
Physica D 40 (1989) 119-131 
North-Holland, Amsterdam 

INVARIANTS OF THE EULER EQUATIONS 
FOR IDEAL OR BAROTROPIC HYDRODYNAMICS AND SUPERCONDUCTIVITY 
IN D DIMENSIONS 

B.A. KHESIN and Yu.V. CHEKANOV 
Differential Equation Division, Department of Mathematics, Moscow State University, Moscow 119899, USSR 

Received 15 December 1988 
Revised manuscript received 14 March 1989 
Accepted 21 March 1989 
Communicated by V.I. Arnoi'd 

The Hamiltonian formalism for the Euler equations of an ideal fluid, superconductivity and a barotropic fluid on a 
D-dimensional Riemannian manifold is proposed. We show that each of these equations has an infinite series of integrals if D 
is even ("generalized enstrophies") and at least one integral if D is odd ("generalized helicity"). We prove that the magnetic 
hydrodynamics integral f(v, B)# is equal to the average linking number of vector fields rot v and B in terms of the ergodic 
theory. All the invariants considered are Casimir dements (i.e. invariants of coadjoint action) of the corresponding 
infinite-dimensional Lie algebras. 

1. Introduction 

The equations of an inviscid incompressible fluid 
are Hamiltonian ones on the orbits of the group of 
volume-preserving diffeomorphisms [1, 2, 4]. It 
is well known that for a two-dimensional flow 
there are an infinite number of area integrals 
(ff(rotv)dZx) and for a three-dimensional one 
there is a total helicity integral (f(rot v, v)d3x). 

The primary purpose of thiS'~l~per is to show 
that the equations of the ideal fluid have an infi- 
nite number of integrals on an !'arbitrary even- 
dimensional manifold M (D = dim M = 2rn) and 
(at least) one integral for odd D. 

The statement mentioned was settled for the 
standard R D with the help of some explicit coor- 
dinate calculations by Serre (see ref. [15]). His 
method is based on the Hamiltonian structure of 
the Euler equations proposed by Olver [13]. We 
show that Olver's formulation coincides with the 

one given by Arnord (see refs. [2, 4, 7]). Thus we 
answer the question raised in ref. [13] about the 
relation of these two approaches. Note that our 
generalizations differ greatly from those proposed 
by Dezin in ref. [6] (where the odd-dimensional 
integral is obtained). 

Sections 3 and 4 contain the multidimensional 
generalizations of superconductivity and barotro- 
pic fluid equations. We show that these equations 
are Hamiltonian ones and find their con- 
servation laws analogous to the hydrodynamical 
invariants. In the superconductivity case the phase 
space is identified with the dual space (whose 
origin is displaced) to the infinite-dimensional Lie 
algebra of all divergence-free vector fields. 

The Euler form of these equations differs from 
the standard hydrodynamics equation by the Cori- 
oils-type term. Analogous results for the three- 
dimensional superconductivity equations were 
obtained by Holm and Kupershmidt (see ref. [11]). 
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The configuration space of the barotropic fluid 
is a semidirect product of the diffeomorphisms' 
group and the space of all functions on the mani- 
fold considered. The similarity of the barotropic 
fluid to the ideal one can be explained by its 
"incompressibility" in the coordinates connected 
with the density. Some results on two-dimensional 
barotropic flows can be found in an article by 
Holm et al. [12]. 

In the final section we describe the ergodic 
interpretation of the three-dimensional magnetic 
hydrodynamics integral in the spirit of ref. [5]. We 
show that the invariant f(B, v)d3x coincides with 
the average linking number of the rotor vector 
field rot v and the magnetic vector field B. 
One of the crucial points of ref. [5] is the ergodic 
interpretation of the total helicity. The ergodic 
interpretation of multidimensional (magneto-) hy- 
drodynamics integrals is an open and intriguing 
problem. 

All the integrals in question are invariants of 
the coadjoint representation of the corresponding 
Lie groups (the so-called Casimir elements), i.e. 
they do not depend on the particular choice of the 
Hamiltonian. This opens the way to the investiga- 
tion of the nonlinear stability problems by Routh's 
method [12]. We also think that information about 
the orbits can be of help in the study of the 
Cauchy problem of multidimensional hydrody- 
namics. 

Note that the existence of an infinite number of 
integrals for the flow of an even-dimensional fluid 
does not imply a complete integrability of the 
corresponding hydrodynamics equations. The in- 
variants considered only define the coadjoint or- 
bits (generally speaking, infinite-dimensional), on 
which the evolution takes place. For the equations 
on this manifold-orbit there is a unique energy 
integral while the integrability requires an infinite 
number of them. 

