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Abstract

We show that for an even-dimensional fluid there exists a strong relation, via the
Morse theory and symplectic geometry, between the topology of the vorticity function
and the existence of a stationary solution of Euler’s equation. In particular, it turns out
that there is no smooth steady flow on the disc provided that the vorticity function is
Morse, positive and has both a local maximum and minimum in the interior of the
disc.

As we show, the structure of four-dimensional steady flows is similar to that of three-
dimensional flows described in Arnold’s theorem. Namely, under certain hypotheses, an
analytic four-dimensional steady flow is fibered into invariant tori and annuli, for such
a flow gives rise to an integrable Hamiltonian system on a symplectic four-manifold. It
is also proved that an odd-dimensional chaotic steady flow is always a Beltrami flow,
i.e., its velocity and vorticity fields are proportional.
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1. Introduction

Steady (or stationary) flows of a compressible or incompressible fluid often
turn out to be “attractors” in phase space and, therefore, the structure of such
flows gives an “approximate picture” of an arbitrary fluid motion after a long
period of time.
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The stationary Euler equation describing the vorticity of a steady flow
formally coincides with the equation of a stationary magnetic field in mag-
netohydrodynamics. Thus studying the structure of steady flows is interesting
from both points of view: ideal hydrodynamics and dynamo theory.

So far, all the results on stationary flows concerned, to the best of our
knowledge, the flows on two- or three-dimensional manifolds (see [Al,A2,
Mo,KoL.,T]). The structure of three-dimensional steady flows is described
by Arnold’s theorem (see [A2,A3]): an analytic stationary flow is fibered
into invariant tori and annuli unless the velocity field is proportional to the
vorticity field. It turns out that under a hypothesis analogous to the one
of Arnold’s theorem four-dimensional steady flows have a similar structure:
almost the whole of the manifold is fibered into tori invariant under the flow
(see Section 3). Thus four-dimensional steady flows are similar to integrable
Hamiltonian systems with two degrees of freedom. The “opposite” case where
the velocity and vorticity field are collinear has analogs in any odd dimension:
such generalized Beltrami (or ABC) flows have a pretty complicated topology
of trajectories (see Section 4).

To analyze steady flows on even-dimensional manifolds, we introduce the
following notion of extra symmetry. Recall that every steady solution on an
even-dimensional manifold comes along with two functions: the Bernoulli
function ~# and the vorticity function 1 (see Section 2 for more details).
Assume now that the class of isovortical fields, i.e., the coadjoint orbit in the
phase space of the Euler equation to which the steady solution belongs, is
generic. Then every field from this class gives rise to a symplectic structure
w defined almost everywhere on the manifold. An important feature of the
steady solution is that {#,4} = 0, where the Poisson bracket { , } is taken
with respect to the symplectic structure given by the steady solution.

Recall also that the vorticity function A and the symplectic structure
are defined for any field in the orbit. Moreover, all the pairs (4, w) taken
for fields in the same orbit (i.e., in the same class of isovortical ficlds) are
conjugate by volume preserving diffeomorphisms. Thus dynamical properties
of the Hamiltonian flow of 4 (with respect to @) depend only on the orbit
but not on a field. One may expect that for a broad class of orbits the
vorticity function A does not admit extra symmetries, i.e., the Hamiltonian
vector field with the Hamiltonian A does not have first integrals which are
independent of A. For example, it is so when the manifold is four-dimensional.
We emphasize that to have no extra symmetries is a property of the entire
orbit, i.e., it holds either for all the fields isovortical to a given one or for none
of them. In particular, the Bernoulli function 4 and the vorticity function A
must be functionally dependent for a steady solution on an orbit without extra
symmetries.

An immediate consequence of this analysis is that, as shown in Section 5, 4
inherits many topological properties of /2, provided that A does not admit extra
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symmetries. In particular, we prove in Section 6 that the orbit can not contain
a smooth steady solution when A has a “wrong” topology. Since on a two-
dimensional manifold no function admits extra symmetries, we obtain a broad
class of orbits with no smooth steady solutions (see Section 6). This seems to
be a new result in the classical area of two-dimensional hydrodynamics.

Another result which goes along the same line is that under certain hypotheses
the existence of a steady solution implies that the manifold admits a complex
structure making it into a domain of holomorphy in a Stein manifold. The
vorticity function becomes then a plurisubharmonic function on this domain.
This and some other results of Sections 5 and 6 have been announced in [GK].

