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1. Introduction

Non-orientable manifolds do not carry non-vanishing volume forms but al-
low densities (also called pseudo-forms). Densities can be thought of as
non-vanishing top-degree forms whose sign changes after returning to the
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same point along an orientation-reversing loop. Fix a density ρ on a non-
orientable manifold N and consider the infinite-dimensional group Diffρ(N)
of measure-preserving diffeomorphisms of N . In the present paper we study
the group Diffρ(N) in the case when N is a closed non-orientable surface.
Our first main result is a classification of generic pseudo-functions on such
surfaces with respect to the action of Diffρ(N). The second result is a classi-
fication of generic coadjoint orbits of Diffρ(N). We also comment on Casimir
functions (i.e. invariants of the coadjoint action) and similar classifications
for the case of non-orientable surfaces with boundary.

The motivation for our study comes from hydrodynamics. Two-
dimensional ideal fluid dynamics is a good approximation for many real
world processes (for instance, the earth atmosphere is well-approximated by
2D fluid equations). Hydrodynamics on non-orientable surfaces can also be
observed in nature: for instance, the motion of a soap film on a wire takes
place on a minimal surface, which, for a suitable wire shape, is a Möbius
band. Fluids on non-orientable surfaces were considered e.g. in [4, 5, 20].
Beyond hydrodynamics, coadjoint orbits of area-preserving diffeomorphisms
also arise in general relativity [8, 16] in the context of correspondence be-
tween coadjoint orbits and representations suggested by the orbit method.

The presented classifications complete V.Arnold’s program of studying
coadjoint orbits of area-preserving diffeomorphisms initiated in [3] in view
of applications to hydrodynamic stability. Recall that the corresponding
problem for orientable surfaces with and without boundary was recently
solved in [10, 12, 14]. At heart of those classifications is the description of
orbits of functions under the action of area-preserving diffeomorphisms in
terms of measured Reeb graphs. The graph ΓF , called the Reeb graph, is the
set of connected components of level sets of a function F on an orientable
surface M . Critical points of F correspond to the vertices of the graph ΓF ,
see Figure 1. This graph comes with a natural parametrization by the values

ΓFF

M

Figure 1: Reeb graph for a height function with two maxima on a torus.
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Coadjoint orbits of area-preserving diffeomorphisms 3

of F . For a surface equipped with an area form µ, the measure µ induces a
measure on the graph, which satisfies certain properties discussed below.

A natural way to describe objects on a non-orientable manifold N is
to lift them to the double cover Ñ , which is an oriented manifold. This
double cover comes with a fixed-point-free orientation-reversing involution
I : Ñ → Ñ interchanging the points in each fiber of the natural projection
Ñ → N . Pseudo-functions F on a non-orientable manifold N are functions
on its double cover Ñ anti-invariant under the involution: F ◦ I = −F . One
can define simple Morse pseudo-functions on N in a natural way: their lifts
to Ñ have to be Morse with distinct critical values. Our first result is the
density of such pseudo-functions among all:

Theorem 1.1. (=Theorem 3.3) Simple Morse pseudo-functions on a
compact non-orientable manifold form an open and dense subset in the space
of all smooth pseudo-functions in C2-topology.

Our next result is a classification of simple Morse pseudo-functions in
2D. Let N be a closed (i.e. compact and without boundary) non-orientable
surface equipped with density ρ. It turns out that invariants of the Diffρ(N)-
action on pseudo-functions are given by measured Reeb graphs of their lifts
to the orientation double cover Ñ , equipped with an involution.

Theorem 1.2. (=Theorem 3.11) Let N be a closed connected non-
orientable 2D surface equipped with a density ρ. Then there is a one-to-one
correspondence between simple Morse pseudo-functions on N , considered up
to area-preserving diffeomorphisms, and isomorphism classes of measured
Reeb graphs with involution compatible with (N, ρ).

Example 1.3. The height function F on a torus T 2 = K̃2 is odd with
respect to the central symmetry I and hence induces a pseudo-function on
the Klein bottle K2 = T 2 / I, see Figure 2. The measured Reeb graph ΓF
with an involution ι is a complete invariant of the corresponding pseudo-
function on the Klein bottle.

