
Digital Object Identifier (DOI) 10.1007/s00220-004-1150-3
Commun. Math. Phys. 250, 581–612 (2004) Communications in

Mathematical
Physics

Bihamiltonian Structures and Quadratic Algebras
in Hydrodynamics and on Non-Commutative Torus

B. Khesin1,2, A. Levin1,3, M. Olshanetsky1,4

1 Max Planck Institute of Mathematics, Bonn, Germany
2 University of Toronto, Toronto, Canada. E-mail: khesin@math.toronto.edu
3 Institute of Oceanology, Moscow, Russia. E-mail: alevin@wave.sio.rssi.ru
4 Institute of Theoretical and Experimental Physics, Moscow, Russia. E-mail: olshanet@gate.itep.ru

Received: 4 September 2003 / Accepted: 12 February 2004
Published online: 12 August 2004 – © Springer-Verlag 2004

Abstract: We demonstrate the common bihamiltonian nature of several integrable sys-
tems. The first one is an elliptic rotator that is an integrable Euler-Arnold top on the
complex group GL(N,C) for any N , whose inertia ellipsiod is related to a choice of
an elliptic curve. Its bihamiltonian structure is provided by the compatible linear and
quadratic Poisson brackets, both of which are governed by the Belavin-Drinfeld clas-
sical elliptic r-matrix. We also generalize this bihamiltonian construction of integrable
Euler-Arnold tops to several infinite-dimensional groups, appearing as certain large N
limits of GL(N,C). These are the group of a non-commutative torus (NCT) and the
group of symplectomorphisms SDiff (T 2) of the two-dimensional torus. The elliptic
rotator on symplectomorphisms gives an elliptic version of an ideal 2D hydrodynamics,
which turns out to be an integrable system. In particular, we define the quadratic Poisson
algebra on the space of Hamiltonians on T 2 depending on two irrational numbers. In
conclusion, we quantize the infinite-dimensional quadratic Poisson algebra in a fashion
similar to the corresponding finite-dimensional case.
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1. Introduction

One of the most interesting problems in the theory of integrable systems is a description
of infinite-dimensional integrable systems with two or more space variables. In this pa-
per we consider integrable hierarchies in the (2 + 1) dimension, which we call elliptic
and modified hydrodynamics. These are close relatives of the ideal hydrodynamics on
a two-dimensional torus, which is known to be a highly non-integrable system. For in-
stance, even the 4-vortex approximation of the ideal fluid dynamics is non-integrable [1].
We obtain these integrable versions of hydrodynamics starting from finite-dimensional
integrable systems whose dimension of the phase space goes to infinity. Our approach
is somewhat similar to the derivation of Toda field theory from the open Toda chain. In
contrast with the Toda theory, however, we obtain non-local systems.

The classical Euler (or, rather, Helmholtz) equation for the motion of an ideal fluid
on the standard two-torus is

∂tS = {S,�−1S} ,
where S is the vorticity function of the fluid flow, { } is the Poisson bracket, and �
is the Laplace operator on T 2. The modified and elliptic hydrodynamics are defined
on an elliptic curve, i.e., on a torus with a complex structure fixed. The corresponding
equations are, respectively,

∂tS = {S, ∂̄−2S}
and

∂tS = {S, ℘ (∂̄)S} ,
where ∂̄ is the corresponding operator of the complex structure, and ℘ is the Weierstrass
℘-function. (We postpone the precise description of ℘(∂̄) till Sect. 5.) Note that to
define the Laplace operator one needs to choose a metric, while for the operator ∂̄ in the
modified hydrodynamics is defined by a complex structure on T 2.

Such a modification of the fluid inertia operator from the Laplace operator � = ∂∂̄ ,
which depends on a metric on T 2, to ∂̄2 or ℘(∂̄)−1, both of which depend on a complex
structure on T 2, brings in the integrability and even the bihamiltonian structure for the
systems. We construct an infinite set of involutive integrals of motion with respect to
two Poisson brackets. One of the brackets is the standard linear Lie-Poisson brackets
on the dual space to the algebra of the divergence-free vector fields on T 2. The other
Poisson structure is a quadratic Poisson algebra on Hamiltonians of vector fields. These
two brackets are compatible and governed by the same classical r-matrix. Furthermore,
we describe a recursion procedure for constructing the sequence of Hamiltonians for this
linear-quadratic bihamiltonian structure of the hierarchy of the elliptic hydrodynamics,
which thereby exhibits “the strongest form of integrability.”

We come to this construction through the non-commutative deformation of T 2 to the
non-commutative torus (NCT). The non-commutative deformation of the Lie algebra of
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vector fields is isomorphic to the Lie algebra of NCT. The latter is a special largeN limit
of gl(N,C). We start with the elliptic rotators on GL(N,C) [2, 3] and develop their
bihamiltonian structure based on the Belavin-Drinfeld classical r-matrix [4]. The corre-
sponding quadratic Poisson algebra is the classical limit of the Feigin-Odesski algebra
[5]. We describe natural extensions of the elliptic rotators to the infinite-dimensional
groups, which preserve their main properties. This brings us to bihamiltonian systems
and integrable hierarchies on the NCT, which are of interest by themselves.

As a byproduct, we also describe a quantization of the quadratic Poisson algebra on
NCT. In this way we obtain an infinite-dimensional associative algebra with quadratic
relations depending on the complex structure on T 2 and the Planck constant –h ∈ T 2.

Finally, the commutative (“dispersionless”) limit of the elliptic rotators on NCT leads
to the desirable bihamiltonian hierarchies of the elliptic and modified hydrodynamics.

2. Main Results

1. The general setup [6, 7]. Let G be a Lie group and g its Lie algebra. Consider an
invertible linear operator J that maps the coalgebra g∗ to g. Its inverse operator J−1

is called the inertia tensor. The Euler-Arnold top corresponding to the group G is the
Hamiltonian system on g∗ with respect to the linear Lie-Poisson brackets on g∗ and the
Hamiltonian function given by the quadratic form

H = −1

2
〈S, J(S)〉 , S ∈ g∗ ,

where 〈 , 〉 stands for the pairing between g and g∗. Namely, the variation ∇H can be
regarded as an element of g and the corresponding Hamiltonian equation of motion is
as follows:

∂tS = {H,S} := ad∗
∇HS .

Recall that the Lie-Poisson brackets are degenerate on g∗ and their symplectic leaves
are coadjoint orbits ofG. To descend to a particular coadjoint orbit O one should fix the
values of Casimirs for the linear bracket.

For some special choices of J the system becomes completely integrable. Some of the
examples are Manakov’s tops on SO(N) [8], their limitN → ∞ found by Ward [9], the
Korteweg–de Vries equation [10, 11], as well as the Camassa–Holm and Hunter–Saxton
equations on the Virasoro group [12]. (In the infinite-dimensional case, the invertibility
of J is understood as KerJ = 0.)

2. Elliptic Rotators on GL(N,C). The elliptic rotator (ER) on GL(N,C) is an integra-
ble Euler-Arnold top on this group, whose inertia operator is constructed with the help
of the Weierstrass ℘-function of an auxilliary elliptic curve, see [2, 3, 13]. Namely, let
Tα , α = (α1, α2) be the basis of sl(N,C) (B.4,) αj = (0, 1, . . . , N − 1), α �= (0, 0).
The structure constants in this basis are

Cθ (α, β) = 1

πθ
sin πθ(α × β) , θ = k/N ,

where 1 ≤ k < N and k,N are coprime, see (B.8). For S = ∑
α S−αTα ∈ sl(N,C)∗

the linear Poisson brackets assume the form

{Sα, Sβ} = Cθ (α, β)Sα+β . (2.1)
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Let ℘(x; τ) be the Weierstrass function on the elliptic curve Eτ = C/(Z + τZ). Con-
sider its values ℘θ(α) = ℘((α1 + α2τ)θ; τ) on the lattice parametrized by α, the labels
of the sl(N,C)-basis. The inverse inertia operator is defined as

J : Sα → JαSα , Jα = ℘θ(α) . (2.2)

It was proved in Ref .[2] that the equations of motion

∂tSα =
∑

γ

Sα−γ ℘θ (γ )Sγ , (2.3)

defined by the Hamiltonian H = − 1
2 〈S, J(S)〉 = 2π2θ2tr(S · J(S)) and the brackets

(2.1), have the Lax representation with the Lax operator Lrot (S, z) ∈ sl(N,C) depend-
ing on the spectral parameter z ∈ Eτ . The traces tr(Lrot (S, z))k , k = 2, . . . , N being
expanded in the basis of elliptic functions on Eτ produce the involutive integrals of
motion and the Hamiltonian H is among them.

We call the commuting flows defined by these integrals the ER hierarchy.
Let r(z), z ∈ Eτ be the Belavin-Drinfeld classical elliptic r-matrix, see [13, 4] and

Sect. 3 below. The main result, which we will also generalize to the infinite-dimensional
situation, can be formulated as follows.

Theorem 2.1. i) In terms of the r-matrix, the linear brackets (2.1) can be written in the
form

{Lrot1 (z), Lrot2 (w)}1 = [r(z− w),Lrot1 (z)+ Lrot2 (w)] . (2.4)

ii) Consider the phase space extended by a new variable S0, which has zero bracket with
all the rest. The same r-matrix defines the quadratic Poisson algebra PN,θ,τ related to
GL(N,C) (3.19), (3.20):

{L1(z), L2(w)}2 = [r(z− w),L1(z)⊗ L2(w)] , where L(z)

= S0Id + Lrot (z) . (2.5)

iii) The above two brackets are compatible, i.e. any linear combination of them is a
Poisson bracket.
iv) There exists a sequence of integrals of motion in involution with respect to each of the
two brackets {hj , hk}1,2 = 0 (here the lower indices refer to the linear and the quadratic
brackets respectively). They provide the bihamiltonian structure of the elliptic rotator
(ER) hierarchy

{hj+1,S}2 = −{hj ,S}1 .

