentum µ = Iaωa of 
the disk about its axis is constant and the disk’s center satisfies the following equation

d

dt

∂E0

∂q̇
−

∂E0

∂q
=

√
a11a22 µK(q)

[

0 −1

1 0

]

q̇, (2)

where K(q) is the Gaussian curvature of the surface B.

Remark 2.6. Before we provide a different proof of this result via symplectic reduction, 

note that the configuration space Q of this system is the circle bundle over the surface: the 

disk position is defined by the position of its center on the surface B and the angle of rotation. 

Globally Q may be a nontrivial T-bundle over B = Q/T. However, for the local considera-

tion below it suffices to consider the case Q = B × T. The phase space is the corresponding 

tangent bundle TQ. The metric in R3 allows one to identify TQ and T∗Q, while the disk motion 

is a Hamiltonian system on the cotangent bundle T∗Q. The trajectory of the disk center can be 

obtained as the symplectic reduction of the system on T∗Q with respect to the T-action, as we 

quotient out the disk rotation. Different angular velocities of the disk lead to different values 

µ of the momentum map, over which one takes the quotient. According to theorem 2.1 the 

resulting system is a Hamiltonian system on T∗B, with two amendments. The corresponding 

symplectic structure after the reduction will be twisted by a magnetic term. In this setting it 

will be proportional to the curvature K(q) of the surface, which one observes in equation (2). 

Moreover, the corresponding Hamiltonian undergoes a shift by µ. However, in the gyroscope 

case the shift reduces to adding a constant to the Hamiltonian and does not appear in the equa-

tions5.

Proof. Let us identify TB and T∗B by means of the metric. First note that equation (2) is the 

Euler–Lagrange equation for a Lagrangian system, which can be rewritten as a Hamiltonian 

system with the Hamiltonian energy function E0 on the cotangent bundle of the surface B 

(thanks to the metric identification) with a twist symplectic structure given in local coordi-

nates by

ωµ = ωcan − µ
√

a11a22 K(q) dq1 ∧ dq2,

where ωcan is the canonical symplectic structure on T∗B.

5 Jumping ahead, in order to see this one can use an explicit formula of theorem 3.6, which gives an additional term 
1
2
〈µ, I(q)−1µ〉. It is indeed constant, since in the gyroscope case the inertia operator I does not depend on q, while µ 

is a constant angular velocity.
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Next, we show how to obtain this system via symplectic reduction. Denote by θ the angle 

between a fixed radius on the disk and the positive direction of the line {q2 = const}. This 

gives us a principal T-bundle Q with the curved surface B as the base.

The absolute angular velocity of a spinning disk is Ωa = θ̇ + A(q)q̇, where A(q)q̇ is the 

transferred velocity, and A(q) = (k1

√
a11, k2

√
a22), where k1, k2 are the geodesic curvatures 

of coordinate lines {q1 = const} and {q2 = const}.

So, in local coordinates, the metric on the principal T-bundle Q is given by

(

(q̇, θ̇), (q̇, θ̇)
)

(q,θ)
= Ia(θ̇ + A(q)q̇)2 + m(Gq̇, q̇) + Idh(q̇, q̇).

Note that this metric is invariant under the T-rotations.

Therefore, the momentum map J : TQ → t
∗ = R is J(q, θ; q̇, θ̇) = Ia(θ̇ + A(q)q̇) and the 

mechanical connection A : TQ → t = R is A = dθ + A(q) dq (here we again identify TQ and 

T∗Q). By theorem 2.1, for a fixed value µ = IaΩa of the momentum map J, the system can 

be reduced to the (co)tangent bundle of the surface B with the magnetic symplectic structure

ωµ = ωcan − µ d(A(q)dq) = ωcan − µ
√

a11a22 K(q) dq1 ∧ dq2,

where K(q) is the Gaussian curvature of the surface B.

The energy Lagrangian E = 1
2

(

(q̇, θ̇), (q̇, θ̇)
)

(q,θ)
 on Q defines the reduced Hamiltonian 

on B, which turns out to be E0 = 1/2(m(Gq̇, q̇) + Idh(q̇, q̇)). Here we omit the constant term 

Ia(θ̇ + A(q)q̇)2 = 〈Ωa, IaΩa〉 = 〈µ, I−1
a µ〉 in the energy expression, since the value µ of the 

momentum map (i.e. the angular momentum of the disk) is conserved.

This reduced Hamiltonian system with Hamiltonian function E0 on the cotangent bundle 

(T∗B,ωµ) of the surface describes the motion of the disk center. □ 

3. Averaging-reduction procedure for a natural system

3.1. Averaging

Let π : Q → B be a principal T-bundle. From now on we assume that T = S1 (and occasion-

ally comment on T = Tn). The cotangent lift of T-action on Q induces T-action on T∗Q. 

Denote by ρ, ρ∗, and ρ∗ the T-action on Q,T∗Q and TQ, respectively. Let dη be the standard 

Euclidean measure on the group T.

Consider a natural Hamiltonian system on the cotangent bundle T∗Q:

H(q, p) =
1

2
( p, p)q + U(q). (3)

Here Q is the configuration space of the motion, we assume that this Hamiltonian system has 

slow motion on the base B and fast motion on the fibers isomorphic to T. The Hamiltonian 

function H(q, p) is not necessarily invariant under the T-action on T∗Q. As the first step one 

passes to the space T-average H(q, p)
T

, the T-invariant function on T∗Q defined by the fol-

lowing formula:
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H(q, p)
T

:=
1

η(T)

∫

g∈T

H(ρ∗g(q, p)) dη(g).

For the natural system (3), one averages both the kinetic and potential parts of the energy:

H(q, p)
T

=
1

2
( p, p)

T

q + U(q)
T

,

where U(q)
T

= 1
η(T)

∫
T

U(ρg(q)) dη(g) and ( p, p)
T

q = 1
η(T)

∫
T
(ρ∗g p, ρ∗g p)ρ

g−1 (q) dη(g) is defined  

via the following averaged metric on Q:

Definition 3.1. The averaged metric (·, ·)
T

 on the principal T-bundle Q is given by

(v, v)
T

q :=
1

η(T)

∫

T

(ρg∗v, ρg∗v)ρg(q) dη(g),

for any v ∈ TqQ. This defines a T-invariant metric on Q.

Now define the connection on Q corresponding to the averaged metric:

Definition 3.2. The averaged connection Ā ∈ Ω1(Q, t) on the principal T-bundle Q is the 

connection induced by the averaged metric (, )
T

q  by the invariant distribution of horizontal 

spaces: at each point q ∈ Q there is a subspace of TqQ orthogonal to the fiber (i.e. the T-orbit) 

at q.

The connection induced by an invariant averaged metric on Q is the mechanical connec-

tion, according to definition 2.3.

Remark 3.3. We would like to give a more explicit description of averaged metrics and con-

nections. First note that a T-invariant metric (., .)q on Q can be defined by means of a metric 

operator IQ(q) : TqQ → T∗

q Q for q ∈ Q, where IQ(q) : v �→ v
♭, i.e. (v, v)q := 〈v, IQ(q)v〉 for 

v ∈ TqQ. This defines the ‘fiber inertia operator’ I(q) : t → t
∗ by restricting to t = TqT ⊂ TqQ 

the metric operator IQ(q) for q ∈ Q. (Recall, that for T = S1, we have t = R.) The T-invari-

ance of metric implies that the fiber inertia operator I is equivariant, I(g(q)) = Ad∗

g−1I(q), i.e. 

it depends on the base point π(q) ∈ B = Q/T only.

