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Abstract

We show that for an even-dimensionalfluid thereexists a strong relation, via the
Morse theory and symplecticgeometry,betweenthe topology of the vorticity function
and theexistenceof a stationarysolution of Euler’s equation.In particular,it turns out
that thereis no smoothsteadyflow on the disc provided that the vorticity function is
Morse, positive and has both a local maximumand minimum in the interior of the
disc.

As we show,the structureof four-dimensionalsteadyflows is similar to that of three-
dimensionalflows describedin Arnold’s theorem.Namely,undercertainhypotheses,an
analytic four-dimensionalsteadyflow is fibered into invariant tori andannuli, for such
a flow gives rise to an integrableHamiltoniansystemon a symplecticfour-manifold.It
is also provedthat an odd-dimensionalchaoticsteadyflow is always a Beltrami flow,
i.e., its velocity andvorticity fields are proportional.
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1. Introduction

Steady (or stationary)flows of a compressibleor incompressiblefluid often
turn out to be “attractors” in phasespaceand, therefore,the structureof such
flows givesan “approximatepicture” of an arbitrary fluid motion after a long
periodof time.
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The stationary Euler equation describing the vorticity of a steady flow
formally coincideswith the equationof a stationary magneticfield in mag-
netohydrodynamics.Thus studying the structureof steadyflows is interesting
from both pointsof view: ideal hydrodynamicsand dynamotheory.

So far, all the results on stationary flows concerned,to the best of our
knowledge, the flows on two- or three-dimensionalmanifolds (see [Al,A2,
Mo,KoL,T]). The structureof three-dimensionalsteady flows is described
by Arnold’s theorem (see [A2,A3]): an analytic stationary flow is fibered
into invariant tori and annuli unless the velocity field is proportional to the
vorticity field. It turns out that under a hypothesis analogousto the one
of Arnold’s theoremfour-dimensionalsteady flows have a similar structure:

almost the whole of the manifold is fibered into tori invariant underthe flow
(see Section 3). Thus four-dimensionalsteady flows are similar to integrable
Hamiltonian systemswith two degreesof freedom.The “opposite” casewhere

the velocity andvorticity field arecollinearhasanalogsin any odd dimension:
suchgeneralizedBeltrami (or ABC) flows havea pretty complicatedtopology
of trajectories(seeSection 4).

To analyzesteady flows on even-dimensionalmanifolds, we introducethe

following notion of extra symmetry. Recall that every steadysolution on an
even-dimensionalmanifold comes along with two functions: the Bernoulli
function h and the vorticity function A (see Section 2 for more details).
Assumenow that the classof isovortical fields, i.e., the coadjoint orbit in the
phase space of the Euler equation to which the steady solution belongs, is

generic.Then every field from this class gives rise to a symplectic structure
w defined almost everywhereon the manifold. An important featureof the
steadysolution is that {h,A} = 0, where the Poissonbracket { , } is taken
with respectto the symplecticstructuregiven by the steadysolution.

Recall also that the vorticity function A and the symplectic structurew
are defined for any field in the orbit. Moreover, all the pairs ~, w) taken

for fields in the sameorbit (i.e., in the sameclass of isovortical fields) are
conjugateby volume preservingdiffeomorphisms.Thus dynamicalproperties
of the Hamiltonian flow of A (with respectto w) dependonly on the orbit
but not on a field. One may expect that for a broad class of orbits the
vorticity function A doesnot admit extra symmetries,i.e., the Hamiltonian
vector field with the Hamiltonian A does not have first integrals which are
independentof A. For example,it is sowhenthe manifold is four-dimensional.
We emphasizethat to have no extra symmetries is a property of the entire
orbit, i.e., it holdseitherfor all the fields isovortical to a given oneor for none
of them. In particular, the Bernoulli function h and the vorticity function A
mustbefunctionally dependentfor a steadysolution on an orbit without extra
symmetries.

An immediateconsequenceof this analysisis that, as shown in Section 5, A
inherits many topologicalpropertiesof h, providedthat A doesnot admit extra
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symmetries.In particular,we provein Section6 that the orbit can not contain
a smooth steadysolution when A has a “wrong” topology. Since on a two-
dimensionalmanifold no function admitsextrasymmetries,we obtain a broad
classof orbits with no smoothsteadysolutions (see Section 6). This seemsto
be a new result in the classicalareaof two-dimensionalhydrodynamics.

Anotherresultwhich goesalong the sameline is that undercertainhypotheses
the existenceof a steadysolution implies that the manifold admits a complex
structuremaking it into a domain of holomorphyin a Stein manifold. The
vorticity function becomesthen a plurisubharmonicfunction on this domain.
This andsomeotherresultsof Sections5 and6 havebeenannouncedin [GK].