We conjecture that the hydrodynamics of an orbit without extra symmetries
is analogous to the two-dimensional hydrodynamics: similarly to the two-
dimensional case, the dynamics of a steady flow on such an orbit is determined
by the dynamics of the Hamiltonian flow of 4. One may expect that many
classical results, which fail in general in higher dimensions, can be extended
to an orbit without extra symmetries.

We also believe that the approach developed here, as well as our description
of the topology of steady flows, may have some applications to the study of the
linear and exponential instability in ideal hydrodynamics inspired by [A4].

To avoid a possible confusion, we note that the term “generic” is used here
with two different meanings. Saying that an orbit or a flow is generic we mean
one from a large enough set in the phase space. However, this is not quite
the case for structural theorems on four-dimensional steady flows (Section 4)
which are said to be proved for a “generic” pair of the Bernoulli and vorticity
functions. Here “generic” (traditionally) means that this pair belongs to a large
enough set among all the pairs of functions, not necessarily related to the phase
space. In fact, the pair under consideration has to arise from an orbit with
extra symmetries which presumably is not generic in the phase space.

In the next section we recall the mathematical model of ideal hydrodynamics
and main concepts related to the fluid motion equations (see, e.g., [Al] or
[AK]).

Throughout the paper M denotes a compact manifold (possibly with bound-
ary) such that H'(M,R) = 0.

2. Mathematical model of ideal hydrodynamics

In this section, we briefly discuss the mathematical model describing the
motion of an ideal fluid.

The starting object in inviscid incompressible hydrodynamics is a manifold
M equipped with a volume form y. The phase space is the dual space G*
to the Lie algebra G of all divergence-free vector fields on M. (If OM # @,
the vector fields must be tangent to the boundary of A.) The dual space G*
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carries a natural linear Poisson structure; the Euler equation of an ideal fluid
is a Hamilton equation on G* with respect to the Poisson structure [A3].

The Hamiltonian H comes from extra data, namely, from a Riemannian
metric g on the manifold M. The construction goes as follows. The metric
g gives rise to an identification of G and G* by means of the nondegenerate
quadratic form (v,v) = [, g(v,v)u on G. By definition, H is the dual
quadratic form on G* (see [A3]).

The dual space G* can be viewed as the vector space of exact 2-forms on M
(see [MaW]). The pairing of a 2-form w with a divergence-free vector field
v is given by the formula (w,v) = [«(v)u, where « is a primitive 1-form
for w, i.e., da = w. Using the assumptions that v is tangent to O M and
H'(M,R) = 0, it is not hard to show that the pairing is well defined.

After this identification, the Euler equation of ideal hydrodynamics takes
the following form:

w=L,w

(also called the Helmholtz equation), where the divergence-free vector field v
(i.e. v satisfying the equation L,u = 0) is uniquely defined by the condition
da = w, where a(-) = g(v,-).

Recall that if M is odd-dimensional, then the vorticity vector field & of w
is given by the equation i;u = w", where dimM = 2n. Similarly, if M is
even-dimensional, then the function 1 = w"/u, where dim M = 2, is called
the vorticity function of w (see, ¢.g., [AK]). If in addition w is symplectic
then instead of A one may consider the Hamiltonian vector field & with the
Hamiltonian A as a possible replacement for the vorticity vector field. It is
clear that the vorticity vector field or the vorticity function, taken up to a
u-preserving diffeomorphism, are invariants of the orbit of w in G*.

Remark. The Euler-Helmholtz equation means that the 2-form w is frozen into
the fluid (or, in other words, it is transported by the flow of v). This implies
the following “duality” of incompressible flows on odd- and even-dimensional
manifolds. Namely, the vorticity vector field £ on an odd-dimensional manifold
and the covector field dA (i.e. the function A) on an even-dimensional one are
both frozen into the ideal fluid.

Our main goal is to describe the topology of smooth steady (or stationary)
flows. By definition, such a flow is an independent of time smooth solution
of the stationary Euler-Helmholtz equation: L,w = 0. The solutions are just
critical points of H on the coadjoint orbits in G* [A3]. In other words,
stationary flows are exactly the extremals of the energy functional among all
isovortical divergence-free vector fields.