The invariant metric on TQ also induces the momentum map J : T∗Q → t
∗ for the action 

of the group T. In these terms the averaged mechanical connection can be defined explicitly 

by

Ā(vq) = I(q)−1J( pq),

where vq is a tangent vector in TqQ, pq := IQ(q)vq = v
♭
q ∈ T∗

q Q is the corresponding metric-

dual cotangent vector, and I is the inertia operator on t in the fiber at q.

Remark 3.4. More specifically, in coordinates for a trivial bundle Q the general form for a 

T-invariant metric on Q = B × T is as follows:

((u, γ), (u, γ))(x,τ) = (u, u)x + 2γ h(x) 〈A(x), u〉+ h(x)γ2, (4)
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where (u, γ) ∈ T(x,τ)(B × T) = TxB × t , A(x) ∈ Ω1(B, t) = T∗

x B, h(x) ∈ R
+, and t ≃ R. For 

a non-trivial Q this general form is valid locally on the base.

Proposition 3.5. For a trivial bundle Q = B × T the averaged connection Ā ∈ Ω1(B×  

T, t) = T∗

(x,τ)(B × T) corresponding to the averaged metric (4) is given by Ā(x, τ) = A(x) + dτ . 

The summands can be regarded as connections on the base A(x) ∈ T∗

x B and in the fiber dτ .

Proof. For a trivial bundle Q the momentum map J : T∗

(x,τ)(B × T) → t
∗ is given by

J(x,τ)(a, η) = h(x)〈A(x), u〉+ h(x)〈dτ , ξ〉,

where (a, η) ∈ T∗

(x,τ)(B × T) and (u, ξ) ∈ T(x,τ)(B × T) is the image of (a, η) under the metric 

identification. Indeed, by definition of the momentum map, for any ζ ∈ t,

〈J(x,τ)(a, η), ζ〉 = 〈(a, η), (0, ζ)〉 = ((u, ξ), (0, ζ))

= (u, 0)x + ζh(x)〈A(x), u〉+ ξh(x)〈A(x), 0〉+ ξh(x)ζ = 〈h(x)〈A(x), u〉+ h(x)ξ, ζ〉.

Furthermore, the inertia operator I(x) : t → t
∗ at x ∈ B is given by I(x)γ = h(x)γ 

for any γ ∈ t, hence the average mechanical connection assumes the form Ā(u, ξ) =  

I(x)−1J(a, η) = 〈A(x), u〉+ 〈dτ , ξ〉, as required. □ 

3.2. Reduction

By considering the T-invariant metric and Hamiltonian (obtained by T-averaging) we are now 

in the framework of section 2. The dynamics defined by the averaged Hamiltonian H
T

 on T∗Q 

can be derived from the corresponding averaged or slow motion, i.e. the dynamics on T∗B of 

the base space B = Q/T. However, unlike the standard averaging method discussed below in 

section 5.1, now we obtain this slow motion via symplectic reduction.

Recall that, for a fixed value µ of the momentum map, the reduced space J−1(µ)/T is sym-

plectomorphic to the cotangent bundle T∗B of the base space B with the twisted symplectic 

form ωµ = ωcan − βµ, where ωcan and βµ are the canonical and magnetic two-forms on T∗B 

(see theorem 2.1). The averaged/slow system turns out to be a Hamiltonian system on the 

symplectic manifold (T∗B,ωµ) with the following reduced Hamiltonian function H̄µ.

Theorem 3.6. For a natural system on a T-bundle Q over the slow manifold B with  
Hamiltonian function H(q, p) = (1/2)( p, p)q + U(q) the result of the symplectic reduction 
with respect to the T-action of the averaged system is a natural system with the Hamiltonian 
function H̄µ,

H̄µ(q, p) =
1

2
( p, p)B + Uµ(q), (5)

on the symplectic manifold (T∗B,ωµ). Here (q, p) ∈ T∗B, (·, ·)B stands for the metric on the 

base B = Q/T obtained as a Riemannian submersion Q → B from the metric (·, ·)
T

 on Q, 

while Uµ(q) := U(q)
T

+ 1
2
〈µ, I(q)−1µ〉 is the effective potential.
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Proof. We start by computing the result of averaging and consequent symplectic reduction 

on T∗Q with respect to the T-action. Upon averaging along T-orbits one can assume that the 

Hamiltonian H̄  on Q is T-invariant, H̄(q, p) = H(q, p)
T

. The reduced Hamiltonian system on 

the quotient (T∗Q)µ is Hamiltonian with respect to the symplectic structure ωµ = ωcan − βµ. 

The new Hamiltonian is obtained from H̄  by applying the map Shiftµ. Namely, abusing the 

notation, for (q, p) ∈ T∗B and a connection Ā in the T-bundle Q one has

H̄µ(q, p) = H̄(q, p + 〈µ, Ā(q)〉) =
1

2
( p + 〈µ, Ā(q)〉, p + 〈µ, Ā(q)〉)

T

q + U(q)
T

=
1

2
( p, p)B + ( p, 〈µ, Ā(q)〉)

T

q +
1

2
(〈µ, Ā(q)〉, 〈µ, Ā(q)〉)

T

q + U(q)
T

=
1

2
( p, p)B + Uµ(q)

T

for Uµ(q) := 1
2
(〈µ, Ā(q)〉, 〈µ, Ā(q)〉)

T

q + U(q)
T

. Here we use that Ā is the mechanical con-

nection corresponding to the averaged metric (·, ·)q

T

, and hence we have ( p, 〈µ, Ā(q)〉)
T

q =  

〈µ, Ā(q)(v)〉 = 〈µ, I(q)−1J( p)〉 = 0, since J( p) = 0, and where (q, p) ∈ T∗B is identified 

with (q, v) ∈ TB by means of the averaged metric. Thus on the reduced symplectic manifold 

T∗B with the twisted symplectic form ωµ = ωcan − βµ the new reduced Hamiltonian is

H̄µ(q, p) =
1

2
( p, p)B + Uµ(q)

for q ∈ B and p ∈ T∗

q B. It is a natural system with a new effective potential

Uµ(q) =
1

2
(〈µ, Ā(q)〉, 〈µ, Ā(q)〉)

T

q + U(q)
T

=
1

2
〈µ, I(q)−1µ〉+ U(q)

T

.
 □ 

In section 5.2 below we will prove the following corollary of theorem 3.6 for averaging 

one-frequency fast-oscillating systems: under certain conditions, solutions of the averaged 

system and projections to slow manifold of solutions of the actual system with the same initial 

conditions remain ǫ-close to each other for 0 � t � 1/ǫ.

Remark 3.7. The two features of the averaged-reduced Hamiltonian system are the addi-

tional term in the effective potential Uµ and the magnetic term −βµ in the symplectic structure 

ωµ. Therefore this averaging-reduction procedure provides a geometrical explanation of these 

two phenomena, often observed in the averaging theory.

