
M
A

TH
EM

A
TI

CS

Geometric hydrodynamics via Madelung transform
Boris Khesina,1, Gerard Misiolekb, and Klas Modinc,d

aDepartment of Mathematics, University of Toronto, Toronto, ON M5S 2E4, Canada; bDepartment of Mathematics, University of Notre Dame, Notre Dame,
IN 46556; cDepartment of Mathematical Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; and dUniversity of Gothenburg,
SE-412 96 Gothenburg, Sweden

Edited by Simon K. Donaldson, Imperial College London, London, United Kingdom, and approved April 18, 2018 (received for review November 8, 2017)

We introduce a geometric framework to study Newton’s equa-
tions on infinite-dimensional configuration spaces of diffeomor-
phisms and smooth probability densities. It turns out that several
important partial differential equations of hydrodynamical origin
can be described in this framework in a natural way. In particular,
the Madelung transform between the Schrödinger equation and
Newton’s equations is a symplectomorphism of the corresponding
phase spaces. Furthermore, the Madelung transform turns out to
be a Kähler map when the space of densities is equipped with
the Fisher–Rao information metric. We describe several dynamical
applications of these results.

hydrodynamics | infinite-dimensional geometry | quantum information |
Fisher–Rao | Newton’s equations

Introduction
In a seminal 1966 paper, Arnold (1) showed that the Euler
equations of an inviscid incompressible fluid can be reformu-
lated as geodesic equations on an infinite-dimensional manifold
of diffeomorphisms. That paper was a foundation stone for
a new branch of mathematics called geometric and topologi-
cal hydrodynamics (see ref. 2) and many important partial
differential equations (PDEs) of mathematical physics have
been shown to fit Arnold’s framework. Examples include the
equations of Korteweg–de Vries, Camassa–Holm, magneto-
hydrodynamics, and Landau–Lifschitz.

Arnold’s reformulation of the Euler equations in an elegant
differential-geometric language allowed an insight into both
analysis and geometry of hydrodynamic equations. For exam-
ple, the sectional curvature of the group of diffeomorphisms
influences fluid motions via the equations of geodesic deviation,
which had applications to hydrodynamic stability (see refs. 1 and
2). Furthermore, a detailed study of the analytic properties of
the associated geometry of the diffeomorphism group, begun by
Ebin and Marsden (3), led to sharp local well-posedness results.
It is expected that further study will shed new light on challenging
problems of fluid dynamics, such as regularity and persistence of
3D flows or the problem of fluid turbulence.

In this paper we propose an extension of this approach to the
case of Newton’s equations as a natural next step in Arnold’s
program. These are second-order equations that formally can be
written as

∇q̇ q̇ =−∇U (q), [1]

where∇ is the covariant derivative with respect to a Riemannian
metric and U is a potential function. We develop a geomet-
ric framework for Eq. 1 on the space of diffeomorphisms of a
compact manifold. Using infinite-dimensional Riemannian sub-
mersion techniques we show that these equations are closely
related to Newton’s equations on the space of smooth probability
densities. In particular, this is the case for the equations of com-
pressible fluids. These equations have long been known to admit
a Hamiltonian formulation on the dual of a semidirect product
Lie algebra (see e.g., ref. 4) while their Lagrangian Arnold-type
formulation was lacking since the Lagrangian was not quadratic.
In our framework, however, these equations have the following
simple description.

Theorem 1. The equations for potential solutions of a compressible
fluid in a compact domain are Newton’s equations on the space of
smooth probability densities with a potential function given by the
fluid’s internal energy.

The proposed framework reveals some unexpected con-
nections between various results in fluid dynamics, optimal
transport, information geometry, and equations of mathemat-
ical physics, such as the Schrödinger equation, the Klein–
Gordon equation, the Hunter–Saxton equation, and its variants
(Table 1). For instance, the classical Laplace eigenproblem can
be seen as the problem of determining stationary solutions of the
Fisher–Rao–Newton equation on the space of densities, which
in turn describes geodesics on an infinite-dimensional ellipsoid
through its formulation as a Neumann problem.