For the three-dimensional case, an almost complete description of analytic
stationary flows is given by the following theorem.
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Theorem 2.1 (Arnold, [Al]). Assume that the region D is bounded by a
compact analytic surface and that the field of velocities is analytic and not
everywhere collinear with its curl. Then the region of the flow can be partitioned
by an analytic submanifold into a finite number of cells, in each of which the
flow is constructed in a standard way. Namely, the cells are of two types: those
fibered into tori invariant under the flow and those fibered into surfaces invariant
under the flow, diffeomorphic to the annulus R x S'. On each of these tori the
flow lines are either all closed or all dense, and on each annulus all flow lines
are closed.

Remark. In this theorem, it is essential that the fields of velocity v and vorticity
& are not collinear. Since [&,v] = 0, this means that the field £ admits an
“extra symmetry” and, therefore, so does every element of the coadjoint orbit.

In the next section, we state an analog of this theorem for a four-dimensional
manifold.

3. The structure of four-dimensional steady flows

The main result of this section shows that steady flows of a four-dimensional
fluid are very similar to integrable Hamiltonian systems with two degrees of
freedom.

Recall that the equation of a stationary flow has the form L,w = 0 or,
equivalently, d(i,w) = 0 by the homotopy formula L, = di, + i,d. This
shows that the form i, w is closed. Since H' (M,R) = 0, there exists a function
h, called the Bernoulli function, such that i, = dh. As a consequence, the
velocity field v is tangent to the levels of 4, ie., L,A = 0. (In the three-
dimensional case, this observation alone implies the existence of tori and
annuli in Arnold’s theorem [Al].)

Further (except for the next section) we will mainly work with an even-
dimensional manifold M2". In this case, besides / there is one more invariant
function on M: A(x) = w"/u, called the vorticity function. The function A
is invariant since L,w = 0 and L,u = 0. This means that A and % are first
integrals of the flow of v on M.

Let 7 = (h,A) : M — R? and I" be the set formed by all x € M such that
either A(x) = 0 or #(x) is a critical value of #. In other words, I" is the union
of the zero level 4 of A and the preimage of the set of critical values of 7.

Theorem 3.1. Let M* be a closed orientable four-dimensional manifold. The
open set U = M\ T is invariant under the flow of v. Every connected component
of U is fibered into two-dimensional tori invariant under the flow. On each of
these tori the flow lines are either all closed or all dense.
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Proof. The form w is symplectic on the complement of the set 4 = {4 = 0}.
Let £ be the Hamiltonian vector field on M \ A4 with the Hamiltonian A.
Observe that the Poisson bracket of # and 4 is identically zero on M \ 4:
{h,A} = 0 since L,A = 0 and thus [v,&] = 0. Therefore, the flows of v and
& together give rise to an R%-action on M \ 4 and 7 is, in fact, its momentum
mapping. Since 7 is invariant with respect to the action and U is the union
of n-levels, U is also invariant with respect to the R%-action and, in particular,
with respect to the flow of v.

Recall (see, e.g., [A2]) that the orbits of the action coincide with the
connected components of n-levels. In particular, every orbit lies entirely either
in U or in I'. By definition, the projection x|y : U — n(U) is a proper
submersion. Hence each orbit in U is a smooth closed surface and so it
is either a torus or a Klein bottle. Furthermore, this surface is cooriented by
dhAdA. As a result, we see that the surface is orientable, i.e., a torus. Therefore,
n fibers every connected component of U into tori.

On each orbit, the flow of £ acts transitively on integral curves of v and thus
the latter are either all closed or all dense in the orbit. O

Remark. In addition to Theorem 3.1, a little can be said about the behavior
of v outside U. For example, let Z be the set of x € M such that n(x) is a
critical value of =, i.e., I’ = AUZ. Then the set A\ Z is the union of tori and
v is tangent to them. To see this, observe that on A\ Z the field v is tangent
to the m-levels, i.e., to smooth orientable surfaces. Since i, = dh # 0 and
thus v # 0, each of zn-levels is a torus.

Note that for a “generic” pair of £ and A the set U is open and dense in M.
Thus Theorem 3.1 gives an almost complete description of the flow of v.

To keep the tradition and to cover certain examples we now turn to the
real-analytic version of the theorem.,

Recall that a subset of a real-analytic manifold is called semi-analytic if
locally it may be defined by a finite number of real-analytic equations and
inequalities.

