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Polar homology and linkings arise as natural holomorphic analogues in algebraic
geometry of the homology groups and links in topology. For complex projective
manifolds, the polar k -chains are subvarieties of complex dimension k with meromorphic
forms on them, while the boundary operator is defined by taking the polar divisor and
the Poincaré residue on it. We also define the corresponding analogues for the
intersection and linking numbers of complex submanifolds, and show that they have
properties similar to those of the corresponding topological objects. Finally, we establish
the relation between the holomorphic linking and the Weil pairing of functions on a
complex curve and its higher-dimensional counterparts.
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1. Introduction

Polar homology groups for complex projective manifolds can be regarded as a
complex version of singular homology groups in topology. The idea of such a
geometric analogue of topological homology comes from thinking of the
Dolbeault (or �v) complex of (0, k)-forms on a complex manifold as an obvious
analogue of the de Rham complex of k -forms on a smooth manifold. This poses
an immediate question: ‘what is the analogue of the chain complex relevant to
the context of complex manifolds?’

In this paper, we consider the complex of ‘polar chains’ (proposed in Khesin &
Rosly 2003), which consists of algebraic subvarieties and meromorphic forms on
them, whose poles are of the first-order only. The boundary operator takes the
polar divisor and the Poincaré residue of the corresponding form. An advantage
of considering polar chains is that it allows one to use the analogy between the
boundary operator in topology and the residue in algebraic geometry in a direct
way. In particular, one can define analogues for the intersection and linking
numbers of complex submanifolds mimicking properties of the corresponding
topological notions.

Some features of the above analogy between boundaries and residues can also
be found in the recent literature. In particular, this correspondence leads to an
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B. Khesin and A. Rosly3506
explicit construction of a group cocycle for the double-loop groups (Frenkel &
Khesin 1996). It is useful in the study of the Poisson structure on the moduli
spaces of holomorphic bundles on complex surfaces (see the description of
Lagrangian submanifolds in Thomas (1997) and Donaldson & Thomas (1998)
and that of symplectic leaves in Khesin & Rosly (2001)). Moreover, the approach
of Donaldson & Thomas (1998) of transferring differential geometric construc-
tions into the context of complex analytic (or algebraic) geometry could lead one
to a ‘complexification of geometry’ in a sense similar to the ‘complexification of
topology’ pursued here.

Below, we briefly mention one of the main motivations, which come
from mathematical physics: a study of the holomorphic Chern–Simons gauge
theory on a Calabi–Yau threefold suggested in Witten (1995). The latter context
leads us immediately to a search for a proper holomorphic analogue of the linking
number (see Khesin & Rosly 2001). The holomorphic linking can be naturally
defined in the language of polar cycles and their intersections, as described below.
Another approach can be found in Thomas (1997) and Frenkel & Todorov (2002).
(a ) Motivation and holomorphic linking

The classical linking number arises in the study of quantum theory associated
with the abelian Chern–Simons functional

CSðAÞZ
ð
M
AodA;

defined on smooth 1-forms {A} on a real threefold M (Schwarz 1977/78;
Polyakov 1988). (The non-abelian Chern–Simons theory leads to higher link
invariants, such as Jones polynomials (Witten 1989).)

A holomorphic analogue of the Chern–Simons theory on a Calabi–Yau three-
dimensional manifold X (with a holomorphic 3-form m) was suggested in Witten
(1995). In the simplest abelian case, the action functional is

CSmðAÞZ
ð
X
A01o �vA01om;

where A01 is a smooth (0, 1)-forms on X. In the latter case, one can consider the
following natural observables, analogues of Wilson loops:

Ð
C aoA01, where C is

a complex curve in the threefold X and a is a holomorphic 1-form on C. The
correlator of two such observables in this quadratic field theory is given by the
following expressionð

C1

a1oA01$

ð
C2

a2oA01

� �
Z

X
P2C1hS2

a1ðPÞob2ðPÞ
mðPÞ :

Here, S2 is a complex surface containing the curve C2 and equipped with a
meromorphic 2-form b2, such that divNb2ZC2 and resC 2

b2Za2. Such a sum over
the intersection points of C1 and S2 can be thought of as a holomorphic linking
number of two non-intersecting complex curves C1 and C2, equipped with
holomorphic 1-forms ai in the Calabi–Yau manifold X

[kmððC1;a1Þ; ðC2;a2ÞÞd
X

P2C1hS2

a1ðPÞob2ðPÞ
mðPÞ :
Proc. R. Soc. A (2005)



3507Polar linkings and Weil pairing
Recall that the topological linking number of two closed curves in a real threefold
is defined as the intersection of the first curve with a surface spanning the other
curve. One can show that the expression above does not depend on the choice of
(S2,b2), a holomorphic analogue of a spanning surface, and it has certain
invariance properties copying those of the classical linking number in this
holomorphic situation.
(b ) Holomorphic intersections

We have implicitly defined a complex analogue of the intersection number in
topology. To make it explicit, let (X, m) be a complex manifold equipped with a
meromorphic volume form m without zeros. Consider two complex submanifolds
A and B of complimentary dimensions that intersect transversely in X and are
endowed with holomorphic volume forms a and b on the corresponding
submanifolds.Then, the holomorphic intersection number is defined by the formula

hðA;aÞ$ðB;bÞiZ
X

P2AhB

aðPÞobðPÞ
mðPÞ :

At every intersection pointP, the ratio in the right-hand side is the ‘comparison’ of
the orientations of the ‘cycles’ (A,a) and (B,b) at that point with the orientation of
the ambient manifold. This is a straightforward analogue of the use of mutual
orientation of cycles in the definition of the topological intersection number. Note,
that in the holomorphic case, the intersection number does not have to be an
integer. Rather, it is a holomorphic function of the ‘parameters’ (A,a), (B,b) and
(X,m).
(c ) Holomorphic orientation and boundary operator

The above consideration prompts us to consider a top degree holomorphic
form on a complex manifold as manifold’s ‘holomorphic orientation’. Further-
more, a pair (W,u), which consists of a k -dimensional submanifold W equipped
with a meromorphic top degree form u (with first-order poles on a smooth
hypersurface V ), will be thought of as an analogue of a compact oriented
submanifold with boundary.