An important tool in our constructions is the Madelung trans-
form (Definition 3 below) which turns out to have a number
of surprising properties and can be viewed as a symplecto-
morphism, an isometry map, a Kähler map, or a generalized
Hasimoto transform, depending on the context. Our study shows
that the geometric features of the Madelung transform are
best understood in the setting of the Fisher–Rao (information)
geometry—the canonical Riemannian geometry on the space of
probability densities—rather than the L2-Wasserstein geometry.

Theorem 2. The Madelung transform is a Kähler morphism
between the cotangent bundle of the space of smooth probabil-
ity densities, equipped with the Sasaki–Fisher–Rao metric, and an
open subset (in the Fréchet topology) of the complex projective
space of smooth wave functions equipped with the Fubini–Study
metric.†

In a nutshell, the Madelung transform resembles the passage
from Euclidean to polar coordinates on the infinite-dimensional
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Table 1. Examples of Newton’s equations

Wasserstein–Otto geometry Fisher–Rao geometry

Newton’s equations on Diff(M)
• Classical mechanics • µ-Camassa–Holm
• Burgers’ inviscid • Optimal information transport
• Barotropic inviscid fluid

Newton’s equations on Dens(M) or T∗Dens(M)
• Hamilton–Jacobi • ∞-dim Neumann problem
• Linear Schrödinger • Klein–Gordon
• Nonlinear Schrödinger • Two-component Hunter–Saxton
• Vortex filament equation

space of wave functions, such that the modulus is a probabil-
ity density and the phase corresponds to a fluid vector field.
We show that, after projectivization, this transform relates not
only equations of hydrodynamics and quantum physics, but also
the corresponding symplectic structures underlying them. Sur-
prisingly, it is also an isometry for two well-known metrics in
geometry and statistics.

For conceptual clarity and brevity of the exposition we
focus here on formal aspects of the infinite-dimensional geo-
metric constructions. Proofs of the theorems and a suitable
functional-analytic setting are provided in a separate paper.‡

Wasserstein Geometry of the Space of Densities
In this section we recall the main notions of the Wasserstein
geometry on the space of diffeomorphisms Diff(M) and the
space of smooth probability densities Dens(M) and introduce
Newton’s equations on these spaces.

Let (M , g) be a compact Riemannian manifold with volume
form µ. Define an L2 metric on Diff(M) by

Gϕ(ϕ̇, ϕ̇) =

∫
M

|ϕ̇|2︸︷︷︸
gϕ(ϕ̇,ϕ̇)

µ. [2]

Given a C 1 function U : Diff(M )→R (a potential) Newton’s
equations on Diff(M) can be formally written as in Eq. 1. For
potential functions U depending only on the density, i.e., of the
form

U (ϕ) = Ū (ρ) with ρ= det(Dϕ−1), [3]

for Ū :C∞(M )→R and ϕ∈Diff(M ), we obtain the following.

Theorem 3. Newton’s equation on Diff(M) for the L2 metric in
Eq. 2 and a potential U as in Eq. 3 is

∇ϕ̇ϕ̇=−∇
(δŪ
δρ

)
◦ϕ. [4]

In reduced variables u = ϕ̇ ◦ϕ−1 and ρ= det(Dϕ−1), Eq. 4 as-
sumes the form  u̇ +∇uu +∇δŪ

δρ
= 0

ρ̇+ div(ρu) = 0.

[5]

The system in Eq. 5 admits an invariant subset of potential
solutions u =∇θ, where θ∈C∞(M ). We next describe the
geometric origin of this observation.

‡Khesin B, Misiolek G, Modin K (2018) Geometry of the Madelung transform. arXiv
preprint, Chalmers #3, 1-29.

Riemannian Submersion to Densities. The space of smooth proba-
bility density functions on M is

Dens(M ) =
{
ρ∈C∞(M ) | ρ> 0,

∫
M

ρµ= 1
}
.

Since Dens(M) is an open subset of codimension one in an affine
subspace of C∞(M ), the tangent bundle of Dens(M) is triv-
ial: TDens(M ) = Dens(M )×C∞0 (M ), where C∞0 (M ) denotes
smooth mean-zero functions. Likewise, the (smooth part of the)
cotangent bundle T ∗Dens(M ) is Dens(M )×C∞(M )/R.