Theorem 3.2. Let M be as in Theorem 3.1. Assume in addition that all the data
(ie., M, u and the metric), as well as w, are real-analytic, and dh Nd). # 0
somewhere on M. Then I' is a semi-analytic subset nowhere dense in M, and
U = M\ T has a finite number of connected components. Every connected
component is fibered into two-dimensional tori invariant under the flow. On
each of these tori the flow lines are either all closed or all dense.

This result is a consequence of Theorem 3.1 and well-known properties of
real-analytic manifolds summarized in the following lemma.
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Lemma 3.3. Let M and N be compact connected real-analytic manifolds (pos-
sibly with boundary) and f : M — N a real-analytic map. Then

(i) Any semi-analytic subset X of M divides M into a finite number of
connected components.

(ii) The image f(X) is a semi-analytic subset of N provided that dim N < 2.

(iii) Assume that the rank of f is equal to dim N at at least one point of M
and Y is a nowhere dense semi-analytic subset of N, then the preimage f~'(Y)
is semi-analytic and nowhere dense in M.

Proof of Lemma 3.3. Assertions (i) and (ii) are classical results due to Lo-
jasievicz [Lo]. To prove (iii), consider the set K of critical points of f. The
set f~1(Y)n (M \ K) is nowhere dense because the restriction of f to M\ K
is a submersion. Since rk f = dim N somewhere on M, the set K is, in turn,
nowhere dense in M. Thus f~'(Y) is nowhere dense for it is the union of
two sets each of which is nowhere dense. It is clear by definition that f~'(Y)
1s semi-analytic. O

Proof of Theorem 3.2. Note that under the hypothesis of the theorem the map
7 is real analytic, and we can take f = 7. Let, as above, K be the critical set of
7, then n(K) is semi-analytic by (ii) and nowhere dense by the Sard lemma.
The same is true for the union Y of n(K) and the line 4 = 0. Therefore by
(iii), I = 7~ '(Y) is semi-analytic and nowhere dense in M. Applying (i) to
X = I', we see that U is dense in M and U has a finite number of connected
components.

To complete the proof, it suffices to apply Theorem 3.1. O

Let now M be an orientable compact real-analytic four-manifold with, maybe,
nonempty boundary. Assume all other hypotheses of Theorem 3.2 to hold.

Theorem 3.4. There exists a semi-analytic set I' nowhere dense in M such that
U = M\ T is invariant with respect to the flow of v, the set U has a finite
number of connected components, and on every component of U the flow is
organized in a standard way. Namely, the components are of two types: those
fibered into tori invariant under the flow and those fibered into annuli [0,1]x S,
again invariant under the flow. On each of the tori the flow lines are either all
closed or all dense; on every annulus all the flow lines are closed.

Proof. Here we just briefly outline the proof for it follows the same line as the
proof of Theorem 3.3. Let again K be the critical set of 7 and C the critical
set of m|gar. As above, the union Y of the sets 7(K), n(C) and the line A = 0
is a semi-analytic set nowhere dense in R2. Therefore, I' = 71 (Y) is nowhere
dense, semi-analytic and invariant with respect to the flow.

Although now we may not have an R?-action since M is a manifold with
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boundary, we do have a local R?-action on M \ M. Furthermore, the maps
nly and zm|amnu are still proper submersions onto their images. Consider the
orbit 4, of the local action through x € U. The same argument as in the proof
of Theorem 3.1 shows that 4, is either a torus or an annulus. In the former
case, the integral curves of v are all closed or all dense on A4,. Observe that
L = A, NAM is invariant under the flow of &, and thus A, is an annulus if
and only if it meets 8 M. By the definition of U, the field & is transversal to
OM along L. This implies that L is the union of two closed integral curves of
v. Since we have a locally well-defined R2-action, all the v-flow lines on Ay
must be closed.

Let Uy be a connected component of U. It is left to show that the orbits
Ay, x € U, are either all tori or all annuli. To see this notice that for all
x € U the levels Fy = n~'(n(x)) are transversal to M. Thus the connected
components A, of F, are diffeomorphic to each other for all x € Uj.