We conjecturethat the hydrodynamicsof an orbit without extrasymmetries

is analogousto the two-dimensionalhydrodynamics: similarly to the two-
dimensionalcase,the dynamicsof a steadyflow on suchan orbit is determined
by the dynamics of the Hamiltonian flow of ),. One may expect that many
classicalresults,which fail in general in higher dimensions,can be extended
to an orbit without extra symmetries.

We also believethat the approachdevelopedhere,as well as our description
of the topologyof steadyflows, may havesomeapplicationsto the studyof the
linear and exponentialinstability in ideal hydrodynamicsinspired by [A4].

To avoid a possibleconfusion,we note that the term “generic” is usedhere
with two different meanings.Sayingthat an orbit or a flow is genericwe mean
one from a large enough set in the phasespace.However, this is not quite
the casefor structuraltheoremson four-dimensionalsteadyflows (Section4)
which are said to be proved for a “generic” pair of the Bernoulli andvorticity

functions.Here“generic” (traditionally) meansthat this pair belongsto a large
enoughset amongall the pairsof functions,not necessarilyrelatedto the phase
space. In fact, the pair under considerationhas to arise from an orbit with
extrasymmetrieswhich presumablyis not generic in the phasespace.

In the nextsectionwe recall the mathematicalmodel of ideal hydrodynamics

and main conceptsrelated to the fluid motion equations (see, e.g., [Al I or
[AK]).

Throughoutthe paperM denotesa compactmanifold (possiblywith bound-
ary) such that H’ (M, ~) = 0.

2. Mathematical model of ideal hydrodynamics

In this section,we briefly discussthe mathematicalmodel describing the
motion of an ideal fluid.

The startingobject in inviscid incompressiblehydrodynamicsis a manifold
M equippedwith a volume form p. The phasespaceis the dual space~
to the Lie algebra~ of all divergence-freevector fields on M. (If dM � 0,
the vector fields must be tangentto the boundaryof M.) The dual space~
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carriesa natural linear Poissonstructure; the Euler equationof an ideal fluid
is a Hamilton equationon ~7’~with respectto the Poissonstructure[A31.

The Hamiltonian H comes from extra data, namely, from a Riemannian

metric g on the manifold M. The constructiongoesas follows. The metric
g gives rise to an identification of ~ and ~ by meansof the nondegenerate

quadratic form (v,v) = f~g(v,v)p on ~. By definition, H is the dual
quadraticform on g* (see [A3]).

The dual space~ can be viewedas the vectorspaceof exact 2-formson M
(see [MaW]). The pairing of a 2-form w with a divergence-freevector field
v is given by the formula (w,v) = f~(v)p,wherec~is a primitive 1-form
for w, i.e., da = w. Using the assumptionsthat v is tangent to OM and
H’ (M,l~)= 0, it is not hard to show that the pairing is well defined.

After this identification, the Euler equation of ideal hydrodynamicstakes
the following form:

w = L~w

(also called the Helmholtz equation),wherethe divergence-freevectorfield v
(i.e. v satisfyingthe equationL~p= 0) is uniquely definedby the condition

drt = w, where cv(.) = g(v,).
Recall that if M is odd-dimensional,then the vorticity vector field ~ of w

is given by the equation i~p= ~ where dim M = 2n. Similarly, if M is
even-dimensional,then the function A = w’7/p, where dimM = 2n, is called
the vorticity function of w (see,e.g., [AK]). If in addition w is symplectic
then insteadof A one may considerthe Hamiltonian vector field ~ with the
Hamiltonian A as a possiblereplacementfor the vorticity vector field. It is
clear that the vorticity vector field or the vorticity function, taken up to a
p-preservingdiffeomorphism,are invariantsof the orbit of w in ~

Remark. The Euler—Helmholtzequationmeansthat the 2-form w is frozen into
the fluid (or, in other words, it is transportedby the flow of v). This implies
the following “duality” of incompressibleflows on odd- and even-dimensional
manifolds.Namely, thevorticity vectorfield ~ on an odd-dimensionalmanifold
andthe covectorfield dA (i.e. the function A) on an even-dimensionaloneare

both frozen into the ideal fluid.

Our main goal is to describethe topology of smooth steady (or stationary)
flows. By definition, such a flow is an independentof time smooth solution
of the stationaryEuler—Helmholtzequation:L

11w = 0. The solutions arejust
critical points of H on the coadjoint orbits in ~ [A3]. In other words,
stationaryflows are exactly the extremalsof the energy functional among all
isovortical divergence-freevector fields.