Remark 3.8. In the classical averaging of fast-oscillating systems (see section 5.1 below) 

one starts by fixing the action variable J. This can be regarded as a manifestation of sym-

plectic reduction in flat coordinates, as this means fixing a certain value of the corresponding 

momentum map. The bundle averaging-reduction procedure described here is also applicable 

in that case, but the metric in this bundle turns out to be flat. Namely, in the reduction to a 

submanifold J = µ one chooses a flat connection on the principal bundle which corresponds 

to the direct product of the base and fibres, and hence no twisted symplectic structure appears 

on the reduced manifold: for the momentum value J = µ, the averaged Hamiltonian function 

is ǫ H̄(Q, P,µ) on the ‘flat’ cotangent bundle (T∗
R

ℓ, dP ∧ dQ).
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4. Central extensions in symplectic reduction

Above we described the reduced phase space (T∗Q)µ for the right action by the group T. In 

this case, the reduced phase space (T∗Q)µ coincides with T∗(Q/T), equipped with the magn-

etic symplectic structure ωµ described before. Now assume in addition that the base space 

Q/T has the structure of another Lie group G, which acts on itself from the left and leaves the 

metric on G = Q/T invariant. As a result, G acts on T∗G = T∗(Q/T) and, as one can check, 

this action leaves the symplectic structure ωµ = ωcan − βµ invariant. (Recall that the magnetic 

two-form βµ := π∗

Gσµ on T∗G is the pullback of the left-invariant two-form σµ on the group 

G.) Hence another reduction for this G-action (‘the reduction by stages’) would take this 

magnetic symplectic structure on T∗G to an appropriate structure on the dual Lie algebra g∗, 

as described below.

Theorem 4.1 (Theorem 7.2.1 in [11]). The Poisson reduced space for the left action of G 
on (T∗G,ωµ = ωcan − βµ) is the dual Lie algebra g∗ with the Poisson bracket given by

{ f , g}µ(ν) = −
〈

ν,

[

δf

δν
,
δg

δν

]〉

− σµ(e)

(

δf

δν
,
δg

δν

)

 (6)

for f , g ∈ C∞(g∗) at any ν ∈ g∗, where σµ(e) is the value of the left-invariant two-form σµ 

at e ∈ G on the pair of tangent vectors δf

δν
,
δg

δν
∈ TeG = g, and βµ := π∗

Gσµ is the pullback of 

σµ to T∗G.

Remark 4.2. The above Poisson bracket is the Lie–Poisson bracket of the dual ĝ∗ of the 

central extension ĝ  of the Lie algebra g by means of the t-valued two-cocycle σ, such that 

〈σ,µ〉 := σµ(e). Namely, the Lie algebra ĝ  is the direct sum g⊕ t, as a vector space, with the 

commutator

[(u, a), (v, b)]ĝ := ([u, v]g,σ(u, v))

for u, v ∈ g and a, b ∈ t. It turns out that under certain integrality conditions, the space Q gives 

a realization of the corresponding centrally extended group Ĝ .

For the right action of G the bracket changes sign.

Theorem 4.3. Let G be a group equipped with a closed integral left-invariant two-form 
σµ/2π. Then the T-bundle Q over the group G with the curvature form σµ can be canonically 
identified with the central extension Ĝ  of the group G by means of T, where the Lie algebra 
two-cocycle is σµ(e), i.e. its value on a pair of Lie algebra elements ξ and η is σµ(e)(ξ, η).

Proof. The proof is based on a version of proposition 4.4.2 of [12] adjusted to the setting 

at hand. In fact, one can explicitly construct Ĝ  and identify it with Q, the T-bundle over G. 

Namely, first for any oriented loop ℓ in G one associates an element C(ℓ) = exp(i
∫
∂−1ℓ

σµ), 

where ∂−1
ℓ  is an oriented 2D surface in G bounded by ℓ. The value C(ℓ) is well-defined, since 

for two different surfaces with the same boundary the integrals of σµ for an integral two-form 

σµ/2π differ by a multiple of 2π.

The map ℓ �→ C(ℓ) is independent of parametrization of ℓ, additive, and G-invariant. 

It defines a central extension Ĝ  of the group G by T as a set of triples (g, u, p), where 

g ∈ G, u ∈ T and p  is a path in G from e to g, modulo the following equivalence. Two triples 
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(g, u, p) and (g′, u′, p′) are equivalent if g′ = g and u′ = C( p′ ∪ p−1)u. The composition is 

(g1, u1, p1) ◦ (g2, u2, p2) = (g1g2, u1u2, p1 ∪ g1( p2))).
Recall that the space Q with an invariant metric has a structure of a T-bundle with mechani-

cal connection. Then a triple (g, u, p) modulo equivalence can be interpreted as the follow-

ing point in Q: it is the point in the T-fiber over g ∈ G, obtained from the point (e, u) of the 

T-fiber over e ∈ G by a horizontally lifted path p  from e to g. Then the equivalence of triples 

stands for their correspondence to the same point in Q, since the form σµ is the curvature of 

the mechanical connection, while the formula u′ = C( p′ ∪ p−1)u describes the holonomy of 

the connection over a closed loop. □ 

Remark 4.4. Theorems 4.1 and 4.3 can be extended to the case of a torus T-bundle Q over 

G, where T = Tk. In theorem 4.3 one realizes Q as a group central extension of G by T by 

applying the above consideration to the ‘coordinate two-forms’ σµ = 〈σ,µ〉 of the t-valued 

two-form σ.

Remark 4.5. Return to the two-cocycle βµ on the Lie algebra g, which defines the central 

extension and the magnetic term. In many examples, this two-cocycle is a two-boundary, i.e. 

the two-form σµ on the Lie algebra can be represented as a linear functional of the Lie algebra 

commutator, σµ(ξ, η) = L([ξ, η]) for some element L ∈ g∗. In that case, the corresponding 

Poisson structure on g∗ is the linear Lie–Poisson structure on the dual space g∗ shifted to the 

point L. The associated Euler equation also manifests a certain shift, observed, e.g. as a Stokes 

drift velocity related to surface waves in the Craik–Leibovich equation, see section 6.2.

Remark 4.6. When considering dynamics on the reduced space T∗G, in order to use the 

second reduction over the G-action one has to confine to the natural systems with effective 

potential independent of q, i.e. Uµ(q) = const. The latter are geodesic flows for the invariant 

metric on G defined by the inertia operator IG : g → g∗. The second reduction defines the 

Euler equations for the quadratic Hamiltonian H( p) := 1
2
( p, p)e =

1
2
〈 p, I−1

G p〉 on the dual ĝ∗ 

of centrally extended Lie algebra ĝ .

5. Reminder on averaging and examples

5.1. Averaging in one-frequency Hamiltonian systems

Consider a Hamiltonian system with ℓ+ 1 degrees of freedom and Hamiltonian of the form 

H(q, p, I,φ) = H0(I) + ǫH1(q, p, I,φ), where φ(mod 2π) ∈ T, while H is 2π-periodic in φ, 

and (q, p, I) ∈ D ⊂ R
2ℓ+1. (Such perturbations of properly degenerate Hamiltonian systems 

are typical in celestial mechanics.) The corresponding Hamiltonian equations for the standard 

symplectic structure are as follows:
{

q̇ = ǫ ∂H1/∂p İ = −ǫ ∂H1/∂φ,

ṗ = −ǫ ∂H1/∂q, φ̇ = ∂H0/∂I + ǫ ∂H1/∂I.
 (7)

Definition 5.1. The averaged system for the above Hamiltonian H = H0 + ǫH1 is the sys-

tem of 2ℓ+ 1 equations:
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{

Q̇ = ǫ ∂H̄1/∂P, J̇ = 0,

Ṗ = −ǫ ∂H̄1/∂Q,
 (8)

where H̄1(Q, P, J) := 1
2π

∫ 2π

0
H1(Q, P, J,φ) dφ.

Since there is no evolution of J in the averaged system, one can fix it and regard 

J as a parameter for the Hamiltonian system with ℓ degrees of freedom, where 

H̄(Q, P) = H̄J(Q, P) = H0(J) + ǫH̄1(Q, P, J).
Let (q, p, I) belong to a domain D ⊂ R

2ℓ+1, and Dδ ⊂ D stands for a subdomain 

whose δ-neighbourhood belongs to D. Assume that the Hamiltonian H is C3-bounded for 

(q, p, I,φ) ∈ D × T, as well as ∂H0(I)/∂I > C > 0 in D and (Q(t), P(t), J(t)) ∈ Dδ for all 

0 � t � 1/ǫ.