A more formal argument goes as follows. Pick two points x and x’ in Uj.
Let x;, t € [0,1], be a smooth curves joining x and x’ in Up. Denote by P
the subset of [0, 1] formed by all ¢ such that 4, is a torus. Clearly, A,, is an
annulus if # € [0,1]\ P. Since the orbits are transversal to dM, the sets P
and [0,1]\ P are both open. Thus one of these sets is empty and the other
coincides with [0, 1]. This means that 4, and A4, are either both tori or both
annuli. Now it is easy to show that U is indeed fibered into tori or annuli.
The theorem is proved. ]

Putting the results of this section in a few words, one may say that the vector
field v is a completely integrable Hamiltonian system on U: its independent
first integrals are the Hamiltonian 2 and the vorticity function A. Then the
real analyticity assumption implies that the complement I" = M \ U is not too
bad a set: it is semi-analytic and nowhere dense. In particular, U has a finite
number of connected components.

Remark. For an arbitrary even dimensional manifold M?" we can assert that
M is a union of (2n — 2)- (or lower) dimensional submanifolds, such that the
steady vector field v is tangent to them. These submanifolds are obtained as
intersections of the levels & = const. and A = const. and have the zero Euler
characteristic.

Remark. For an arbitrary odd-dimensional M2"+! instead of the function
A = w"/u (and the covector field dA) we define the vorticity vector field & by
irgpt = w". The fields £ and v commute and, thus, give rise to an R2-action on
M?*"+1_So in this case, a steady flow gives rise to a foliation of dimension 2,
unlike the foliation of codimension 2 in the even-dimensional case.
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4. Higher-dimensional Beltrami flows

In this section, we consider an odd-dimensional compact manifold M2m+!
equipped with a volume form g, and an analytic divergence-free steady flow
v on M.

Definition 4.1. A subset I'2" in M?"+! is said to be a rational-analytic hy-
persurface if I’ can be given as the zero level surface of the ratio of two
real-analytic functions:

I' = {x e Mi¢(x)/y(x) = 0}.

Definition 4.2. A trajectory of the field v is called chaotic if it is not contained
in any rational-analytic hypersurface in AM/2"+1,

Example. A generic trajectory of an ergodic flow is chaotic.

Theorem 4.3. An analytic steady flow v with at least one chaotic trajectory is
proportional to its vorticity &, e, & = f-v, where § € R\ {0}.

Remark. Recall that in the odd-dimensional case the vorticity field is defined by
the relation /-yt = ", where the two-form w = d« is such that a(-) = (v,-).
Thus, by Theorem 4.3, the field v with a chaotic trajectory is an “eigenvector”
of the operator curl : v — &, even though for n > 1 this operator is not linear!
It is natural to call such a field v a generalized Beltrami flow (or a generalized
ABC-flow). The theorem shows that higher-dimensional ABC-flows, as well as
three dimensional ones, have quite a complicated structure. On the contrary,
a non-Beltrami steady flow is fibered by a family of hypersurfaces invariant
under the flow and, therefore, real mixing is impossible for it. Mixing occurs
only if at least one chaotic trajectory exists, i.e. only for generalized Beltrami
flows. The proof of the theorem closely follows the argument used by V.1
Arnold for n = 1 [Al].

Proof. The vorticity field ¢ commutes with v. The fields & and v are both
tangent to the “Bernoulli surfaces”, i.e. to the level hypersurfaces of the analytic
Bernoulli function. Thus, if the Bernoulli function /4 is non-constant, then
trajectories of v lie on level hypersurfaces of 4. (Note that similarly to the
three-dimensional case, nonsingular Bernoulli surfaces have the zero Euler
characteristic because the tangent field v has no singular points on them.)
Let now the function /# be constant. This means that the fields & and v are
collinear. Consider a function p(x) = v?/&2 (or é2 = p(x)-v? ). Due to
commutativity of & and v, the function p(x) is invariant under the flow of v
and, therefore, v is tangent to the level surfaces of p. Since v has a chaotic
trajectory, p(x) = const. (Note that the Bernoulli function % is analytic, and
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the function p is the ratio of two analytic functions.) Hence the functions
h and p are both constant and the fields ¢ and v are locally proportional:
{ = p-v, where f = £1/,/p = const. (In other words, v is an “eigenvector”
of the curl-operator: curlv = - v.) O

Example. The Hopf vector field (x;, —x, x4, =X3,..., X002, —X2m41) 1S an
example of an eigenvector field for the curl operator on S2m+! < R2m+2
without chaotic trajectories. The theorem above claims that the existence of
such a trajectory makes the vector field be an “eigenvector” of curl. It would be
very interesting to find a nontrivial example of a higher-dimensional ABC-flow
and compare its ergodic properties with those in the three-dimensional case
[H].