Alternatively, Dens(M) can be viewed as the space of left
cosets of the subgroup Diffµ(M ) of volume-preserving diffeo-
morphisms of M with the map π(ϕ) = det(Dϕ−1) defining a
natural (left coset) projection π : Diff(M )→Dens(M ). To take
advantage of this setup it is useful to equip the base space with a
Sobolev H−1-type metric which arises in optimal mass-transport
problems; cf. ref. 5.

Definition 1: The Wasserstein–Otto metric on Dens(M) is

Ḡρ(ρ̇, ρ̇) =

∫
M

|∇θ|2ρµ, θ= div(ρ∇ρ̇), [6]

where ρ̇∈C∞0 (M ) is a tangent vector to Dens(M) at the
point ρ. The Riemannian distance of this metric is the well-
known Wasserstein distance equal to the minimal L2 cost of
transporting one density to another.

Theorem 4 (cf. ref. 6). The left coset projection π is a Riemannian
submersion with respect to the L2 metric on Diff(M) and the
Wasserstein–Otto metric on Dens(M).

An illustration is given in Fig. 1.

Theorem 5. Newton’s equations on Dens(M) for the Wasserstein–
Otto metric and a potential function Ū correspond to Hamilton’s
equations on T ∗Dens(M ),

Fig. 1. Riemannian submersion from Diff(M) to Dens(M) in the L2 and H1

setting; compare Theorems 4 and 9. The projection to densities, i.e., the map
π or Π, respectively, takes horizontal geodesics on Diff(M) to geodesics on
Dens(M). In the L2 metric on Diff(M) the former are potential solutions u =

∇θ of Eq. 5. For the H1 metric, horizontal geodesics depend on the choice
of F in Eq. 11, but they all project to “great circles,” which are Fisher–Rao
geodesics on Dens(M).
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 θ̇+
1

2
|∇θ|2 +

δŪ

δρ
= 0

ρ̇+ div(ρ∇θ) = 0,

[7]

where the Hamiltonian is

H (ρ, θ) =
1

2

∫
M

|∇θ|2ρµ+ Ū (ρ).

Solutions to these equations correspond to the potential solutions of
Newton’s equations Eq. 4 (or Eq. 5) on Diff(M).

Example: classical mechanics. Given a C∞ function V on M
we can define an associated potential function on Dens(M):

Ū (ρ) =

∫
M

V ρµ. [8]

Proposition 6. Newton’s equations on Diff(M) for a potential of the
form in Eq. 8 describe the flow of Newton’s equation on M with
potential function V . In particular,
(i) If t 7→ϕ(t , ·) is a solution to Eq. 4, then for each fixed x ∈M

the curve t 7→ϕ(t , x ) satisfies Newton’s equation on M with
potential V .

(ii) The vector field u = ϕ̇ ◦ϕ in Eq. 5 satisfies the inviscid potential
Burgers equation

u̇+∇uu +∇V = 0.

Corollary 7 (cf. ref. 7). The momentum variable θ in Eq. 7
on T ∗Dens(M ) satisfies the Hamilton–Jacobi equation for the
classical mechanics Hamiltonian on T ∗M ,

H (x , p) =
1

2
gx (p], p]) +V (x ),

where ] is the isomorphism defined by the metric g on M .

Example: barotropic fluids. Using Theorem 3 one may present
the equations of compressible fluids in M in this generalized
Arnold framework with quadratic kinetic energy and without a
semidirect product structure. To this end, consider a potential
function

Ū (ρ) =

∫
M

e(ρ)ρµ, [9]

where e is a smooth real-valued function.