Below, we start by defining a homology theory in which the pairs (W,u) will
play the role of k -chains. The corresponding boundary operator assumes the form
v(W,u)Z(V, 2pi res u), where V is the polar set of the k -form u, while res u is
the (kK1)-form on V, the Poincaré residue of u. Note, that in the situation under
consideration, when the polar set V of the form u is a smooth (kK1)-dimensional
submanifold in a smooth k -dimensional W, the induced ‘orientation’ on V is
given by a regular (kK1)-form res u. This means that v(V, res u)Z0, or the
boundary of a boundary is zero. The latter will be the source of the identity v2Z0
in the homology theory discussed below. We shall call it the polar homology.
(d ) Pairing to smooth forms and the Cauchy–Stokes formula

There is a pairing between polar chains and smooth differential forms on a
manifold: for a polar k -chain (W,u) and any (0, k)-form u such a pairing is given
Proc. R. Soc. A (2005)
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by the integral

hðW ;uÞ; uiZ
ð
W

uou:

In other words, the polar chain (W,u) defines a current on X of degree (n,nKk),
where nZdim X. This pairing descends to (co)homology classes by virtue of the
following Cauchy–Stokes formula.

Consider a meromorphic k -form u on W having first-order poles on a smooth
hypersurface V3W. Let the smooth (0, k)-form u on X be �v-exact; that is, uZ �vv
for some (0, kK1)-form v on X. Then,ð

W
uo �vv Z 2pi

ð
V
res uov:

We shall exploit this straightforward generalization of the Cauchy formula
as a complexified analogue of the Stokes theorem. Note that the Cauchy–
Stokes formula defines the pairing between the polar homology groups of a
complex manifold X and the Dolbeault cohomology groups H 0;k

�v
ðXÞ. In a

separate paper (Khesin et al. 2004) it was shown that this pairing defines
an isomorphism of the corresponding groups, see the polar de Rham theorem
in §3.

This allowed one to give below the definition of the polar intersection for non-
transversal varieties (see §4); namely, the polar de Rham theorem allowed to
express the polar intersection in terms of the product in (Dolbeault) cohomology.
The new consequences of this are as follows:
(i)
Proc.
the polar intersection pairing is non-degenerate;

(ii)
 there exists a polar intersection product extending the polar intersection

pairing;

(iii)
 there exist smooth transverse representatives in the polar classes;

(iv)
 one can give explicit expressions for the intersection product in terms of

the latter. (We note that before the polar de Rham was proved in
Khesin et al. (2004), such propositions were only possible ‘in one
direction’.)
Furthermore, most of our consideration extends to polar chains where the
meromorphic forms are not necessarily of top degree. Another interesting case is
that of degree zero. The corresponding polar homology groups turn out to be
isomorphic to the groups of cycles modulo algebraic equivalence. Along with the
polar de Rham theorem, this gives that the polar homology groups interpolate
between the Dolbeault groups and the groups of algebraic cycles (modulo the
algebraic equivalence).

Finally, it turned out that the polar linking is closely related to the Weil
pairing and Parshin symbols (see §5). Roughly speaking, the holomorphic linking
is the logarithmic ‘rate of change’ of the Weil (or Parshin) pairing.
2. Polar homology

Here, we define a homological complex based on the notion of the polar
boundary. The construction is analogous to the definition of homology of a
R. Soc. A (2005)



3509Polar linkings and Weil pairing
topological space with replacement of continuous maps by complex analytic ones.
The notion of the boundary (of a simplex or a cell) is replaced by the Poincaré
residue of a meromorphic differential form.
(a ) Preliminaries: residue and push-forward

The Poincaré residue is a higher-dimensional generalization of the classical
Cauchy residue, where the residue at a point in a domain of one complex variable
is generalized to the residue at a hypersurface.

Let M be an n -dimensional complex manifold and u be a meromorphic n -form
on M, which is allowed to have first-order poles on a smooth hypersurface
V. Then, the form u can be locally expressed as

uZ
9odz

z
C3;

where zZ0 is a local equation of V and 9 (respectively, 3) is a holomorphic
(nK1)-form (respectively, n -form). Then, the restriction 9jV is a well-defined
holomorphic (nK1)-form on V.

Definition 2.1. The Poincaré residue of the n -form u is the following (nK1)-
form on V

res ud9jV :

Definition 2.2. The above can be readily extended to the case of normal
crossing divisors. Let V be a normal crossing divisor in M; i.e. VZgiVi has only
smooth components Vi (each entering with multiplicity one) that intersect
generically. Suppose that the meromorphic n -form u in M has the first order
poles on V. Analogous to definition 2.1, one can define a residue at each
component Vi. The resulting (nK1)-forms resVj

u are then meromorphic and
have first-order poles at the pairwise intersections VijZVihVj. One can now
consider the repeated Poincaré residue at Vij. Representing u as
uZroðdzi=ziÞoðdzj=zjÞ, where ziZ0 and zjZ0 are local equations of the
components Vi and Vj , respectively, one finds that

resi;judresVij
ðresVj

uÞZ resziZ0 reszjZ0ro
dzi
zi

o
dzj
zj

� �
Z rjVij

:

Note that the repeated residue differs by sign for different order of the
components: resi,juZKresj,iu.

Definition 2.3. For a finite covering f : X/Y and a function 4 on X one can
define its push-forward, or the trace, f

*
4 as a function on Y whose value at a

point is calculated by summing over the preimages taken with multiplicities. The
operation f

*
can be generalized to p -forms and to the maps f, which are only

generically finite.