For the three-dimensionalcase,an almost completedescriptionof analytic
stationaryflows is given by the following theorem.
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Theorem2.1 (Arnold, [Al ]). Assumethat the region D is boundedby a
compact analytic surface and that the field of velocities is analytic and not
everywherecollinear with its curl. Then theregionoftheflow can be partitioned
by an analytic submanifoldinto a finite numberofcells, in each ofwhich the
flow is constructedin a standardway. Namely, the cells are oftwo types:those
fiberedinto tori invariant undertheflow andthosefiberedinto surfacesinvariant
undertheflow, diffeomorphicto the annulus11 x S’. On each ofthese tori the
flow linesare either all closedor all dense,and on eachannulusall flow lines
are closed.

Remark. In thistheorem,it is essentialthatthe fields of velocity v andvorticity
are not collinear. Since [~,v I = 0, this meansthat the field ~ admits an

“extra symmetry” and, therefore,so doesevery elementof the coadjointorbit.

In the nextsection,we statean analogof this theoremfor a four-dimensional
manifold.

3. The structureof four-dimensionalsteadyflows

The main resultof this sectionshowsthat steadyflows of afour-dimensional
fluid are very similar to integrableHamiltonian systemswith two degreesof
freedom.

Recall that the equation of a stationary flow has the form L~w = 0 or,
equivalently,d(i~w)= 0 by the homotopy formula L~= di~~+ i~d.This
showsthat the form i~wis closed.SinceH’ (M, E~)= 0, thereexistsa function
h, called the Bernoulli function, such that i~w= dh. As a consequence,the
velocity field v is tangent to the levels of h, i.e., L~h= 0. (In the three-
dimensional case, this observationalone implies the existence of tori and

annuli in Arnold’s theorem[Al].)
Further (except for the next section) we will mainly work with an even-

dimensionalmanifold M2~.In this case,besidesh thereis one more invariant
function on M: A(x) = w’~/p,called the vorticity function. The function A
is invariant sinceL~,w= 0 and L~p= 0. This meansthat A and h are first
integralsof the flow of v on M.

Let ir = (h,A) : M —~ ER2 and The the set formed by all x EM such that
eitherA (x) = 0 or ir (x) is a critical valueof 7C. In otherwords,F is the union
of the zero level A of A and the preimageof the set of critical valuesof it.

Theorem3.1. Let M4 be a closedorientablefour-dimensionalmanifold. The
openset U = M\F is invariant undertheflow ofv. Everyconnectedcomponent
of U is fibered into two-dimensionaltori invariant under theflow. On eachof
thesetori theflow lines are eitherall closedor all dense.
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Proof The form w is symplecticon the complementof the set A = {A = 0}.
Let ~ be the Hamiltonian vector field on M \ A with the Hamiltonian A.
Observethat the Poisson bracket of h and A is identically zero on M \ A:
{h,A} = 0 sinceL~A= 0 andthus [v,~] = 0. Therefore, the flows of v and
~ togethergive rise to an 112-actionon M \ A and it is, in fact, its momentum
mapping. Since it is invariant with respectto the actionand U is the union
of it-levels, U is also invariantwith respectto the ER2-actionand, in particular,
with respectto the flow of v.

Recall (see, e.g., [A2]) that the orbits of the action coincide with the
connectedcomponentsof it-levels. In particular, everyorbit lies entirelyeither
in U or in F. By definition, the projection itIU : U —~ it(U) is a proper
submersion.Hence each orbit in U is a smooth closed surface and so it
is either a torus or a Klein bottle. Furthermore,this surfaceis coorientedby
dhAdA.As a result,we seethat thesurfaceis orientable,i.e., a torus.Therefore,
it fibers everyconnectedcomponentof U into tori.

Oneachorbit, the flow of ~ actstransitivelyon integralcurvesof v andthus
the latter are either all closedor all densein the orbit.

Remark. In addition to Theorem3.1, a little can be said aboutthe behavior
of v outsideU. For example, let Z be the set of x E M such that ir(x) is a
critical valueof it, i.e., F = A U Z. Thenthe set A \ Z is the union of tori and
v is tangentto them. To see this, observethaton A \ Z the field v is tangent
to the it-levels, i.e., to smoothorientablesurfaces.Since i~,w= dh ~ 0 and
thus v ~ 0, eachof it-levels is a torus.

Note that for a “generic” pairof h andA the set U is openanddensein M.
Thus Theorem3.1 gives an almost completedescriptionof the flow of v.

To keep the tradition and to cover certain exampleswe now turn to the
real-analyticversion of the theorem.

Recall that a subsetof a real-analyticmanifold is called semi-analyticif
locally it may be defined by a finite numberof real-analyticequationsand
inequalities.