The first two statements of the theorem for GL(N,C) are well known [5, 14]. Appar-
ently, the bihamiltonian structure of the GLN elliptic rotators is new, and it gives the
following

Corollary 2.1. The Casimirs with respect to one of the brackets generate an integrable
dynamics with respect to the other.

In particular, the functional S0, being the Casimir element of the linear brackets (2.1),
leads to the equations

∂tS = {S0,S}2 , (2.6)

that coincide with (2.3).
It turns out that Theorem 2.1 also holds in the infinite-dimensional situation presented

below.
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3. Elliptic Rotators on the Non-commutative Torus. Consider the sin-algebra sinθ ,
called also the Lie algebra of the non-commutative torus (NCT). The Poisson brack-
ets on the Lie coalgebra sin∗

θ of the NCT has the form (2.1) with irrational number
0 ≤ θ < 1 and the basis Tα = const · exp(2πiα1x1) ∗ exp(2πiα2x2) is parameterized
by the infinite lattice α ∈ Z⊕Z. Here exp(2πix1), exp(2πix2) are the generators of the
NCT and ∗ is the Moyal multiplication (see Appendix C). On the NCT we introduce the
complex structure ∂̄ε,τ depending on τ (Im τ > 0), and two real numbers ε = (ε1, ε2),

such that θεa are irrational and 0 < θεa ≤ 1 (see (4.3)). The inverse inertia operator J
is the pseudo-differential operator

J(S)(x) = ℘(θ∂̄ε,τ )S(x) ,

where now S(x) = ∑
α S−αTα(x). The equation of motion in the form of the Moyal

brackets has the form

∂tS = {S, ℘ (θ∂̄ε,τ )S}θ , (2.7)

where { }θ is the Lie–Poisson bracket on sin∗
θ . In Proposition 3.1 we find the Lax form

of (2.7). We construct the classical r-matrix (4.11) and prove the counterpart of the the-
orem. The quadratic Poisson algebra Pθ,ε,τ (4.19), (4.20) on the NCT gives rise to the
infinite bihamiltonian hierarchy, where Eqs. (2.7) correspond to the quadratic Hamilto-
nian functional with respect to the linear brackets. At the same time Eqs. (2.7) can be
interpreted as the Hamiltonian equations (2.6) in the quadratic Poisson algebra Pθ,ε,τ
with a linear Hamiltonian. For SL(2) this representation was found in [15] and for the
general case in [18].

4. Elliptic Rotators on SDiff (T 2). In the limit θ → 0 the Lie algebra of the NCT
becomes isomorphic to the Poisson algebra A of smooth functions on T 2 modulo con-
stants Ham(T 2) ∼ C∞(T 2)/C. The algebra of Hamiltonians can also be described by
the corresponding Hamiltonian (or, divergence-free) vector fields on the torus. More pre-
cisely, the Lie algebraSV ect (T 2) of divergence-free vector fields onT 2 is the (universal)
cocentral extension of Ham(T 2), defined by the exact sequence

0 → Ham(T 2) → SV ect (T 2) → C
2 → 0 ,

where the image of SV ect (T 2) in C
2 is generated by the two fluxes ε1∂1, ε2∂2. For

ψ ∈ Ham(T 2) we have

V1(ψ) = − 1

4π2 ∂2ψ , V2(ψ) = 1

4π2 ∂1ψ ,

and V{ψ,ψ ′} = [V (ψ), V (ψ)′]. We construct the elliptic rotator on the Lie group SDiff
(T 2) of area-preserving diffeomorphisms, corresponding to the Lie algebra SV ect (T 2).

Consider the dual space of linear functionals Ham(T 2)∗ in the Fourier basis

{e(α · x) : = exp 2πi(α · x) | (x = (x1, x2) , (α · x) = α1x1 + α2x2 , αj ∈ Z} ,
S =

∑

α

Sαe(−(α · x)) ∈ Ham(T 2)∗ .

The Poisson structure on A∗ assumes the form (cf. (2.1))

{Sα, Sβ}1 = (α × β)Sα+β .
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This Poisson structure is degenerate and has an infinite set of Casimirs

Ck =
∫

T 2
Sk ,where k = 2, 3, . . . .

On a coadjoint orbit O ⊂ Ham(T 2)∗ of SDiff (T 2) the brackets are non-degenerate
and values of the Casimirs are fixed.

Define the operator J (after the rescaling) as the pseudo-differential operator℘(∂̄ε,τ ),
such that the Hamiltonian has the form

H = −1

2

∫

T 2
S · ℘(∂̄ε,τ )S . (2.8)

We prove that the corresponding Hamiltonian system admits an infinite set of commuting
integrals, see Sect. 5.

Recall that these elliptic rotators are parameterized, in particular, by the auxiliary
elliptic curve. Consider the simplest version of the ER, corresponding to the rational
degeneration of the elliptic curve Eτ . In the limit the (inverse) inertia operator becomes
J = ∂̄−2

τ and the limiting Hamiltonian (2.8) takes the form

H = −1

2

∫

T 2
S · ∂̄−2

τ S ,

see (5.23) and [15].
It is interesting to compare this with the Euler equation for an ideal fluid on a torus,

where the inertia operator is the Laplacian (i.e., J = �−1 = (∂̄∂)−1), and the Hamilto-
nian is

H = −1

2

∫

T 2
S ·�−1S ,

where S plays the role of the vorticity [7]. While the Euler hydrodynamics equation is
highly non-integrable, the modification of the (inverse) inertia operator from ∂̄∂ to ∂̄2

τ

leads to an integrable hierarchy. We call the rational limit the modified hydrodynamics
on T 2. (In a sense, these systems are similar in spirit to the Etingof–Frenkel current
algebras [16] on T 2, which make use of the complex structure on the elliptic curve to
construct a central extension of smooth currents on the torus.)

Finally, we prove Theorem 2.1 for the generic systems of the elliptic hydrodynamics
(2.8). In particular, the quadratic Poisson algebra P0,τ (5.27), (5.28) on T 2, along with
the linear Poisson bracket, provide the bihamiltonian structure of the hierarchies of the
elliptic and modified hydrodynamics.

3. GL(N, C)-Elliptic Rotators

3.1. Lax representation and integrals of motion.

1. The system description. The elliptic GL(N,C)-rotator is defined on the dual spaces
of gl(N,C) and sl(N,C). Let

S =
∑

α∈Z̃
(2)
N

S−αTα ,
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where Tα is the basis of sl(N,C), see (B.4) and (B.5). In what follows we assume that
the Greek indices belong to the lattice Z̃

(2)
N (B.5). Then the Poisson structure on the dual

space sl(N,C)∗ is given by the linear Lie-Poisson brackets (B.8)

{Sα, Sβ}1 = Cθ (α, β)Sα+β , (3.1)

where Cθ (α, β) are the structure constants of sl(N,C) (B.8). The Hamiltonian has the
form

Hrot = 2π2θ2tr(S · J(S)) ≡ −1

2

∑

γ∈Z̃
(2)
N

Sγ Jγ S−γ . (3.2)

It defines the equations of motion

∂tS = [J(S),S]. (3.3)

Let J : Sα → JαSα , be the (inverse) inertia operator with Jα = ℘θ(α), where
℘θ(α) are the values of the Weierstrass ℘-function and defined by (B.11). Then (3.3)
assumes the form

∂tSα =
∑

γ∈Z̃
(2)
N

Sα−γ Sγ ℘θ (γ )Cθ (γ, α) . (3.4)

2. The linear brackets and r-matrix.

Proposition 3.1. (cf. [2]). The equations of motion (3.2) have the Lax form

∂tL
rot (z) = [Lrot (z),M(z)] , (3.5)

where

Lrot = −
∑

α

Sαϕθ (α, z)Tα , (3.6)

M = −
∑

α

Sαfθ (α, z)Tα , (3.7)

and the functions ϕθ , fθ are given by (B.13), (B.14).

Proof. Substituting (3.6) and (3.7) in the Lax equation we obtain

∂tSαϕθ (α, z) =
∑

γ

Sα−γ Sγ (ϕθ (α − γ, z)fθ (γ, z)− ϕθ (γ, z)fθ (α − γ, z)) .

Now, using the explicit expressions (B.13) and (B.14) for ϕθ and fθ respectively, as well
as the Calogero functional equation (A.22), we come to

∂tSα =
∑

γ

Sα−γ Sγ ϕθ (α, z)(℘θ (α − γ )− ℘θ(γ )),

which coincides with (3.4). ��
The Lie-Poisson brackets (3.1) admit the following r-matrix description [4, 13, 14,

17]. Define the classical r-matrix by

rN,θ,τ (z− w) =
∑

γ

ϕθ (γ, z− w)Tγ ⊗ T−γ , (3.8)

where ϕθ is defined by (B.13).
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Lemma 3.1. [14]. The r-matrix (3.8) satisfies the classical Yang-Baxter equation

[r(12)
N,θ,τ (z− w), r

(13)
N,θ,τ (z)] + [r(12)

N,θ,τ (z− w), r
(23)
N,θ,τ (w)]

+ [r(13)
N,θ,τ (z), r

(23)
N,θ,τ (w)] = 0 . (3.9)

Proof. We reduce the YB equation (3.9) to the following functional equation

ϕθ (γ, z− w)ϕθ (α, z)− ϕθ (α + γ, z− w)ϕθ (α,w)+ ϕθ (α + γ, z)ϕθ (−γ,w) = 0 ,

by using the commutation relations in sl(N,C) (B.7). It easy to see that it can be rewrit-
ten for the functions φθ (B.12), since all three terms have the common exponent eθ ((γ2 +
α2)z− γ2w). Now, it coincides with the Fay identity (A.21), where we put

u1 = (γ + α)θ , u2 = −γ θ , z1 = z , z2 = w . ��
Proposition 3.2. In terms of the Lax operator (3.7) the brackets (3.1) are equivalent to
the following relation for the Lax operator

{Lrot1 (z), Lrot2 (w)}1 = [rN,θ,τ (z− w),Lrot (z)⊗ Id + Id ⊗ Lrot (w)] , (3.10)

L1 = L⊗ Id , L2 = Id ⊗ L .