Suppose that f : X/Y is a proper, surjective holomorphic mapping where
both X and Y are smooth complex manifolds of the same dimension n. The
Proc. R. Soc. A (2005)
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push-forward (or, trace) map is a mapping

f� : GðX ;Up
XÞ/GðY ;Up

Y Þ:
To define it, one notes that f is finite unramified covering away from a
hypersurface in Y. Thus, f is locally an isomorphism of neighbourhoods, and the
push-forward form is defined by summing the image forms from all the leaves.
The form obtained extends to the whole of Y.

The push-forward map is also defined for meromorphic forms. Furthermore,
the operations of push-forward and residue commute.
(b ) Polar chains and boundary

In this section, we deal with complex projective varieties—closed subvarieties
of a complex projective space. (In this setting, the complex analytic
considerations are equivalent to algebraic ones.) By a smooth projective variety,
we always understand a smooth and connected one. For a smooth variety M of
dimension n, we denote by KM the sheaf of regular n -forms on M.

The space of polar k -chains for a complex projective variety X, dim XZn, will
be defined as a C-vector space with certain generators and relations.

Definition 2.4. The space of polar k -chains Ck(X ) is a vector space over C

defined as the quotient CkðXÞZ ĈkðXÞ=Rk, where the vector space ĈkðXÞ is
freely generated by the triples (A, f, a) described in (i), (ii) and (iii) below and Rk

is defined as relations (R1), (R2) and (R3) imposed on the triples.
(i)
Proc.
A is a smooth complex projective variety, dim AZk ;

(ii)
 f : A/X is a holomorphic map of projective varieties;

(iii)
 a is a rational k -form on A with first-order poles on V3A, where V is a

normal crossing divisor in A; that is a2G(A, KA(V )).
The relations are:
(R1)
R

l(A, f,a)Z(A, f, la);P P

(R2)
 iðAi; fi;aiÞZ0 provided that i fi�aih0, where dim fi(Ai)Zk for all i

and the push-forwards fi*ai are considered on the smooth part of
gi fi(Ai);
(R3)
 (A, f,a)Z0 if dim f (A)!k.
Remark 2.5. By definition, Ck(X )Z0 for k!0 and kOdim X.

The relation (R2), in particular, represents additivity with respect to a, that is

ðA; f ;a1ÞCðA; f ;a2ÞZ ðA; f ;a1 Ca2Þ:

Here, we make no difference between a triple and its equivalence class. In
particular, if the polar divisor divN(a1Ca2) is not normal crossing, then one can
replace A by an appropriate blow-up, by the Hironaka theorem, where the pull-
back of a1Ca2 is already admissible.

This way, the relation (R2) allows us, in particular, to refer to polar chains
as pairs replacing a triple (A, f,a) by a pair (Â; â), where ÂZ f ðAÞ3X , â
. Soc. A (2005)



3511Polar linkings and Weil pairing
is defined only on the smooth part of Â and âZ f�a there. Owing to the
relation (R2), such a pair (Â; â) carries precisely the same information as
(A, f,a).1 (The only point of concern is that such pairs cannot be arbitrary. In
fact, by the Hironaka theorem on resolution of singularities, any subvariety
Â3X can be the image of some regular A, but the form â on the smooth part
of Â cannot be arbitrary.)

Definition 2.6. The boundary operator v : CkðXÞ/CkK1ðXÞ is defined by

vðA; f ;aÞZ 2pi
X
i

ðVi; fi; resVi
aÞ;

(and by linearity), where Vi are the components of the polar divisor of a,
divNaZgiVi, and the maps fiZ f jVi

are restrictions of the map f to each
component of the divisor.

Theorem 2.7. The boundary operator v is well defined, i.e. is compatible with
the relations (R1), (R2) and (R3).

Proof. We have to show that v maps equivalent sums of triples to equivalent
ones.

It is trivial with (R1). For (R2), this follows from the commutativity of taking
residue and push-forward. To prove the compatibility of v with (R3), consider
first the case of a polar 1-chain, a complex curve with a meromorphic 1-form,
which is mapped to a point.

Then, the image of the boundary of this 1-chain is zero. Indeed, this image
must be the same point, whose coefficient is equal to the sum of all residues of the
meromorphic 1-form on the curve (i.e. zero). The general case is similar: the same
phenomenon occurs along one of the coordinates. &

Theorem 2.8. v2Z0.

Proof. We need to prove this for triples (A, f,a)2Ck(X ); that is, for forms a
with normal crossing divisors of poles. The repeated residue at pairwise
intersections differs by a sign according to the order in which the residues are
taken (see definition 2.2). Thus, the contributions to the repeated residue from
different components cancel out (or, the residue of a residue is zero).2 &
1Note that the consideration of triples (A, f,a) instead of pairs (Â; â), which we used in §1, is
similar to the definition of chains in the singular homology theory. In the latter case, although one
considers the mappings of abstract simplices into the manifold, morally, it is only ‘images of
simplices’ that matter. Here lies an important distinction; unlike the topological homology, where
in each dimension k, one uses all continuous maps of one standard object (the standard k -simplex
or the standard k -cell) to a given topological space, in polar homology, we deal with complex
analytic maps of a large class of k -dimensional varieties to a given one.
2An example of the polar divisor {xyZ0} for the form dxody/xy in C

2 should be viewed as a
complexification of a polygon vertex in R

2. Indeed, the cancellation of the repeated residues on
different components of the divisor is mimicking the calculation of the boundary of a boundary of a
polygon; every polygon vertex appears twice with different signs as a boundary point of two sides.

Proc. R. Soc. A (2005)
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(c ) Polar homology of projective varieties

Definition 2.9. For a complex projective variety X, dim XZn, the chain
complex

0/CnðXÞ����/v CnK1ðXÞ����/v /����/v C0ðXÞ/0

is called the polar chain complex of X. Its homology groups, HPk(X ), kZ0,.,n,
are called the polar homology groups of X.