Theorem 5.2 (See [1, 2]). For sufficiently small positive ǫ (i.e. 0 < ǫ < ǫ0)  
solutions of the actual system (7) and averaged system (8) with the same initial condi-
tions (q(0), p(0), I(0)) = (Q(0), P(0), J(0)) remain ǫ-close to each other for 0 � t � 1/ǫ: 
|I(t)− I(0)| < C0ǫ and |q(t)− Q(t)|+ |p(t)− P(t)| < C0ǫ, where C0 does not depend on ǫ.

Proof of this theorem consists of constructing a canonical transformation ǫ-close to the 

identity and mapping the original system to the averaged one modulo ǫ2-terms. Then for the 

time 0 � t � 1/ǫ solutions of the averaged system remain ǫ-close to those of the original one, 

see [1].

Remark 5.3. Consider now a fast-oscillating nonautonomous Hamiltonian system with ‘ℓ 

and a half’ degrees of freedom, whose Hamiltonian is H = H( p, q,ωt) with high frequency 

ω = µ/ǫ. The associated Hamiltonian equations are q̇ = ∂H/∂p and ṗ = −∂H/∂q. The fast 

variable φ = ωt can be regarded as a new independent space variable by passing to the new 

autonomous Hamiltonian system for H̃ = ωI + H( p, q,φ) with ℓ+ 1 degrees of freedom, 

where variable I is conjugate to φ. Combined with the reparametrization t �→ τ = t/ǫ this 

leads to the system of the above type (where now the upper dot stands for the derivative in the 

fast time τ ):
{

q̇ = ǫ ∂H/∂p, İ = −ǫ ∂H/∂τ ,

ṗ = −ǫ ∂H/∂q, φ̇ = µ.
 (9)

5.2. Averaging in natural systems

In this section we study averaging in natural systems on the cotangent bundle of a principle 

circle bundle π : Q → B. The general form of a natural Hamiltonian function on T∗Q is

H(x, y) =
1

2
(y, y)x + U(x)

for (x, y) ∈ T∗

x Q.

We start by considering natural systems on the cotangent bundle T∗(Rℓ × T) of a direct 

product with Hamiltonians

H(q,φ; p, γ) =
1

2
(( p, γ), ( p, γ))(q,φ) + U(q,φ), (10)
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where (q,φ) ∈ R
ℓ
× T and ( p, γ) ∈ T∗

(q,φ)(R
ℓ
× T). Assume that the function H(q,φ; p, γ) is 

2π-periodic in φ, U(q,φ) = U0(q) + ǫU1(q,φ), and the metric on Rℓ × T has the form

(( p, γ), ( p, γ))(q,φ) = p · p + 2γa(q,φ) · p + h(q,φ) γ2, (11)

where dot stands for the Euclidean inner product and where the corresponding coefficients a 

and h have the following expansions in ǫ as ǫ → 0:

a(q,φ) = a0(q) + ǫa1(q,φ), h(q,φ) = h0(q) + ǫh1(q,φ),

with functions a1(q,φ), h1(q,φ) and U1(q,φ) of zero mean with respect to φ.

The Hamiltonian equations  for this Hamiltonian function H(q,φ; p, γ) and symplectic 

structure ω = (1/ǫ) dq ∧ dp + dφ ∧ dγ on T∗(Rℓ × T) are


















q̇ = ǫ ( p + γa(q,φ)),

φ̇ = a(q,φ) · p + h(q,φ) γ,

ṗ = −ǫ ∂(γa(q,φ) · p + (1/2) h(q,φ)γ2 + U(q,φ))/∂q,

γ̇ = −ǫ ∂(γa1(x,φ) · p + (1/2) h1(q,φ)γ2 + U1(q,φ))/∂φ.

 (12)

In these equations φ is the fast variable. Below we prove that the averaged Hamiltonian for 

(10) is

H̄(Q, P,µ) =
1

2
P · P + µ a0(Q) · P +

1

2
µ2h0(Q) + U0(Q), (13)

where the part (1/2)µ2h0(Q) + U0(Q) is related to an effective potential, while the term 

µ a0(Q) · P linear in impulses is related to a magnetic-gyroscopic-like force. Namely, one has 

the following statement, which is an adaptation of theorem 5.2 to the system (12).

Theorem 5.4. For sufficiently small ǫ > 0 solutions for the original Hamiltonian  
(10) and the averaged Hamiltonian (13) with the same initial conditions (q(0), p(0), γ(0)) =  
(Q(0), P(0),µ(0)) remain ǫ-close to each other for 0 � t � 1/ǫ: |γ(t)− µ(t)|+  
|q(t)− Q(t)|+ |p(t)− P(t)| < C0ǫ, where C0 does not depend on ǫ.

Proof. The Hamiltonian equations (12) can be rewritten in the following form


























q̇ = ǫ ( p + γa0(q)) + ǫ2γa1(q,φ),

φ̇ = a(q,φ) · p + h(q,φ) γ,

ṗ = −ǫ ∂(γa0(q) · p + (1/2) h0(q)γ
2 + U0(q))/∂q

− ǫ2∂(γa1(q,φ) · p + (1/2) h1(q,φ)γ2 + U1(q,φ))/∂q,

γ̇ = −ǫ ∂(γa1(x,φ) · p + (1/2) h1(q,φ)γ2 + U1(q,φ))/∂φ.
 (14)

These equations differ by ǫ2-terms from those for the averaged Hamiltonian (13) in the sym-

plectic structure Ω = dP ∧ dQ:










Q̇ = ǫ (P + γa0(Q)),

Ṗ = −ǫ ∂(γa0(Q) · P + (1/2) h0(Q)γ2 + U0(q))/∂Q,

µ̇ = 0,

 (15)

so according to theorem 5.2, we obtain the required proximity of solutions for the original and 

averaged equations. □ 
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Remark 5.5. In the shifted coordinates (Q, P) → (Q, P1 := P + µ a0(Q)), the averaged 

Hamiltonian (13) becomes

H̄(Q, P1,µ) =
1

2
P1 · P1 +

1

2
µ2(h0(Q)− a0(Q) · a0(Q))+ U0(Q), (16)

while the symplectic structure becomes

Ω = d(PdQ) = d((P1 − µ a0(Q)) dQ) = dP1 ∧ dQ − µ d(a0(Q) dQ).

One notices that a new (effective) potential now includes an additional term,

Ūµ(Q) :=
1

2
µ2(h0(Q)− a0(Q) · a0(Q))+ U0(Q),

while the new symplectic structure acquires the magnetic term µ d(a0(Q) dQ).

Now we are ready to prove

Corollary 5.6. The solutions of the reduced Hamiltonian system and projections to slow 
manifold of solutions of the actual system with the same initial conditions remain ǫ-close to 
each other for 0 � t � 1/ǫ.

Proof. Comparing the result of theorem 3.6 with remark 5.5 we observe that the Ham-

iltonian (5) in the theorem coincides with the averaged Hamiltonian of the natural system 

obtained above.

