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Abstract. We extend the definition of the pentagram map from 2D to higher
dimensions and describe its integrability properties for both closed and twisted

polygons by presenting its Lax form. The corresponding continuous limit of
the pentagram map in dimension d is shown to be the (2, d + 1)-equation of

the KdV hierarchy, generalizing the Boussinesq equation in 2D.

Introduction

The pentagram map was originally defined in [8] as a map on plane convex
polygons considered up to their projective equivalence, where a new polygon is
spanned by the shortest diagonals of the initial one, see Fig. 1. It was shown to
exhibit quasi-periodic behavior under iterations. This map was extended to the case
of twisted polygons and its integrability in 2D was proved in [6]. The integrability
of the pentagram map in the case of closed polygons was proved in [9, 7].

Figure 1. The image T (P ) of a heptagon P (n = 7; M = Id) under
the 2D pentagram map.

Received by the editors May 16, 2012.

2010 Mathematics Subject Classification. Primary: 37J35; Secondary: 37K10, 37K25, 53A20.
Key words and phrases. pentagram map, completely integrable system, Lax equation, KdV

hierarchy, spectral curve.
We are grateful to M. Gekhtman and S. Tabachnikov for useful discussions and to Olga

Solovieva for help with drawing the figures. B.K. was partially supported by the Simonyi Fund
and an NSERC research grant.

c©2012 American Institute of Mathematical Sciences

86

http://dx.doi.org/10.3934/era.2012.19.86


THE PENTAGRAM MAP IN HIGHER DIMENSIONS AND KDV FLOWS 87

In this paper we extend this definition of the 2D pentagram map to any dimension
and describe the 3D case in more detail. We prove algebro-geometric integrability
of these general pentagram maps by presenting them as a discrete zero-curvature
equation (a Lax-type equation, which implies Arnold–Liouville integrability), and
study the continuous limit of the maps. We refer to [2] for more results, proofs,
and details of the constructions described in this announcement.

Note that a higher dimensional generalization for the class of corrugated poly-
gons, which have the property that their consecutive diagonals are not skew but
do intersect, was treated in [1]. A variety of possible higher-dimensional general-
izations with an integrable continuous limit was considered in [5]. In this paper
we propose a definition of “diagonal hyperplanes” for generic higher dimensional
polygons, which leads to integrable systems not only in the continuous limit but
to genuine discrete integrable systems and can be regarded as natural integrable
discretizations of the KdV-type equations. We start with a treatment of the 3D
case and describe the d-dimensional case later. We outline the geometry of the
pentagram map in the real setting, but complexify the spaces and maps to describe
the algebro-geometric integrability.

1. Integrability of the 3D pentagram map

We start by extending the set of space polygons to include so-called twisted ones,
whose ends are related by a monodromy operator:

Definition 1.1. A twisted n-gon in a projective space RP3 with a monodromy
M ∈ SL4 is a map φ : Z → RP3, such that φ(k + n) = M ◦ φ(k) for each k ∈ Z
and where M acts naturally on RP3. Two twisted n-gons are equivalent if there is
a transformation g ∈ SL4 such that g ◦ φ1 = φ2.

We assume that the vertices φ(k), k ∈ Z, are in general position, i.e., in particu-
lar, no 4 consecutive vertices of an n-gon belong to one and the same 2-dimensional
plane in RP3. The following pentagram map T is generically defined on the space
Pn of twisted n-gons considered up to the above equivalence:

Definition 1.2. Given an n-gon φ in RP3, for each k ∈ Z consider the two-
dimensional short-diagonal plane Pk := (φ(k− 2), φ(k), φ(k+ 2)) passing through 3
vertices φ(k−2), φ(k), φ(k+2). Take the intersection point of the three consecutive
planes Pk−1, Pk, Pk+1 and call it the image of the vertex φ(k) under the space
pentagram map T . (We assume general position, so that every three consecutive
planes Pk for the given n-gon intersect at a point.)

For simplicity, in 3D we discuss only the case of odd n in this research announce-
ment. (Even values of n require more delicate treatment, for which we refer the
reader to [2].) The coordinates on the space Pn are introduced in the following
way.