Functoriality of polar homology is standard; a regular morphism of projective
varieties h : X/Y defines a homomorphism h* : HPk(X )/HPk(Y ).3

Example 2.10. For a projective curve of genus g, the polar homology groups
are as follows: HP0ZC, HP1ZC

gand HPkZ0 for kR2. Indeed, in this (and in
any) case, all the 0-chains are cycles. Let (P,a) and (Q, b) be two 0-cycles, where
P,Q are points on X and a; b2C. (For simplicity, we adopt the consideration of
pairs, the images of the triples in the curve, as discussed in footnote 1.) They are
polar homologically equivalent if, and only if, aZb. Indeed, aZb is necessary and
sufficient for the existence of a meromorphic 1-form a on X, such that divNaZ
PCQ and resPaZ2pia, resQaZK2pib. (The sum of all residues of a
meromorphic differential on a projective curve is zero by the Cauchy theorem.)
Then, we can write in terms of polar chain complex that (P,a)K(Q,a)Zv(X,a).
Thus, HP0ðXÞZC:

As to polar 1-cycles, these correspond to all possible holomorphic 1-forms on.
On the other hand, there are no 1-boundaries, since there are no polar 2-chains in
X. Hence, HP1ðXÞZC

g, where g is the genus of the curve X. (In particular, the
polar Euler characteristic of X equals 1Kg and coincides with its holomorphic
Euler characteristic.)

Similar considerations show that for any n -dimensional X, we have HPnðXÞZ
H 0ðX ;Un

XÞ and, if X is connected, also HP0ðXÞZC.

Definition 2.11 (Relative polar homology). Let Z be a projective subvariety in
a projective X. Analogously to the topological relative homology, we can define
the polar relative homology of the pair Z3X.

The relative polar homology HPk(X,Z ) is the homology of the following
quotient complex of chains

CkðX ;ZÞZCkðXÞ=CkðZÞ:

Here, we use the natural embedding of the chain groups Ck(Z )-Ck(X ). This
leads to the long exact sequence in polar homology

./HPkðXÞ/HPkðX ;ZÞ����/v HPkK1ðZÞ/HPkK1ðXÞ/. :
3 Note that the polar homology is an analogue of singular homology with coefficients in R or C.

Proc. R. Soc. A (2005)



3513Polar linkings and Weil pairing
3. Dolbeault cohomology as polar de Rham cohomology

As we discussed in §1, the Dolbeault complex of (0, k)-forms should be related to
the polar homology in the same way as the de Rham complex of smooth forms is
related to the topological homology (e.g. singular homology). Now, after the
definitions of §2 are given, we are able to make this point more explicit.

Definition 3.1. In a smooth projective variety X, consider a polar k -chain
aZ(A, f,a). Such a triple can be regarded as a linear functional on the space of
smooth (0, k)-forms on X. (In other words, the space of polar chains Ck(X ) can be
defined as a subspace of currents, functionals on smooth differential forms.) Let u
be a smooth (0, k)-form on X. Then, the pairing is given by the following integral

ha; uid
ð
A
ao f �u:

The integral is well defined, since a has only first-order poles on a normal
crossing divisor. It is now straightforward to show that the pairing h,i descends to
the space of equivalence classes of triples Ck(X ) and that it is compatible with
the relations (R1), (R2) and (R3) of definition 2.4. Indeed, (R1) is obvious, where
compatibility with (R3) follows from noticing that f *uZ0 if dim f (A)!k, and the
compatibility with (R2) follows from the relation

Ð
A ao f �uZ

Ð
f ðAÞ f�aou if

dim f (A)Zk, where the last integral is taken over the smooth part of f (A).

Proposition 3.2. The pairing (3.1) defines the following homomorphism in
(co)homology

r : HPkðXÞ/Hn;nKk
�v

ðXÞ;
where nZdim X.

Proof. By the Serre duality, r is the map HPkðXÞ/ðH 0;k
�v

ðXÞÞ* and it is
sufficient to verify that the pairing (3.1) vanishes if vaZ0 and uZ �vv, or if �vuZ0
and aZvb. This follows immediately from the Cauchy–Stokes formula (§1d ),ð

A
ao f *ð�vuÞZ 2pi

ð
divNa

ðres aÞo f *ðuÞ;

that is, ha; �vuiZhva; ui. &

It turns out that for smooth projective manifolds the homomorphism (3.2) is in
fact an isomorphism.

Theorem 3.3. (Polar de Rham theorem; Khesin et al. 2004)
(i)
Proc.
For a smooth projective manifold X, the mapping r : HPkðXÞ/Hn;nKk
�v

ðXÞ is
an isomorphism of the polar homology and Dolbeault cohomology groups.
Equivalently, in terms of dual cohomology groups,

HPkðXÞyH 0;k
�v

ðXÞ:

(ii)
 Let V be a normal crossing divisor in a smooth projective X. Then

HPkðX ;V ÞyHnKkðX ;KXðV ÞÞ:
R. Soc. A (2005)
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Example 3.4. IfX is a complex curve of genus g, one has HP0ðXÞyCyH 1;1
�v

ðXÞ
and HP1ðXÞyC

gyH 1;0
�v

ðXÞ (see example 2.10).

Note that by theorem 3.3, for an ample divisor V represented by a
smooth hypersurface in X, HPp(X,V )ZHnKp(X,KX(V ))Z0. Such a choice of
the hypersurface V in the complex manifold X is similar to the choice of an
(nK1)-skeleton in an n -dimensional real manifold: the corresponding
relative homology group of the manifold with respect to the skeleton also vanish.

Remark 3.5. So far, we have considered polar chains with top degree forms.
More generally, one could consider polar (k,p)-chains (A, f,a), where a is a
meromorphic p -form of not necessarily maximal degree, p%k, on A, which can
have only logarithmic singularities on a normal crossing divisor.4 The
requirement of log-singularities is needed to have a convenient definition of the
residue and, hence, the boundary operator v.