Information about the orbits of the coadjoint 
action (and, hence, about the geometry) of the 
corresponding infinite-dimensional Lie groups is 
probably more important in itself than its hydro- 
dynamics applications. 

2. Hydrodynamics on the Riemannian manifold 

Let M D denote a compact Riemannian mani- 
fold (without boundary) and g its volume form 
(which, in general, has no connection with the 
form induced by the metrics (., .)). The equation 
of the incompressible fluid on M is: 

e =  v p ,  (1) 
divv= O, 

where v and p are a time-dependent vector field 
and a function on M, (v, X7 )v denotes the covari- 
ant derivative Vdo for Riemannian connection. 

Theorem 1. Eq. (1) has 
(i) the integral 

I (v )  = fM u A ( d u ) "  (2a) 

in the case of an arbitrary odd-dimensional mani- 
fold M (D = 2m + 1); 

(ii) an infinite number of integrals 

f f (  (du)m)# b ( v )  = (2b) 

in the case of an arbitrary even-dimensional mani- 
fold M (D = 2m), where u is a 1-form induced 
from v by the "lifting of indices" defined by the 
metrics 

v  rxM, 

and f is an arbitrary function of one variable. 

Proof. Let G be the group of all diffeomorphisms 
preserving volume # and ~ be the Lie algebra of 
all divergence-free vector fields. Let ~2 k and d~k_  1 

denote the spaces of all k-forms and exact k-forms 
on M, respectively. 

Lemma 1. (See also ref. [7].) There exists a natural 
isomorphism between spaces if* and 121/df~ o. The 
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corresponding pairing is 

= 

Definition 1. The standard linear Poisson structure 
on if* maps each functional F on ~* to its 
Hamiltonian equation (called Euler-Arnol'd's 
equation, see refs. [1, 4]), 

where v ~ if, and the form u ~ I2~ is an arbitrary 
representative of [u] ~ I21/dJ20. 

Proof. The exact forms correspond to the zero 
functional, since 

fMd f ( v )  p = fMdf  A idx = O. 

The vanishing of this integral follows from the 
fact that the G-invariance of # implies the dose- 
ness of ivg and, hence, the exactness of d f A  iv#. 
Thus, the definition of the change of variables in 
the integral and the invariance of # imply the 
coincidence of the coadjoint G-action with the 
G-action on the space of 1-forms. 

Proposition 1. The following integrals on ~* are 
invariants of the coadjoint action: 

(i) in case D = 2m + 1 

[ill = --adsF/sN[u], 

where the variational derivative 8F/8[u] E f~ is 
defined by the relation 

+ 

for each w ~ ~*. 
Note that operator ad* [u] coincides (by propo- 

sition 1) with the operator Lv[u ] of the Lie deriva- 
tive determined by the vector field v on M (the 
definition is correct since L commutes with d). 

Definition 2. Let (., .) be ithe Riemannian metrics 
on M (whose volume form in general differs from 
the given volume #). It defines a nondegenerate 
scalar product on &: 

= ^ ( d u )  m, 

(ii) in case D - 2m 

and, hence, an invertible operator A: ~---, f~*, 
called the inertia operator (see ref. [4]). It maps 
the vector field v to class [u], satisfying the follow- 
ing relation: 

where f is an arbitrary function of one variable. 

Remark 1. Obviously, the given functionals are 
properly defined on ~*, i.e. they do not depend on 
the choice of the representative in class [u]. 

where u is an arbitrary representative of [u]. Thus, 
~* inherits from ~ the nondegenerate scalar 
product (., .)~¢,. We define on ~* the Hamiltonian 
function 

z ( [ u l )  = 

Proof. Since the coadjoint action coincides with 
the change of variables (see lemma 1), our state- 
ment follows from the coordinate-free definition 
of the corresponding integrals. 

Since H is quadratic, its variational derivative is 
8H/8[u] =A- t ( [u ] ) .  Hence, the Hamiltonian 
equation for H coincides with [~] = - L  v[ u], where 
[u] =.,iv. 
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In this equation we may pass from the classes to 
the particular representatives: ti = -L~u  + d~. 
Operator A -1 transforms it into the following 
equation on if: 

6 =  - ( v , V ) v +  dp ,  

Remark 3. The integrals I([u]) and If([u]) do not 
form a complete set of continuous invariants of 
coadjoint orbits. By analogy with two- and three- 
dimensional cases [5], it is possible to construct 
parametrized families of orbits with equal values 
of these functionals. 

called the Euler equation of the ideal incompress- 
ible fluid (see refs. [1, 4]). 