Theorem3.2. Let M be as in Theorem3.1. Assumein addition that all the data
(i.e., M, p and the metric), as well as w, are real-analytic, anddh A dA ~ 0
somewhereon M. Then F is a semi-analyticsubsetnowheredensein M, and
U = M \ F has a finite numberof connectedcomponents.Every connected
componentis fibered into two-dimensionaltori invariant under the flow. On
eachofthesetori theflow linesare eitherall closedor all dense.

This result is a consequenceof Theorem3.1 and well-known propertiesof
real-analyticmanifolds summarizedin the following lemma.
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Lemma 3.3. Let M andN be compactconnectedreal-analytic manifolds(pos-
sibly with boundary)and f : M —~ N a real-analyticmap. Then

(i) Any semi-analyticsubsetX of M divides M into a finite number of
connectedcomponents.

(ii) Theimagef(X) is a semi-analyticsubsetofN providedthat dim N ~ 2.
(iii) Assumethat the rank off is equal to dimN at at leastonepoint ofM

and Y is a nowheredensesemi-analyticsubsetofN, thenthepreimagef~’(Y)
is semi-analyticandnowheredensein M.

Proofof Lemma3.3. Assertions (i) and (ii) are classical resultsdue to Lo-
jasievicz [Lo]. To prove (iii), considerthe set K of critical pointsof f. The
set f — ‘(Y) n (M \ K) is nowheredensebecausethe restrictionof f to M \ K
is a submersion.Since rk f = dim N somewhereon M, the set K is, in turn,
nowheredense in M. Thus f’ (Y) is nowheredensefor it is the union of
two setseachof which is nowheredense.It is clearby definition thatf’ (Y)
is semi-analytic.

Proofof Theorem3.2. Note that underthe hypothesisof the theoremthe map
it is real analytic,andwe cantakef = it. Let, as above,K bethe critical set of
it, then it(K) is semi-analyticby (ii) andnowheredenseby the Sardlemma.
The sameis true for the union Y of m(K) and the line A 0. Thereforeby
(iii), F = it’ (Y) is semi-analyticandnowheredensein M. Applying (i) to
X = F, we seethat U is densein M andU hasa finite numberof connected
components.

To completethe proof, it sufficesto apply Theorem3.1.

Let now M be anorientablecompactreal-analyticfour-manifoldwith, maybe,
nonemptyboundary.Assumeall other hypothesesof Theorem3.2 to hold.

Theorem 3.4. Thereexistsa semi-analyticsetF nowheredensein M such that
U = M \ F is invariant with respect to theflow of v; the set U has a finite
numberof connectedcomponents,and on every componentof U the flow is
organizedin a standardway. Namely, the componentsare of two types:those
fiberedinto tori invariant undertheflowand thosefibered into annuli [0, 11 xS’,
again invariant undertheflow. On eachofthe tori theflow linesare eitherall
closedor all dense;on everyannulusall theflow linesare closed.

Proof Herewejust briefly outlinetheprooffor it follows the sameline as the
proof of Theorem3.3. Let againK be the critical set of it andC the critical
set of itIaM. As above,the union Y of the setsit(K), ir(C) andthe line A = 0
is a semi-analyticset nowheredensein ER2. Therefore,F = it~ (Y) is nowhere
dense,semi-analyticand invariantwith respectto the flow.

Although now we may not have an ER2-actionsince M is a manifold with
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boundary,we do have a local ER2-action on M \ 3M. Furthermore,the maps
irlu and it~3MflU are still propersubmersionsonto their images.Considerthe
orbitA~of the local actionthroughx E U. The sameargumentas in the proof
of Theorem3.1 showsthat A

5 is either a torus or an annulus.In the former
case,the integral curves of v are all closedor all denseon A5. Observethat
L = A5 n 3M is invariantunder the flow of ~,and thus A5 is an annulus if
andonly if it meets3M. By the definition of U, the field ~ is transversalto
3M alongL. This implies thatL is the union of two closedintegral curvesof
v. Since we have a locally well-defined ER

2-action,all the v-flow lines on A
5

must be closed.
Let U0 be a connectedcomponentof U. It is left to show that the orbits

A5, x E U0, are either all tori or all annuli. To see this notice that for all
x E U the levels F5 = it~ (it(x)) are transversalto 3M. Thus the connected
componentsA5 of F5 arediffeomorphicto eachother for all x E (Jo.