The property v2Z0 and the definition of the polar homology groups can be
carried over to this more general situation. The polar homology groups are then
enumerated by two indices: HPk,p(M ).

The Cauchy–Stokes formula extends to this case as well. As a consequence, the
natural pairing between polar (k,p)-chains and smooth (kKp, k)-forms on X gives
us as before the homomorphism (cf. (3.2)),

r : HPk;pðXÞ/HnKkCp;nKk
�v

ðXÞ:

However, unlike the case pZk, the map r is not generally an isomorphism
for other values of p, 0%p!k. For instance, in the case of pZ0, the image of r
belongs to the subspace generated by algebraic cycles, while the full Hr ;r

�v
ðXÞ can

be much larger (already for a generic K3 surface).

Corollary 3.6. The groups HPk,p(X ) interpolate between the groups of k-cycles
modulo algebraic equivalence in X and the Dolbeault groups Hn;nKk

�v
ðXÞ as

p changes from 0 to k.

Indeed, one can see that for pZ0 the polar homology groups HPk,0(X ) coincide
with the groups of k -cycles in X modulo algebraic equivalence, according to the
Severi theorem (Griffiths & Harris 1978).
4. Intersection in polar homology

Here, we define a polar analogue of the topological intersection product. In
particular, for polar cycles of complimentary dimensions, one obtains a complex
number, called the ‘polar intersection number’.

Recall that in topology, one considers a smooth oriented closed manifold M
and two oriented closed submanifolds A,B3M of complementary dimensions;
that is, dim ACdim BZdimM. Suppose that A and B intersect transversely at a
finite set of points. Then, to each intersection point P, one assigns G1 (local
intersection index) by comparing the mutual orientations of the tangent vector
spaces TPA, TPB and TPM.
4 An importantpropertyof such formsonprojectivevarieties is that theyare closed, seeDeligne (1971).

Proc. R. Soc. A (2005)



3515Polar linkings and Weil pairing
(a ) Polar-oriented manifolds

Now, let M be a compact complex manifold of dimension n, on which we
would like to define a polar intersection theory. It has to be polar oriented (i.e.
equipped with a complex volume form). As the discussion below shows, the n -
form m defining its polar orientation has to have no zeros on M, since we are
going to consider expressions in which m, the orientation of the ambient
manifold, enters a denominator. Therefore, we adopt the following
terminology.

Definition 4.1. (i) A compact complex manifold M, endowed with a nowhere
vanishing holomorphic volume form m, is said to be a polar-oriented closed
manifold. (ii) If the volume form m on a compact complex manifold M is non-
vanishing and meromorphic with only first-order poles on a normal crossing
divisor N3M, then M is called a ‘polar-oriented manifold’ with boundary. The
hypersurface N is then endowed with a polar orientation nd2pi res ms0 and
(N, n) is called the polar boundary of (M,m).

Remark 4.2. By definition, polar-orientable closed manifolds are complex
manifolds whose canonical bundle is trivial (Calabi–Yau, Abelian manifolds
or any complex tori, if we do not restrict ourselves to algebraic manifolds).
In considering the definition of chains, we have defined the notion of the
polar orientation in a more restrictive sense than before. In fact, polar chains
with their orientations are to be compared with oriented piecewise smooth
submanifolds in differential topology, while the ambient space on which we want
to have Poincaré duality has to be smooth and oriented all over. Zeros of a
volume form could be regarded as a complex analogue of singularities of a real
manifold.5
(b ) Polar intersection number

Let (M,m) be a polar-oriented closed manifold of dimension n. In such a case,
we define the following natural pairing between its polar homology groups
HPp(M ) and HPq(M ) of complimentary dimension (pCqZn).

First, we define the polar intersection number for the case of a smooth
and transverse pair of cycles a and b. That is, aZ(A,a) and bZ(B,b), where A is
a smooth p -dimensional subvariety and a a holomorphic p -form on it (and,
similarly, for (B, b) in dimension q), and it is assumed that A and B
intersect transversely. Then, we have the following formula for the polar
intersection index.
5 For instance, on a complex curve X of genus g one has HP1ðXÞZC
g, and a holomorphic

1-differential representing a generic element in HP1(X) has 2gK2 zeros. From this point of view,
the complex genus g curve is like a graph that has g loops joined by gK1 edges and having 2gK2
trivalent (i.e. ‘non-smooth’) points. The ‘smooth orientable cases’ are CP1, which corresponds to a
real segment, and an elliptic curve, which is a complex counterpart of the circle in this precise
sense.
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Definition 4.3. The polar intersection index of two smooth transverse cycles
(A,a) and (B,b) is given by the following sum over the set of points in AhB,

ðA;aÞ$mðB;bÞ Z
X

P2AhB

aðPÞobðPÞ
mðPÞ :

Here, a(P) and b(P) are understood as exterior forms on TPMZTPA!TPB
obtained by the pull-back from the corresponding factors.

To extend this definition to arbitrary and not necessarily transverse polar
cycles, we apply the following.

Proposition 4.4. For any two polar cycles a and b, there exist polar homologous
cycles a 0 and b 0, which are represented by smooth transversely intersecting
submanifolds.

Proof. By theorem 3.3, if V is a normal crossing divisor in M, then
HPp(M, V )ZHnKp(M, KM (V )). Choose V to be an ample divisor represented
by a smooth hypersurface. Then the right-hand side is 0, and so is HPp(M,V )Z0.
This shows that any polar cycle is homologous to a cycle lying in an ample smooth
hypersurfaceV. Iterating this consideration insideV, we arrive at the fact that any
polar cycle is homologous to a smooth one. An analogous reasoning shows that one
can achieve a transversal intersection for two such cycles. &

It turns out that the definition of polar intersection extends to the classes of
polar homologous cycles.

Theorem 4.5. The polar intersection is a well-defined pairing in polar
homology.