It turns out that for odd n there exists a unique lift of the vertices φ(k) ∈
RP3, k ∈ Z, of a given n-gon to the vectors Vk ∈ R4, k ∈ Z, satisfying the conditions
of nondegeneracy det(Vj , Vj+1, Vj+2, Vj+3) = 1 and quasi-periodicity Vj+n = MVj
for all j ∈ Z, where M ∈ SL4 is the monodromy matrix. These vectors satisfy the
difference equations

Vj+4 = ajVj+3 + bjVj+2 + cjVj+1 − Vj , j ∈ Z,
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Figure 2. The image Tvk of the vertex vk = φ(k) in P3.

where the sequences aj , bj , cj are n-periodic. The numbers (aj , bj , cj), 0 ≤ j ≤ n−1,
form a system of 3n coordinates on the space of twisted n-gons Pn. One can also
introduce “local” coordinates on Pn based on cross-ratios and somewhat similar to
the so-called (x, y)-coordinates in the 2D case, see [2].

1.1. A discrete zero-curvature equation. Algebro-geometric integrability of
the pentagram map is based on a zero-curvature equation with a spectral parameter.
In the discrete case, it is an equation of the form

(1) Li,t+1(λ) = Pi+1,t(λ)Li,t(λ)P−1i,t (λ),

which represents a dynamical system. This equation may be regarded as a com-
patibility condition of an over-determined system of equations:{

Li,t(λ)Ψi,t(λ) = Ψi+1,t(λ)

Pi,t(λ)Ψi,t(λ) = Ψi,t+1(λ),

for an auxiliary function Ψi,t(λ). To describe this equation we complexify the
pentagram map and consider it over C.

The above has an analogue in the continuous case: a zero-curvature equation
∂tL− ∂xP = [P,L] is a compatibility condition which provides the existence of an
auxiliary function ψ = ψ(t, x) satisfying a system of differential equations ∂xψ = Lψ
and ∂tψ = Pψ .

Theorem 1.3. The 3D pentagram map on twisted n-gons with odd n admits a
zero-curvature representation with the Lax function Lj,t(λ) given by

Lj,t(λ) =


cj/λ 1/λ 0 0
bj 0 1 0
aj/λ 0 0 1/λ
−1 0 0 0

 =


0 0 0 −1
λ 0 0 cj
0 1 0 bj
0 0 λ aj


−1

in the coordinates aj , bj , cj , 0 ≤ j ≤ n − 1, and an appropriate matrix function
Pj,t(λ) satisfying (1), where λ ∈ C is the spectral parameter.

In a sense, equation (1) implies all our integrability results in the discrete case,
while the explicit form of Pi,t is not important for the present exposition.
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The pivotal property responsible for integrability of the pentagram map is its
property of scaling invariance. In the 3D case in the coordinates (aj , bj , cj), 0 ≤
j ≤ n − 1, this means that the pentagram map T is invariant with respect to the
transformations aj → ajs, bj → bj , cj → cjs, 0 ≤ j ≤ n−1. The invariance follows
from the explicit formulas of the map. We prove that the existence of equation (1)
and the corresponding formula for Lj,t(λ) follow from such a scaling invariance.
The spectral parameter λ is related to the scaling parameter s via λ = 1/s2.

1.2. Spectral curve. In the discrete case, there exist analogues of monodromy
and Floquet–Bloch solutions:

Definition 1.4. The monodromy operators Mi,t, i = 0, ..., n− 1, are defined as the
following ordered products of the corresponding Lax functions:

Mi,t := Li+n−1,tLi+n−2,t...Li+1,tLi,t,

where the (integer) index t represents the time variable, and the first index of L is
n-periodic: Lj+n,t = Lj,t.

Definition 1.5. For an odd n define the spectral function R(λ, k) as

R(λ, k) := det (M0,0(λ)− kI).

The spectral curve Γ is the normalization of the compactification of the curve
R(λ, k) = 0.

Note that one could define the spectral function with help of any of the mon-
odromies: R(λ, k) := det (Mi,t(λ)− kI). Indeed, by definition, the monodromy
operators for different i are conjugate to each other, while equation (1) implies that
the monodromy operators for different t are also conjugate (i.e., satisfy a discrete
Lax equation):

Mi,t+1(λ) = Pi,t(λ)Mi,t(λ)P−1i,t (λ).

This implies that the spectral function R(λ, k) is an invariant of the pentagram map.
After a multiplication by a suitable power of λ, the equation R(λ, k) = 0 becomes a
polynomial relation between λ and k, whereas its coefficients are integrals of motion
for the pentagram map. Namely, we define the integrals of motion Ij , Jj , Gj , 0 ≤
j ≤ q = bn/2c (where bxc is the greatest integer less than or equal to x), as the
coefficients of the expansion

R(λ, k) = k4−k3
 q∑
j=0

Gjλ
j−n

+k2

 q∑
j=0

Jjλ
j−q−n

−k
 q∑
j=0

Ijλ
j−2n

+λ−2n.