Proposition 8 (cf. refs. 8 and 9). Newton’s equations on Diff(M) for
a potential in Eq. 9 describe motions of a compressible barotropic
fluid with internal energy e . In particular, the system Eq. 5 takes the
form of the compressible Euler equations u̇ +∇uu +

1

ρ
∇P(ρ) = 0

ρ̇+ div(ρu) = 0,

[10]

with the pressure function P(ρ) = e ′(ρ)ρ2.
Remark 1: If M is the 2-sphere and e(ρ) = ρ/2, we recover

the shallow water equations describing surface motion of an ideal
fluid when the wavelength is large compared with the depth (as
in the case of tidal waves). In this interpretation u is the surface
(horizontal) velocity and ρ is the height of the water. The above
setting can be readily used to prove a local existence result for
a barotropic compressible fluid in the setting of tame Fréchet
spaces, e.g., as in ref. 10.

Fisher–Rao Geometry of the Space of Densities
In this section we introduce a different Riemannian structure on
Diff(M). It is given by a Sobolev H 1 inner product on vector

fields and induces on Dens(M) an infinite-dimensional analogue
of the Fisher–Rao information metric. The setting resembles that
between the L2 metric Eq. 2 and Wasserstein–Otto metric Eq. 6
in the previous section but with some notable differences.

As before, let (M , g) be a compact Riemannian manifold with
volume form µ. Define an H 1 metric on Diff(M) by

Gϕ(ϕ̇, ϕ̇) =

∫
M

g(−∆u, u)µ+F (u, u), ϕ̇= u ◦ϕ, [11]

where ∆ is the Hodge Laplacian on vector fields and F (u, v) is
a positive-definite quadratic form depending only on the vertical
(divergence-free) components of u and v .

Remark 2: In the applications below we focus on Newton’s
equations on Dens(M), corresponding to horizontal geodesics on
Diff(M), for which only the first term

∫
g(−∆u, v)µ in Eq. 11 is

relevant.§

Definition 2: The Fisher–Rao metric on Dens(M) is

Ḡρ(ρ̇, ρ̇) =

∫
M

ρ̇2

ρ
µ, [12]

where ρ̇∈C∞0 (M ) is a tangent vector to Dens(M ) at ρ.
Consider now the (right coset) projection Π : Diff(M )→

Dens(M ) from diffeomorphisms to probability densities given by
Π(ϕ) = det(Dϕ). In analogy with Theorem 4 we have

Theorem 9. The right coset projection Π is a Riemannian submer-
sion with respect to the H 1 metric Eq. 11 on Diff(M) and the
Fisher–Rao metric Eq. 12 on Dens(M). Furthermore, equipped with
this metric Dens(M) is isometric to a subset of the unit sphere in a
Hilbert space with the round metric.

Remark 3: The above isometry is given by the square-root
map ρ 7→√ρ; see ref. 11 for details.

An illustration of Theorem 9 is again given by Fig. 1.
Observe that the Riemannian metric on Diff(M) in Theo-

rem 4 is right-invariant with respect to Diffµ(M ) and thus auto-
matically descends to the right quotient Diff(M )/Diffµ(M ). On
the other hand, the metric in Theorem 9 is right-invariant [under
certain natural conditions on F (u, v)] and descends to the left
quotient Diffµ(M ) \Diff(M ). Since right-invariance is retained
after taking the quotient, the Fisher–Rao metric on Dens(M)
is also right-invariant under Diff(M). From this perspective the
Fisher–Rao metric Eq. 12 provides more structure than the
Wasserstein–Otto metric Eq. 6.

Theorem 10. Newton’s equations on Dens(M) for the Fisher–Rao
metric Eq. 12 and a potential Ū have the form

ρ̈− ρ̇2

2ρ
+ ρ

δŪ

δρ
=λρ, [13]

where λ is a Lagrange multiplier for the constraint
∫
M
ρµ= 1. Its

solutions correspond to horizontal solutions of Newton’s equations
on Diff(M) for the H 1 metric Eq. 11 and the potential Eq. 3.

One can also express Eq. 13 as Hamilton’s equations on
T ∗Dens(M ) with a momentum variable θ= ρ̇/ρ.

Example: µ-Camassa–Holm equation. The one-dimensional
periodic µCH (also known as µHS) equation

µ(u̇)− u̇xx − 2uxuxx − uuxxx + 2µ(u)ux = 0, [14]

where µ(u) =
∫
S1 u dx , is a nonlinear PDE which describes a

director field in the presence of an external (e.g., magnetic) force.