5. Topology of the vorticity function

Let a two-form w be an even-dimensional stationary solution on a coadjoint
orbit @ C G*. In other words, O is the set of all flows isovortical with .
In this section, we study the topology of the vorticity function A = w"/u of
the steady flow w. We describe some special features of such A under a mild
condition that the pair (4, w) does not admit “too many symmetries”. On the
other hand, it is clear that topological invariants of A, such as a number of
its critical points, their indexes, etc., depend only on the orbit. This simple
observation will enable us to find orbits with no stationary solutions at all (see
Section 6).

Definition 5.1. A function f on a compact symplectic manifold (W, @) does
not admit extra symmetries if an arbitrary function g such that {f, g} = 0 is
constant on connected components of levels of f (i.e., the differential dg is
proportional to df everywhere on W),

Remark. On a two-dimensional symplectic manifold no functions admit ex-
tra symmetries. We conjecture a generic function on a compact symplectic
manifold of any dimension does not admit extra symmetries. Note however
that to the best of our knowledge in dimensions greater than four, even the
existence of such a function has not been proved yet. (The question turns
out to be closely related to some subtle problems of Hamiltonian dynamics.
Furthermore, our conjecture can be regarded as a Hamiltonian version of the
problem of generic non-integrability due to Arnold [A5].)

On the other hand, the problem can be easily dealt with when dim M = 4.
First, note that then the notions of complete integrability and integrability
coincide. Hence it follows from results of Markus and Meyer [MMe] that a
generic function on M admits no extra symmetries provided that 9M = @ and
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dim M = 4. Using a method similar to [MMe] one may show that the same
is true for functions constant on connected components of J M.

To define a coadjoint orbit with no extra symmetries, note that the form
® € G* is symplectic precisely on the complement to the zero level of A = w"/u.

Definition 5.2. A coadjoint orbit O C G* does not admit extra symmetries if for
any (or, equivalently, for some) w € O the vorticity function A does not admit
extra symmetries on A~!([a,b]) for any two of its regular values 0 < a < b
(ora < b <0).

Our definitions are consistent: a function f on a compact symplectic man-
ifold does not admit extra symmetries if and only if its restriction to the
preimage of any segment with regular endpoints does not. If dim M = 4, then
orbits without extra symmetries do exist (see the remark above).

Definition 5.3. An orbit O C G* has the Morse type if for any (or, equivalently,
for some) w € O the function 2 is a Morse function constant on every connected
component of @M. The orbit is called positive (nonnegative) if A(x) is so for
all x e M.

Theorem 5.4. Let dimM > 4 and O be a Morse type orbit without extra
symmetries. Assume that O contains a steady solution. Then for every w € O all
the critical points of the vorticity function A have indexes either less than n + 1
or greater than n — 1 on every connected component of M\{2 = 0}.

Example. If O is as above and 1 > 0 on M\0M, then A cannot have both a
local maximum (index 2#) and a local minimum (index 0) on M\8M.

Proof. For the sake of simplicity we assume that O is a positive orbit, i.e.,
A >0 on M. Only a minor modification is required to prove the general case.
Let w € O be a stationary solution (L,w = 0) and 4 a function such that
dh = ivw.

Since 4 = w"/u does not admit extra symmetries and {h,A} = 0, the
function 2 must be constant on connected components of levels of A.

Lemma 5.5. The functions A and h have the same critical points. In particular,
the critical points of h are isolated.

Proof. Since A does not admit extra symmetires, dA(x) = 0 implies that
dh(x) = 0. The rest of the critical set of # may only be the union of some
connected components of A-levels. Let o be the differential 1-form g(v,-),
where g is the Riemannian metric on M. Then da = @ by the definition of
v, and a(v) = g(v,v) > 0.
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Consider the vector field w on M defined by the formula i, = @ We
have

Lyow=w (1)
and

Lyh = a(v) >0, (2)
where

Loh=02a(v)=0sa=0. (3)

If the critical set of 4 contains a connected component C of a A-level, then
Ly h = 0 for all x € C and, as a consequence of (3), a|c = 0. Hence,
w|lc = da|c = 0. This is impossible, because C is a hypersurface in the
symplectic manifold (M, w) and 2n = dim My > 4. The lemma is proved. O

Observe now that as follows from (1), all the zeroes of the vector field
w are nondegenerate. Therefore, the field w has smooth stable and unstable
manifolds in a neighborhood of its every zero. The dimension of the stable
manifold is greater than n because, by (1), the restriction of @ on the unstable
manifold of w must be zero.