The set R(λ, k) = 0 is an algebraic curve in C2. A standard procedure (adding
the infinite points and normalization with a few blow-ups) makes it into a compact
Riemann surface, the corresponding spectral curve Γ. The integrals of motion are
independent polynomials in the (a, b, c)-coordinates.

Theorem 1.6. For generic twisted n-gons with odd n, the genus g of the spectral
curve Γ is g = 3q, where q = bn/2c.

The spectral curve and its Jacobian, a natural torus associated with it, are
starting points for the algebraic-geometric integrability. It turns out that one can
recover Lax functions from the spectral curve and a point on the Jacobian, and vice
versa: this correspondence is locally one-to-one.
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1.3. Pentagram dynamics in spectral data.

Definition 1.7. A Floquet–Bloch solution ψi,t of a difference equation ψi+1,t =
Li,tψi,t is an eigenvector of the monodromy operator:

Mi,tψi,t = kψi,t.

To make them uniquely defined, we normalize the vectors ψi,t, t ≥ 0 so that the
sum of their components is equal to 1 and denote the normalized vectors by ψ̄i,t,

i.e., ψ̄i,t := ψi,t/
(∑4

j=1 ψi,t,j

)
.

Theorem 1.8. Generically, a Floquet–Bloch solution ψ̄i,t is a meromorphic vector
function on Γ. Its pole divisor Di,t has degree g + 3.

Definition 1.9. Let J(Γ) be the Jacobian of the spectral curve Γ, and [Di,t] be
the equivalence class of the divisor Di,t under the Abel map.

Theorem 1.10. For an odd n, the spectral map S : Pn = (ai, bi, ci, 0 ≤ i ≤
n − 1) → (Γ, [Di,t]) is non-degenerate at a generic point and an isomorphism of
Zariski open subsets.

The pentagram dynamics corresponds to the motion of the pole divisor [Di,t]
along the corresponding Jacobian J(Γ).

The equivalence class [Di,t] ∈ J(Γ) has the following linear time evolution along
the Jacobian:

[Di,t] = [D0,0 − t(O1 +O3) + i(O2 +O3) + (t− i)(W1 +W2)] ∈ J(Γ),

where the points W1,W2 ∈ Γ correspond to λ = ∞, and O1, O2, O3 ∈ Γ are the
points above λ = 0 (the point O1 corresponds to a finite k, whereas O2 and O3

correspond to infinite k, and O2 is a branch point).

This theorem implies that for an odd n the time evolution in J(Γ) happens to
be the same constant shift at each step. This way the above theorem describes the
time evolution of the pentagram map and proves its algebro-geometric integrability.

For an even n (which we deal with in [2]) the dynamics turns out to be more
complicated: the evolution goes along a “staircase”, i.e., its square is a constant
shift. This dichotomy is similar to the 2D case, see [9].

1.4. Closed polygons. Closed polygons in P3 correspond to the monodromy M =
±Id ∈ SL4 and form a subspace of codimension 15 = dimSL4 in the space of
all twisted polygons Pn of dimension 3n. Such a monodromy corresponds to the
spectral curves with either (λ, k) = (1, 1) or (λ, k) = (1,−1) being a quadruple
point. More precisely, we have:

Theorem 1.11. Closed polygons in P3 are singled out by the condition that either
(λ, k) = (1, 1) or (λ, k) = (1,−1) is a quadruple point of Γ. Generically, the genus
of Γ drops to g = 3q− 6 for q = bn/2c and odd n. The dimension of the Jacobian
J(Γ) drops by 6 for closed polygons. Theorem 1.8 holds with this genus adjustment,
and Theorem 1.10 holds verbatim for closed polygons.

Remark 1.12. The algebraic conditions implying that (1,±1) is a quadruple point
are:

• R(1,±1) = 0,
• ∂kR(1,±1) = ∂λR(1,±1) = 0,
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• ∂2kR(1,±1) = ∂2λR(1,±1) = ∂2kλR(1,±1) = 0,
• ∂3kR(1,±1) = ∂3λR(1,±1) = ∂3kkλR(1,±1) = ∂3kλλR(1,±1) = 0.