The equation 03 = - L v t 0  on the space of all 
exact 2-forms (to---du) is called the Helmholtz 
curl equation. The same equation with a more 
coordinate-like definition appears as Olver's 
Hamiltonian formulation (see eq. (3.9) of ref. [13]). 

Remark 4. The manifold M may be multi- 
connected. In the nonsimply connected case the 
cohomological class of [u] is also an invariant 
(compare ref. [3]). Other examples of discrete in- 
variants of the Euler equation are the number of 
points on M where du degenerates and the orders 
of its degeneracy (here [u] = Av). 

Lemma 2. Invariants I([u]) and I/([u]) for [u] = 
Av are constant on the trajectories of the Euler 
equation. 

Proof. The Hamiltonian character of [u] implies 
its tangency to the orbits of the coadjoint G- 
action on f#*. Hence, Iy([u]) and I([u]) are its 
integrals. Lemma 2 and, hence, theorem 1 are 
proved. 

For example, in the standard metrics of R 3, 
integral (2a) coincides with 

I (v )  = f ( v ,  rot v)~t, 

Remark 5. The manifold M may be noncompact 
or may have a boundary (we may consider M = 
R o). In general, we should consider vector fields 
tangent to the boundary. 

The rest of the section is devoted to the case of 
the odd-dimensional fluid. Theorem 1 provides in 
this case the existence of one invariant. The geo- 
metrical approach to its proof allows to obtain the 
following statements. 

Corollary 1. On an odd-dimensional manifold (D 
= 2m + 1) the curl vector field (i.e. the kernel of 
(du) m) is "frozen in the fluid." 

and for R 2 integral (2b) coincides with 

i: v) = f Irot v) = fy aho) 

where h a is the "flow function" of the vector field 
v relative to the symplectic form/~ (see ref. [4]). 

Remark 2. The invariant (2b) of the plane-parallel 
2m-dimensional flow induced by ( 2 m -  1)- 
dimensional flow is trivial, since (du) m = 0. There- 
fore, the reduction of dimension gives no integrals 
different from (2a). 

Proof. The rotor vector field to is defined by the 
condition io, # = (du) m. 

Class [u] (and, hence, (du) m) is transported by 
the flow; volume /t is invariant and, hence, the 
vector field to is also transported geometrically 
(i.e. is "frozen in the fluid"). 

Corollary 2 .  (For D = 3 see ref. [5].) The equation 
of an odd-dimensional incompressible fluid has a 
set of integrals: 

I t ( v )  = ~c u A (du)  ~ 
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where the integral is taken over each ergodic com- 
ponent of the momentary curl vector field. 

The proof follows immediately from the Stokes 
formula and from the observation that the restric- 
tion of (du ) "  on the boundary of any ergodic 
component vanishes. 

Corollary 3. Let v denote a vector field of a flow 
of an incompressible fluid on an odd-dimensional 
manifold and f a function preserving its values 
for each fluid particle, i.e. L f f  =- 0 (for example, f 
is one of the Lagrangian coordinates of the fluid). 
Then the flow " in  the general position" is "com- 
pletely integrable" in the following sense. There 
exist D functions independent of M almost every- 
where, forming a complete set of Lagrangian coor- 
dinates. In other words, knowing the solution of 
the Euler equation (the time dependence of the 
velocity) and knowing one of the Lagrangian coor- 
dinates, we can calculate the other ones. So, we 
can define the location of any fluid particle at an 
arbitrary moment avoiding integrating the veloc- 
ity. 

Proof. Since the curl vector field a~ and function f 
are "frozen in the fluid" for the flow correspond- 
ing to v, the derivative of f along ~ is "frozen" 
too, i.e. it is transported as a function. Iterating 
the procedure, we obtain for "general" f and 
the functions 

f ,  Lo, f , L,oL,, f . . . . .  L o , . . .  L, , , ,  

2m 

which are almost everywhere functionally inde- 
pendent and thus can be used as Lagrangian coor- 
dinates. 

Remark 6. A three-dimensional manifold M is 
decomposed into a finite number of cells by the 
critical levels of some function f corresponding to 
a stationary flow v [1, 5]. In any of these cells 
diffeomorphic to the product of a torus and of an 
interval, fields v and ~ = rot v are tangential to 
the level surfaces of f (which are diffeomorphic to 
a torus) and define there periodic and quasi- 

periodic motions. Choosing f as one of the 
Lagrangian coordinates, we obtain L j  = 0 (by 
the tangency condition of the vector field w and 
the level surfaces of f ) ,  i.e. the second Lagrangian 
coordinate constructed by this method is trivial. 
Hence, an ergodic behavior of the flow on some of 
the tori is possible. 