The classification of coadjoint orbits of the group Diffρ(N) of area-
preserving diffeomorphisms of a non-orientable surface N requires a more
subtle set of data than the measured Reeb graph with an involution. Namely,
elements of the regular dual space Vect∗ρ(N) to the Lie algebra Vectρ(N) are
1-form cosets [α] ∈ Ω1(N) / dΩ0(N). One associates to such a coset the vor-
ticity pseudo-function curl[α] := dα/ρ. This way the classification of such
cosets with respect to area-preserving diffeomorphisms can be seen as a
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F

F = 0

K̃2

ΓFιI

Figure 2: Reeb graph for a height function on a torus inducing a pseudo-
function on the Klein bottle K2. The involution I on the torus and ι on the
graph are central symmetries.

refinement of the pseudo-function classification: one needs to augment the
measured Reeb graph of F = curl[α] by additional information, carried by
the so-called circulation function described below. This allows one to formu-
late the full classification of generic coadjoint orbits in terms of circulation
graphs.

Theorem 1.4. (=Theorem 4.11) Let N be a closed connected non-
orientable surface equipped with a density ρ. Then simple Morse coadjoint or-
bits of Diffρ(N) are in one-to-one correspondence with isomorphism classes
of circulation graphs compatible with (N, ρ).

Corollary 1.5. (=Corollary 4.13) Let N be a closed connected non-
orientable surface equipped with a density ρ. Then the space of coadjoint
orbits of the group Diffρ(N) corresponding to the same measured Reeb graph
Γ with involution ι is an affine space of dimension

d =
1

2
(#Fix(ι) + b1(N)− 1),

where #Fix(ι) is the number of fixed points of the involution ι, and b1(N) =
dimH1(N ;R) is the first Betti number of N . In particular,

1

2
(b1(N)− 1) ≤ d ≤ b1(N).

Remark 1.6. Here we encounter a completely new phenomenon, not ob-
served for orientable surfaces. Namely, for an orientable surface M the cor-
responding dimension d is always 1

2b1(M), i.e. the genus of M . On the other
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ι

Figure 3: A graph involution ι with two fixed points. It is given by symmetry
with respect to the dashed line.

hand, for non-orientable surfaces the dimension of the space of coadjoint
orbits for a given vorticity is determined not only by the topology of the
surface, but also by more subtle information about the involution action on
the vorticity Reeb graph.

Example 1.7 (for details see Example 4.15). Consider the height func-
tion on a vertically standing torus shown in Figure 2, interpreted as a pseudo-
function on the Klein bottle K2. Since b1(K

2) = 1 and #Fix(ι) = 0, the
space of coadjoint obits corresponding to the given graph is 0-dimensional,
i.e. the graph completely determines the orbit.

On the other hand, consider the height function on the torus lying on a
slightly inclined table. It is again odd with respect to the central symmetry
and hence defines a pseudo-function on K2. The corresponding Reeb graph
is shown in Figure 3. Here one has #Fix(ι) = 2, so the space of coadjoint
orbits of Diffρ(K

2) corresponding to such a function is 1-dimensional. Note
that b1(K

2) = 1, so 0 and 1 are the only possible dimensions d of the orbit
space for the Klein bottle.

This paper is organized as follows. In Section 2 we discuss certain notions
of differential geometry relevant for non-orientable manifolds. In Section 3 we
present a classification of simple Morse pseudo-functions on non-orientable
surfaces up to an area-preserving transformation. In Section 4 we obtain
a classification of generic coadjoint orbits for the group of area-preserving
diffeomorphisms of a non-orientable surface.

In Appendix A, we present the hydrodynamic motivation for these clas-
sifications. In Appendix B, we describe singular coadjoint orbits correspond-
ing to vortex membranes in the non-orientable setting. Namely, it turns out
that one can define an analog of the Marsden–Weinstein symplectic structure
on co-oriented submanifolds of codimension 2. Furthermore, the binormal
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equation governing the evolution of vortex membranes also makes sense on
non-orientable manifolds.