One can show that among these 10 linear equations on the integrals of motion there
are only 9 independent ones due to the following relation:

R(1,±1) = ±∂kR(1,±1)− 1

2
∂2kR(1,±1)± 1

6
∂3kR(1,±1).

At the same time, the dimension of the Jacobian of the spectral curve drops by 6.
Thus the subspace Cn has codimension 15, which matches the above calculation of
dimensions.

1.5. An invariant symplectic structure. To describe an invariant symplectic
structure on leaves of the space of twisted polygons Pn in 3D we employ the
Krichever–Phong universal formula [3, 4]. In the 2D case such a symplectic struc-
ture was shown to coincide with that induced on these leaves by the invariant
Poisson structure found in [6], see [9]. The description below is somewhat implicit
and, in a sense, universal: it is applicable in the higher-dimensional cases of Pd with
d > 3 as well. Finding an explicit expression, e.g., in the coordinates (ai, bi, ci), of
the symplectic structure or of the corresponding Poisson structure is still an open
problem.

Definition 1.13 ([3, 4]). Krichever–Phong’s universal formula defines a pre-sym-
plectic form on the space of Lax operators, i.e., on the space Pn. It is given by the
expression:

ω = −1

2

∑
λ=0,∞

res Tr
(
Ψ−10 M−10 δM0 ∧ δΨ0

) dλ
λ
.

The matrix Ψ0(λ) is composed of the normalized eigenvectors ψ̄0,0 on different
sheets of Γ over the λ-plane, and it diagonalizes the matrix M0 = M0,0. (In this
definition we drop the second index, since all variables correspond to the same
moment t.)

The leaves of the 2-form ω are defined as submanifolds of Pn, where the expres-
sion δ ln k (dλ/λ) is holomorphic. The latter expression is considered as a 1-form
on the spectral curve Γ.

Theorem 1.14. For an odd n the leaves of the 2-form ω in Pn are singled out by
the 3 conditions

δG0 = δI0 = δJq = 0,

where I0, G0, Jq are the integrals of motion defined above. The restriction of ω to
these leaves is well-defined (i.e., independent of the normalization of the Floquet–
Bloch solutions Ψ0) and non-degenerate, and hence symplectic. This symplectic
form is invariant with respect to the pentagram map, that is the evolution given by
the Lax equation.

The rank of the invariant 2-form ω restricted to these leaves is equal to 2g, where
g is the genus of the spectral curve Γ, i.e., g = 3bn/2c.

Recall that the dimension of the space Pn is 6q + 3, where q = bn/2c. Since
the codimension of the leaves is 3, their dimension matches the doubled dimension
of the tori: 2g = 6q. We also note that the Arnold–Liouville integrability in
the complex case implies integrability in the real one, since the formula for the
symplectic structure is algebraic.
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2. Pentagram maps in higher dimensions

2.1. Definition for any dimension. First we extend the notion of a twisted n-
gon to an arbitrary dimension d.

Definition 2.1. A twisted n-gon in a projective space RPd with a monodromy
M ∈ SLd+1 is a map φ : Z → RPd, such that φ(k + n) = M ◦ φ(k) for each k ∈ Z
and where M acts naturally on RPd. Two twisted n-gons are equivalent if there is
a transformation g ∈ SLd+1 such that g ◦ φ1 = φ2.

Similarly to the 3D case, we assume that the vertices vk := φ(k), k ∈ Z, are in
general position (i.e., no d + 1 consecutive vertices lie in the same hyperplane in

RPd), and denote by Pn the space of twisted n-gons considered up to the above
equivalence.

For a generic twisted n-gon in RPd define the “short-diagonal” hyperplane Pk
passing through d vertices of the n-gon by taking d-tuple consisting every other
vertex and centered at a given vertex vk. Namely, for odd dimension d = 2κ + 1
we consider the short-diagonal hyperplane Pk through the d vertices

Pk := (vk−2κ , vk−2κ+2, ..., vk, ..., vk+2κ),

while for even dimension d = 2κ we take Pk passing through the d vertices

Pk := (vk−2κ+1, vk−2κ+3, ..., vk−1, vk+1, ..., vk+2κ−1).

The following pentagram map T is generically defined on the space Pn of twisted
n-gons:

Definition 2.2. The higher pentagram map T takes a vertex vk of a generic twisted
n-gon in Pd to the intersection point of the d consecutive short-diagonal planes Pi
around vk. Namely, for odd d = 2κ + 1 one takes the intersection of the planes

Tvk = Pk−κ ∩ Pk−κ+1 ∩ ... ∩ Pk ∩ ... ∩ Pk+κ ,

while for even d = 2κ one takes the intersection of the planes

Tvk = Pk−κ+1 ∩ Pk−κ+2 ∩ ... ∩ Pk ∩ ... ∩ Pk+κ .