Remark 7. In the case of D = 3 the integral I(v) 
has an ergodic interpretation as the average self- 
linking number of rot v (see ref. [5]). For D > 3 a 
similar interpretation is unknown. 

3. The generalized superconductivity equation 

The connection of superconductivity to the 
equations of the incompressible fluid is due to the 
fact that at a high density an electronic gas is 
similar to a fluid. Indeed, the repelling of the 
particles having equal charges in the electronical 
clusters makes the gas incompressible. 

The equation of (nonrelativitic) superconductiv- 
ity in R 3 is 

(~= - ( v , V ) v - v X B +  Vp, (3) 

where v denotes a divergence-free field of the 
electronic gas velocity, B a constant external di- 
vergence-free magnetic field, and symbol × the 
vector product for the standard metrics [9]. 

We define the analog of this equation on an 
arbitrary manifold. Let M be an arbitrary D- 
dimensional manifold with volume # and the 
Riemannian metrics g. We suppose that v is 
divergence-free with respect to #, and B is a 
"strictly divergence-free" (D - 2)-vector field with 
respect to volume vrg, i.e. the substitution of B in 

is exact: Ln~/~ = da  (for example, in the case 
of H2(M ) = 0, the condition d i s k  = 0 is suffi- 
dent).  We define "the vector product" of field v 
and (D - 2)-vector field B in the standard way: 

vXB= , ( v^  B), 



124 B.A. Khesin and Yu. V. Chekanov / Inoariants of the hydrodynamic equations 

where * is the isomorphism of k- and ( D -  k)- 
vector fields induced by the metrics [8]. We call (3) 
the generalized superconductivity equation. 

Theorem 2. The multidimensional superconduc- 
tivity equation (3) has 

(i) an integral 

I ( v )  = f M ( U + a ) A  [d(u  + a)] m 

in the case D = 2m + 1, and 
(ii) an infinite number of integrals 

in the case D = 2m, where a is a 1-form satisfying 
the relation da  = inx/~. The 1-form u is obtained 
by the "lifting of indices" of field v with the use 
of metrics g. 

Lemma 3. The inertia operator A transforms eq. 
(3) into the following equation on ~*: 

(4) on the quotient space 12t/d~20. For the repre- 
sentatives of the conjugate classes eq. (4) reads: 

a = - L v ( u  + a) + d¢ .  

Lemma 3 is proved. 

Proof of theorem 2. Eq. (4) can be written as 

- L o [ u +  

since the constancy of the magnetic field B im- 
plies [a] '= 0. This form of eq. (4) enables us to 
conclude that [u + a] moves along an orbit of the 
coadjoint G-action. 

The functionals (2a) and (2b) evaluated at 
[u + a] are constant along the orbits of these points 
in ~*, since the G-action is a change of the 
variables in the expression [u + a]. These orbits 
coincide with the affine shifts by [a] of the stan- 
dard orbits of the coadjoint action on ~*. In 
particular, these functionals, evaluated at [u + a], 
where [u] = Av, are invariant along the solution of 
eq. (3). 

[ u ] ' =  - L ~ [ u + a ] ,  (4) 

where da = is~fg, v= A-l[u]. 

Proof. The inertia operator A (see section 1) is the 
composition of the "lowering-of-indices" operator 
and of the projection ~1 ~ 121/d12o- Hence, 

A ( v X B ) = A ( * ( v A B ) )  

= = 

= [ ioda]  = I L i a ] .  L~[a] 

(the second identity follows directly from the def- 
inition of * (see ref. [8]) and the fifth one from the 
homothopy formula: 

Corollary 4. Let [u'] be the new coordinate on if* 
different from the standard one by the shift of the 
origin to the point [ - a ] :  [u'] = [ u +  a]. Then eq. 
(4) is a Hamiltonian one on coadjoint orbits with 
the Hamilton function H = ½([u' - a],[u' - a]) 
with respect to the standard linear bracket on a 
new if*. 

Indeed, eq. (4) is [u'] '= L~[u'] for the new coor- 
dinate [u'] and Av = [u' - a]. 

4. The multidimensional barotropic fluid 

A barotropic fluid (whose pressure depends only 
on the density) on a manifold M with metrics g is 
described by the following system of equations on 
the velocity v and the density p: 

L~-- i~d + di~. 

Therefore, in analogy with section 2 we obtain eq. 

e =  - ( v , v ) v +  v h ( p ) ,  

+ div(pv)  = 0. 
(5) 
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We use the D-form O of density O=pp  
~D(M), where p is the density function and # the 
standard volume form induced by the metrics /~ 

=vq.  