As a matter of fact, the consideration of remark 5.5 can be seen as a local (coordinate) 

version of the proof of theorem 3.6. Indeed, the averaged metric in local coordinates can be 

expressed as

(( p,µ), ( p,µ))
T

(q,g) = p · p + 2µ a0(q) · p + µ2h0(q),

where (q, g) ∈ B × T and ( p,µ) ∈ T∗

(q,g)(B × T), see (13). Therefore the corresponding me-

chanical connection Ā ∈ Ω1(B,R) in local coordinates is Ā = a0(q) dq. One can see that the 

symplectic structure and effective potential in remark 5.5 coincide with those in theorem 3.6.

Since one obtains the same averaged system both via the ‘local’ proof of section 5.2 and 

via the ‘global’ proof of theorem 3.6, then theorem 5.4 guarantees the required closeness of 

averaged and original solutions. □ 

Remark 5.7. While theorem 5.4 deals with the topologically trivial T-bundle Rℓ × T, the 

result on the existence of an averaged system holds for a topologically nontrivial bundle as 

well. In the general case of a nontrivial T-bundle π : Q → B we assume that the Hamiltonian 

system has fast motions along fibers and slow motions on the base B. Under the assumption 

that the oscillatory parts of the Hamiltonian are of order ǫ, i.e.

U(q)− U(q)
T

∼ O(ǫ) and ( p, p)q − ( p, p)
T

q ∼ O(ǫ), (17)

one can introduce the averaged kinetic energy (1/2)( p, p)
T

q  and averaged potential energy 

U(q)
T

 by averaging the system along the fibers, see section 3. Then one proves the averaging 
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theorem by considering only the local picture of the principal bundle π : Q → B, since any 

bundle is locally trivial.

5.3. Examples of averaged systems

Example 5.8 (A pendulum with rapidly oscillating suspension point). Consider 

the motion of a pendulum with a vertically vibrating suspension point. Set θ to be the angle of 

deviation of the pendulum from the vertical, a and ω  are the amplitude and frequency of the 

oscillation of the suspension point, l is the length of the pendulum and g is the acceleration of 

gravity. We assume that the amplitude ǫa is of order ǫ and the frequency ω = µ/ǫ is of order 

1/ǫ, i.e. the suspension point oscillates with high frequency and small amplitude. The corre-

sponding potential is U(θ) = −gl cos θ and the Hamiltonian function is

H(θ, p, t) =
1

2

(p

l
− aµ sinωt sin θ

)2

− gl cos θ.

This system differs from a natural one because of the shift in p , and the standard reason-

ing goes as follows, see e.g. [2]. Let φ = ωt be the fast variable. In order to get rid of the 

φ-depend ence in the Hamiltonian of vibrating pendulum, we seek for a canonical transforma-

tion (θ, p) �→ (θ1, p1) with a generating function p1θ + ǫS1(θ, p1,φ), where the function S1 is 

2π periodic in φ. Then the new Hamiltonian becomes

H (θ1, p1,φ) = µ
∂S1

∂φ
+ H(θ1, p1,φ) + O(ǫ),

as ǫ → 0. By taking S1(θ, p1,φ) = −( p1/l) a cosφ sin θ + (1/8) a2µ sin2 θ sin 2φ, we obtain 

the following Hamiltonian averaged to the first order in ǫ:

H (θ1, p1,φ) =
p2

1

2l2
− gl cos θ1 +

1

4
a2µ2 sin2 θ1 + O(ǫ).

Notice the appearance of an additional positive definite quadratic term in the effective poten-

tial

Uµ(θ1) = −gl cos θ1 + (1/4)a2µ2 sin2 θ1.

It causes such an interesting dynamical phenomenon as the stability of the upper position of 

the pendulum.

Example 5.9 (A particle in a rapidly oscillating potential). Consider the motion 

of a particle in a rapidly oscillating potential, following [3]. The corresponding Hamiltonian 

function is H(q, p, t) = (1/2) p · p + U(q, t/ǫ), where the potential function U(q, τ) is 2π-pe-

riodic with respect to τ . To obtain an averaged Hamiltonian modulo the third order in ǫ one 

needs to iteratively apply canonical transformations (q, p) → (Q, P) four times (see [3] for 

details). The results is

H̄(Q, P) =
1

2
P · P + Ū(Q) +

ǫ2

2
V ′

· V ′
− ǫ

3 S′′V ′P,
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where Ū(q) = 1
2π

∫ 2π

0
U(q, τ) dτ  is the time average of U over one temporal period, 

functions V  and S stand for temporal antiderivatives V(q, τ) :=
∫ τ

[U(q, θ)− Ū(q)] dθ,  

S(q, τ) :=
∫ τ

V(q, θ) dθ, with the constants of integration chosen such that V̄ = S̄ = 0, and 

the prime denotes the derivative with respect to the new space variable Q.

Example 5.10 (Foucault pendulum). By considering small and rapid oscillations of an 

ideal pendulum on a sphere rotating with angular velocity Ω, one can observe that the plane 

of oscillation will be rotating with the angular velocity −Ω sinλ, where λ is the pendulum 

latitude. This is an example of the Foucault pendulum, see [1] for a detailed description. More 

generally, one can consider a curved surface and a pendulum slowly transported along a path 

on the surface. In this case the plane of oscillation turns out to be parallel transported along the 

path on the surface, see the discussion in [9], and it can be regarded as a physical interpretation 

of the Levi-Civita connection.

One can use the averaging-reduction theory to interpret this phenomenon. First, notice that 

this system has the same T-bundle structure as the one in the gyroscope example 2.4. Hence 

by shifting the momentum similarly to that in theorem 2.1, one obtains a Hamiltonian sys-

tem on (the cotangent bundle of) the tangent bundle of the surface with a twisted symplectic 

structure, where the twist is given by an additional curvature term related to the Levi-Civita 

connection. Then the averaging-reduction procedure allows one to descend this system to (the 

cotangent bundle of) the unit tangent bundle of the surface, on which the parallel transport is 

observed. We plan to discuss this example in detail elsewhere.

6. Applications

6.1. Pendulum with a vibrating suspension point

In section 5.3, we obtained the averaged Hamiltonian for a pendulum with a vibrating suspen-

sion point using the classical averaging method, and observed the appearance of an additional 

quadratic term in the effective potential. In this section, using the averaging-reduction proce-

dure of section 3, we show that this additional term is the result of symplectic reduction.

We start with the following Hamiltonian function describing a natural mechanical system 

with a rapidly oscillating potential:

H(x, p, t) =
1

2
( p, p) + U(x) + ǫ ω

2 Ũ(x,ωt), (18)

where the frequency ω = µ/ǫ is of order 1/ǫ, and the oscillating part of the potential Ũ(x,φ) 

is 2π-periodic and has zero mean with respect to φ.

Introduce the fast time τ = t/ǫ and fast variable φ = ωt = µτ . We split any (vector-) func-

tion f = f (t,φ) depending on two times t and τ  (and 2π-periodic in φ = µτ ) into the mean 

and oscillatory parts:

f (t,φ) = f (t) + f̃ (t,φ),

where f = (1/2π)
∫ 2π

0
f (t,φ) dφ. Now regard the fast variable φ as a new coordinate. Note 

that when the fast time τ  changes by 1, the slow time t changes only by ǫ. So for a motion 

x(t,φ) = x(t) + x̃(t,φ) described by the Hamiltonian function (18), one can fix x(t) and 

regard x̃(t,φ) = x̃(x,φ) as a function of x and φ modulo O(ǫ) as ǫ → 0. In other words, one 
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can consider a map from a suspension over M, a manifold M × T, to M itself, where a point 

(x,φ) ∈ M × T is mapped to x = x(t) + x̃(x,φ) ∈ M. Here x̃(x,φ) can be obtained by solv-

ing the Hamiltonian system corresponding to the above Hamiltonian function H in variables 

(x̃, p̃):

H(x̃, p̃, t) =
1

2
(p̃, p̃) + U(x) + ǫ ω

2 Ũ(x + x̃,ωt), (19)

with the initial conditions such that the solution (x̃(x̄,φ), p̃(x̄,φ)) has zero mean value with 

respect to φ.