Acknowledgements. A.I. was supported by NSF grant DMS-2008021.
B.K. was partially supported by an NSERC Discovery Grant. The authors
are grateful to Klas Modin and Gleb Smirnov for fruitful discussions.

2. Geometry of non-orientable manifolds

2.1. Orientation double cover and orientation bundle

Let N be a non-orientable manifold. We define its orientation double cover
Ñ as the space of pairs (x,O), where x ∈ N , and O is an orientation of the
tangent space TxN . Clearly, Ñ is an orientable manifold. Moreover, defined
in this way, the orientation double cover Ñ is canonically oriented : the ori-
entation of T(x,O)Ñ is defined by pulling back the orientation O from TxN .

Let N be a non-orientable manifold, and Ñ be its double cover. Then
there is a fixed-point-free orientation-reversing involution I : Ñ → Ñ which
interchanges the points in each fiber of the projection Ñ → N . Conversely,
let M be an oriented connected manifold equipped with a fixed-point-free
orientation-reversing involution I. Then the quotient space M /I is a non-
orientable manifold whose orientation double cover is canonically diffeo-
morphic to M . Thus, one can go back and forth between connected non-
orientable manifolds and connected oriented manifolds equipped with a
fixed-point-free orientation-reversing involution. We will be using both mod-
els interchangeably throughout the paper. Note that while, in principle,
everything can be done on the double cover, in some cases we found it more
convenient to directly work with the non-orientable manifold.

Closely related to the orientation double cover is the concept of orien-
tation bundle. Viewing the orientation double cover Ñ → N as a principal
Z2-bundle, define the orientation bundle as the associated line bundle. In
other words, given an atlas on N , the orientation bundle is given by transi-
tion functions sign(J(ϕαβ)) where ϕαβ are transition maps between charts,
and J is the Jacobian determinant. We denote the orientation bundle of N
by o(N).

2.2. Differential forms of even and odd type

The language of even and odd differential forms was introduced by de Rham
[7]. Let N be a non-orientable manifold. Differential k-forms of even type
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Coadjoint orbits of area-preserving diffeomorphisms 7

are just regular differential k-forms, i.e. sections of
∧k T ∗N. Differential k-

forms of odd type, also called pseudo-forms, are regular differential forms
twisted by the orientation bundle o(N), i.e. sections of

∧k T ∗N ⊗ o(N). In
more concrete terms, odd forms can be defined as follows:

Definition 2.1. An odd k-form α on a vector space V assigns to each
orientation O of V an exterior k-form αO such that if the orientation is
reversed the exterior form is replaced by its negative: α−O = −αO. An odd
differential k-form on a manifold N assigns an odd k-form α to each tangent
space TxN in a smooth fashion. Non-vanishing odd forms of top degree are
called densities. Odd 0-forms are called pseudo-functions.

Denote the space of even (i.e. usual) k-forms on a manifold N by Ωk(N)
and odd k-forms by Ω̃k(N).

Example 2.2. Let (N, g) be a Riemannian manifold of dimension n (ori-
entable or not). Then we have an associated Riemannian density ρg ∈

Ω̃n(N), defined as the unique odd n-form that assigns to an orientation
O of the tangent space TpN and an orthonormal basis in TpN the value +1
if the orientation of the basis agrees with O and −1 otherwise. In terms of
local coordinates the density ρg has the following expression:

ρg =
√

det g dx1 ∧ · · · ∧ dxn.

(Note that locally we can always write odd forms as usual differential forms,
since local coordinates define a local trivialization of the orientation bundle.)

Assuming N to be non-orientable, there is a one-to-one correspondence
between even (respectively, odd) differential forms on N and those differ-
ential forms on the orientation double cover Ñ that are even (respectively,
odd) with respect the involution I : Ñ → Ñ :

Ωk(N) ≃ Ωkeven(Ñ) = {ω ∈ Ωk(Ñ) : I∗ω = ω},

Ω̃k(N) ≃ Ωkodd(Ñ) = {ω ∈ Ωk(Ñ) : I∗ω = −ω}.