As usual, we assume that the vertices are in “general position,” and every d con-
secutive hyperplanes Pi intersect at one point in Pd. The map T is well defined on
the equivalence classes of generic n-gons in Pd.

Remark 2.3. One can show that there exists a unique lift of the vertices vk =
φ(k) ∈ RPd to the vectors Vk ∈ Rd+1 satisfying det |Vj , Vj+1, ..., Vj+d| = 1 and
Vj+n = MVj , j ∈ Z, whereM ∈ SLd+1, if and only if the condition gcd(n, d+1) = 1
holds. The corresponding difference equations have the form

(2) Vj+d+1 = aj,dVj+d + aj,d−1Vj+d−1 + ...+ aj,1Vj+1 + (−1)dVj , j ∈ Z,

with n-periodic coefficients in the index j. It allows one to introduce coordinates
{aj,k, 0 ≤ j ≤ n− 1, 1 ≤ k ≤ d} on the space of twisted n-gons in RPd.

2.2. Complete integrability. It turns out that the pentagram map defined this
way has a special scaling invariance, which implies the existence of a Lax represen-
tation, and allows one to prove its integrability. First, we complexify the spaces of
n-gons and the map.
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Proposition-conjecture 2.4. (The scaling invariance) The pentagram map

on twisted n-gons in CPd is invariant with respect to the following scaling transfor-
mations:

• for odd d = 2κ + 1 the transformations are

aj,1 → saj,1, aj,3 → saj,3, aj,5 → saj,5, ... , aj,d → saj,d ,

while other coefficients aj,2l with l = 1, ...,κ do not change;
• for even d = 2κ the transformations are

aj,1 → s−1aj,1, aj,2 → s−2aj,2, ... , aj,κ → s−κaj,κ ,

aj,κ+1 → sκaj,κ+1, aj,κ+2 → sκ−1aj,κ+2, ... , aj,d−1 → s2aj,d−1, aj,d → saj,d

for all s ∈ C.

We proved this proposition up to dimension d ≤ 6 by studying explicit formulas
for the pentagram map, but have no general proof for d > 6. It would be very
interesting to find it.

Problem 2.5. Find a general proof of the scaling invariance of the pentagram map
in any dimension d.

For the following theorem we assume this conjecture on scaling invariance.

Theorem 2.6. The scale-invariant pentagram map on twisted n-gons in any di-
mension d is a completely integrable system. It is described by the Lax matrix

Lj,t(λ) =


0 0 · · · 0 (−1)d

D(λ)

aj,1
aj,2
· · ·
aj,d


−1

,

where D(λ) is the following diagonal (d× d)-matrix:

• for odd d = 2κ + 1, one has D(λ) = diag(λ, 1, λ, 1, ..., λ);
• for even d = 2κ, one has

Dii(λ) =

{
1, if i 6= κ + 1,

λ, if i = κ + 1.

Sketch of proof. Rewrite the difference equation (2) in the matrix form. It is
described by the transformation matrix

Nj :=


0 · · · 0 (−1)d

Id
aj,1
· · ·
aj,d

 ,

where Id is the identity (d×d)-matrix. Then the monodromy M for twisted n-gons
is the product M = N0N1...Nn−1. Note that the pentagram map defined on classes
of projective equivalence preserves the conjugacy class of M . E.g., assume that
d is odd. Then using the scaling invariance, replace aj,2k+1 by saj,2k+1 for all k
in the right column to obtain new matrices Nj(s). The pentagram map preserves
the conjugacy class of the new monodromy M(s) := N0(s)...Nn−1(s) for any s.
Although one could already take Nj(s) as a Lax matrix Lj,t(s), for computations
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it is convenient to modify it slightly and set L−1j,t (λ) :=
(
g−1Nj(s)g

)
/s for g =

diag(1, s, 1, s, ..., 1, s) and λ := s−2. 2

2.3. Continuous limit of the pentagram map. Consider the continuous limit
of polygons and the pentagram map on them. In the limit n → ∞ a generic
twisted n-gon becomes a smooth non-degenerate quasi-periodic curve γ(x) in RPd.
Its lift G(x) to Rd+1 is defined by the conditions that the components of the vector
function G(x) = (G1, ..., Gd+1)(x) provide the homogeneous coordinates for γ(x) =

(G1 : ... : Gd+1)(x) in RPd and det |G(x), G′(x), ..., G(d)(x)| = 1 for all x ∈ R.
Furthermore, G(x+ 2π) = MG(x) for a given M ∈ SLd+1. Then G(x) satisfies the
linear differential equation of order d+ 1:

G(d+1) + ud−1(x)G(d−1) + ...+ u1(x)G′ + u0(x)G = 0

with periodic coefficients ui(x), which is a continuous limit of difference equation
(2). (Here ′ stands for d/dx.)