A more formal argumentgoes as follows. Pick two pointsx and x’ in U0.
Let Xt, t ~ [0, 1], be a smoothcurvesjoining x and x’ in U0. Denoteby P
the subsetof [0, 11 formed by all t such that A51 is a torus. Clearly, A51 is an
annulus if t ~ [0, 1] \ P. Since the orbits are transversalto 3M, the sets P
and [0, 1] \ P are both open.Thus one of thesesets is empty and the other
coincideswith [0, 1]. This meansthat A5 andA5 are eitherboth tori or both
annuli. Now it is easyto show that U0 is indeed fibered into tori or annuli.
The theoremis proved.

Puttingthe resultsof this sectionin a few words, onemaysaythat the vector
field v is a completelyintegrableHamiltonian systemon U: its independent
first integralsare the Hamiltonian h and the vorticity function A. Then the
real analyticity assumptionimplies that the complementF = M \ U is not too
bada set: it is semi-analyticandnowheredense.In particular, U hasa finite
numberof connectedcomponents.

Remark. For an arbitrary evendimensionalmanifold M
2~we can assertthat

M is a union of (2n — 2)- (or lower) dimensionalsubmanifolds,such that the
steady vector field v is tangentto them. These submanifoldsare obtainedas
intersectionsof the levels h = const.and A = const. andhavethe zero Euler
characteristic.

Remark. For an arbitrary odd-dimensional~ instead of the function
A = w”/p (andthe covectorfield dA) we definethe vorticity vector field ~ by
i~p= ~ The fields ~ andv commuteand, thus, give rise to an ER2-actionon
M2~~ So in this case,a steadyflow gives rise to a foliation of dimension2,
unlike the foliation of codimension2 in the even-dimensionalcase.
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4. Higher-dimensional Beltrami flows

In this section, we consideran odd-dimensionalcompactmanifold ~
equippedwith a volume form p, and an analytic divergence-freesteady flow
v on M.

Definition 4.1. A subset F2~in M2’~’ is said to be a rational-analytichy-
persurfaceif F can be given as the zero level surfaceof the ratio of two
real-analyticfunctions:

F = {xEMkb(x)/y/(x) = 0}.

Definition 4.2. A trajectory of the field v is called chaoticif it is not contained
in any rational-analytichypersurfacein M2~+1~

Example. A generictrajectory of an ergodicflow is chaotic.

Theorem 4.3. An analytic steadyflow v with at leastone chaotic trajectory is
proportional to its vorticity c~, i.e., ~ = /3 . v, where/3 E ER \ {0}.

Remark.Recall thatin the odd-dimensionalcasethevorticity field is definedby
the relation i~p= w”, wherethe two-form w = da is suchthat a(.) = (v,.).
Thus,by Theorem4.3, the field v with a chaotictrajectory is an “eigenvector”
of the operatorcurl: v ~ ~,eventhoughfor n > 1 this operatoris not linear!
It is naturalto call such afield v a generalizedBeltrami flow (or a generalized
ABC-flow). The theoremshowsthat higher-dimensionalABC-flows, as well as
threedimensionalones,havequite a complicatedstructure.On the contrary,
a non-Beltramisteadyflow is fibered by a family of hypersurfacesinvariant
under the flow and, therefore,real mixing is impossiblefor it. Mixing occurs
only if at least one chaotic trajectory exists, i.e. only for generalizedBeltrami
flows. The proof of the theoremclosely follows the argumentusedby V.1.
Arnold forn = 1 [Al].

Proof The vorticity field ~ commuteswith v. The fields ~ and v are both
tangentto the “Bernoulli surfaces”,i.e. to thelevel hypersurfacesof the analytic
Bernoulli function. Thus, if the Bernoulli function h is non-constant,then
trajectoriesof v lie on level hypersurfacesof h. (Note that similarly to the
three-dimensionalcase, nonsingularBernoulli surfaces have the zero Euler
characteristicbecausethe tangentfield v hasno singularpointson them.)

Let now the function h be constant.This meansthat the fields ~ andv are
collinear. Considera function p(x) = v2/~2( or ~2 = p(x) . v2 ). Due to
commutativityof~andv, the function p(x) is invariant under the flow of v
and, therefore,v is tangent to the level surfacesof p. Sincev hasa chaotic
trajectory,p (x) = const. (Note that the Bernoulli functionh is analytic, and
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the function p is the ratio of two analytic functions.) Hence the functions
h and p are both constantand the fields ~ and v are locally proportional:

= /3 . v, where /3 = ±l/~/~= const. (In other words,v is an “eigenvector”
of the curl-operator:curl v = /3 . v.)

Example. The Hopf vector field (x2, —x,, x4, —x3,. . . , X~+ 2~—X2,n+ i) is an

example of an eigenvectorfield for the curl operator on S
2m+i c

without chaotic trajectories.The theoremaboveclaims that the existenceof
suchatrajectory makesthe vectorfield be an “eigenvector”of curl. It would be
very interestingto find anontrivial exampleof a higher-dimensionalABC-flow
and compareits ergodicpropertieswith those in the three-dimensionalcase
[H].