These isomorphisms are provided by pull-backs via the projection Ñ →
N . Note that although the pull-back of a pseudo-form on N is a pseudo-form
on Ñ , i.e. a section of

∧k T ∗Ñ ⊗ o(Ñ), the canonical orientation on Ñ gives
us a non-vanishing section 1 of o(Ñ) (given by assigning +1 to every chart
in a positively oriented atlas) and hence an identification between forms and
pseudo-forms given by ω 7→ ω ⊗ 1. Since the pull-back of a pseudo-form (as
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well as any other object) on N to Ñ is even, and the section 1 is odd, we
get an identification of pseudo-forms on N with odd forms on Ñ .

Example 2.3. Any homogeneous odd-degree polynomial P ∈ R[x, y, z] is
an odd function on the unit sphere S2 and hence defines a pseudo-function on
the projective plane RP2 = S2 /Z2. Likewise, any homogeneous even-degree
polynomial defines a regular function on RP

2.

Note that both even and odd k-forms can be integrated over compact
k-dimensional submanifolds. To integrate an even form we need the subman-
ifold to be oriented. To integrate an odd form we need the submanifold to
be co-oriented. In particular, any density can always be integrated over the
whole manifold, assuming the manifold is compact (as opposed to a volume
form which can only be integrated over an oriented manifold).

Example 2.4. For any (orientable or not) compact Riemannian manifold
(N, g) the integral of the associated Riemannian density is well-defined (i.e.
it does not depend on the orientation of N or on whether such an orientation
even exists). This integral is the Riemannian volume of N and is a positive
number.

Since, locally, one can identify odd and even forms, all standard local
operations with even forms have odd counterparts. In particular, the dif-
ferential dα of an odd k-form α is an odd (k + 1)-form, so that we have a
map d : Ω̃k(N) → Ω̃k+1(N). Likewise, for any vector field v on N we have
the interior product operator iv : Ω̃

k(N) → Ω̃k−1(N) and the Lie derivative
Lv = div + ivd : Ω̃

k(N) → Ω̃k(N). The exterior product of two forms of the
same parity is an even form, while the product of two forms of different
parity is an odd form. The latter, in particular, means that on any closed
(i.e. compact without boundary) n-dimensional manifold N one has a non-
degenerate pairing Ω̃k(N)× Ωn−k(N) → R. The annihilator of the space of
exact (respectively, closed) k-forms of any given parity with respect to that
pairing is the space of closed (respectively, exact) (n− k)-forms of opposite
parity. This gives twisted Poincaré duality

H̃k(N ;R) ≃ Hn−k(N ;R)∗,

where H̃•(N ;R) is the cohomology of the cochain complex (Ω̃•(N), d). One
also has identifications

Hk(N ;R) ≃ Hk
even(Ñ ;R), H̃k(N ;R) ≃ Hk

odd(Ñ ;R),

For the author's personal use only.
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Coadjoint orbits of area-preserving diffeomorphisms 9

where Hk
even(Ñ ;R) and Hk

odd(Ñ ;R) are, respectively +1 and −1 eigenspaces
for the action of the orientation-reversing involution on the cohomology
Hk(Ñ ;R) of the orientation double cover. In those terms twisted Poincaré
duality rewrites as

Hk
even(Ñ ;R) ≃ Hn−k

odd (Ñ ;R)∗.

2.3. The group of measure-preserving diffeomorphisms, its Lie
algebra, and the dual of the Lie algebra

Let N be a closed (i.e. compact without boundary) non-orientable manifold
with density (i.e. a non-vanishing top-degree pseudo-form) ρ. The group
Diffρ(N) consists of measure-preserving diffeomorphisms:

Diffρ(N) := {Φ ∈ Diff(N) | Φ∗ρ = ρ}.

Let Ñ be the orientation double cover of N . Then Diffρ(N) can be identified

with the subgroup of Diffµ(Ñ) consisting of volume-preserving diffeomor-
phisms of the orientation double cover that commute with the orientation-
reversing involution (the volume form µ on Ñ is constructed as a pull-back
of the density ρ).