Proof. To prove (3.10) we rewrite it in the basis Tα ⊗ Tβ :

{Sα, Sβ}1ϕθ (α, z)ϕθ (β,w)

= Sα+βCθ (α, β) (ϕθ (−β, z− w)ϕθ (α + β, z)− ϕθ (α, z− w)ϕθ (α + β,w)) .

The same Fay identity (A.21) implies that

ϕθ (α, z)ϕθ (β,w) = ϕθ (−β, z− w)ϕθ (α + β, z)− ϕθ (α, z− w)ϕθ (α + β,w) .

Thus we come to (3.1). ��

3. The hierarchy of the Lax equations. The Lax operator Lrot (3.6) has the following
properties:
i) Lrot is an sl(N,C)-valued meromorphic function on Eτ with a simple pole at the
origin satisfying

Res Lrot (z)|z=0 =
∑

α

SαTα .

ii) Lrot satisfies the quasi-periodicity conditions

Lrot (z+ 1) = QLrot (z)Q−1 , Lrot (z+ τ) = �Lrot (z)�−1 .

These properties imply that T r(L(z))k are doubly periodic functions with the poles up
to the order k. Thereby, they can be expanded in the basis of the Weierstrass function
and its derivatives

tr(Lrot (z))k = I0,k + I2,k℘ (z)+ . . .+ Ik,k℘
(k−2)(z) . (3.11)

In particular, in this way we obtain the Hamiltonian

tr(Lrot (z))2 = I0,2 + I2,2℘(z) , I0,2 = 2

(
i

2πθ

)2

H , I2,2 = tr S2 .
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Proposition 3.3. The coefficients Is,k are in involution with respect to the linear bracket
(3.1)

{Is,k, Im,j }1 = 0 . (3.12)

Proof. We have

{tr(Lrot1 (z))k, tr(Lrot2 (w))j }1 = tr{(Lrot1 (z))k, (Lrot2 (w))j }1 .

Then, it follows from (3.10) that these functionals Poisson commute. Using the expansion
(3.11) we arrive at the involutivity of the coefficients (3.12). ��

In particular, all functions Is,k Poisson commute with the Hamiltonian H (3.2).
Therefore, they play the role of conservation laws of the elliptic rotator hierarchy on
GL(N,C). We have a tower of N(N+1)

2 independent integrals of motion

I0,2 I2,2
I0,3 I2,3 I3,3
. . . . . . . . . . . .

I0,n I2,N . . . . . . IN,N

Note that Ik,k, k = 0, 2, 3 . . . , N are the Casimirs corresponding to the coadjoint orbit

Rrot = {S ∈ gl(N,C), S = g−1S(0)g} .
The conservation laws Is,k generate commuting flows on Rrot ,

∂s,kS = {Is,k,S}1 , (∂s,k := ∂ts,k ) ,

that we call ERN hierarchy.
In what follows we will need another set of the conservation laws coming from the

coefficients of the spectral curve

C : F(λ, z) ≡ det(λ · Id + Lrot (z)) = 0 . (3.13)

Here

F(λ, z) = λN + λN−2a2(z)+ . . .+ aN(z) ,

ak(z) = J0k + J2k℘ (z)+ . . .+ Jkk℘
(k−2)(z) . (3.14)

Since ak(z) and T r(L(z))k are related by the Newton formula, one can recursively
represent Js,k as polynomials of Im,j , j ≤ k, m ≤ j ,

Js,k =
∑

a
s,k
l,m,j

∏

∑
jimi=k, li≤ji

(Ili ,ji )
mi , (l = (l1, l2, . . . )) . (3.15)

For example,

Js,2 = −Is,2 , (s = 0, 2) ; Js,3 = −Is,3 , (s = 0, 2, 3) ;

J0,4 = 3

2
I0,4 − I 2

0,2 − g2

12
I 2

2,2 , (g2 = 60
′∑

m,n

(m+ nτ)−4) ; (3.16)

J2,4 = 3

2
I2,4 − 2I0,2I2,2 ; J3,4 = 3

2
I3,4 J4,4 = 3

2
I4,4 − I 2

2,2 ,

where in the second line we have exploited the relation 12℘2 = 2℘′′ + g2.
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3.2. The classical GL(N,C) Feigin-Odesski algebras. Here we consider the Feigin-
Odesski Poisson brackets related to GL(N,C). In notations of Ref. [5] it is the classical
limit of the quadratic associative algebra QN2,k .

It turns out that the same r-matrix (3.8) defines a quadratic Poisson algebra. We start
with the Lax operator Lrot (3.6). Modify it in the following way:

L(z) = −S0Id + Lrot (z) , (3.17)

where S0 commute with Sα with respect to the linear brackets (3.1). Define the brackets
between the entries of L as follows

{L1(z), L2(w)}2 = [rN,θ,τ (z− w),L1(z)⊗ L2(w)] , (3.18)

(see Ref. [13, 14]). These brackets are Poisson, since the Jacobi identity is provided by
the classicalYang-Baxter equation (3.9). A finite-dimensional quadratic Poisson algebra
is extracted from (3.18) by eliminating the dependence on the spectral parameters z,w.

Proposition 3.4. The quadratic Poisson algebra on gl(N,C)∗ has the form

{Sα, S0}2 =
∑

γ �=α
Sα−γ Sγ (℘θ (γ )− ℘θ(α − γ ))Cθ (α, γ ) , (3.19)

{Sα, Sβ}2 = S0Sα+βCθ (α, β)+
∑

γ �=α,−β
Sα−γ Sβ+γ fθ (α, β, γ )Cθ (γ, α−β),(3.20)

where Cθ (α, β) are the sl(N,C) structure constants (B.8),

fθ (α, β, γ ) = ζθ (γ )+ ζθ (β − α + γ )− ζθ (β + γ )+ ζθ (α − γ )

= − ϑ ′(0)ϑθ (α)ϑθ (β)ϑθ (β − α + 2γ )

ϑθ (α − γ )ϑθ (β + γ )ϑθ (β − α + γ )ϑθ (γ )
, (3.21)

and ϑθ , ζθ are the zeta constants (B.10), (B.11).

Proof. Equation (3.18) yields the following form of the brackets

{Sa, Sb}2ϕθ (a, z)ϕθ (b,w) =
∑

γ

Sa−γ Sb+γ ϕθ (γ, z− w)ϕθ

×(a − γ, z)ϕθ (b + γ,w)Cθ (γ, a − b) . (3.22)

Here we assume that the Latin indices (a, b, ...) belong to the lattice Z
(2)
N = Z̃

(2)
N ∪(0, 0),

while the Greek indices belong to Z̃
(2)
N as above. Note first that the common exponents

in the expressions of the functions ϕθ (B.13) coincide in the left and the right sides. This
allows one to pass to the functions φθ and in this way to use the Fay-type identities. We
rewrite the last expression in the form

{Sa, Sb}2φθ (a, z)φθ (b,w) =
∑

γ

Sa−γ Sb+γCθ (γ, a − b)

× (φθ (γ, z− w)φθ (a − γ, z)φθ (b + γ,w)

−φθ (a − b − γ, z− w)φθ (b + γ, z)φθ (a − γ,w)) .
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Consider first the case b = 0. Then we can apply (A.30) for u = (a1 + a2τ)θ , v =
(γ1 +γ2)θ . It immediately leads us to (3.19). If a, b �= 0 we have the terms of two types.
For γ �= a,−b one uses (A.27), (A.28) and finds the second term in the right side of
(3.20). If γ = a or γ = −b one should take into account that φθ (0, z) = 1 and then
use the Fay identity (A.21). This gives us the first term. The identity (3.21) follows from
(A.29). ��

We denote by PN,θ,τ the quadratic Poisson algebra (3.19), (3.20). Recall that τ is
the modular parameter of the auxiliary curve Eτ and θ = k/N . The algebra P2, 1

2 ,τ
is

the classical Sklyanin algebra [14]. In this case the r.h.s. of (3.20) contains only the first
term.

As for the linear brackets, there existN Casimirs C(2)0 , C
(2)
2 , . . . , C

(2)
N of the algebra

PN,θ,τ [18]. They can be read off from the expansion of the spectral curve (3.13) in the
basis of elliptic functions

det(S0 · Id + Lrot (z)) = C
(2)
0 +

N∑

k=2

C
(2)
k ℘(k−2)(z) . (3.23)

It follows from (3.13), (3.14) and (3.17) that they are linear combinations of the integrals
Js,k ,

C
(2)
0 = SN0 +

N∑

m=2

SN−m
0 J0,m , (3.24)

C
(2)
k =

N−k∑

m=0

SN−k−m
0 Jk,k+m , (k = 2, . . . , N) . (3.25)

3.3. The bihamiltonian structure. Two Poisson structures are called compatible (or, form
a Poisson pair) if their linear combinations are Poisson structures as well.

Proposition 3.5. The linear and quadratic Poisson brackets on gl(N,C) are compatible.

Proof. Let us replace S0 → S0 + λ in the quadratic brackets (3.19), (3.20). Then (3.19)
does not change, while (3.20) acquires an additional linear term. In this way we define
a one-parameter family of the brackets

{S,S}λ := {S,S}2 + λ{S,S}1 , (3.26)

where {S,S}1 denote the linear brackets (3.1). Therefore, the linear combination {S,S}λ
of two brackets can be obtained from the quadratic bracket by a simple shift of S0. The
result of the shift, of course, still satisfies the Jacobi identity, and hence it is a Poisson
bracket for any λ. ��

We denote this family of the quadratic Poisson algebras by PN,θ,τ,λ. The algebras
are isomorphic for different λ and degenerate to the linear Poisson algebra gl(N,C)∗ as
λ → ∞.