The equations of the barotropic fluid are the 
Hamilton equation on the orbits of the coadjoint 
representation of this group, where the Hamilton 
function is 

Theorem 3. Eq. (5) of the barotropic fluid admits 
(i) an integral 

I (v)  = f M  A ( d u ) "  

on an arbitrary odd-dimensional manifold (D = 
2m + 1), 

(ii) an infinite number of integrals 

o l °  

on an arbitrary even-dimensional manifold (D = 
2m), where 0 = p# and u is the 1-form obtained 
from v by the "lifting of indices." 

Proof. A heuristic proof of the theorem is based 
on the fact that the fluid is incompressible with 
respect to the new volume 0 (depending on time 
and on the initial conditions), since the density is 
transported by the flow. Thus, we can apply theo- 
rem 1, whose assumptions demand no connection 
between metrics and volume. The rest of the sec- 
tion contains a more detailed consideration of the 
geometry and a direct proof of our statement. 

The configuration space of this fluid is a semidi- 
rect product of the diffeomorphisms' group and of 
the space of all functions on M:  G = D i f f ( M )  
t,< C~ (M ) .  Recall that the group structure on G is 
defined by the formula: 

(qo, a)  * (~ ,  b) = (¢p * ~b, qo,b + a)  

and the commutator in the Lie algebra # is 

[(v, a) ,  (to, b)l = ([v, to], L , b  - Loa), 

where qo, ~ ~ Diff (M),  a, b ~ C~(M),  v, to 
Vect(M),  and the square brackets [v, to] denote 
the ordinary commutator of the vector fields. 

p) --= fM[+p+ + 

= h(p). 

The dual space to Vect(M) can be identified 
with the tensor product o l ( n ) ®  12O(M) (with 
the natural pairing: the vector field is substituted 
in the 1-form and the obtained D-form is inte- 
grated over M).  Hence, elements of #* are pairs 
(fl, 8), where fl ~ ~2X(M) ® ~D(M) and 0 E 
lID(M). The coadjoint action of the element 
(~p, a) ~ Di f f (M)  t~ C ~ ( M )  is 

Ad~;p,,o(fl, O) = (qo,fl + da  ® qo,O, qo,O). 

Note that u = fl/O has the geometric sense of a 
1-form. 

Proposition 2. The functional l(fl, O) = fu ^ 
(du) '~ in the case D = 2m + 1 and the functionals 
If(#, 0) = ff((du)"/O) 0 in the case D = 2m 
(where u = fl/O ~ ~2t(M)) are invariant under the 
coadjoint G-action on #*. 

Proof. 

Ad~ ,a ,u=Ad~,a ) ( f l )=  ~p,fl+da®ep,Oep,O 

=~p, ( f l )+da=cp,u+da,  

i.e., the 1-form is transported by the flow modulo 
a differential of a function; the action on class 
[u] ~ I21/d12 ° as well as on 0 ~ a2 D is reduced to 
the change of variables. Now the proposition (as 
well as proposition 1 in section 2) follows from the 
coordinate-free definition of I and lf. 

The inertia operator ,,1: ~ ~*, defined by the 
metrics, admits the following expression: (v, 0) 
(u ® 0,0), where 0 = 0/~ is the density form and 
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1-form u i s  obtained from v by the "lifting of 
indices." Thus, theorem 3 immediately follows 
from proposition 2 in analogy with section 2. 

5. The  ergodic interpretation of three-dimensional 
magnetohydrodynamics 

In magnetohydrodynamics we assume that the 
magnetic field B is "frozen" in the ideal fluid of 
infinite conductivity filling a manifold M. The 
fluid flow preserves the volume/~ on M induced 
by the metrics g. The velocity field v and the 
"frozen" magnetic field B (div v = divB = 0) sat- 
isfy the so-called magnetic hydrodynamical equa- 
tions: 

6= - (v, XT)v + rot B × B +  xTp, 

/~= [v, n ]  (6) 

(the second equation is the definition of the 
"frozeness" of the field B, [., .] denotes the com- 
mutator of two vector fields). 

These equations are connected with the Lie 
algebra ~-= fft~ if*, which is the semidirect prod- 
uct of the Lie algebra ff of all divergence-free 
vector fields on M with the volume/~ and of its 
dual space ~*. The dual space ~-~-* coincides with 
~* ~ ff as a linear space. 

Proposition 3. (Compare with refs. [10, 16].) 
(i) The equations of the magnetic hydrodynam- 

ics (6) are Hamilton equations on the space ~-* 
relative to the standard Poisson bracket. 