5. Topologyof the vorticity function

Let atwo-form w be an even-dimensionalstationarysolution on a coadjoint
orbit 0 c ~. In other words, C is the set of all flows isovortical with w.
In this section,we study the topology of the vorticity function A = wa/p of
the steadyflow w. We describesomespecialfeaturesof such A under a mild
conditionthat the pair (A, w) doesnot admit “too manysymmetries”.On the
other hand, it is clear that topological invariants of A, such as a numberof
its critical points, their indexes, etc., dependonly on the orbit. This simple
observationwill enableus to find orbits with no stationarysolutionsat all (see
Section6).

Definition 5.1. A function f on a compactsymplectic manifold (W,w) does
not admit extrasymmetriesif an arbitraryfunction g such that {f, g} = 0 is
constanton connectedcomponentsof levels of f (i.e., the differential dg is
proportionalto df everywhereon W).

Remark.On a two-dimensionalsymplectic manifold no functions admit ex-
tra symmetries.We conjecturea generic function on a compact symplectic
manifold of any dimensiondoesnot admit extrasymmetries.Note however
that to the bestof our knowledge in dimensionsgreaterthan four, eventhe
existenceof such a function has not beenproved yet. (The question turns
out to be closely relatedto some subtle problemsof Hamiltonian dynamics.
Furthermore,our conjecturecan be regardedas a Hamiltonian version of the
problemof genericnon-integrabilitydueto Arnold [A5].)

On the other hand, the problemcanbe easily dealt with when dim M = 4.
First, note that then the notions of complete integrability and integrability
coincide.Henceit follows from results of Markus andMeyer [MMe] that a
genericfunctionon M admitsno extrasymmetriesprovidedthat3M = 0 and



V.L. Ginzburg, B. Khesin/Journalof GeometryandPhysics 14 (1994) 195—210 205

dimM = 4. Using a methodsimilar to [MMe] onemay showthat the same

is true for functionsconstanton connectedcomponentsof 3M.
To define a coadjointorbit with no extrasymmetries,note that the form

w E ~ is symplecticpreciselyon thecomplementto the zerolevel of A = w’~/p.

Definition 5.2. A coadjoint orbit 0 C ~ doesnot admit extrasymmetriesif for
any (or, equivalently,for some)w E 0 the vorticity function A doesnot admit
extrasymmetrieson A’ ([a, b]) for any two of its regular values 0 < a < b
(or a < b < 0).

Our definitionsare consistent:a function f on a compactsymplectic man-
ifold does not admit extra symmetriesif and only if its restriction to the
preimageof anysegmentwith regularendpointsdoesnot. If dimM = 4, then
orbits without extrasymmetriesdo exist (seethe remark above).

Definition 5.3. An orbit 0 c ~ hasthe Morsetype if for any (or, equivalently,
for some)w E 0 the functionA is a Morse functionconstanton everyconnected
componentof 3M. The orbit is called positive (nonnegative)if A(x) is so for
all x E M.

Theorem 5.4. Let dimM � 4 and 0 be a Morse type orbit without extra
symmetries.Assumethat0 containsa steadysolution. Thenfor everyw E 0 all
the critical pointsof the vorticity function A haveindexeseither lessthan n + 1
or greater than n — 1 on everyconnectedcomponentofM\{A = 0}.

Example. If 0 is as aboveandA > 0 on M\0M, then A cannot haveboth a
local maximum (index 2n) anda local minimum (index 0) on M\DM.

Proof For the sake of simplicity we assumethat 0 is a positive orbit, i.e.,
A > 0 on M. Only aminor modification is requiredto prove the generalcase.
Let w E 0 be a stationarysolution (L~w = 0) andh a function such that
dh = i~w.

Since A = wa/p does not admit extra symmetriesand {h,A} = 0, the
functionh must be constanton connectedcomponentsof levels of A.

Lemma 5.5. ThefunctionsA and h havethesamecritical points. In particular,
the critical pointsofh are isolated.