In order to compute the metric on the suspension manifold M × T we set µ = 1 (i.e. 

ω = 1/ǫ and φ = τ ). Thinking of position x̃ and momentum p̃  as depending on the average 

position x and fast time τ , we denote by (x̃(x, τ), p̃(x, τ)) the solution of the corresponding 

Hamiltonian system with initial conditions corresponding to zero mean value relative to τ .

According to the above consideration, the configuration space is a principal 

T-bundle π : M × T → M , where the T-action on Q = M × T is the shift in fibres 

φ ◦ (x, eiφ′

) = (x, ei(φ+φ′)). Applying the averaging-reduction theory of section 3, we obtain 

the following statement.

Theorem 6.1. The Hamiltonian system (18) averaged using the standard averaging meth-
od in example 5.8 coincides with the system obtained on the reduced symplectic manifold 
(T∗M,ωcan) with the canonical symplectic structure, the Hamiltonian function

Hslow(x, p) =
1

2
(p, p) + Uµ(x), (20)

for (x, p) ∈ T∗M , and with the effective potential

Uµ(x) = U(x) +
ǫ2ω2

4π

∫ 2π

0

(ṽ(x, τ), ṽ(x, τ)) dτ .

Proof. Now the averaged metric is given by

((v, γ), (v, γ))(x,φ) = (v, v) + 2π γ
2

(∫ 2π

0

(ṽ(x, τ), ṽ(x, τ)) dτ

)
−1

,

where (v, γ) ∈ TxM × TφT. Also, note that the value of (1/2π)
∫ 2π

0
(ṽ(x, τ), ṽ(x, τ)) dτ  de-

pends on x only.

The corresponding fiber inertia operator I(x) : t = R → t
∗ = R at x ∈ M  is given by 

I(x)γ = 2πγ
(∫ 2π

0
(ṽ(x, τ), ṽ(x, τ)) dτ

)
−1, while the momentum map J : T∗(M × T) → t

∗ = R  

is given by J(x̄,φ, p, η) = η . The averaged connection Ā ∈ Ω1(M × T,R) on the principal 

trivial T-bundle M × T is given by Ā(x̄,φ, v, γ) = γ. This connection is flat, Ā = dφ.

Recall that the magnetic term is proportional to the curvature of the bundle π : Q → M. The 

flatness of Ā implies that the reduced symplectic structure on the manifold T∗M = J−1(µ)/T 

has no magnetic term, i.e. it coincides with the canonical symplectic structure ωcan. By taking 

µ = dφ/dτ = ǫω  in theorem 3.6, the effective potential Uµ in the Hamiltonian function (20) is
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Uµ(x) = U(x) + 1/2 〈µ, I(x)−1µ〉 = U(x) + (µ2/4π)

∫ 2π

0

(ṽ(x, τ), ṽ(x, τ)) dτ

= U(x) + ǫ
2(ω2/4π)

∫ 2π

0

(ṽ(x, τ), ṽ(x, τ)) dτ .

 □ 

Now return to example 5.8 in section 5.3. The Hamiltonian of a pendulum with a vibrating 

suspension point can be rewritten in the following form:

H(θ, p) =
1

2

(p

l

)2

− (g − ǫ aω2 sin τ) l cos θ. (21)

Recall our assumption that the amplitude ǫa is of order ǫ and the frequency ω = µ/ǫ is of 

order 1/ǫ, which means that the above Hamiltonian has the form (18). Hence we obtain the 

following result on its slow motion.

Theorem 6.2. The averaged Hamiltonian function reduces to the following Hamiltonian 
function describing the slow motion:

Hslow(θ, p) =
1

2

(

p

l

)2

+ Uµ(θ), (22)

where the effective potential is Uµ(θ) = (1/4)µ2a2 sin2 θ − gl cos θ.

Proof. Let τ = t/ǫ and (θ̃(θ, τ), p̃(θ, τ)) be the solution of Hamiltonian system corre-

sponding to the function

H̃(θ̃, p̃) =
1

2

(
p̃

l

)2

− (g −
a

ǫ
sin τ) l cos(θ + θ̃),

with the initial values determined by the zero mean conditions of (θ̃(θ, τ), p̃(θ, τ)) with re-

spect to τ .

Omitting terms of order ǫ2 we obtain the following Newton equation for θ̃ :

d2θ̃/dt2 = −(a/(ǫl)) sin τ sin θ.

By rewriting it for the fast time τ = t/ǫ and integrating we obtain dθ̃/dτ = (ǫa/l) cos τ sin θ 

and θ̃ = (ǫa/l) sin τ sin θ . (In this integration one regards the right-hand side as a function of 

τ  modulo higher order terms in ǫ, and uses the zero mean condition on dθ̃/dτ  and θ̃ .)

Furthermore, the momentum map J : T∗(Tθ̄ × Tφ) → R, corresponding to the 

T-action on Tθ̄ × Tφ equipped with the averaged metric is J(θ̄,φ, p,µ) = µ, and 

(l2/2π)
∫ 2π

0
(dθ̃/dτ , dθ̃/dτ) dτ = ǫ2(a2/2) sin2 θ .

Therefore, by theorem 6.1, the reduced (or slow) symplectic manifold is (T∗
Tθ̄,ω) with 

symplectic structure ω = dθ̄ ∧ dp̄ and the Hamiltonian of the slow motion is

Hslow(θ, p) =
1

2

(

p

l

)2

+ Uµ(θ),
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where the effective potential is

Uµ(θ) =
ω2l2

4π

∫ 2π

0

(dθ̃/dτ , dθ̃/dτ) dτ + U(θ̄)

= ǫ
2 ω

2a2

4
sin

2 θ − gl cos θ =
1

4
µ2a2

sin
2 θ − gl cos θ.

 □ 

6.2. Craik–Leibovich equation

Consider the motion of an ideal fluid confined to a three-dimensional domain D with fast oscil-

lating boundary ∂D. The averaged fluid motion is described by the following Craik–Leibovich 

(CL) equation on the fluid velocity field v:







∂v

∂t
+ (v,∇)v + curl v × Vs = −∇p,

(v + Vs) || ∂D,

div v = 0,

 (23)

where Vs is a (time-dependent) prescribed Stokes drift velocity related to the average of sur-

face waves. We refer to [14] for a derivation of the CL equations via perturbation theory. In 

[15, 16] the Hamiltonian structure of the CL equation was studied, along with a generalization 

of the perturbation theory to a principal T-bundle over any group G and derivation of the Euler 

equation associated with a certain central extension of G.

In a more general setting, let SDiff(D) be the group of all volume-preserving diffeomor-

phisms of an n-dimensional Riemannian manifold D with boundary ∂D. Its Lie algebra 

g = SVect(D) consists of all the divergence-free vector fields in D tangent to the boundary 

∂D, while the regular dual space g∗ = Ω1(D)/dΩ0(D) of this Lie algebra is the space of cosets 

of one-forms on D modulo exact one-forms.