(ii) The quadratic form J([u], B ) =  f~tu(B)l~ 
on ~-* is an invariant of the coadjoint representa- 
tion of the corresponding Lie group F = G ~ if* 
(here B ~ ~,  [u] ~ I21/d~2 ° = ~* and u ~ $2 x is a 
representative of [u]). 

Proof. 

(i) By definition the commutator in fft~ ~* is 

[(,,, 
= ( [ v ,  =1 ~, ad* [/31 - ad* [ e l ) .  

This formula implies the following formula for the 
coadjoint ~ a c t i o n  on ~ * :  

ad(*,t~l)([ u ], B)  

= (Lv[u ] - Ln[a ],[v, s l y ) .  (7) 

An arbitrary metrics on M (see section 2) defines 
an inertia operator A : f f ~  &*, which determines 
a scalar product on ~'*.  The corresponding 
quadratic form is 

Hmag([u], B) -- ½([u], A - l [ u ] )  + ½(B, AB). 

The Hamiltonian equations on ~ *  with the 
Hamilton function H~ag is, according to (7), 

[ u ] ' =  -L~[u] + Ln[b 1, 
( 8 )  

where v = A - X[u], [b] = AB. 
One can easily check that if the volume form is 

defined by the metrics on M, then operator A-1 
maps Ln[b ] to rot B ×  B (see section 3), and, 
hence, it maps [u]" to the vector field 

6= - ( v , V  )v+ ro tB×B + Vp. 

This equation together with the relations h = 
[v, B]~ and div B = div v = 0 forms the system of 
magnetic hydrodynamics equations. Thus, eqs. (8) 
are their invariant formulation. 

(ii) The invariance of the quadratic form J can 
be verified by the explicit calculation using the 
following coadjoint action of the group F: 

* u B )  Ad(~,t.l)([ ], 

= 

Note that the invariance of J with respect to the 
algebra action implies only the constancy of J on 
the connected components of the coadjoint orbits. 
This ends the proof of proposition 3. 

Corollary 5. (See ref. [16].) The value of fM(v, B) I~ 
is preserved on the trajectories of the magnetic 
hydrodynamics equations (8). 
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Indeed, these trajectories are the inverse images 
of the trajectories of (8) on the F-orbits in ~-* 
(v = A -l[u]) ,  on which (by proposition 3) fu (B)  
is preserved. 

The main goal of this section is to give an 
ergodic interpretation of the magnetic hydrody- 
namics invariants that we have found. At first we 
give the definition of the average linking number 
of two divergence-free vector fields [5]. 

Let M 3 be a simply connected manifold with 
volume/ t ,  and ~ and *1 two divergence-free vector 
fields on M; g~ and g~ denote their phase flows, 
For  two points x, y ~ M given, we define the 
"asymptot ic  linking number" of the trajectories of 
g~ and g~ starting in x and y, respectively. For 
this purpose we at first connect any two points on 
M by a "shor t"  path A (the conditions imposed 
on the short path will be described below and are 
satisfied at "almost  any"  choice of the "short"  
paths A). 

We select two large numbers T and S and close 
the segment g~x (0 < t < T) and g~y (0 < t < S) 
of the trajectories issuing from x and y by "short"  
paths A(g[x, x) and A(gSy, y), so that we obtain 

two closed curves F =  Fr(x ) and F '= Fs(y ). We 
assume that these curves are nonintersecting (this 
is true for almost all pairs of x and y, and for 
almost all T and S). Then the linking number 
Nr, s(X, y) of F and F'  is defined. 

Definition 3. The asymptotic linking number of 
the pair of the trajectories g~x and g~y is defined 
as the limit 

lim Nr's(X'  y) 
h ( x ,  y )  = r,s-.o~ TS 

Definition 4. The average linking number 2~ of two 
divergence-free vector fields is 

h = f M f ~ (  xl ,  x2) t~l#2 • 

Now we can state the main result, which is a 
modification of the correspondent statement by 
Arnol'd [5]: 

Theorem 4. The average linking number h of two 
divergence-free vector fields ~ and ,/ on a simply 
connected three-dimensional manifold M with 
volume ~ coincides with 

fMi~l~ A d-1(in/x). 

The condition of the vanishing of the divergence 
for the vector field 7; on M is equivalent to the 
condition di n ~ = 0 or in# = dr ,  while the integral 
f i t# A p evidently does not depend on the free- 
dom in the choice of i, ~ ~21(M). 