Fix a small ε > 0 and consider the case of odd d = 2κ + 1. A continuous
analog of the hyperplane Pk is the hyperplane Pε(x) passing through d points
γ(x− κε), ..., γ(x), ..., γ(x+ κε) of the curve γ.

Let `ε(x) be the envelope curve for the family of hyperplanes Pε(x) for a fixed
ε. The envelope condition means that Pε(x) are the osculating hyperplanes of the
curve `ε(x), that is the point `ε(x) belongs to the plane Pε(x), while the vector-

derivatives `′ε(x), ..., `
(d−1)
ε (x) span this plane for each x. It means that the lift of

`ε(x) to Lε(x) in Rd+1 satisfies the system of d = 2κ + 1 equations (see Fig. 3 for
d = 3):

det |G(x−κε), G(x−(κ−1)ε), ..., G(x), ..., G(x+κε), L(j)
ε (x)| = 0, j = 0, ..., d−1.

Figure 3. The envelope Lε(x) in 3D. The point Lε(x) and the vectors
L′ε(x) and L

′′
ε (x) belong to the plane (G(x), G(x+ ε), G(x− ε)).

Similarly, for even d = 2κ the lift Lε(x) satisfies the system of d equations:

det |G(x− (2κ − 1)ε), G(x− (2κ − 3)ε), ..., G(x− ε), G(x+ ε), ...

..., G(x+ (2κ − 1)ε), L(j)
ε (x)| = 0, j = 0, ..., d− 1.

A continuous limit of the pentagram map T is defined as the evolution of the
curve γ in the direction of the envelope `ε, as ε changes. Namely, the expansion of
Lε(x) has the form

Lε(x) = G(x) + ε2B(x) +O(ε4)
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and satisfies the family of differential equations:

L(d+1)
ε + ud−1,ε(x)L(d−1)

ε + ...+ u1,ε(x)L′ε + u0,ε(x)Lε = 0, where uj,0(x) = uj(x).

Then the corresponding expansion of the coefficients uj,ε(x) as uj,ε(x) = uj(x) +
ε2wj(x) +O(ε4), defines the continuous limit of the pentagram map as the system
of evolution differential equations duj(x)/dt = wj(x) for j = 0, ..., d− 1.

Theorem 2.7. The continuous limit of the pentagram map T in dimension d de-
fined by the system duj(x)/dt = wj(x), j = 0, ..., d− 1 for x ∈ S1 is the (2, d+ 1)-
KdV flow of the Adler-Gelfand-Dickey hierarchy on the circle.

Recall that the (m, d + 1)-KdV flow is defined on linear differential operators
L = ∂d+1 + ud−1(x)∂d−1 + ud−2(x)∂d−2 + ... + u1(x)∂ + u0(x) of order d + 1
with periodic coefficients uj(x), where ∂k stands for dk/dxk. One can define its

fractional power Lm/d+1 as a pseudo-differential operator for any positive integer
m and take its pure differential part Qm := (Lm/d+1)+. In particular, for m = 2

one has Q2 = ∂2+
2

d+ 1
ud−1(x). Then the (m, d+1)-KdV equation is the evolution

equation on (the coefficients of) L given by dL/dt = [Qm, L].

Remark 2.8. For d = 2 the (2,3)-KdV equation is the classical Boussinesq equa-
tion, found in [6]. Apparently, the (2, d + 1)-KdV equation is a very robust con-
tinuous limit. One obtains it not only for the pentagram map defined by taking
every other vertex, but also for a non-symmetric choice of vertices for the plane Pk.
Also, the same limit was obtained in [5] for a map defined by taking intersections
of various planes, rather than the envelopes.

The above scaling has a clear meaning in the continuous limit (in 2D this was
proved in [6]):

Proposition 2.9. The continuous limit of the scaling transformations corresponds
to the spectral shift L→ L+ λ of the differential operator L.
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