The Lie algebra Vectρ(N) of the group Diffρ(N) consists of divergence-
free vector fields:

Vectρ(N) := {v ∈ Vect(N) | Lvρ = 0}.

With any (even) 1-form α ∈ Ω1(N) we can associate a linear functional ℓα
on the Lie algebra Vectρ(N) given by

ℓα(v) :=

∫

N

(ivα)ρ

(recall that the integral of a density over the whole manifold is well-defined).

Definition 2.5. A linear functional ℓ : Vectρ(N) → R is called regular if
there exists α ∈ Ω1(N) such that ℓ = ℓα. Denote the space of regular func-
tionals by Vect∗ρ(N).

Proposition 2.6. The space of regular functionals Vect∗ρ(N) is isomorphic
to the space of cosets Ω1(N) / dΩ0(N) of 1-forms modulo exact 1-forms.
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Proof. By definition of a regular functional, we have a surjective vector space
homomorphism Ω1(N) → Vect∗ρ(N) given by α 7→ ℓα. We need to show that
its kernel is the space of exact (even) 1-forms. To that end, rewrite ℓα(v) as

ℓα(v) =

∫

N

α ∧ ivρ.

Since v is an arbitrary divergence-free vector field, ivρ is an arbitrary closed
odd (n− 1)-form. So, the kernel of the map α 7→ ℓα is the annihilator of
closed odd (n− 1)-forms under the pairing Ω1(N)× Ω̃n−1(N) → R, i.e. the
space of exact even 1-forms, as needed. □

The coadjoint action of the group Diffρ(N) on the regular dual
Vectρ(N)∗ = Ω1(N) / dΩ0(N) coincides with the natural action of diffeo-
morphisms on (cosets of) 1-forms:

Ad∗Φ[α] = [Φ∗α],

where Φ ∈ Diffρ(N) is a measure-preserving diffeomorphism and α ∈ Ω1(N)
is a 1-form. The focus of the present paper is on classifying all generic orbits
of that action. Note that those orbits can also be interpreted as symplectic
leaves of the Lie-Poisson structure on Vect∗ρ(N).

3. Classification of generic pseudo-functions in 2D

3.1. Simple Morse pseudo-functions

We begin with recalling standard definitions of a Morse function and a simple
Morse function.

Definition 3.1. Let N be a smooth manifold. A smooth function F : N →
R is called a Morse function if all its critical points are non-degenerate. A
Morse function F : N → R is simple if all its critical values are distinct.

Below we formulate analogous notions for pseudo-functions.

Definition 3.2. Let N be a non-orientable manifold.

• A pseudo-function F ∈ Ω̃0(N) is Morse if its lift F̃ ∈ Ω0
odd(Ñ) to the

orientation double cover Ñ is a Morse function.

• A pseudo-function F ∈ Ω̃0(N) is simple Morse if its lift F̃ ∈ Ω0
odd(Ñ)

is simple Morse. The latter in particular implies that 0 is not a critical

For the author's personal use only.
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value of F̃ (if there was a critical point where F̃ = 0, then its image
under the orientation-reversing involution would give another critical
point at the same zero level).

The space of smooth pseudo-functions Ω̃0(N) can be identified with the
space Ω0

odd(Ñ) of odd smooth functions Ñ → R.

Consider the C2-topology on the space Ω̃0(N) ≃ Ω0
odd(Ñ) induced by

C2-topology on the space Ω0(Ñ) of all smooth functions on Ñ .

Theorem 3.3. Simple Morse pseudo-functions on N form an open and
dense subset in the space of smooth pseudo-functions in the C2-topology.

The proof is based on the following version of Whitney’s embedding
theorem:

Lemma 3.4 (On the realization of a fixed-point-free involution as
the antipodal map). LetM be a compact smooth n-dimensional manifold
equipped with a fixed-point-free involution I : M →M. Then there exists an
embedding Φ: M → V , where V is a vector space of dimension 2n(2n+ 1),
such that the following diagram commutes:

M V

M V,

Φ

I −Id

Φ

where −Id : V → V is the antipodal map x 7→ −x. In other words, any fixed-
point-free involution of a compact manifold can be realized as restriction of
the antipodal map.