§In ref. 13 the term F(u, v) is chosen as
∑

i
∫

M(u · ei)µ
∫

M(v · ei)µ, where {ei} is any

L2-orthogonal basis for the space of harmonic vector fields.
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It was derived in ref. 12 as an Euler–Arnold equation on the
group Diff(S1) of orientation-preserving circle diffeomorphisms
equipped with a right-invariant H 1 Sobolev metric. It is known
to be bi-Hamiltonian and to possess smooth, as well as cusped,
soliton solutions.

Proposition 11 (cf. refs. 12 and 13). The µCH equation Eq. 14 is
Newton’s equation on Diff(S1) for the H 1 metric Eq. 11 and van-
ishing potential Ū ≡ 0. The horizontal (mean-zero) solutions of the
µCH equation describe geodesics of the Fisher–Rao metric Eq. 12
on Dens(S1).

Example: infinite-dimensional Neumann problem. The classi-
cal Neumann problem describes the motion of a particle on a
sphere in the presence of a quadratic potential. It is a completely
integrable system equivalent (up to time reparameterization) to
the geodesic motion on an ellipsoid; cf., e.g., ref. 14.

For an infinite-dimensional analogue of this problem consider
the unit sphere S∞(M ) = {f ∈C∞(M ) |

∫
M

f 2µ= 1} with the
metric inherited from L2(M ,R) and quadratic potential

V (f ) =
1

2

∫
M

|∇f |2µ. [15]

Proposition 12. Newton’s equation for the Neumann problem on
S∞(M ) with potential Eq. 15 is

f̈ −∆f =−λf , λ=

∫
M

(ḟ 2 + f ∆f )µ, [16]

where λ is the Lagrange multiplier with constraint
∫
M

f 2µ= 1.
It turns out that this problem also admits a natural interpre-

tation as a Newton’s equation on Dens(M) with respect to the
Fisher–Rao metric. To describe it consider Fisher’s information
functional

I (ρ) =
1

2

∫
M

|∇ρ|2

ρ
µ. [17]

Proposition 13. The Neumann problem Eq. 16 on S∞(M ) corre-
sponds (up to time scaling by 4) to Newton’s equation Eq. 13 on
Dens(M) with respect to the Fisher–Rao metric and Fisher’s infor-
mation functional Eq. 17 as a potential function. The map ρ 7→√
ρ= : f is a local diffeomorphism between the two representations.

Remark 4: Stationary solutions to the Neumann problem
on S∞(M ) correspond to the principal axes of the ellipsoid
−
∫
M

f ∆fµ= 1 and have a natural interpretation as Laplace
eigenfunctions on M . If M is the 4-torus equipped with the
(pseudo-)Riemannian Minkowski metric, then the stationary
solutions of the corresponding Minkowski–Neumann problem
are solutions of the periodic Klein–Gordon equation

f̈ −∆f =−m2f , m ∈R. [18]

This equation describes spinless scalar particles (such as the
Higgs boson) and plays a role in quantum field theory. Propo-
sition 13 shows that it can be viewed as describing stationary
potential solutions of a hydrodynamical system on Diff(T4).

Geometric Properties of the Madelung Transform
In 1927 Madelung (15) gave a hydrodynamical formulation of
the Schrödinger equation. Using the framework developed in
this paper one can exhibit a number of surprising geometric
properties of an important transformation that he introduced.

Definition 3: Let ρ and θ be real-valued functions on M with
ρ> 0. The Madelung transform is the mapping Φ : (ρ, θ) 7→ψ
defined by

Φ(ρ, θ) =
√
ρeiθ. [19]

Observe that Φ is a complex extension of the square-root map
described in Theorem 9 (compare Remark 3).

Madelung Transform as a Symplectomorphism. Denote by
PC∞(M ,C) the complex projective space of smooth complex-
valued functions on M . Its elements are cosets [ψ] of the complex
L2 sphere of smooth functions, where ψ′ ∈ [ψ] if and only if
ψ′= eiαψ for some α∈R. The subspace PC∞(M ,C \ {0}) is a
submanifold of PC∞(M ,C).