Corollary 6. The magnetic hydrodynamics invari- 
ant f(v,  B ) #  on a simply connected three-dimen- 
sional manifold coincides with the average linking 
number of the vector fields rot v and B. Indeed, 
applying our theorem to the vector fields ~ = B 
and ~1 = rot v (and using the relation [u] = Av, du 
= irotv/X), we obtain 

x A d-t(irotv/. t)  = f i . z  ^ d - l ( d u )  

QED 

(T  and S are to vary so that F and F' do not 
intersect). 

Further we are going to prove that this limit 
exists almost everywhere and is independent of 
the system of "short"  paths A (as an element of 
LI( M × M)). 

Note that, in spite of the dependence of v = 
A- l [u ]  on the choice of the metrics, the field rot v 
is defined unambiguously as the kernel field:of- 
d[u]. 

The ergodic interpretation of f(v,  B)tL as  of an 
average linking number of rot v and B i ssome-  
how unexpected, since rot v (in contrast to B)  is 
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not "frozen" (see eq. (8)). The evolution changes 
the field [u] (and, hence, d[u] as well) by some 
additive summand, which depends on B, but it 
turns out that the average linking number of the 
kernel field and field B is preserved. 

Remark 8. In ref. [5] this result was proved for the 
coincident ~ and ~1 (for this case the integrability 
of the unbounded functions arising in the proof 
was checked). This gives an ergodic interpretation 
for the total helicity integral. 

The proof proposed below is a more invariant 
reformulation of the correspondent argument of 
ref. [5] and it enables to prove the integrability in 
the more general case. 

Proof. Recall some facts about double bundles 
and Gauss-type linking forms. 

Proof of proposition 4. Let D = d x + dy be the 
operator of the external derivative on ~2(M x M). 

Lemma 4. 

dx'-"~ = do ~ .  

Indeed, 

[d x A(x, y)]  A ¢p(y) = dx [A(x, y)  A q0(y)l 

and thus, 

f_~(x)[d~A(x, y)] A ¢p(y) 

=d( L_,(xIA(X, Y) A eP(Y) )" 

Definition 5. K~ ~22(MXM) is called a linking 
form on a simply connected manifold M 3, if for 
an arbitrary pair of nonintersecting closed curves 
F 1 and F 2 we have: 

fF~ K = N(/'x'/ '2)  
×-FzcM×M 

where N(Fp/'2) is a linking number of F x and F 2 
on M, F l x F 2 = { ( x , y ) ~ M x M l x ~ I ' x , y ~  
F 2 }. The existence of such a form will be settled 
later. 

Definition 6. Each form A(x, y) ~ O( M x M) de- 
termines an operator A: f~(M) ~ ~2(M) such that 
cp(y) ~ f,~-kx)A(x, y) A cp(y), where ~r: M X M 

M is the projection on the first component and 
the integration is performed over the fibres of this 
projection. 

Proposition 4. An operator g corresponding to 
the linking form is a Green operator, i.e., an 
operator inverse to the external derivative: if tk = 
dcp and ¢p ~ QX(M), then ¢p = g(tk)  + d f  (the 
summand d f  points that q~ can be defined by 
only modulo a full differential). 

Lemma 5. If A is a 1-form in the variable y, then 
dyA=Aod. 

Indeed, 

f,,-~(x) [dyA(X, y)]  A rp(y) 

= L_I(xA(X, y) A dcp(Y) • 

Lemma 6. The external derivative of a linking 
form is DK = 3 + fl, where 8 is the 8-form on the 
diagonal in M x M and fl ~ Q3(M x M) is a lin- 
ear combination of dosed (and, thus, exact) forms 
with respect to each of the two arguments. 

Proof. 

N(F1, F2) = fqxr2 K= fa-~(_r,lxr2) DK 

= f~ DK. a-tFO×/" 2 

On the other hand, by the definition of the linking 
number as the intersecting number of the cycle F 2 
with a film 0-1F1 (whose boundary is Ft) we 
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obtain 

N( r , , / ' 2 )  = [ 6. 
,( a-'r,)xr2 

Then the statement follows from the fact that 

f( /3=0. 
o-'r,)×r2 

Remark 9. In spite of the nonvanishing of the 
cohomological class of 6 (since the diagonal 
in M × M is not a boundary) we can choose fl 
satisfying the vanishing condition for the cohomo- 
logical class of 6 + fl (the diagonal can be decom- 
posed in the sum of homology groups' generators). 
Thus, we have proved the existence of a linking 
form K as the solution of the equation: 

DK= 0 ~ H3(M× M). 