To define the polar intersection pairing, one can compose the homomorphism r
and the product in the Dolbeault cohomology. Namely, according to theorem 3.3,
the groups HPq(M ) and HPp(M ) can be mapped isomorphically to the Dolbeault

cohomology groups Hn;nKq
�v

ðMÞ and Hn;nKp
�v

ðMÞ, respectively. On a polar-oriented
closed manifold, we are given a nowhere vanishing section m of the line

bundle KM. Hence, we have the isomorphism Hn;nKq
�v

ðMÞ����/mK1

H 0;nKq
�v

ðMÞ.
Using this and the product in Dolbeault cohomology, we obtain the following
pairing for pCqZn

Hn;nKp
�v

ðMÞ5Hn;nKq
�v

ðMÞ����/id5mK1

Hn;nKp
�v

ðMÞ5H 0;nKq
�v

ðMÞ/Hn;n
�v

ðMÞ/w C:

One can see that this definition of pairing coincides with the one given in definition
4.3 for transverse representatives. As a by-product, one has the following non-
degeneracy theorem.

Corollary 4.6. The polar intersection pairing is non-degenerate, as a bilinear
form on the polar homology groups

HPpðMÞ5HPqðMÞ/C;

where pCqZn.
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(c ) Polar intersection product

Now, consider the case when on a polar-oriented closedmanifold (M,m), we have
two polar cycles of arbitrary dimensions p and q (not necessarily complimentary
ones). For any p and q, one can define an intersection product in polar homology.

Definition 4.7. To describe this intersection product on two smooth transverse
cycles, we need the following construction from the linear algebra for C-oriented
vector spaces. Let VA, VB3W be two transverse vector subspaces of dimensions
p and q, respectively, in a complex n -dimensional vector space W (pCqRn).
Suppose we are given ‘C-orientations’ of all these spaces; that is, the (non-zero)
exterior forms a02

Vp V �
A, b02

Vq V �
B and m02

Vn W �. Then, the intersection
VAhVB can be naturally endowed with a C-orientation, that is with the exterior
form

g0 Z
a0ob0

m0

:

This notation stands for the following. In coordinate form, we can always choose
the coordinates z1,., zn in W such that the space VA is spanned by z1,., zp and
VB is spanned by znKqC1,., zn, while aZdz1o/odzp and bZdznKqC1

o/odzn. Then, for m0Zc0$dz1o/odzn , one has

g0d
dznKqC1o.odzp

c0
:

It can be readily verified that g0 does not depend on a coordinate choice (see
Khesin & Rosly 2003).

Now, we can define the polar orientation for intersection of polar cycles.

Definition 4.8. For a pair of two smooth transverse polar cycles aZ(A,a)
and bZ(B,b) of dimensions p and q, respectively, in a polar-oriented closed
manifold (M,m), their intersection is a polar (pCqKn)-cycle a $mbZcZ(C,g),
where CZAhB and

gZ
aob

m
:

(Here, the definition of the holomorphic form g on C is given by the linear
algebra above at every point of C ). If p+q!n, then a $mbZ0.

The intersection of smooth transverse cycles

ðA;aÞ$mðB; bÞZ ðC ;gÞ

defines the intersection product in polar homology

HPpðMÞ5HPqðMÞ/HPpCqKnðMÞ;

upon finding smooth transverse representatives for every pair of homology
classes. By theorem 3.3 this product agrees with the product in Dolbeault
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cohomology:

HPpðMÞ5HPqðMÞ/w Hn;nKp
�v

ðMÞ5Hn;nKq
�v

ðMÞ

����/id5mK1

Hn;nKp
�v

ðMÞ5H 0;nKq
�v

ðMÞ/Hn;2nKpKq
�v

ðMÞ/wHPpCqKnðMÞ:

Remark 4.9. We have defined the polar intersection on any complex
manifold M that can be equipped with a holomorphic non-vanishing volume
form m. This is analogous to the topological intersection theory on a compact
smooth oriented manifold without boundary. (Note that the Poincaré duality
in this context should correspond to the Serre duality; cf. Thomas 1997;
Donaldson & Thomas 1998) Furthermore, the consideration above easily
extends to the case of a complex manifold possessing a meromorphic non-
vanishing form m (in particular, to a complex projective space), especially to
the case of a polar-oriented manifold (M,m) with boundary (N, 2pi res m). The
latter setting is similar to the topological intersection theory on manifolds with
boundary. In this case, the above formulae can be used to define the pairing
between polar homology HPk(M ) and polar homology relative to the boundary
HPnKk(M,N ).

5. Polar linking number and Weil pairing

Recall that the Gauss linking number of two oriented closed curves in R
3 is an

integer topological invariant equal to the algebraic number of crossings of one
curve with a two-dimensional oriented surface bounded by the other curve. The
linking number does not depend on the choice of the surface. This follows from
the fact that the algebraic number of intersections of a closed curve and a closed
surface in a simply connected three-dimensional manifold is equal to zero. Note
that the Gauss linking number is a homology invariant in that it does not change
if one of the curves is replaced by a homologically equivalent cycle in the
compliment to the other curve. More generally, the linking number can be
defined for two oriented closed submanifolds of linking dimensions in any
oriented (but not necessarily simply connected) manifold, provided that both
submanifolds are homologous to zero.

(a ) Definition of polar linking number

Polar linkings mimic the classical definition of linking in the polar language.
Let aZ(A,a) and bZ(B,b) be two polar smooth non-intersecting cycles of
dimensions p and q in a polar-oriented closed n -manifold (M,m). Suppose that
these cycles are polar boundaries (i.e. they are polar homologous to 0) and are of
linking dimensions pCqZnK1. Then, one can associate to them the following
polar linking number.

Definition 5.1. The polar linking number of cycles a and b in (M,m) is

[kmða; bÞd
X

P2AhS

aðPÞosðPÞ
mðPÞ ;

where a chain (S,s) has the polar boundary (B,b), v(S,s)Z(B,b).
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In other words, [km(a, b) is the intersection of the polar cycle a and the polar
chain sZ(S,s), provided they intersect transversely.