Theorem 14. The Madelung transform Eq. 19 induces a map

Φ :T ∗Dens(M )→PC∞(M ,C\{0}) [20]

which is a symplectomorphism (in the Fréchet topology) with respect
to the canonical symplectic structure of T ∗Dens(M ) and the
complex projective structure of PC∞(M ,C).

The Madelung transform is already known to be a symplectic
submersion from T ∗Dens(M ) to the unit sphere of nonvanishing
wave functions (see ref. 16). The stronger (symplectomorphism)
property in Theorem 14 is obtained with projectivization.

Example: linear and nonlinear Schrödinger equations. Con-
sider a family of Schrödinger (or Gross–Pitaevsky) equations
(with Planck’s constant ~= 1 and mass m = 1/2) of the form

iψ̇=−∆ψ+Vψ+ f (|ψ|2)ψ, [21]

where ψ is a wave function, V :M →R is a potential, and f :
R→R. Setting f ≡ 0 we obtain the linear Schrödinger equation
with potential V . Setting V ≡ 0 we obtain a family of nonlinear
Schrödinger (NLS) equations; typical choices are f (a) =κa and
f (a) = 1

2
(a − 1)2.

Eq. 21 is a Hamiltonian equation with respect to the symplectic
structure induced by the complex structure of L2(M ,C). Indeed,
minus four times the imaginary part of the Hermitian inner prod-
uct defines a symplectic structure. The Hamiltonian associated
with Eq. 21 is

H (ψ) = 2‖∇ψ ‖2L2 + 2

∫
M

(
V |ψ|2 +F (|ψ|2)

)
µ,

where F ′= f .
Observe that the L2 norm of a wave function satisfying Eq. 21

is conserved in time. Furthermore, the equation is equivariant
with respect to a constant change of phase ψ 7→ e iαψ and there-
fore descends to the projective space PC∞(M ,C). This was first
suggested by Kibble (17).

Proposition 15 (cf. refs. 15 and 16). The Madelung transform Φ maps
the family of Schrödinger equations Eq. 21 to a family of Newton’s
equations Eq. 7 on Dens(M) equipped with the Wasserstein–Otto
metric Eq. 6 and with potentials

Ū (ρ) = I (ρ) + 2

∫
M

(V ρ+F (ρ))µ, [22]

where I is Fisher’s information functional Eq. 17. Furthermore, the
extension of Eq. 5 from potential to arbitrary vector fields, i.e., to a
system on X(M )×Dens(M ), reads
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 u̇+∇uu + 2∇
(
V + f (ρ)−

∆
√
ρ

√
ρ

)
= 0

ρ̇+ div(ρu) = 0.

[23]

Corollary 16. The Hamiltonian system on T ∗Dens(M ) for poten-
tial solutions (compare Theorem 5) of Eq. 23 is mapped sym-
plectomorphically to the Schrödinger equation Eq. 21.

Conversely, classical PDEs of hydrodynamics can be expressed
as NLS-type equations. E.g., potential solutions of the compress-
ible Euler equations of a barotropic fluid Eq. 10 can be recovered
from an NLS equation with Hamiltonian

H (ψ) = 2‖∇ψ ‖2L2 − I (|ψ|2) +

∫
M

e(|ψ|2)|ψ|2µ. [24]

The choice e = 0 yields a Schrödinger formulation for poten-
tial solutions of Burgers’ equation (or the Hamilton–Jacobi
equation, compare Corollary 7) whose solutions describe
geodesics of the Wasserstein–Otto metric Eq. 6 on Dens(M).
This way the geometric framework links optimal transport for
cost functions with potentials, the compressible Euler equations
and the NLS-type equations described above.

Example: vortex filament equation. The celebrated vortex
filament (or binormal) equation,

γ̇= γx × γxx ,

describes the motion of a closed curve γ in R3 where x is the
arc-length parameter (Fig. 2). It is a localized induction approx-
imation (LIA) of the 3D Euler equation with initial vorticity
supported on γ.