Proof Since A does not admit extra symmetires,dA(x) = 0 implies that
dh(x) = 0. The rest of the critical set of h may only be the union of some
connectedcomponentsof A-levels. Let a be the differential 1-form g(v,.),
whereg is the Riemannianmetric on M. Then da = w by the definition of
v, and a(v) = g(v,v) >0.
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Considerthe vector field w on M defined by the formula i~w = a. We
have

L~w=w (1)

and

(2)

where

Lwh__0~a(v)__04r~’a__0. (3)

If the critical set of h containsa connectedcomponentC of a A-level, then
L~~h= 0 for all x E C and, as a consequenceof (3), alc = 0. Hence,
WIC = dalc = 0. This is impossible,becauseC is a hypersurfacein the
symplecticmanifold (M,w) and 2n = dimM0 >4. The lemmais proved. ~

Observenow that as follows from (1), all the zeroesof the vector field
w are nondegenerate.Therefore,the field w hassmooth stableandunstable
manifolds in a neighborhoodof its every zero. The dimensionof the stable
manifold is greaterthann because,by (1), the restrictionof w on the unstable
manifold of w mustbe zero.

Now we are ready to finish the proof of the theorem.The field w is
gradient-likefor the function h (due to (2)). Therefore,w is either gradient-
or antigradient-likefor A becausetheA- andh-levelscoincidein a neighborhood
of every critical point andA is a Morse function.

Remark. One may prove that all the critical points of h are nondegenerate
except,maybe, for its maximaandminima.

Theorem 5.6. Let M be diffeomorphicto the disc D
2. If a Morse type orbit

0 c ~ containsa stationarysolution, thenfor anyw E 0 the vorticityfunction
A can not simultaneouslyhavea local maximumanda local minimumin M,
providedthat A > 0 on M \ 3M.

Remark. Since dim M = 2, the orbit 0 automaticallydoesnot admit extra
symmetries.

Theproofbelowis aformalizationof the following argumentwhich is evident
from a physical viewpoint. Minima and maxima of the vorticity function
correspondto rotationsof the fluid in the oppositedirections.On the other
hand, the positivity of A prescribesa priori a counterclockwisedrift.

Proof First, recall that h mustnot havemaxima. Indeed, in a neighborhood
of a maximumthe gradient-like (for h) field w would shrink the area that
contradictsEq. (1): L~w= w. Let C be the critical set of h. Observethat
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since h is constanton 3M, the set C either containsthe boundary 3M or
doesnot meetit. We claim that M\C is connected.To prove this, assumethe
contrary.Thenthereexists an open set U C M\C such that 0U C C. The set
U is invariant underthe flow of w, becausedh (and thus w) vanisheson C.
Onthe otherhand,as above,the existenceof sucha set U contradictsEq. (1).

Observenowthat, sincew is gradient-likefor h andeverylocal minimumof
A is a local minimumof h, the field w is gradient-likefor A in aneighborhood
of alocal minimumof A, whereasneara local maximumof A, the field w must
be antigradient-likefor A. Switchingfrom being gradient-liketo antigradient-
like (andvice versa)may occur only on C. But C doesnot divide M. Hence
w is either gradient-like or antigradient-likeon the entire M. The theorem
follows.

Besidesthe restriction on indexes of critical points of A, there are more
subtlepropertiesof the pair (w,A) which follow from the existenceof a steady
solution.Let0 be a coadjointorbit in ~ which doesnot admit extrasymmetries
andcontainsat leastoneexactsteadysolution. For the sakeof simplicity, we
also assumethat 0 is positive, i.e., A > 0 for every w E 0. In other words,
every w E 0 is symplectic.

Recall that a hypersurfaceF in a symplectic manifold (W~a) hascontact
type if thereexistsa 1-form 0 on F such that dO = air and0 A (dO)~’~ 0
anywhereon F.

Remark.An exampleof a compactclosed hypersurfacein ER2~ (and thus in
any symplecticmanifold) that does not havecontacttype hasbeenfound by
A. Weinstein [WI.

Proposition5.7. For everyw e 0, connectedcomponentsof regular levels ofA
havecontact type.

Proof It is sufficient to prove the propositionfor a steady solution w E 0.
Recall that for such an w, connectedcomponentsof A-levels coincide with
connectedcomponentsof h-levels.Thus we needto show that every regular
connectedcomponentF of an h-level hascontacttype. By definition, we have
dali = Wlp, wherea = g(v,.). To showthat aA (da)’~’~ 0 on F, observe
that a A (da)~’= i~w’~/n,wherew is given by the equationi~w= a. By
(3), w is transversalto regularlevels of h and, therefore,i~~ r is nowhere
zero. The propositionfollows.

Remark.The proposition implies that under certain assumptionsevery con-
nectedcomponentF of a regularlevel of A containsat leastoneclosed trajec-
tory of the vectorfield ~. For example,as follows from a resultof C. Viterbo
[V], this is correctwhen M is a domain in ER2~and0 is the orbit of the
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standardsymplecticstructureprovided,of course,thatotherthe hypothesesof

Proposition5.7 hold.

6. The nonexistenceof steady flows and other applications of main theorems

Applying Theorems5.4 and 5.6, onecan easilyfind a coadjointorbit which
doesnot containa steadysolution.