Remark 3.5. Although the exact dimension of the vector space V is ir-
relevant for our purposes, we note that composing the embedding given by
Lemma 3.4 with a projection onto a suitable subspace, one can bring down
the dimension of V to 2n+ 1 (as in weak Whitney’s theorem).

Proof of Lemma 3.4. By Whitney’s theorem there exists an embedding
Φ1 : M →W , where W is a vector space of dimension 2n.

For the author's personal use only.
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We extend it to an embedding

Φ2 : M →W ⊕W, Φ2(x) := (Φ1(x),Φ1(I(x))).

Then the following diagram commutes:

M W ⊕W

M W ⊕W

Φ2

I P

Φ2

where the involution P on W ⊕W is (x, y) 7→ (y, x). Furthermore, since
the involution I is fixed-point-free, the image Φ2(M) does not intersect the
diagonal ∆ ⊂W ⊕W. Now, consider the map

Ψ: W ⊕W →W ⊕ (W ⊗W ), Ψ(x, y) := (x− y, (x− y)⊗ (x+ y)).

It is easy to see that Ψ is an injective immersion away from the diagonal
∆. Therefore, since M is compact, the map Ψ ◦ Φ2 : M →W ⊕ (W ⊗W ) is
an embedding. Furthermore, we have Ψ ◦ P = −Ψ, so the following diagram
commutes:

M W ⊕W W ⊕ (W ⊗W )

M W ⊕W W ⊕ (W ⊗W ).

Φ2

I P

Ψ

−Id

Φ2 Ψ

Taking V :=W ⊕ (W ⊗W ) and Φ := Ψ ◦ Φ2 completes the proof. □

Proof of Theorem 3.3. It is clear that simple Morse pseudo-functions on N
form an open subset in the space of all smooth pseudo-functions, so we
only need to show that it is dense. First we show that the set of all (not
necessarily simple) Morse pseudo-functions is dense. That is equivalent to
showing that any odd function f ∈ Ω0

odd(Ñ) can be approximated by an odd

Morse function. Thanks to Lemma 3.4, we can assume that Ñ is embedded
in a vector space V , with the orientation-reversing involution given by the
antipodal map x 7→ −x. Take an odd function f ∈ Ω0

odd(Ñ), and consider the
family of functions Fℓ := f + ℓ where ℓ ∈ V ∗. Notice that all functions in this
family are odd with respect to the antipodal map. Furthermore, almost all
functions in such a family are Morse [19, Theorem 8.1.1], so one can indeed
find an odd Morse function arbitrarily close to f.
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The second step is to show that simple Morse pseudo-functions on N are
dense in the space of all Morse pseudo-functions. To that end, notice that the
corresponding argument for functions [15, Proposition 1.2.12] is local : one
can perturb a given Morse function in the neighborhood of a critical point to
slightly change its critical value. But locally one can trivialize the orientation
bundle o(N) and thus identify pseudo-functions with functions. Therefore,
the same argument works for pseudo-functions, proving the theorem. □

3.2. Reeb graphs with involution

Below we classify simple Morse pseudo-functions on closed connected non-
orientable 2D surfaces up to area-preserving diffeomorphisms. This is equiv-
alent to symplectic classification of quadruples (M, I, ω, F ) where

• M is a closed connected surface with symplectic form ω;

• I : M →M is a fixed-point-free anti-symplectic involution;

• F ∈ Ω0
odd(M) is a simple Morse function anti-symmetric under the

action of I.

Consider for a moment an arbitrary simple Morse function F on a closed
connected orientable surfaceM . Define an F -level as a connected component
of a level set of F. Non-critical F -levels are diffeomorphic to circles. The
surface M is a union of F -levels, which form a foliation with singularities.
The base space of that foliation with the quotient topology is homeomorphic
to a finite connected graph ΓF (see Figure 1 for a Morse function F on a
torus) whose vertices correspond to critical values of F. This graph ΓF is
called the Reeb graph of the function F (also called the Kronrod graph [1,
17]). By π we denote the projectionM → ΓF . The function F onM descends
to a function f on the Reeb graph ΓF . It is also convenient to assume that
ΓF is oriented: edges are oriented in the direction of increasing f. One can
recover the topology of a closed connected orientable surface from its Reeb
graph by the following formula: b1(M) = 2b1(ΓF ), where b1(.) := dimH1(.)
is the first Betti number.