The filament equation is known to be Hamiltonian with
respect to the Marsden–Weinstein symplectic structure on the
space of curves in R3 with the Hamiltonian given by the length
functional, e.g., ref. 2. On the other hand, it is the equation
of the 1D barotropic fluid Eq. 10 with ρ= k2 and u = 2τ ,
where k and τ denote curvature and torsion of the curve γ,
respectively.

Definition 4: The Hasimoto transform assigns a wave function
ψ :R→C to a curve γ with curvature k and torsion τ , according
to the formula

(k(x ), τ(x )) 7→ψ(x ) = k(x ) exp (i
∫ x

τ(x̃ )dx̃ ).

This map takes the vortex filament equation to the NLS equation
iψt +ψxx + 1

2
|ψ|2ψ= 0. In particular, the filament equation is a

completely integrable system whose first integrals are obtained
from those of the 1D NLS equation.

Fig. 2. Vortex filament flow: Each point of the curve γ moves in the direc-
tion of the binormal. If k(x) and τ (x) are the curvature and torsion at
γ(x), then the wave function ψ(x) = k(x) exp(i

∫ x τ (x̃)dx̃) satisfies the NLS
equation, while the pair of functions u = 2τ and ρ= k2 satisfies Eq. 10 of
the 1D barotropic fluid. The latter is a manifestation of the 1D Madelung
transform.

Proposition 17. The Hasimoto transform is the Madelung transform
in 1D.

This can be seen by comparing Definitions 3 and 4, which
make the appearance of the Hasimoto transform seem much less
surprising.

The filament equation has a higher-dimensional analog for
membranes (i.e., compact oriented surfaces Σ of codimension
2 in Rn) as a skew-mean-curvature flow

q̇ = J(MC(q)),

where q ∈Σ is any point of the membrane, MC(q) is the mean
curvature vector to Σ at the point q , and J is the operator of rota-
tion by π/2 in the positive direction in every normal space to Σ.
This equation is again Hamiltonian with respect to the Marsden–
Weinstein structure on membranes of codimension 2 and with a
Hamiltonian function given by the (n − 2)-dimensional volume
of the membrane, e.g., ref. 18.

It would be interesting to find an analogue of the Hasi-
moto transform which maps the skew-mean-curvature flow
to an NLS-type equation in any dimension n . The higher-
dimensional Madelung transform and its symplectic property are
an indication that such an analogue should exist.

Madelung Transform as a Kähler Morphism. In this section we
consider again the Madelung transform as a map between
T ∗Dens(M ) and PC∞(M ,C) but now equipped with suitable
Riemannian structures.

Let TT ∗Dens(M ) be the tangent bundle of T ∗Dens(M ).
Its elements can be described as 4-tuples (ρ, θ, ρ̇, θ̇), where
ρ∈Dens(M ), [θ]∈C∞(M )/R, ρ̇∈C∞0 (M ), and θ̇∈C∞(M )

subject to the constraint
∫
M
θ̇ρ µ= 0.

Definition 5: The Sasaki–Fisher–Rao metric on T ∗Dens(M )
is the natural lift of the Fisher–Rao metric on Dens(M ):

Ḡ∗(ρ,[θ])
(

(ρ̇, θ̇), (ρ̇, θ̇)
)

=

∫
M

(
ρ̇2

ρ
+ θ̇2ρ

)
µ. [25]

The (scaled, infinite-dimensional) Fubini–Study metric¶ is the
following canonical metric on PC∞(M ,C),

G∗ψ(ψ̇, ψ̇) =
4〈〈ψ̇, ψ̇〉〉L2

‖ψ ‖2L2

−
4〈〈ψ, ψ̇〉〉L2〈〈ψ̇,ψ〉〉L2

‖ψ ‖4L2

, [26]

which is the projectivization of the L2 metric on C∞(M ,C).

Theorem 18. The Madelung transform Eq. 20 is an isometry
between T ∗Dens(M ) with the Sasaki–Fisher–Rao metric and
PC∞(M ,C \ {0}) with the Fubini–Study metric.