(b ) Properties of polar linking number

It turns out that the polar linking, being defined analogously to the topological
one, also mimics the properties of the latter.
(i)
Proc.
The polar linking is (anti-)symmetric

[kmða; bÞZ ðK1ÞðnKpÞðnKqÞ[kmðb; aÞ:
(ii)
 It is well defined; that is, [km does not depend on the choice of the polar
chain sZ(S,s), provided that v(S,s)Z(B,b).
(iii)
 For a polar oriented manifold with (polar) boundary there exists a relative
version of [km, as in topology.
The simplest curves that can have non-trivial linking are elliptic curves. The
linking number of a rational curve with any other curve is zero since any
holomorphic differential on a rational curve must vanish. (As discussed above, a
rational curve CP1 equipped with a meromorphic 1-form with two simple poles is
a complexification of a segment, while an elliptic curve with a holomorphic
1-form on it is an analogue of a circle.)

Similar to the Gauss formula for the topological linking number, the polar
linking can be defined via integrals involving the Green function for �v. This
approach to a complex analogue of the linking number can be seen in Atiyah
(1981), Thomas (1997) and Frenkel & Todorov (2002). As noted by Geramisov
(1995, unpublished work), such a Green function plays the role of the propagator
in the holomorphic Chern–Simons theory, which should cause the appearance of
the complex linking number in that quantum theory (in the very same way as the
Gauss linking number appears in the ordinary Chern–Simons theory).

Note also that the polar linking is an invariant of the corresponding polar
homology class [a ]2HPp(M\B). To formulate this property precisely, one needs
a definition of the polar homology of complex quasi-projective manifolds and we
describe it elsewhere.

While the topological linking has a polar counterpart, it is an interesting open
question to find a similar counterpart for the self-linking

Question 5.2. Find a polar analogue of the self-linking number of a framed
knot.

A framing of an oriented knot allows one to define its oriented satellite knot
and to consider linking of the initial knot with this satellite. It would be very
interesting to find analogues of the framings and satellites in the complex
algebraic setting. This might be closely related to the Viro self-linking-type
invariant of real algebraic knots (Viro 2001).

(c ) Intersections with various coefficients

Now, we would like to extend the notion of polar chains and cycles to include
the chains (A,a), where a can be not only a differential form on a subvariety
A3M, but also, for example, a meromorphic section of the normal bundle to A.
R. Soc. A (2005)
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With this more general understanding of polar cycles, one does not need to fix
the non-vanishing form m in the ambient manifold M (and hence to confine
oneself to the class of polar-oriented closed manifolds) to define the polar
intersection theory.

One can define the polar intersection index of two smooth transverse cycles
(A,a) and (B,b) in M by

ðA;aÞ$ðB; bÞZ
X

P2AhB

haðPÞ; bðPÞi;

if a and b at points P assume values in dual spaces. In other words, we consider
the polar chains with appropriate coefficients and h , i is the corresponding
pairing. Recall that the polar intersection

ðA; ~aÞ$mðB; ~bÞ Z
X

P2AhB

~aðPÞo ~bðPÞ
mðPÞ ;

of polar p - and q -cycles (A, ~a) and (B, ~b) in (M,m) with pCqZn discussed in §5b
corresponds to the one just described as follows: aZ ~a is a p -form on A, while
bZ ~b=m is a ratio of an (nKp)-form on B and an n -form on M; that is, a
meromorphic section of LpNB, the pth power of the normal bundle to B, or, in
other words, a p -vector field normal to B in M. The latter can be contracted with
the p -form on A at the intersection points AhB.
(d ) Linkings with other coefficients

Similarly, one can define the polar linking of more general polar boundaries
‘with coefficients’. After passing to a polar chain bounded by one of the cycles,
this chain and the other cycle have to be equipped with appropriate sections
assuming values in dual spaces.

Example 5.3. Let a and b0 be 0-boundaries with certain coefficients on a
complex curve X. Namely, aZ

P
ðPi; riÞ is a 0-cycle, where Pi2X are points with

complex coefficients ri2C, satisfying the exactness condition
P

riZ0, ensuring
that a is the boundary of a 1-chain. The cycle b0Z

P
ðQj ; vjÞ is a set of points

Qj2X with vectors vj2TQj
X assigned to them. (We discuss below the

restriction on b0 imposed by the condition of 0-boundary.)

In this setting, the following polar linking number of a and b 0 is defined. Let
aZvc, where a polar 1-chain cZ(X, a) is such that the 1-form a has poles of the
first order at Pi and satisfies 2pi resPi

aZri. Then,

[kpolarðb0; aÞd
X
j

ivjaðQjÞ:

It turns out that this linking number does not depend (up to a sign) on which of
the two 0-boundaries, a or b 0, we use. The fact that the 0-cycle b0 is a polar
boundary means that there exists a function f with poles of the first order at Qj ,
such that 2pi resQj

fZvj . (Note that the Poincaré residue of a function is a vector

attached at its pole). Then, b0Zv(X,f).
One can see that the linking number [kpolar(b

0, a), evaluated with the help of
the chain (X,f) bounding b0 (rather than a), leads to the same result. Indeed,
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consider the 1-form fa on X. It has poles where so does either the function f, or
the form a. Denote by G the contour encompassing only the poles of a. Then,X

i

fðPiÞ$ri Z 2pi
X
i

resPi
ðf$aÞZ#

G
f$a

ZK2pi
X
j

resQj
ðf$aÞZK

X
j

ivjaðQjÞ:

Note also that the vector field vj attached to Qj can be regarded as an
infinitesimal deformation of the divisor Qj . We are going to exploit this point of
view below.

Remark 5.4. The holomorphic linking suggested by Atiyah (1981) can be
thought of as the polar linking with appropriate coefficients.
(e ) The Weil pairing and reciprocity law

Let f and g be two meromorphic functions on X with disjoint divisors:
div fZ

P
i riPi and div gZ

P
j qjSj , where Pi , Sj2X, while riZdegPi

f and
qjddegSj g are integers.