Consider the Casimir functions of the Poisson algebra PN,θ,τ,λ,

hk(λ) = C
(2)
k (S0 + λ) (k = 0, 2, . . . , N) .
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It follows from (3.24) and (3.25) that hk(λ) are polynomials in λ,

hk(λ) =
N−k∑

m=0

hm,kλ
m . (3.27)

The coefficients are defined as

ha,k = 1

a!
∂
(a)
λ C

(2)
k (S0 + λ)λ=0 .

It implies that

ha,0 = N !

(N − a)!a!
SN−a

0 +
N−a∑

m=2

(N −m)!

(N −m− a)!a!
SN−m−a

0 J0,m , (3.28)

ha,k =
N−k−a∑

m=0

(N − k −m)!

(N − k −m− a)!a!
SN−k−m−a

0 Jk,k+m , (k = 2, . . . , N) . (3.29)

In particular,

hN−1,0 = NS0 , hN−2,0 = N(N − 1)

2
S2

0 + J0,2 . (3.30)

Conversely, one can express Jm,k+m as a linear combination ofhN−m−s,m, s = 0, . . . , k
from the relations (3.28) and (3.29). For example,

Jj,j = hN−j,j , Jj,j+1 = hN−j−1,j − (N − j)S0hN−j,j ,

Jj,j+2 = hN−j−2,j − (N − j)S0hn−j−1,j + (N − j)(N − j − 1)

2
S2

0hN−j,j .

We arrange the quantities hm,k in the triangular tableau

h0,0 h1,0 . . . . . . . . . . . . . . . . . . . . . hN−1,0 hN,0
h0,2 h1,2 . . . . . . . . . hN−3,2 hN−2,2

h0,3 h1,3 . . . . . . . . . hN−4,4 hN−3,3
. . . . . . . . . . . . . . .

h0,N−1 h1,N−1
h0,N

(3.31)

Note that the second line corresponding to hs,1 is absent since h1(λ) = 0. The left
side of the triangle contains the Casimirs h0,j = C

(2)
j (3.24), (3.25) of PN,θ,τ , while the

right side represents the Casimirs hN−j,j = Jj,j of the linear brackets on gl(N,C)∗.
The remarkable property of the quantities ha,k is that they are in involution with

respect to both the linear and quadratic brackets:

{ha,k, hb,j }1,2 = 0 ,

see, e.g., [19]. This fact follows from the identities

{hk(λ), hj (λ)}λ = 0 , (3.32)

held for each λ.
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Proposition 3.6. The integrals ha,k provide the recurrence relation for the elliptic rota-
tor hierarchy ERN ,

{ha,k,S}1 = −{ha+1,k,S}2 . (3.33)

Proof. Since hk(λ) are the Casimirs, we have {hk(λ),S}λ = 0. Substitute the repre-
sentation (3.27) into this equation. Then the recurrence relation (3.33) comes from the
coefficient in front of λa . ��

In this way one can start with the Casimirs of the linear brackets and produce a
non-trivial dynamical system using the quadratic brackets

{Jk,k,S}2 = −{Jk,k+1,S}1 , (3.34)

(see (3.30)). In particular, the flow (3.4) corresponding to H = I0,2 can be represented
by the quadratic brackets with S0:

∂tS = {S0,S}2 .

Alternatively, one can start with the Hamiltonians in the left side of the table (3.31) and
the linear brackets.

This allows us to conclude the proof of Theorem 2.1 for the hierarchy ERN . Namely,
Propositions 3.2, 3.4, 3.5, and 3.6 are equivalent, respectively, to i), ii), iii), and iv).

4. Elliptic Rotators on Non-Commutative Torus

4.1. The Lax equation and integrals of motion.

1. The system description. The elliptic rotator on the non-commutative torus Aθ is a
generalization of the elliptic rotator on GL(N,C). We consider the Euler-Arnold top
on the group SINθ of the NCT algebra Aθ (Appendix C). The Lie coalgebra sin∗

θ is
equipped with the linear Poisson brackets

{Sα, Sβ}1 = Cθ (α, β)Sα+β , (α ∈ Z̃
(2)) , (4.1)

where S = ∑
S−αTα and

Z̃
(2) = {α = (α1, α2) , αj ∈ Z , α �= (0, 0)} .

The inverse inertia tensor J maps sin∗
θ → sinθ , and depends on four parameters:

θ, τ ∈ C, (�mτ > 0) and ε = (ε1, ε2), where 0 < θεa ≤ 1 and εaθ are irrational
numbers. The components of J are given by the elliptic constants Jα = ℘θ,ε(α) (C.18),

J(S) =
∑

α∈Z̃(2)

℘θ,ε(α)S−αTα .

The Hamiltonian has the form

H = 2π2θ2
∫

Aθ

S · J(S) = −1

2

∑

α∈Z̃(2)

℘θ,ε(α)SαS−α . (4.2)
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Introduce a complex structure on the NCT Aθ depending on ε = (ε1, ε2) and τ such
that for X = ∑

a caTa one has:

∂̄ε,τX =
∑

a

(ε1a1 + ε2a2τ)caTa . (4.3)

Then, in the Moyal representation, the operator J can be identified with the pseudo-
differential operator

J(S)(x) = ℘(θ∂̄ε,τ )S(x) , (4.4)

and

H = 2π2θ2
∫

Aθ

S · ℘(θ∂̄ε,τ )S . (4.5)

The equation of motion in the form of the Moyal brackets has the standard form

∂tS = {S, (℘ (θ∂̄ε,τ )S)}θ := ad∗
J(S)S , (4.6)

or, in the components,

∂tSα =
∑

γ∈Z̃(2)

Sγ ℘θ,ε(γ )Sα−γ . (4.7)

2. The r-matrix and the Lax equation. Define formally the Lax operator

Lrot (z) = −
∑

α∈Z̃(2)

Sαϕθ,ε(α, z)Tα , (4.8)

where ϕθ,ε is given by (C.19). Below we formulate the conditions on the phase space,
which show that Lrot (z) is well defined for z ∈ Eτ , z �= 0. Note that

∫

Aθ

Lrot (z) = 0 .

The following proposition is an infinite-dimensional analog of Proposition 3.1.

Proposition 4.1. The equations of motion (4.7) have the Lax form

∂tL
rot = [Lrot ,Mrot ] := {Lrot ,Mrot }θ (4.9)

with

Mrot (z) = −
∑

α∈Z̃(2)

Sαfθ,ε(α, z)Tα , (4.10)

and fθ,ε (C.21).

The proof is analogous to the finite-dimensional case. It is based on the Calogero func-
tional equation (A.22).

Introduce the classical r-matrix on sinθ ⊗ sinθ as the following sum:

rθ,ε,τ (z− w) =
∑

γ∈Z̃(2)

ϕθ,ε(γ, z− w)Tγ ⊗ T−γ , (4.11)

Lemma 3.1 and Proposition 3.2 have the following analogs for the NCT:
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Proposition 4.2. a) The r-matrix (4.11) satisfies the classical Yang-Baxter equation
(3.9).
b) The r-matrix defines the Poisson brackets for the entries of the Lax operator (4.8),

{Lrot1 (z), Lrot2 (w)}1 = [rθ,ε,τ (z− w),Lrot (z)⊗ Id + Id ⊗ Lrot (w)] . (4.12)

They are equivalent to the linear brackets (4.1) on sin∗
θ .

The proof of Proposition 4.2(a, b) is similar to those of Lemma 3.1 and Proposition 3.2
and is based on the Fay identity (A.21).

3. The hierarchy of the Lax equations. In order to construct integrals of motion we first
discuss the properties of the Lax operator. This operator is the meromorphic quasi-peri-
odic function on Eτ with a simple pole

Res Lrot (z)|z=0 = S ,

Lrot (z+ 1) = U
ε1
1 L

rot (z)U
−ε1
1 , Lrot (z+ τ) = U

ε2
2 L

rot (z)U
−ε2
2 ,

where U1, U2 are the generators of NCT Aθ (C.1). (This follows from (4.8), (A.9) and
(B.15).) It means that the integrals

∫

Aθ

(Lrot (z))j

are doubly periodic functions on Eτ with poles up to order j . Thereby, we have the
expansion

∫

Aθ

(−Lrot (z))j = I0,j +
j∑

r=2

Ir,j℘
(r−2)(z) . (4.13)

In particular,
∫

Aθ

(Lθ )
2(z) = I0,2 + ℘(z)

∫

Aθ

S2 , where I0,2 = 2

(
i

2πθ

)2

H .

Note that

Ij,j =
∫

Aθ

Sj

are the Casimirs of the linear brackets.
The phase space R of the elliptic rotator is determined by the following properties

of the integrals Is,j :

R = {S ∈ A∗
θ | i) Is,j < ∞ , ii) lim

j→∞
Is,j+1(S)
Is,j (S)

< 1 for all s ≤ j} . (4.14)

The first condition means that the traces (4.13) of the Lax operator are well defined on
Eτ for z �= 0. In particular, we have

I0,2 < ∞ , i.e.
∑

℘θ(α)SαS−α < ∞ . (4.15)

We will use the second condition below to define the Casimir functions for the family
of quadratic Poisson brackets.

Further, due to Lemma 3.1, an analog of Proposition 3.2 is the following.

Proposition 4.3. The quantities Is,k pairwise Poisson commute.



596 B. Khesin, A. Levin, M. Olshanetsky

The conservation laws Is,k generate commuting flows on the phase space R with respect
to the linear brackets

∂s,kS = {Is,k,S}1 , (4.16)

where ∂s,k stands for the corresponding time derivative ∂ts,k . We call these equations
ERθ hierarchy on the NCT.

One can show that all flows can be represented in the Lax form withLrot (4.8) and the
corresponding Ms,k . Furthermore, there exists a set of the integrals of Js,k-type. They
are related to the integrals Im,j by the same formulae (3.15), (3.16).