Since the Fubini–Study metric is a Kähler metric on
PC∞(M ,C) it follows that T ∗Dens(M ) carries a natural Kähler
structure compatible with its canonical symplectic structure. The
associated complex structure is J (ρ̇, θ̇) = (−ρθ̇, ρ̇/ρ).

Remark 5: Molitor (19) found an almost complex structure
on T ∗Dens(M ) related to the Wasserstein–Otto metric and the
Madelung transform. He also observed that it does not integrate
to a complex structure. In contrast, our result shows that the
corresponding complex structure does become integrable (and
simple) when the Wasserstein–Otto metric is replaced with the
Fisher–Rao metric.

¶Also called the Bures metric in quantum physics.
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Example: two-component Hunter–Saxton equation. The two-
component Hunter–Saxton (2HS) equation is a system of two
equations {

u̇xx =−2uxuxx − uuxxx +σσx ,

σ̇=−(σu)x
[27]

where u and σ are time-dependent periodic functions on the line.
This system can be viewed as a high-frequency limit of the two-
component Camassa–Holm equation; cf. ref. 20.

It turns out that this system is closely related to the Kähler
geometry of the Madelung transformation and the Sasaki–
Fisher–Rao metric Eq. 25. Consider the semidirect product G=
Diff0(S1)nC∞(S1,S1), where Diff0(S1) is the group of cir-
cle diffeomorphisms fixing a prescribed point and C∞(S1,S1)
stands for S1-valued maps of a circle. Define a right-invariant
Riemannian metric on the group G given at the identity by

G(id,0)((u,σ), (u,σ)) =
1

4

∫
S1

(u2
x +σ2) dx .

If t→ (ϕ(t),α(t)) is a geodesic in G, then u = ϕ̇ ◦ϕ−1 and σ=
α̇ ◦ϕ−1 satisfy equations in Eq. 27. Lenells (21) showed that the
map

(ϕ,α) 7→
√
ϕx eiα [28]

from G to a subset of {ψ ∈C∞(S1,C) | ‖ψ‖L2 = 1} is an isome-
try. Moreover, solutions to Eq. 27 satisfying

∫
S1 σdx = 0 corre-

spond to geodesics in PC∞(S1,C) equipped with the Fubini–
Study metric. Our results show that this isometry is a particular
case of Theorem 18.

Proposition 19. The two-component Hunter–Saxton Eq. 27 with
initial data satisfying

∫
S1 σ dx = 0 is equivalent to the geodesic

equation of the Sasaki–Fisher–Rao metric Eq. 25 on T ∗Dens(S1).
The proof is based on the observation that the mapping

Eq. 28 can be expressed as (ϕ,α) 7→Φ(π(ϕ),α), where Φ is

the Madelung transform and π is the projection ϕ 7→ det(Dϕ)
specialized to the case M =S1.

Remark 6: Observe that if σ= 0 at t = 0, then σ(t) = 0 for
all t and the 2HS Eq. 27 reduces to the standard Hunter–
Saxton equation. Geometrically, this is a consequence of the
fact that horizontal geodesics on T ∗Dens(M ) with the Sasaki–
Fisher–Rao metric descend to geodesics on Dens(M ) with the
Fisher–Rao metric.

Madelung Transform as a Momentum Map. We briefly comment
on the Madelung transform from the perspective of symplectic
geometry and reduction theory.

The Riemannian submersion results in Theorems 4 and 9 can
be regarded as a Hamiltonian reduction of the natural sym-
plectic structure on T ∗Diff(M ) with respect to the action of
the group Diffµ(M ). From this viewpoint, Fusca (22) showed
that the inverse Madelung map has an interpretation as a
momentum map for an action of the semidirect product group
S = Diff(M )nC∞(M ) on the (Hermitian) space of smooth
wave functions. The semidirect product structure itself appears
naturally from the symplectomorphism property in Theorem
14. Furthermore, the momentum map viewpoint suggests a
natural multicomponent wave-function generalization of the
Madelung transform, thus allowing a geometric hydrodynami-
cal interpretation of (nonlinear) Schrödinger equations with spin
degrees of freedom or, vice versa, the full compressible Euler
equations (with entropy) as a multicomponent Schrödinger
equation.
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