Theorem 6.3 ([16]). The n-dimensional Craik–Leibovich (CL) equation  on the space 
Ω

1(D)/dΩ0(D) has the form

d

dt
[u] = −Lv+Vs

[u], (24)

where v + Vs ∈ SVect(D), and [u] = [v♭] ∈ Ω1(D)/dΩ0(D) is the coset of the one-form v
♭ 

metric-related to the vector field v on D.

Remark 6.4. The requirement v + Vs ∈ SVect(D) provides the boundary condition of tan-

gency of the vector field v + Vs to the boundary ∂D. Although the divergence-free vector fields 

v and Vs are not necessarily tangent to the boundary, the one-forms v♭ and V♭
s , considered up 

to the differential of a function, are well-defined elements in the dual space Ω1(D)/dΩ0(D) of 

Lie algebra SVect(D).

Upon shifting the origin in g∗ = Ω1(D)/dΩ0(D) by [V♭
s ], equation (24) becomes

d

dt
[w] = −LI−1[w]

(

[w]− [V♭
s ]
)

 (25)

for [w] := [u + V♭
s ].
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Theorem 6.5 ([16]). The equation  (25) is the Euler equation  on the central extension  
ĝ  of the Lie algebra g = SVect(D) by means of the two-cocycle

σVs
(X, Y) := −

〈

LX V♭
s , Y

〉

associated with the vector field Vs.

Remark 6.6. More generally, for a ‘shift two-cocycle’

σVs
(X, Y) := −〈ad∗

XI(Vs), Y〉 = −〈I(Vs), [X, Y]〉

on an arbitrary Lie algebra g, consider the corresponding (possibly trivial) central extension 

ĝ  of Lie algebra g by means of this two-cocycle. Then the Euler equation on the centrally 

extended Lie algebra ĝ  is

d

dt
ξ = −ad∗

I−1ξ (ξ − I(Vs)) , (26)

where ξ ∈ g∗. Applying this to the Lie algebra SVect(D), where ad∗

Xξ = LXξ, we obtain the 

above theorem.

The averaging-reduction procedure gives us an explanation of the structure of central 

extension for the CL equation, which appeared as the result of averaging, as well as the origin 

of the vector field Vs. More specifically, by applying the symplectic reduction procedure to a 

natural system on the principal T-bundle G × T → G for a group G (in the case of an oscil-

lating flow, G is the group SDiff(D) of volume-preserving diffeomorphisms of D) one obtains 

the averaged system on the cotangent bundle T∗G of the base G with the symplectic structure 

endowed with a magnetic term. Furthermore, theorem 4.1 provides the corresponding central 

extension. First we prove the averaging-reduction theorem for a trivial bundle G × T → G, 

and then explain the necessary changes in the general case.

Theorem 6.7. The averaging of a natural G-invariant Hamiltonian system on T∗(G × T) 
reduces to a slow Hamiltonian system on the reduced symplectic manifold (T∗G,ωµ) with the 

Hamiltonian function Hslow(ḡ, r̄) = 1
2
(r̄, r̄), where (ḡ, r̄) ∈ T∗G, and the symplectic structure 

ωµ given by

ωµ = ωcan − µπ∗

G dα̃,

for the canonical symplectic form ωcan on T∗G. Here πG : T∗G → G is the cotangent bundle 
projection and α̃ is a certain one-form on the base G depending on the averaged metric.

Proof. For a point q = (g, x) ∈ G × T let p = (ν, y) be a covector at that point. A natural 

G-invariant Hamiltonian system on T∗(G × T) with Hamiltonian H(q, p) = 1
2
( p, p) + U(x) 

for a G-invariant metric on G × T has the form:

H(g, x; ν, y) =
1

2
((ν, y), (ν, y))(g,x) + U(x).
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To write it more explicitly6, let B∗(x) : g∗ → T∗

x T be the linear map associated with the G-

invariant metric7, and identify covector components ν  with elements of g∗ by right transla-

tions. Then the Hamiltonian can be rewritten as

H(g, x; ν, y) =
1

2
(y, y)x + (y, B

∗

ν)x +
1

2
(ν, ν)x + U(x). (27)

Now fix a position g of the slow motion and consider the fast motion (i.e. x-dependence) of 

the system. In this setting we have ν = 0, since the fast motion has zero mean, omitting higher 

order terms in ǫ. Then the Hamiltonian for the fast motion becomes

H̃(x̃, ỹ) =
1

2
(ỹ, ỹ)̃x + U(x̃). (28)

Note that the Hamiltonian of fast motion does not depend on the group element g.

Suppose that the period of this motion is 2π/ω  and set the fast variable to be φ = ωt, where 

the frequency ω = µ/ǫ. Let (x̃(φ), ỹ(φ)) be any Hamiltonian trajectory for Hamiltonian func-

tion (28) satisfying the following two conditions: it is 2π-periodic with respect to the fast vari-

able φ and its initial condition is chosen in a way to provide zero mean for (x̃(φ), ỹ(φ)). Such 

a vanishing condition generically defines a one-parameter family of solutions parametrized by 

the energy level (e.g. such solutions differ by scaling for a quadratic potential U). We use the 

fast variable φ to define the T-action on G × T, which is given by φ ◦ (g, eiφ′

) = (g, ei(φ+φ′)).
Since the Hamiltonian of fast motion does not depend on the group element g, the averaged 

kinetic energy (1/2π)
∫ 2π

0
(ṽ(φ), ṽ(φ)) dφ does not depend on g as well, where ṽ  is related 

to ỹ by means of the metric: ṽ
♭ = ỹ. Take the solution (x̃(φ), ỹ(φ)) for which the averaged 

kinetic energy (1/2π)
∫ 2π

0
(ṽ(φ), ṽ(φ)) dφ is 1/ǫ2.

Then the averaged metric (·, ·)
T

 on G × T (see remark 3.4) is given by

((v, γ), (v, γ))
T

= (v, v) + 2π(2γ 〈α̃, v〉+ γ2)
(

∫ 2π

0
(ṽ(φ), ṽ(φ)) dφ

)
−1

= (v, v) + ǫ2 (2γ 〈α̃, v〉+ γ2),
 

(29)

where (v, γ) ∈ TgG × TφT ≃ TgG × R, while the one-form α̃ ∈ T∗G depends on ỹ. This 

one-form is right-invariant, i.e. it satisfies α̃(hg) = R∗

g−1 α̃(h). Indeed, the metric on G × T 

is right-invariant under the G-action, hence its average with respect to the T-action is right-

invariant under the G-action as well.

The averaged inertia operator I(g) : t = R → t
∗ = R is I(g)γ = ǫ2γ , while the averaged 

momentum map J : T(G × T) → t
∗ = R is given by J(g,φ, v, γ) = 〈ǫ2α̃, v〉+ ǫ2γ, see prop-

osition 3.5. Finally, the averaged connection Ā ∈ Ω1(G × T,R) on the principal T-bundle 

G × T is given by Ā(g,φ) = α̃+ dφ.

According to theorem 3.6 the magnetic term in the symplectic structure is 

βµ = µπ∗

GdĀ = µπ∗

Gdα̃ for the corresponding µ ∈ R. Therefore, the symplectic structure on 

the reduced manifold T∗G ∼= J−1(µ)/T is the two-form ωµ = ωcan − µπ∗

Gdα̃. The correction 

in the effective potential Uµ of Hamiltonian function (5) is constant, and hence can be omitted.