4.2. Quadratic Poisson algebras and the bihamiltonian structure on NCT. To define the
quadratic Poisson algebra on the phase space R (4.14) we modify the Lax operator (4.8):

L = −S0 · T0 + Lrot = −S0 · T0 −
∑

α

Sαϕθ,ε(α, z)Tα , (4.17)

where S0 commutes with Sα with respect to the linear brackets. Due to theYB equation,
the r-matrix (4.11) defines the quadratic Poisson brackets

{L1(z), L2(w)}2 = [rθ,ε,τ (z− w),L1(z)⊗ L2(w)] . (4.18)

Again, we can get rid of the dependence on the spectral parameter.

Proposition 4.4. The quadratic Poisson brackets on the phase space R are defined as
follows

{Sα, S0}2 =
∑

γ �=α
Sα−γ Sγ (℘θ,ε(γ )− ℘θ,ε(α − γ ))Cθ (α, γ ) , (4.19)

{Sα, Sβ}2 = S0Sα+βCθ (α, β)+
∑

γ �=α,−β
Sα−γ Sβ+γ fθ,ε(α, β, γ )

×Cθ (γ, α − β) , (4.20)

where Cθ (α, γ ) is a structure constant of the sinθ -algebra,

fθ,ε(α, β, γ ) = ζθ,ε(γ )+ ζθ,ε(β − α + γ )− ζθ,ε(β + γ )+ ζθ,ε(α − γ ) (4.21)

= − ϑ ′(0)ϑθ,ε(α)ϑθ,ε(β)ϑθ,ε(β − α + 2γ )

ϑθ,ε(α − γ )ϑθ,ε(β + γ )ϑθ,ε(β − α + γ )ϑθ,ε(γ )
,

and ϑθ,ε, ζθ,ε are the constants (C.17), (C.18).

Proof. The equality (4.18), being reduced to the coefficients in the front of Ta ⊗Tb, can
be rewritten in the form (3.22) where the functions ϕθ (a, z) are replaced on ϕθ,ε(a, z).
Then using the cubic functional equations (A.27) and (A.28) we obtain to the algebra
(4.19), (4.20). Due to the definition of the phase space (4.15) the series in the right-hand
sides of (4.19), (4.20) converge. ��

We denote this Poisson algebra by Pθ,ε,τ . Set now ε1 = ε2 = 1. The corresponding
algebra Pθ,1,τ can be considered as a special large N limit of the finite-dimensional
algebras PN,θ,τ (3.19), (3.20). For this we just replace the rational number θ = k/N by
an arbitrary irrational number 0 ≤ θ < 1 in the algebra PN,θ,τ .

Proposition 4.5. a) The linear (4.1) and quadratic (4.19), (4.20) Poisson brackets
defined on R are compatible.
b) The ERθ hierarchy admits the bihamiltonian structure.



Bihamiltonian Structures and Quadratic Algebras 597

Proof. One can shift S0 +λ and define the family of Poisson algebras Pθ,ε,τ,λ. To define
the Casimir elements on Pθ,ε,τ,λ we consider

log det(S0 + λ+ Lrot (z)) = log(S0 + λ)+
∞∑

k=2

(−1)k+1

k(S0 + λ)k
trL(z)k .

Then we come to the infinite set of Casimirs 1

C̃
(2)
0 (S0 + λ) = log(S0 + λ)+

∞∑

k=2

(−1)k+1

k(S0 + λ)k
I0,k ,

C̃
(2)
j (S0 + λ) =

∞∑

k=2

(−1)k+1

k(S0 + λ)k
Ij,k , (j = 2, 3, . . . ) .

These functionals are well-defined on the phase space (4.14). This allows us to introduce
the new set of conserved quantities

C̃
(2)
0 (S0 + λ) =

∑

s

h̃s,0λ
s ,

C̃
(2)
j (S0 + λ) =

∑

s

h̃s,j λ
s .

The latter Poisson commute with respect to both types of brackets and give rise to the
bihamiltonian structure of the hierarchy

{h̃s,j ,S}1 = −{h̃s+1,j ,S}2 . (4.22)

In particular, we can represent the flow (4.6) in the form

∂tS = {S0,S}2 .

(see (3.30)). ��
This proposition concludes the proof of Theorem 2.1 for the hierarchy ERθ .

5. Elliptic Rotators on SDiff (T 2)

5.1. Description of the hierarchy. In the "dispersionless" limit θ → 0 the Lie algebra
sinθ turns to the Lie algebra Ham(T 2) of Hamiltonians on a two-dimensional torus,
see (C.22). This algebra of Hamiltonian functions can be represented by the Lie alge-
bra of the corresponding divergence-free vector fields SV ect (T 2). More precisely, to
pass from Ham(T 2) to SV ect (T 2) one has to discard the constant Hamiltonians, but
add the “flux” vector fields ∂/∂x1 and ∂/∂x2 corresponding to multivalued Hamiltonian
functions x1 and x2 on the torus.

We define the elliptic rotator systemER on the Lie group SDiff (T 2) by considering
the limit θ → 0 of the ERθ -system described above. Let θ → 0, ε1,2 → ∞, such that

lim
θ→0

(θε1,2) = ε′1,2 < 1 , ε′1,2 are irrational . (5.1)

In what follows we drop the superscript ′.
1 Since we pass from det to log det the basis of the Casimir functions differs from (3.24).
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Let S = ∑
α S−αe(α · x) ∈ Ham∗(T 2), where e(α · x) is the Fourier basis (C.23) of

Ham∗(T 2). In the Fourier basis, the linear Poisson bracket assumes the form

{Sα, Sβ}1 = (α × β)Sα+β , α × β = α1β2 − α2β1 . (5.2)

The inverse inertia operator J : Ham∗(T 2) → Ham(T 2) becomes

J : Sα → ℘ε(α)Sα , ℘ε(α) = ℘(ε1α1 + ε2α2τ ; τ) ,
where α ∈ Z̃

(2) (B.5). The operator is well defined since εj are irrational. In other words,
the operator J is the pseudo-differential operator

J : S(x) → ℘(∂̄ε,τ )S(x) ,

where ∂̄ε,τ is the operator of the complex structure on the elliptic curve, commutative
torus T 2. In fact, the complex structure depends on the ratio τε2/ε1.

The quadratic Hamiltonian of the system is

H = −1

2

∑

γ

Sγ ℘ε(γ )S−γ = −1

2

∫

T 2
S(℘ (∂̄ε,τ )S) , (5.3)

and the corresponding equations of motion are

∂tS = {S, ℘ (∂̄ε,τ )S}1 . (5.4)

This equation is an elliptic analog of the hydrodynamics equation on the torus T 2,
regarded as an elliptic curve, see the Remark below. We call it the elliptic hydrodynamics.

Define the Lax operator

Lrot (x; z) = −
∑

α∈Z̃(2)

Sαϕε(α, z)e(α · x) , ϕε(α, z) = ϕ(ε1α1 + τε2α2, z) . (5.5)

The conditions on the phase space formulated below, see (5.12), ensure that the operator
Lrot (x, z) is well defined for z ∈ Eτ , z �= 0. Note that

∫

T 2
Lrotε (z) = 0 .

Proposition 5.1. The equations of motion (5.4) have the dispersionless Lax representa-
tion

Lrot = {Lrot ,Mrot }1

with Lrot given by (5.5) and

Mrot (x; z) = −
∑

α∈Z̃(2)

Sαfε(α, z)e(α · x) , (5.6)

where

fε(α, z) = f (ε1α1 + τε2α2, z) = e(ε2α2)∂uφ(u, z)|u=ε1α1+τε2α2 .

The proof of Proposition 5.1 is the same as Proposition 3.1.
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Note that operators Lrot and Mrot satisfy the quasi-periodicity properties,

Lrot (x1, x2; z) = Lrot (x1 + ε2, x2; z+ 1) , (5.7)

Lrot (x1, x2; z) = Lrot (x1, x2 − ε1; z+ τ) , (5.8)

Mrot (x1, x2; z) = Mrot (x1 + ε2, x2; z+ 1) , (5.9)

and

Mrot (x1, x2; z)−Mrot (x1, x2 − ε1; z+ τ) = 2πiLrot (x1, x2, z) . (5.10)

Furthermore, it follows from (5.7) and (5.8) that there exists the expansion

∫

T 2
(Lrot (x, z))k = I0,k +

k∑

s=2

Is,k℘
(s−2)(z) . (5.11)

The phase space R0 of the elliptic rotator on SDiff (T 2) can be described similarly
to the phase space R for SINθ -group, see (4.14):

R0 = {S ∈ Ham∗(T 2) | i) Is,j < ∞ ,

ii) lim
j→∞

Is,j+1(S)
Is,j (S)

< 1 for all s ≤ j} . (5.12)

Define the r-matrix on T 2 ⊗ T 2 by

rε,τ (x, y; z) =
∑

α∈Z̃(2)

ϕε(α, z)e(α · x)e(−α · y) , z ∈ Eτ . (5.13)

Proposition 5.2. a) The r-matrix (5.13) satisfies the "dispersionless" YB equation

{rε,τ (x, y; z− w), rε,τ (x, v; z)}1 + {rε,τ (x, y; z− w), rε,τ (y, v;w)}1

+{rε,τ (x, v; z), rε,τ (y, v;w)}1 = 0 . (5.14)

b) In terms of the Lax operator (5.5) the canonical brackets on T 2 take the form

{Lrot (x; z), Lrot (y;w)}1 = {rε,τ (x, y, z− w),Lrot (x; z)}1

+{r(x, y, z− w)Lrot (y;w)}1 . (5.15)

Proof. These statements are consequences of the Fay identity (A.21), cf. Proposition
4.2. ��

The form of the brackets (5.15) implies that
{∫

T 2
(Lrot (x, z))k,

∫

T 2
(Lrot (x, z))j

}

1
= 0 .