Now we are ready to finish the proof of the theorem. The field w is
gradient-like for the function # (due to (2)). Therefore, w is either gradient-
or antigradient-like for A because the A- and A-levels coincide in a neighborhood
of every critical point and A is a Morse function. O

Remark. One may prove that all the critical points of 4 are nondegenerate
except, maybe, for its maxima and minima.

Theorem 5.6. Let M be diffeomorphic to the disc D*. If a Morse type orbit
O C G* contains a stationary solution, then for any w € O the vorticity function
A can not simultaneously have a local maximum and a local minimum in M,
provided that A >0 on M\ OM.

Remark. Since dim M = 2, the orbit O automatically does not admit extra
symmetries.

The proof below is a formalization of the following argument which is evident
from a physical viewpoint. Minima and maxima of the vorticity function
correspond to rotations of the fluid in the opposite directions. On the other
hand, the positivity of A prescribes a priori a counterclockwise drift.

Proof. First, recall that # must not have maxima. Indeed, in a neighborhood
of a maximum the gradient-like (for /4) field w would shrink the area that
contradicts Eq. (1): L,w = w. Let C be the critical set of 4. Observe that
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since A is constant on OM, the set C either contains the boundary 0M or
does not meet it. We claim that M\C is connected. To prove this, assume the
contrary. Then there exists an open set U C M\C such that 0U C C. The set
U is invariant under the flow of w, because d# (and thus w) vanishes on C.
On the other hand, as above, the existence of such a set U contradicts Eq. (1).

Observe now that, since w is gradient-like for 4 and every local minimum of
A is a local minimum of 4, the field w is gradient-like for A in a neighborhood
of a local minimum of A, whereas near a local maximum of J, the field w must
be antigradient-like for A. Switching from being gradient-like to antigradient-
like (and vice versa) may occur only on C. But C does not divide M. Hence
w is either gradient-like or antigradient-like on the entire M. The theorem
follows. O

Besides the restriction on indexes of critical points of A, there are more
subtle properties of the pair (w, A) which follow from the existence of a steady
solution. Let O be a coadjoint orbit in ¢ which does not admit extra symmetries
and contains at least one exact steady solution. For the sake of simplicity, we
also assume that O is positive, i.e., A > 0 for every w € 0. In other words,
every w € O is symplectic.

Recall that a hypersurface I' in a symplectic manifold (W,g) has contact
type if there exists a 1-form 6 on I" such that df = o|r and 8 A (d0)" 1 £ 0
anywhere on I".

Remark. An example of a compact closed hypersurface in R?* (and thus in
any symplectic manifold) that does not have contact type has been found by
A. Weinstein [W].

Proposition 5.7. For every w € O, connected components of regular levels of A
have contact type.

Proof. 1t is sufficient to prove the proposition for a steady solution w € O.
Recall that for such an w, connected components of A-levels coincide with
connected components of A-levels. Thus we need to show that every regular
connected component I” of an /-level has contact type. By definition, we have
da|r = w|r, where a = g(v,-). To show that a A (da)*~! # 0 on I', observe

that a A (da)"~! = i,w"/n, where w is given by the equation iyw = a. By
(3), w is transversal to regular levels of /# and, therefore, i, w"|r is nowhere
zero. The proposition follows, O

Remark. The proposition implies that under certain assumptions every con-
nected component I” of a regular level of A contains at least one closed trajec-
tory of the vector field £. For example, as follows from a result of C. Viterbo
[V], this is correct when M is a domain in R?” and O is the orbit of the
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standard symplectic structure provided, of course, that other the hypotheses of
Proposition 5.7 hold.

6. The nonexistence of steady flows and other applications of main theorems

Applying Theorems 5.4 and 5.6, one can easily find a coadjoint orbit which
does not contain a steady solution.