To finish the proof of proposition 4 we pass in 
the equation DK = 6 + fl from the forms to the 
operators: D K = 6 + f l  or d x K + d y K = 6 + f l .  
Since the 6-form corresponds to the identity oper- 
ator, and the image of the operator/~ belongs to 
the space of the exact forms by lemmas 4-6 we 
obtain 

d o / ~ + / ~  od--- id + d* ~. 

Applying these operators to the form cp we get 

do/~(~0) +/~(d(p) -- q~ + do -~(¢p). 

Since ff = d~p, the final formula is 

¢p =/~( t})  + df .  QED 

Lemma 7. There is the linking form K(x, y) hav- 
ing a pole of degree 2 on the diagonal of M × M, 
i.e. its coefficients grow as c / Ix-y l  2 (we use an 
arbitrary metrics on M × M induced by a metrics 
on M). 

Proof. In fact, the linking number of F 1 and F 2 
coincides with the linking number of F 1 × F 2 and 
of the diagonal in M × M. We identify a neigh- 
bourhood of the diagonal in M × M and a neigh- 
bourhood of zero-section in normal bundle of the 
diagonal (i.e. in TiM) by the exponential map. 
Then in every fibre (that is a neighbourhood of 
0 ~ R  3) we consider the standard linking form 
with the point 0. This linking form coincides with 
substitution of vector field X T ( - 1 / r ) =  (Vr)/r  3 
(with a pole in 0 of degree 2) to the standard 
volume form in a fibre. At least, let this form be 
vanished on vectors parallel to M c T j_ M. So, the 
corresponding linking form in M × M has a pole 
of degree 2 on the diagonal. QED 

Corollary 7. The linking form K is integrable, i.e. 
the value of K evaluated at any two smooth vector 
fields is an integrable function on M × M (K 
LI( M × M)). 

Indeed, the codimension of the diagonal in M 
× M equals 3 and the order of growth of K near 
the diagonal equals 2. 

Note that all the previous arguments on linking 
forms hold (with some evident modifications) for 
the manifolds of any dimension. The further con- 
siderations are essentially three-dimensional. Thus, 
we have two divergence-free fields ~ and 7/on M, 
equipped with the volume form #. 

Definition 7. (See ref. [5].) A system of short paths 
joining the points x and y ~ M is a system of 
paths depending in a measurable way on x and y, 
such that the integrals of the linking form K for 
every pair of nonintersecting paths of the system, 
and also for any nonintersecting pair (path of the 
system, unitary time segment of phase curve of 
fields ~ or ~1) are bounded independently of the 
paths by a constant C. 

Such systems exist since the integral of K for 
the pair of paths remains bounded when these 
paths approach "transversally." 

Let g~x and g~y be the trajectories of the fields 
and 7/ starting from x and y for the time 
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intervals  0 < t < T  and 0 ~ t < S ,  A x and Ay be 
the cor responding  short  paths dos ing  these trajec- 
tories. N o w  

X ( x , y )  = 1 K 
l im TS f(g~x+Ax)×(g~y+Ay ) T, S....-, oo 

1 K 
T,lim~ ~ f~x×g;y " 

This  equal i ty of  limits follows f rom the boundness  
of  the integral  over  the short  paths.  Then  

f fMXMh(X' Y)tixl~y 

= l i r a  x Y T,S-.*oo 

=f~S~" r,s-+=lim -~--~Sofo(i,i~lK)dtds 
where  fo r and  S s denote  the integrals of  the func- 
t ion i~i,iK along the trajectories g~x and g~y. By 
the Birkhoff  ergodic theorem we can pass f rom the 

t ime averages to the space average: 

ffM×M~(X,Y)lixl~Y= fM~xfM~Y(i,i,K) 

(recall that  K ~ L I ( M ×  M)). Recalling the deft- 
n i t ion  of the average linking number  h as the 
average  value of  h ( x ,  y )  over M × M and shifting 

the opera to r s  of  substi tution i~ and i n to the 
fo rms  gx and  /.ty w e  obtain  the following: 

~= ffMxMh(X,y)lXxliY= fM~xfM~Y(i,i,K) 

= f u ¢ ~  A g ( i~ /~ ) .  

By propos i t ion  4 I~(i,lli ) = d-a(in#~) modulo  an 
exact  form, i.e. X = fi~/~ A d-l( in/x) .  The  proof  of  
t heo rem 4 is completed.  

It  would be very interesting to find the multidi- 
mensional  generalization of this ergodic interpre- 
tation. Probably,  this in terpreta t ion is connected 
with the symplectic propert ies  of  the space of the 
trajectories of  a divergence-free vector  field and 
our integral invariants  would be in some sense the 
"a sympto t i c "  Maslov indices. 
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