In turn, then (5.11) produces the infinite sequence of conservation laws Is,k in involution.
They define the hierarchy of commuting flows

∂s,kS = {Is,k,S}1 , (5.16)

which is the dispersionless limit of the hierarchy (4.16). The equations can be represented
in the form of the dispersionless Lax equations.
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5.2. Quadratic Poisson algebras, and the bihamiltonian structure on SDiff (T 2). To
describe the quadratic Poisson brackets, we first pass from the Lie algebraic Lax operator
Lrot to the operator

Lε = −S0 + Lrot (x; z) . (5.17)

Define the quadratic Poisson algebra by the formula

{Lε(x; z), Lε(y;w)}2 = {rε,τ (x, y; z− w),Lε(x; z)Lε(y;w)}1 . (5.18)

Proposition 5.3. In terms of the Fourier modes, the Poisson algebra (5.18) has the form

{Sα, S0}2 =
∑

γ �=α
Sα−γ Sγ (℘ε(γ )− ℘ε(α − γ ))(α × γ ) , (5.19)

{Sα, Sβ}2 = S0Sα+β(α × β)+
∑

γ �=α,−β
Sα−γ Sβ+γ fε(α, β, γ )

×(γ × (α − β)) , (5.20)

where

fε(α, β, γ ) = ζε(γ )+ ζε(β − α + γ )− ζε(β + γ )+ ζε(α − γ )

= − ϑ ′(0)ϑε(α)ϑε(β)ϑε(β − α + 2γ )

ϑε(α − γ )ϑε(β + γ )ϑε(β − α + γ )ϑε(γ )
,

ζε(γ ) = ζ(ε1γ1 + τε2γ2), ϑε(γ ) = ζ(ε1γ1 + τε2γ2).

The proof of this proposition is similar to that of Proposition 3.2.
By the same trick as before we can show that the linear and the quadratic brackets are

compatible. It allows us to construct the integral of the h̃s,k type and define the recur-
rence representation (4.22) for the bihamiltonian structure on the hierarchy. In particular,
Eq. (5.4) can be represented as

∂tS = {S0,S}2 .

5.3. Rational limit of the elliptic hydrodynamics.

1. Description of the limit. So far we have been dealing with the elliptic curveEτ param-
eterized by the two half-periods ω1, ω2, τ = ω2/ω1. We replace our main functions in
the following way:

ζε(γ ) = ζ(ε1γ1ω1 + ε2γ2ω2;ω1, ω2, ) ,

℘ε(γ ) = ℘(ε1γ1ω1 + ε2γ2ω2;ω1, ω2, ) . (5.21)

Now we are going to consider the rational limit of the elliptic curves, i.e., degeneration
limω1,2 → ∞. We look at the double scaling limit,

lim ε1,2 → 0 , limω1,2 → ∞ , lim ε1ω1 = 1 , lim ε2ω2 = τ .

Then limω1,2 → ∞ leads to the rational degeneration of the elliptic functions (5.21),

lim
ω1,2→∞ ζε(γ ) = 1

γτ
, lim

ω1,2→∞℘ε(γ ) = 1

γ 2
τ

, γτ = γ1 + γ2τ .
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This implies, in particular, that the inverse inertia tensor assumes the form

J(S) = ∂̄−2S(x1, x2) =
∑

α∈Z̃(2)

1

α2
τ

S−αTα , (5.22)

where ατ = α1 + α2τ . The equations of motion are defined by the corresponding qua-
dratic Hamiltonian,

H = −1

2

∫

T 2
S∂̄−2S = −1

2

∑

α∈Z̃(2)

1

α2
τ

SαS−α , (5.23)

with respect to the linear Poisson bracket on Ham(T 2):

∂tS = {S, ∂̄−2S)}1 . (5.24)

In the Fourier components the latter becomes

∂tSα =
∑

γ∈Z̃(2)

Sγ
1

γ 2
τ

Sα−γ .

We call these equations the modified hydrodynamics on the torus T 2.

Remark 5.1. Recall that the standard hydrodynamics of an ideal fluid on the torus T 2 is
given by the Euler equation

∂tS = {S,�−1S}1,

on the vorticity function S. The definition of the Laplace operator uses metric, while to
define the modified hydrodynamics (5.24) we need to fix a complex structure on T 2.

Now consider the Lax representation for the modified hydrodynamics. In the double
scaling limit we have

lim ϕε(α, z) = exp(2πiα1z)

(
1

ατ
+ 1

z

)

,

lim fε(α, z) = − exp(2πiα1z)
1

α2
τ

.

Therefore, the Lax pair (5.6) in the rational limit is

L(x1, x2; z) = −
∑

α

Sα exp(2πiα1z)

(
1

ατ
+ 1

z

)

Tα ,

M(x1, x2) = −
∑

α

Sα exp(2πiα1z)
1

α2
τ

Tα .

We can drop the exponents in both operators and come to the following expressions

L(x1, x2; z) = −∂̄−1S(x1, x2)− 1

z
S(x1, x2) , (5.25)

and

M(x1, x2) = −∂̄−2S(x1, x2) . (5.26)

It is easy to see that the dispersionless Lax equation

∂tL(x1, x2; z) = {L(x1, x2; z),M(x1, x2)}2

is equivalent to Eqs. (5.24).
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The infinite set of the integrals of motion comes from the decomposition

(−1)k
∫

T 2
Lk(x1, x2; z)dx1dx2 = I0,k +

k∑

s=2

Im,kz
−m .

The corresponding infinite hierarchy of the modified hydrodynamics

∂s,tS = {Is,k,S}1

has the dispersionless Lax form representation.

2. Bihamiltonian structure. It turns out that the bihamiltonian structure survives in this
limit. In fact, we have the following quadratic Poisson algebra P0,τ on the commutative
torus T 2:

{Sα, S0}2 =
∑

γ �=α
Sα−γ Sγ (

1

γ 2
τ

− 1

(ατ − γτ )2
)(α × γ ) , (5.27)

{Sα, Sβ}2 = S0Sα+β(α × β)+
∑

γ �=α,−β
Sα−γ Sβ+γ f (α, β, γ )

×(γ × (α − β)) , (5.28)

where

f (α, β, γ ) =
(

1

γτ
+ 1

βτ − ατ + γτ
− 1

βτ + γτ
+ 1

ατ − γτ

)

, γτ = γ1 + τγ2 .

Similarly to the above, we can consider a one-parameter family of the quadratic algebras
by replacing S0 → S0 + λ. Note that it degenerates to the standard Poisson brackets
on T 2 in the limit λ → ∞. This allows us to define the bihamiltonian structure for the
hierarchy of the modified hydrodynamics. In particular, Eq. (5.24) can be rewritten as

∂tS = {S0,S}2 .

Such a bihamiltonian structure is a curious feature in the modified hydrodynamics,
emphasizing its drastic difference from the classical hydrodynamics.

6. Quantum Counterparts

In this section we present two associative algebras “quantizing” the two Poisson alge-
bras discussed above in the case of the NCT. It is easy with the linear bracket. Indeed,
the quantization of the Lie-Poisson algebra on sin∗

θ leads to the universal enveloping
algebra of sinθ .

Replace the classical variables S on the NCT Aθ by non-commuting variables Ŝ.
Now we consider the quantization of the quadratic Poisson algebra Pθ,ε,τ and construct
the associative algebra P̂θ,ε,τ,–h, where –h ∈ Eτ is the deformation parameter. For this we
introduce the quantum R-matrix related to the group SINθ . The quantum Yang-Baxter
equation defined on GL(N,C) [13, 14] is generalized to SINθ in the following way.
The quantum R-matrix on SINθ ⊗ SINθ assumes the form

R(z,w) =
∑

c

ϕθ,ε(c, z− w|–h)Tc ⊗ T−c ,



Bihamiltonian Structures and Quadratic Algebras 603

where Tc is the basis of SINθ and the main ingredient in our construction is the function

ϕθ,ε(c, z|–h) = eθ (ε2c2z)φ((ε1c1 + τε2c2)θ + –h, z) , –h ∈ Eτ .

Note that, in contrast with the classical r-matrix (4.11), there is an additional term
ϕθ,ε(0, z− w|–h)T0 ⊗ T0.

Proposition 6.1. The matrix R satisfies the quantum YB equation

R12(z− w)R13(z)R23(w) = R23(w)R13(z)R12(z− w) . (6.1)

Proof. Consider the coefficient in front of Ta ⊗ Tb ⊗ Tc in the l.h.s of (6.1). It vanishes
if a + b + c �= 0. Therefore (6.1) implies

eθ (a × b + 2b × c)ϕθ,ε(c, z− w|–h)ϕθ,ε(a − c, z|–h)ϕθ,ε(b + c,w|–h)
−eθ (a × b + 2b × f )ϕθ,ε(f, z− w|–h)ϕθ,ε(a − f, z|–h)ϕθ,ε(b + f,w|–h) = 0

Here a, b are fixed and c, f are arbitrary elements of the lattice Zθ,ε(τ ) (C.16). Choose
f in the form f = a − b − c to obtain

eθ (a × b + 2b × c)
(
ϕθ,ε(c, z− w|–h)ϕθ,ε(a − c, z|–h)ϕθ,ε(b + c,w|–h)

−ϕθ,ε(a − b − c, z− w|–h)ϕθ,ε(a − c,w|–h)ϕθ,ε(b + c, z|–h)) = 0 .

This equality can be transformed to the form

ϕθ,ε(a + 2–h, z|–h)ϕθ,ε(b,w|–h)eθ (a × b + 2b × c)

× (
ζθ,ε(c + –h)− ζθ,ε(a − b − c + –h)+ ζθ,ε(a − c + –h)− ζθ,ε(b + c + –h)

) = 0

by means of (A.27). If b = 0 then the l.h.s. vanishes and we come to (6.1). Let b �= 0 and
consider the shift c → c + jb, where j ∈ Z. The shift does not change the exponential
factor. Take the sum over the orbit generated by the shifts

∑

j∈Z

ζθ,ε(c+jb+–h)−ζθ,ε(a−b−jb−c+–h)+ζθ,ε(a−c+jb+–h)−ζθ,ε(b+c+jb+–h) .