The case of a two-dimensional A is particularly simple. Consider a disk
M = D? C R*(x,y) with u = dx Ady and @ = A- u, where 1 is a positive
Morse function on D such that i|3p = const. Assume also that A has both a
local maximum and a local minimum in intD (see, e.g., fig. 1).

Corollary 6.1 (of Theorem 5.6). The coadjoint orbit through « does not
contain a steady solution. O

A higher-dimensional version of this corollary follows from Theorem 5.4.
Let O be a Morse type orbit which is positive (i.e., 1 > 0) and without extra
symmetries.

Corollary 6.2. Assume that for some w € O the vorticity function A has a critical
point of index ky < n and a critical point of index k, > n, where 2n = dim M,
then O contains no steady solutions. O

Corollary 6.3. Assume that H (M,R) # 0 and H* (M,R) # 0 for some k; < n
and ko > n, then O contains no steady solutions.

Proof. Apply the Morse inequalities. O
Remark. Here, as everywhere in this paper, the steady solution is assumed
to be smooth. Note that a “generalized steady solution” with a discontinuous

vorticity function may still exist and be of certain interest for applications.

It turns out that Theorems 5.4 and 5.6 are almost sharp as long as we are

max

Fig. 1. Level surfaces and a profile of the vorticity function having no smooth steady flow.
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not concerned about the metric. Namely, there is no general restriction on the
topology of the vorticity function except that given by the theorems. Let us
first consider an important, yet almost trivial, construction of steady solutions
and then state the sharpness result.

Example. Let W be a Stein manifold such that H! (W,R) = 0 and / a positive
smooth strictly plurisubharmonic function. Consider the manifold M = {1 <
c}, where ¢ is a regular value of A. The 2-form w = -2Im 004 is a symplectic
form on W and, therefore, on M. Let us equip W with the volume form
@ = w"/A and the metric g = w(-,J-), where J is the complex structure on
W. We claim that w is a steady solution.

To prove this observe that, in fact, @ = d(Jd2). Thus if we set « = JdA and
define v by the equality o = g(v,-), then da = w and v is the Hamiltonian
vector field with the Hamiltonian A. By the definition of x, we have L,u = 0,
i.e., v is divergence-free. Therefore, v is the vector field corresponding to w by
means of the identification of ¢ and G* given by the energy quadratic form.
Since v is Hamiltonian, L,w = 0 and  is a steady solution.

Note that here we have v = & and A = £, yet the orbit through w may admit
extra symmetries.

This construction of a steady solution is particularly interesting when dim¢ W
= 1. Consider, for example, a positive smooth subharmonic function 4 on C,
constant on the unit circle. Then our argument shows that on the unit disc
D there exists a metric g and an area form u such that A is the vorticity
function of a steady solution. In particular, the vorticity function may have
saddle critical points, at least for some metrics and volume forms. O

Theorem 6.4. Let M be a compact manifold with boundary, dimM = 2n > 6
and A a smooth positive function on M such that [ is constant on connected
components of OM and all the critical points of A have indexes no greater than
n. Assume in addition that M admits an almost complex structure. Then there
exists a metric and a volume form on M such that A is the vorticity function of
a steady solution.

Proof. As shown by Ya. Eliashberg [E], the manifold M admits a complex
structure which makes / into a plurisubharmonic function. To finish the proof
it remains to apply the argument from the preceding example. O

As the following result indicates, there is apparently a deep connection
between steady solutions and complex structures. Let « be an exact steady
solution on A?" and A its vorticity function. Assume also that 2n > 6, the
orbit O through « admits no extra symmetries and that A > 0.

Theorem 6.5. There exists a complex structure J on M which makes A into a



210 V.L. Ginzburg, B. Khesin/Journal of Geometry and Physics 14 (1994) 195-210

plurisubharmonic function. Equipped with J, the manifold M is biholomorphi-
cally equivalent to a domain of holomorphy in a Stein manifold.

Proof. Since A4 > 0, the manifold M carries a symplectic structure and thus an
almost-complex structure. The theorem follows from Theorems 5.4 and 6.4.[7]

Remark. The complex structure J can be chosen to be w-tame (cf. [EGr]),
i.e., such that w is a (1,1)-form.

We are deeply grateful to V.I. Arnold, A.B. Givental, P. Lax, H.K. Moffatt,
S.I. Vainshtein, and A. Weinstein for numerous useful discussions.
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