 □ 

6 This is based on the same consideration as remark 3.4.
7 As a matter of fact, B∗ will turn out to be dual of a flat connection B in the bundle G × T → T, see remark 6.8.
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Remark 6.8. For the general case of a topologically nontrivial G-bundle π : M → N , con-

sider an open subset O ⊂ N . Then locally in the base trivialize M|
π
−1(O)

∼= O × G and the 

cotangent bundle T∗M|
π
−1(O)

∼= T∗O × G × g∗. This decomposition of the tangent/cotangent 

spaces gives us a flat connection B ∈ Ω
1(O, g) on O × G. Therefore, for the local representa-

tion (x, g; y, ν) of (q, p), we have q = (x, g) and p = (y + B∗
ν, ν), and then the Hamiltonian 

H(q, p) = 1
2
( p, p) + U(π(q)) in T∗M becomes

H(x, g; y, ν) = 1
2
(y + B∗

ν, y + B∗
ν)x +

1
2
(ν, ν)x + U(x)

= 1
2
(y, y)x + (B∗

ν, y)x +
1
2
(B∗

ν,B∗
ν)x +

1
2
(ν, ν)x + U(x).

By combining the third and forth terms in the above expression of the general Hamiltonian 

and by switching the order of coordinates, we obtain the Hamiltonian (27) in the proof. Fi-

nally, by confining ourselves to x-periodic solutions in the base lying inside O one can reduce 

the setting to a Hamiltonian on T∗(G × T).

Remark 6.9. For the oscillating flow we consider the principal G-bundle π : M → N  with 

G = SDiff(D) to be the group of volume-preserving diffeomorphisms. The infinite-dimen-

sional manifold M is the space of all volume-preserving embeddings of the reference manifold 

D to Rn, while N is the manifold of all boundaries of such embeddings, i.e. hypersurfaces dif-

feomorphic to ∂D and bounding diffeomorphic manifolds with the same volumes.

For the averaged metric, the one-form α̃ on G is metric-related to a vector field Vs on G via 

α̃ = V♭
s . This defines the two-cocycle σVs

(X, Y) := −
〈

LX V♭
s , Y

〉

 on the Lie algebra SVect(D) 

in theorem 6.5.

6.3. Particles in rapidly oscillating potentials

It turns out that the motion of a particle in a rapidly oscillating potential field [3] can also be 

viewed in the context of the symplectic averaging-reduction setting. Moreover, in this exam-

ple one observes both phenomena: additional terms in the effective potential and magnetic 

correction to the symplectic structure.

Namely, consider the Hamiltonian function

H(x, p,ωt) =
1

2
p · p + ǫ2µ2 U(x,ωt), (30)

where x ∈ R
n, the potential function U(x,φ) is 2π-periodic with respect to (the fast variable) 

φ and the frequency ω = µ/ǫ is of order 1/ǫ. By ingenious repeated application of canonical 

transformations (see [3] for details, where µ = 1) one obtains an averaged Hamiltonian up to 

the third order in ǫ:

H(x, p) =
1

2
p · p + U +

ǫ2µ2

2
V ′

· V ′
− ǫ

3µ S′′V ′ p, (31)

where U(x) = 1
2π

∫ 2π

0
U(x, τ) dτ , V(x, τ) =

∫ τ
U(x, θ)− U(x) dθ, and S(x, τ) =

∫ τ
V(x, θ) dθ  

with the constant of integration chosen so that V = S = 0, and where prime denotes the deriv-

ative with respect to the space variable x.

On the other hand, the symplectic averaging-reduction procedure applied to the 

Hamiltonian (30) is as follows. Regard the fast variable φ ∈ T as a new (periodic) coordi-

nate, while the quotient along φ-fibers is the slow manifold with coordinates x ∈ R
n, mean 
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values of the solutions. The T-action on the principal T-bundle π : Rn × T → R
n is given by 

φ ◦ (x, eiφ′

) = (x, ei(φ+φ′)).

Theorem 6.10. The averaged Hamiltonian system (31) for the natural system (30) is equiv-
alent to the result of the symplectic averaging-reduction procedure, i.e. the Hamiltonian sys-
tem on the reduced symplectic manifold (T∗

R
n,ωµ) with the Hamiltonian function:

Hslow(x, p) =
1

2
p · p + Uµ(x), (32)

where (x, p) ∈ T∗
R

n, and the effective potential is Uµ(x) = U(x) + ǫ2
µ

2

2
V ′

· V ′ . The reduced 

symplectic structure is given by

ωµ = dx ∧ dp − ǫ3µ d{S′′V ′
♭
} (33)

with the above notations for U, V , S and the prime as above, and ♭ stands for the lifting indices 
operator Vect(Rn) → Ω1(Rn) corresponding to the Euclidean metric on Rn.

Proof. For the fast time τ = t/ǫ let (x̃(x, τ , p̃(x, τ))) be a solution of the Hamiltonian sys-

tem corresponding to the function

H̃(x̃, p̃) =
1

2
p̃ · p̃ + Ũ(x + x̃, τ)

and satisfying the periodicity and zero mean requirement in τ . (Recall that one splits any solu-

tion x = x + x̃  into the mean and periodic parts.) Upon discarding higher order terms in ǫ, the 

Newton’s equation on x̃ becomes

d2x̃/dt2 = −Ũ′(x + x̃, τ),

where the prime stands for the derivative with respect to the space variable. We consecutively 

obtain

dx̃/dt = −ǫ

∫ τ

U′(x + x̃, τ) dτ = −ǫV ′ and x̃ = −ǫ

∫ τ

ǫV ′(x + x̃, τ) dτ = −ǫ2S′,

where one integrates by using the zero mean condition on the constants of integration.

Then the averaged metric is given by

((v, γ), (v, γ))(x,φ) = v · v + 2 ǫγ 〈S′′V ′, v〉 (V ′
· V ′)−1 + γ

2(ǫ2V ′
· V ′)−1,

where (v, γ) ∈ TxR
n
× TφT ≃ TxR

n
× R. Note that the above metric has the form (4) dis-

cussed in remark 3.4.

The corresponding fiber inertia operator I(x) : t = R → t
∗ = R, x ∈ M  is given by  

I(x)γ = γ(ǫ2V ′
· V ′)−1 for γ ∈ R. Then, as follows from proposition 3.5, the momentum  

map J : T(Rn × T) → t
∗ = R for Q = R

n × T is given by J(x̄,φ, v, γ) =
γ(ǫ2V ′

· V ′)−1 + ǫ〈S′′V ′, v〉 (V ′
· V ′)−1, where v is the image of p  under the metric  

identification.

Finally, the averaged connection Ā ∈ Ω1(Rn × T,R) on the principal T-bundle Rn × T is 

given by Ā(x̄, v,φ, γ) = dφ+ ǫ3S′′V ′
♭
.
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We choose µ to be the value of the momentum map. By theorem 3.6, the reduced symplec-

tic structure on the reduced manifold T∗
R

n = J−1(µ)/T has a magnetic term

ωµ = dx ∧ dp − ǫ
3
µ d{S′′V ′dx}.

The reduced Hamiltonian function on (T∗
R

n,ωµ) turns out to be

Hslow(x, p) =
1

2
p · p + Uµ(x)

at any (x, p) ∈ T∗M , where the effective potential is Uµ(x) = U(x) + ǫ2
µ

2

2
V ′

· V ′ . □ 

Thus the system obtained by applying the symplectic averaging-reduction procedure is 

equivalent to the one obtained via the classical averaging method in [3].

Remark 6.11. It remains an open question to describe the magnetic term related to the 

curvature of an appropriate T-bundle in purely geometric terms, similar to the gyroscope 

description in [4].
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