One can see that the neighboring terms in the series vanish and we come to (6.1) for an
arbitrary b. ��

This proposition allows us to define the associative algebra P̂θ,ε,τ,–h by the relation

R(z− w)L
–h
1(z)L

–h
2(w) = L

–h
2(w)L

–h
1(z)R(z− w) , (6.2)

where

L
–h(z) = Ŝ0ϕθε(0, z|–h)T0 +

∑

α

Ŝαϕθ,ε(α, z|–h)Tα .

In order to obtain the relations in P̂θ,ε,τ,–h one should exclude the spectral parameters
z,w from (6.2).
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Lemma 6.1. The relations in the associative algebra P̂θ,τ,–h assume the form
∑

c

Ŝa−cŜb+ceθ (c × (a − b))fθ,ε(a, b, c|–h) = 0 , for any a, b ∈ Z ⊕ Z , (6.3)

where

fθ,ε(a, b, c|–h) = ζθ,ε(c + –h)− ζθ,ε(a − b − c + –h)− ζθ,ε(b + c + –h)

+ζθ,ε(a − c + –h) (6.4)

= − ϑ ′(0)ϑθ,ε(a + 2–h)ϑθ,ε(b)ϑθ,ε(b − a + 2c)

ϑθ,ε(a − c + –h)ϑθ,ε(b + c + –h)ϑθ,ε(b − a + c + –h)ϑθ,ε(c + –h)
,

and ϑθ,ε, ζθ,ε(.) are the constants (C.17), (C.18).

Proof. Consider in (6.2) the matrix element Ta ⊗ Tb. We come to the relation
∑

c

Ŝa−cŜb+c{ϕθ,ε(c, z− w|–h)ϕθ,ε(a − c, z|–h)ϕθ,ε(b + c,w|–h) (6.5)

−ϕθ,ε(a − b − c, z− w|–h)ϕθ,ε(a − c,w|–h)ϕθ (b + c, z|–h)}
×eθ (c × (a − b)) = 0 .

The expression in the brackets { } is equal to

eθ ((a2ε2z+ b2ε2w){φθ,ε(c, z− w|–h)φθ,ε(a − c, z|–h)φθ,ε(b + c,w|–h)
−φθ,ε(a − b − c, z− w|–h)φθ,ε(a − c,w|–h)φθ,ε(b + c, z|–h)} ,

where φθ,ε(c, z|–h) = φ((ε1c1 +τε2c2)θ+–h, z). Finally, by using (A.27) we come from
(6.5) to (6.4). ��

We rewrite (6.3) in the form most resembling the original Sklyanin relations [14].
Let A(α, β) (respectively, S(α, β)) be the operator of antisymmetrization (respectively,
symmetrization) with respect to the permutations of two indices (α, β).

Proposition 6.2. The relations (6.4) are equivalent to the commutator relations

[Ŝ0, Ŝb] = −
∑

γ �=−b
Ŝ−γ Ŝb+γ eθ (b × γ )

fθ,ε(0, b, γ |–h)
fθ,ε(0, b, 0|–h) , (6.6)

[Ŝα, Ŝβ ] = A(α, β)

{(
Ŝα+βŜ0eθ (−β × α)− Ŝ0Ŝα+βeθ (β × α)

) fθ,ε(α, β, α|–h)
fθ,ε(α, β, 0|–h) (6.7)

+
∑

γ �=α,−β

(
Ŝα−γ Ŝβ+γ eθ (γ × (α − β))− Ŝβ+γ Ŝα−γ eθ (−γ × (α − β))

)

× fθ,ε(α, β, γ |–h)
fθ,ε(α, β, 0|–h)

}

,

where Cθ (α, β) are sl(N,C) structure constants (B.8), and

S(α, β)

{(
Ŝα+βŜ0eθ (−β × α)− Ŝ0Ŝα+βeθ (β × α)

) fθ,ε(α, β, α|–h)
fθ,ε(α, β, 0|–h)

+
∑

γ �=α,−β

(
Ŝα−γ Ŝβ+γ eθ (γ × (α − β))− Ŝβ+γ Ŝα−γ eθ (−γ × (α − β))

)

× fθ,ε(α, β, γ |–h)
fθ,ε(α, β, 0|–h)

}

= 0 .
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Proof. The relation (6.3) can be rewritten in the form

∑

c

(
Ŝa−cŜb+ceθ (c × (a − b))− Ŝb+cŜa−ceθ (c × (a − b))

)
fθ,ε(a, b, c|–h) = 0 ,

due to the equality fθ,ε(a, b, c|–h) = −fθ,ε(a, b, a − b − c|–h). For the case a = 0 this
relation assumes the form (6.6). To come to (6.7) we single out the two terms with c = 0
and put them in the left-hand side. In the right-hand side we first write down the terms
with c = a and c = −b and obtain the required relations. ��

It would be interesting to describe a quantum version of the whole bihamiltonian
structure for elliptic rotators on sin∗ or Ham(T 2). Posing the problem more gener-
ally, the bihamiltonian recursion procedure of generating the conserved quantities from
a Casimir function for a linear family of Poisson structures (see [19]) might have a
quantum analog as an expansion of a central element for a linear family of associative
algebras. The latter seems to be a very strong requirement on a pair of associative alge-
bras and it would be very interesting to find any non-trivial example of this kind. Namely,
one is looking for a pair of associative algebras, such that their mixed associator satisfies
some consistency condition. This would provide the most straightforward quantization
for a system with a bihamiltonian structure.
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Appendices

Appendix A. Elliptic functions. Here we summarize the main formulae for elliptic func-
tions. Consider an elliptic curve

Eτ = C/(Z + τZ) , q = e(τ ) = exp(2πiτ) . (A.1)

The basic element in our consideration is the theta function:

ϑ(z; τ) = q
1
8
∑

n∈Z

(−1)neπi(n(n+1)τ+2nz)

= q
1
8 e−

iπ
4 (eiπz − e−iπz)

∞∏

n=1

(1 − qn)(1 − qne2iπz)

×(1 − qne−2iπz) . (A.2)

1. The Weierstrass functions

σ(z; τ) = exp(ηz2)
ϑ(z; τ)
ϑ ′(0; τ) , (A.3)
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where

η(τ) = −1

6

ϑ ′′′(0; τ)
ϑ ′(0; τ) , (A.4)

ζ(z; τ) = ∂z logϑ(z; τ)+ 2η(τ)z , ζ(z; τ) ∼ 1

z
+O(z3) , (A.5)

℘(z; τ) = −∂zζ(z; τ) , (A.6)

℘(u; τ) = 1

u2 + +
′∑

j,k

(
1

(j + kτ + u)2
− 1

(j + kτ)2

)

. (A.7)

2. Function φ

φ(u, z) = ϑ(u+ z)ϑ ′(0)
ϑ(u)ϑ(z)

. (A.8)

It has a pole at z = 0 and the expansion

φ(u, z) = 1

z
+ ζ(u|τ)+ 2η(τ)z+ z

2
((ζ(u; τ)+ 2η(τ)z)2 − ℘(u))+ . . . , (A.9)

as z → 0. Furthermore,

φ(u, z)−1∂uφ(u, z) = ζ(u+ z)− ζ(u)+ 2η(τ)z , (A.10)

φ(u, z) = exp(−2ηuz)
σ (u+ z)

σ (u)σ (z)
, (A.11)

φ(u, z)φ(−u, z) = ℘(z)− ℘(u) . (A.12)

3. Quasi-periodicity

ϑ(z+ 1; τ) = −ϑ(z; τ) , ϑ(z+ τ ; τ) = −e(−1

2
τ − z)ϑ(z; τ) , (A.13)

ζ(z+ 1; τ) = ζ(z; τ)− 2η , ζ(z+ τ ; τ) = ζ(z; τ)− 2(πi + ητ) , (A.14)

℘(u+ 1; τ) = ℘(u+ τ ; τ) = ℘(u; τ) , (A.15)

φ(u+ 1, z) = φ(u, z) , φ(u+ τ, z) = e(−z)φ(u, z) . (A.16)

4. Parity

ϑ(−z; τ) = −ϑ(z; τ) , (A.17)

ζ(−z; τ) = −ζ(z; τ) , (A.18)

℘(−u; τ) = ℘(u; τ) , (A.19)

φ(−u,−z) = −φ(u, z) . (A.20)
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5. The Fay three-section formula

φ(u1, z1)φ(u2, z2)− φ(u1 + u2, z1)φ(u2, z2 − z1)

−φ(u1 + u2, z2)φ(u1, z1 − z2) = 0 . (A.21)

Particular cases of this formula are (A.12), the Calogero functional equation

φ(u, z)∂vφ(v, z)− φ(v, z)∂uφ(u, z) = (℘ (v)− ℘(u))φ(u+ v, z) , (A.22)

and

φ(u1, z)φ(u2, z)− φ(u1 + u2, z)(ζ(u1)+ ζ(u2)− 2η(τ)(u1 + u2))

+∂zφ(u1 + u2, z) = 0 . (A.23)

For u1 + u2 + u3 = 0,

φ(u1, z)φ(u2, z)φ(u3, z) = [℘(z)− ℘(u3)] [ζ(u1)+ ζ(u2)

+ζ(u3 − z)+ ζ(z)] , (A.24)

as follows from (A.10), (A.12), and (A.23). Then

φ(u1, z)φ(u2, z)φ(u3, z)|z→0 = 1

z3 + 1

z2 [ζ(u1)+ ζ(u2)+ ζ(u3)] (A.25)

−1

2
℘′(u3)− ℘(u3) [ζ(u1)+ ζ(u2)+ ζ(u3)] +O(z) .