Definition 5.5. The Weil pairing of functions f and g is ff ; ggZ
Q

j f ðSjÞdegSj g.
The Weil reciprocity law is the symmetry of this bracket

ff ; ggZ fg; f g:
It follows from the identity

#
G
log f $d log g ZK#

G
log g$d log f ;

applied to a contour G embracing div g and leaving div f outside, and using the
identity, that degPgZresP(d log g) for all points P2X.
(f ) Relation of the Weil pairing and polar linking

Let ft and gt be one-parameter families of meromorphic functions on X with
disjoint divisors atd2pi div ft and btd2pi div gt for all t. Note that the divisors at
and bt define polar 0-cycles and these are, in fact, polar 0-boundaries: atZv(X,at),
where atZdft/ft, and similarly for bt.

Consider the infinitesimal deformation a 0
t (respectively, b

0
t); that is the derivative

in t of at (respectively, bt), which can be defined as follows: a 0
tZvðX ;ftÞ, where

ftdðd=dtÞlog ft is a meromorphic function on X. Suppose that ft has only simple
poles, so that (X,ft) is a polar chain.Note that a 0

t and b
0
t are polar 0-boundaries ‘with

coefficients’—a set of points with certain vectors attached.

Proposition 5.6. The following relation between the Weil pairing and the polar
linking holds

2pi
d

dt
logfft; gtgZ [kpolarða 0

t; btÞC[kpolarðb0t; atÞ:
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Proof. Indeed,

2pi
d

dt
logfft; gtgZ#

G

d

dt
ðlog ftÞ$

dgt
gt

K#
G

d

dt
ðlog gtÞ$

dft
ft

Z [kpolarða 0
t; btÞC[kpolarðb0t; atÞ:

Here, we used that

#
G

d

dt
ðlog ftÞ$

dgt
gt

Z#
G
ft$

dgt
gt

Z [kpolarða 0
t; btÞ;

and, similarly, for [kpolarðb0t; atÞ. &
(g ) Higher-dimensional generalization and Parshin symbols

On an (nK1)-dimensional complex manifold X, consider n functions f1,., fn
whose poles and zeros are of the first-order. Assume also that their poles and
zeros divisors are normal crossing and in general position. Define the bracket
{f1,., fn}, which has similar symmetry properties to the Weil pairing.

Definition 5.7. For meromorphic functions f1,., fn on X, define the following
bracket

ff1;.; fngd
Y
P

f1ðPÞdPðf2;.;fnÞ;

where the product is taken over all points P belonging to the intersection of the
divisors jdiv f2jh/h jdiv fnj. If P2D2h/hDn, where Di is a component of the
divisor div fi entering with multiplicity di (which is G1 by the assumption), then
dP(f2,., fn)dd2$.$dn.

In fact, here we iterate the following procedure. Take div fn and restrict to it the
remaining functions f1,., fnK1. (For dim XZ1 above,we considered the restriction
of fZf1 to the divisor of f2Zg.) Repeat the procedure until we come to the points and
can consider the corresponding Weil pairing.

Remark 5.8. Note that the brackets {f1,., fn} can be thought of as the
Parshin symbols defined generally for meromorphic functions in the presence
of a flag of subvarieties (see Parshin 1977; Brylinski & McLaughlin 1996). The
symmetry properties of the above brackets in f1,., fn are a particular case of
Parshin’s reciprocity laws. For instance, the symmetry in f1 and f2 is evident,
as it follows from the Weil reciprocity law in dimension 1 after the restriction
to a curve.
(h ) Higher-dimensional brackets and higher polar linking

To discuss the relation of the bracket in definition 5.7 above and the polar
linking of cycles, we confine the discussion to the case of dim XZ3, although
what follows can be carried over to n dimensions.
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Let f1,t ,., f4,t be meromorphic functions on X as above, depending on a
parameter t. Define

ai;tdvðX ; d log fi;tÞ;

an exact 2-cycle on the three-dimensional X with values in integers (0-forms). Its
derivative

a 0
i;tdv X ;

d

dt
log fi;t

� �

is an exact 2-cycle with values in normal vector fields. (Here, fi;tZðd=dtÞlog fi;t
is a meromorphic function, assumed to have simple poles. Its residue is a normal
vector field on the corresponding divisor of poles.)

Then, the following relation holds:

ð2piÞ3 d

dt
logff1;t;.; f4;tgZ

X
[kpolarða 0

1; a2$a3$a4Þ;

where the sum is taken over all cyclic permutations. Here, a2$a3$a4 is the exact
polar 0-cycle, obtained by intersecting the corresponding divisors ai and
multiplying the numbers on them, which can be linked with the 2-cycle a 0

1 in
the three-dimensional X.

By definition of [kpolar, the right-hand side can also be rewritten as the
multiple polar intersection

[kpolarða 0
1; a2$a3$a4ÞZA1$a2$a3$a4;

where vA1Za 0
1. This form can be rewritten via pairwise intersections, for

example, as (A1$a2)$(a3$a4). The latter product establishes the relation of the
bracket in definition 5.7 with the polar linking of 1-cycles

ð2piÞ3 d

dt
logff1;t;.; f4;tgZ [kpolarðc 012; c34ÞC[kpolarðc 034; c12Þ;

where the curves c12Za1$a2 and c34Za3$a4 are pairwise intersections of the
divisors, and, c 012da 0

1$a2Ca 0
2$a1, for instance, can be regarded as the

t-derivative of c12.

Remark 5.9. The higher polar linkings appear as the answers for the
correlators of the abelian holomorphic Chern–Simons functional on higher-
dimensional complex manifolds. The most intriguing case is that of a non-abelian
holomorphic Chern–Simons theory on a three-dimensional Calabi–Yau manifold,
which is expected to produce holomorphic analogs of Vassiliev (finite-order) link
invariants.
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