The caseof a two-dimensionalM is particularly simple. Considera disk
M = D2 C ER2(x,y)with p = dx A dy andw = A p, whereA is a positive
Morse function on D such that AIaD = const.Assumealso that A hasboth a
local maximumanda local minimum in intD (see,e.g., fig. 1).

Corollary 6.1 (of Theorem 5.6). The coadjoint orbit through w does not
contain a steadysolution.

A higher-dimensionalversion of this corollary follows from Theorem 5.4.
Let 0 be a Morse type orbit which is positive (i.e., A > 0) andwithout extra
symmetries.

Corollary 6.2. Assumethatfor somew E 0 the vorticityfunction A has a critical
point of indexk, < n anda critical point ofindexk

2 > n, where2n = dim M,
then0 containsno steadysolutions.

Corollary 6.3. Assumethat H” (M,ER) ~ 0 and H”2(M,ER) ~ Ofor somek, <n

and k2> n, then0 containsno steadysolutions.

Proof Apply the Morse inequalities.

Remark.Here, as everywherein this paper, the steady solution is assumed
to be smooth.Note that a “generalizedsteadysolution” with a discontinuous
vorticity function may still existandbe of certaininterestfor applications.

It turns out that Theorems5.4 and 5.6 are almost sharpas long as we are

Fig. 1. Level surfacesand a profile of the vorticity function having no smooth steadyflow.
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not concernedaboutthe metric. Namely,thereis no generalrestrictionon the
topology of the vorticity function except that given by the theorems.Let us
first consideran important,yet almosttrivial, constructionof steadysolutions
and thenstatethe sharpnessresult.

Example.Let W be a Steinmanifold suchthatH’ (W~ER)= 0 andA a positive
smoothstrictly plurisubharmonicfunction. Considerthe manifold M = {A ~
c}, wherec is a regularvalue of A. The 2-form w = —21m0t9A is a symplectic
form on W and, therefore, on M. Let us equip W with the volume form
p = wa/A and the metric g = w(, J’), whereJ is the complexstructureon
W.We claim that w is a steadysolution.

To prove thisobservethat, in fact, w = d(JdA).Thus if we set a = fdA and
define v by the equality a = g (v,), thenda = w andv is the Hamiltonian
vectorfield with the HamiltonianA. By the definition of p, we haveL~p= 0,
i.e., v is divergence-free.Therefore,v is the vectorfield correspondingto w by
meansof the identification of ~ and ~ given by the energyquadraticform.
Since v is Hamiltonian,L~co= 0 andw is a steadysolution.

Note thatherewe havev = ~ andA = h, yet the orbit through w mayadmit
extrasymmetries.

Thisconstructionof a steadysolutionis particularlyinterestingwhendimc W
= 1. Consider,for example,a positive smoothsubharmonicfunction A on C,
constanton the unit circle. Then our argumentshows that on the unit disc
D there exists a metric g and an area form p such that A is the vorticity
function of a steady solution. In particular, the vorticity function may have
saddlecritical points,at least for somemetricsandvolume forms.

Theorem 6.4. Let M be a compactmanifold with boundary, dim M = 2n > 6
and A a smoothpositivefunction on M such that f is constanton connected
componentsof3M andall thecritical pointsofA haveindexesno greater than
n. Assumein addition that M admits an almostcomplexstructure. Then there
existsa metric anda volumeform on M such that A is the vorticity function of
a steadysolution.

Proof As shownby Ya. Eliashberg [E], the manifold M admits a complex
structurewhich makesA into a plurisubharmonicfunction. To finish the proof
it remainsto apply the argumentfrom the precedingexample.

As the following result indicates, there is apparently a deep connection
betweensteady solutions andcomplex structures.Let w be an exact steady
solution on M2~and A its vorticity function. Assumealso that 2n > 6, the
orbit 0 through w admits no extrasymmetriesand that A > 0.

Theorem 6.5. Thereexists a complexstructureJ on M which makesA into a
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plurisubharmonicfunction. Equippedwith J, the manifoldM is biholomorphi-

cally equivalentto a domain ofholomorphyin a Steinmantfold.
Proof SinceA > 0, the manifoldM carriesa symplecticstructureandthus an
almost-complexstructure.The theoremfollows from Theorems5.4 and 6.4.E1

Remark. The complex structure f can be chosento be w-tame (cf. [EGr]),
i.e., such that w is a (1,1)-form.

We are deeplygrateful to V.1. Arnold, A.B. Givental, P. Lax, H.K. Moffatt,
S.I. Vainshtein, and A. Weinstein for numerous useful discussions.
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