From (A.21) and (A.10) we have

φ(u1, z)φ(u− u1, z) = φ(u, z)(ζ(u1)+ ζ(u− u1)− ζ(u+ z)+ ζ(z)) . (A.26)

Another important relation is

φ(v, z− w)φ(u1 − v, z)φ(u2 + v,w)− φ(u1 − u2 − v, z− w)

×φ(u2 + v, z)φ(u1 − v,w)

= φ(u1, z)φ(u2, w)f (u1, u2, v) , (A.27)

where

f (u1, u2, v) = ζ(v)− ζ(u1 − u2 − v)+ ζ(u1 − v)− ζ(u2 + v) . (A.28)

One can rewrite the last function as

f (u1, u2, v) = − ϑ ′(0)ϑ(u1)ϑ(u2)ϑ(u2 − u1 + 2v)

ϑ(u1 − v)ϑ(u2 + v)ϑ(u2 − u1 + v)ϑ(v)
. (A.29)

To prove (A.27) one should consider the expression

φ(v, z− w)φ(u1 − v, z)φ(u2 + v,w)− φ(u1 − u2 − v, z− w)φ(u2 + v, z)φ(u1 − v,w)

φ(u1, z)φ(u2, w)
.

It is a doubly periodic function in z and w without poles. Therefore, it is a constant,
which depends on u1, u2, v. This constant is equal to f (u1, u2, v) (A.28). It is easy to
check that the elliptic functions (A.28) and (A.29) coincide.

A particular case of (A.27), which corresponds to the case v = u1 (or v = −u2), is
the Fay identity (A.21). Another particular case comes from u2 = 0 (or u1 = 0):

φ(v, z− w)φ(u− v, z)φ(v,w)− φ(u− v, z− w)φ(v, z)φ(u− v,w)

= φ(u1, z)(℘ (v)− ℘(u− v)) . (A.30)
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Appendix B. Elliptic constants related to gl(N,C). Let 1 ≤ k < N be a coprime number
with respect to N and set θ = k

N
. Define

eθ (z) = exp(2πiθz) , (B.1)

Q = diag(eθ (1), . . . , eθ (m), . . . , 1) , (B.2)

� =









0 1 0 · · · 0
0 0 1 · · · 0
...
...
. . .

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0








. (B.3)

Consider a finite two-dimensional lattice of order N2,

Z
(2)
N = Z/NZ ⊕ Z/NZ .

The matrices

Ta = 1

2πiθ
eθ

(a1a2

2

)
Qa1�a2 , a = (a1, a2) ∈ Z

(2) (B.4)

generate the basis in gl(N,C). We use the Greek letters for the elements of the lattice

Z̃
(2)
N = Z

(2)
N \ (0, 0) . (B.5)

Thus, {Tα} define a basis in sl(N,C). Since

TaTb = 1

2πθ
eθ

(

−a × b

2

)

Ta+b , (a × b = a1b2 − a2b1) (B.6)

the commutation relations in this basis assume the form

[Tα, Tβ ] = Cθ (α, β)Tα+β , (B.7)

where

Cθ (α, β) = 1

πθ
sin πθ(α × β) . (B.8)

Let

Z
(2)
θ (τ ) = (γ1 + γ2τ)θ , γ ∈ Z̃

(2)
N (B.9)

be a regular lattice of orderN2 −1 onEτ . Introduce the following constants on Z
(2)
θ (τ ):

ϑθ (γ ) = ϑ((γ1 + γ2τ)θ) , (B.10)

ζθ (γ ) = ζ((γ1 + γ2τ)θ) , ℘θ (γ ) = ℘((γ1 + γ2τ)θ) , (B.11)

and the quasi-periodic functions on Eτ ,

φθ (γ, z) = φ((γ1 + γ2τ)θ, z) , (B.12)

ϕθ (γ, z) = eθ (γ2z)φθ (γ, z) , (B.13)

fθ (γ, z) = eθ (γ2z)∂uφ(u, z)|u=(γ1+γ2τ)θ . (B.14)

It follows from (A.8) that

ϕθ (γ, z+ 1) = eθ (γ2)ϕθ (γ, z) , ϕθ (γ, z+ τ) = eθ (−γ1)ϕθ (γ, z) . (B.15)



Bihamiltonian Structures and Quadratic Algebras 609

Appendix C. Non-commutative torus.

1. Definition and representation. The non-commutative torus Aθ is a unital algebra with
the two generators (U1, U2) that satisfy the relation

U1U2 = e−1
θ U2U1, eθ = e2πiθ , θ ∈ [0, 1) . (C.1)

Elements of Aθ are the double sums

Aθ =




X =

∑

a1,a2∈Z

ca1,a2U
a1
1 U

a2
2 | ca1,a2 ∈ C





,

where ca1,a2 are elements of the ring S of rapidly decreasing sequences on Z
2,

S = {ca1,a2 | supa1,a2∈Z(1 + a2
1 + a2

2)
k|ca1,a2 |2 < ∞ for all k ∈ N} . (C.2)

The trace functional tr(x) on Aθ is defined by

tr(X) = c00 . (C.3)

It satisfies the evident identities

tr(1) = 1, tr(XY) = tr(YX) .

The dual space to S is the space

S′ = {Sa1,a2 |
∑

a1,a2

ca1,a2S−a1,−a2 < ∞, ca1,a2 ∈ S} . (C.4)

The relation with the commutative algebra of smooth functions on the two-dimen-
sional torus

T 2 = {R2/Z ⊕ Z} ∼ {0 < x1 ≤ 1, 0 < x2 ≤ 1} (C.5)

comes from the identification

U1 → e(x), U2 → e(y), (C.6)

while the multiplication on T 2 becomes the Moyal multiplication:

(f ∗ g)(x) := fg +
∞∑

n=1

(πθ)n

n!
εr1s1 . . . εrnsn(∂

n
r1...rn

f )(∂ns1...sng). (C.7)

The trace functional (C.3) in the Moyal identification is the integral

trf = − 1

4π2

∫

Aθ

f dx1dx2 = f00 . (C.8)

We can identifyU1, U2 with matrices from GL(∞). Define GL(∞) as the associative
algebra of infinite matrices cjkEjk , where Ejk = ||δjk||, such that

supj,k∈Z|cjk|2|j − k|n < ∞ for n ∈ N .
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Consider the following two matrices from GL(∞):

Q = diag(e(jθ)) and � = ||δj,j+1|| , j ∈ Z .

We have the following identification:

U1 → Q, U2 → � . (C.9)

Another useful realization of Aθ in the Schwartz space on R by the operators

U1f (x) = f (x − θ) , U2f (x) = exp(2πix)f (x) . (C.10)

2. sin-algebra. Define the following quadratic combinations of the generators

Tα = i

2πθ
e
(α1α2

2
θ
)
Um1 U

n
2 , α ∈ Z̃

(2) , (C.11)

Z̃
(2) = {α = (α1, α2) , αj ∈ Z, α �= (0, 0)} .

Their commutator has the form of the sin-algebra

[Tα, Tβ ] = Cθ (α, β)Tα+β , (C.12)

where

Cθ (α, β) = 1

πθ
sin πθ(α × β) . (C.13)

We denote by sinθ the Lie algebra with the generators Tα over the ring S (C.2),

ψ =
∑

α

ψαTα, ψα ∈ S , (C.14)

and by SINθ the group of invertible elements from Aθ . The coalgebra sin∗
θ is the linear

space

sin∗
θ =





S =

∑

α∈Z̃(2)

sαT α, sα ∈ S′




.

In the Moyal representation (C.7) the commutator of sinθ has the form

[f (x, y), g(x, y)] = {f, g}θ := 1

θ
(f ∗ g − g ∗ f ) . (C.15)

3. Elliptic constants related to NCT Aθ . Introduce two numbers ε = (ε1, ε2) such that
εaθ < 1 and εaθ are irrational. Consider the dense set Zθ,ε(τ ) in Eτ :

Zθ,ε(τ ) = {(ε1γ1 + τε2γ2)θ ∈ Eτ | (γ1, γ2) ∈ Z̃
(2)} . (C.16)

The corresponding elliptic functions with the arguments from Zθ,ε(τ ) are as follows:

ϑθ,ε(γ ) = ϑ((ε1γ1 + ε2γ2τ)θ) , (C.17)

ζθ,ε(γ ) = ζ((ε1γ1 + τε2γ2)θ) , ℘θ,ε(γ ) = ℘((ε1γ1 + τε2γ2)θ) , (C.18)

φθ,ε(γ, z) = φ(−(ε1γ1 + τε2γ2)θ, z) , (C.19)

ϕθ,ε(γ ) = eθ (ε2γ2z)φθ,ε(γ, z) , (C.20)

fθ,ε(γ ) = eθ (ε2γ2z)∂uφ(u, z)|u=(ε1γ1+τε2γ2)θ . (C.21)
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4. Dispersionless limit. In the limit θ → 0 the Lie algebra sinθ becomes the Lie algebra
of Hamiltonian functions

Ham(T 2) ∼ C∞(T 2)/C (C.22)

equipped with the canonical Poisson brackets. In Ham(T 2) we have the Fourier basis

e(α · x) = exp(2πi(α1x1 + α2x2)) (C.23)

instead of the basis (C.11). The commutator (C.12) becomes

[e(αx), e(βx)] = (α × β)e((α + β) · x) .
The algebra Ham(T 2) (without constant Hamiltonians) is isomorphic to the Lie alge-
bra SV ect0(T 2) of the divergence-free zero-flux vector fields on T 2 equipped with the
area form −4π2dx1dx2. Let h(x1, x2) ∈ Ham(T 2). Then the Hamiltonian field Vh
corresponding to the Hamiltonian function h is

Vh = − 1

4π2 ((∂2h)∂1 − (∂1h)∂2) , (C.24)

while

[Vh, Vh′ ] = V{h,h′} . (C.25)

For f (x) = ∑
α fαe(α · x)

∫

T 2
f = − 1

4π2 f00 . (C.26)
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