Now return to consideration of a simple Morse function F which is anti-
symmetric under the involution I.

In that setting I descends to an involution ι : ΓF → ΓF such that ι∗f =
−f (see Figure 2). Note that the involution ι is not necessarily fixed-point-
free.
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14 A. Izosimov, B. Khesin, and I. Kirillov

Definition 3.6. A Reeb graph with involution (Γ, ι, f) is an oriented con-
nected finite graph Γ equipped with an involution ι : Γ → Γ and a continuous
function f : Γ → R, with the following properties:

(i) Each vertex of Γ is either 1-valent or 3-valent;

(ii) The function f is anti-invariant under the action of ι i.e. ι∗f = −f ;

(iii) f is strictly increasing along each edge of Γ;

(iv) f takes distinct non-zero values at vertices of Γ.

3.3. Measured Reeb graphs with involution

In this section we discuss the notion of a measured Reeb graph with invo-
lution. Recall that we consider quadruples (M, I, ω, F ) where (M,ω) is a
closed connected symplectic surface, I : M →M is a fixed-point-free anti-
symplectic involution, and F ∈ Ω0

odd(M) is a simple Morse function anti-
symmetric under the action of I.

The natural projection map π : M → ΓF induces a measure µ := π∗ω on
the graph ΓF . According to [12, Proposition 3.4], measure µ is log-smooth in
the sense of [10, Definition 3.5] (in a nutshell, this means that the measure is
smooth at interior points of all edges as well as at 1-valent vertices, while at
3-valent vertices it has logarithmic singularities). Furthermore, this measure
is invariant with respect to the involution ι : ΓF → ΓF .

Definition 3.7. Ameasured Reeb graph with involution (Γ, ι, f, µ) is a Reeb
graph (Γ, ι, f) with involution equipped with a log-smooth measure µ invari-
ant under the involution ι.

Definition 3.8. A map ϕ : Γ1 → Γ2 between two measured Reeb graphs
with involution (Γ1, ι1, f1, µ1) and (Γ2, ι2, f2, µ2) is an isomorphism if it is
an isomorphism of topological graphs which maps all objects in Γ1 to the
corresponding objects in Γ2, i.e. ϕ ◦ ι1 = ι2 ◦ ϕ, ϕ

∗f2 = f1, and ϕ∗µ1 = µ2.

The following definition from [12] makes sense regardless of the presence
of an involution:

Definition 3.9. A measured Reeb graph (Γ, ι, f, µ) is compatible with a
symplectic surface (M,ω) if

2b1(Γ) = b1(M),

∫

Γ
dµ =

∫

M

ω
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Coadjoint orbits of area-preserving diffeomorphisms 15

(where b1(.) stands for the first Betti number).

For a non-orientable surface N with density ρ ∈ Ω̃2(N), we say that a
measured Reeb graph (Γ, ι, f, µ) is compatible with (N, ρ) if it is compatible
with (Ñ , I, ω), where Ñ is the orientation double cover of N , the symplectic
form ω ∈ Ω2(Ñ) is the pull-back of ρ, and I is involution on Ñ such that
Ñ / I = N . More explicitly, the compatibility conditions can be stated as
follows:

Definition 3.10. A measured Reeb graph (Γ, ι, f, µ) is compatible with a
non-orientable surface N equipped with a density ρ if

b1(Γ) = b1(N),

∫

Γ
dµ = 2

∫

N

ρ.

3.4. Proof of the classification theorem

Here we prove the following classification result for pseudo-functions on non-
orientable surfaces:

Theorem 3.11. Let N be a closed connected non-orientable surface
equipped with a density (non-degenerate pseudo-form of top degree) ρ. Then
there is a one-to-one correspondence between simple Morse pseudo-functions
on N , considered up to area-preserving diffeomorphisms, and isomorphism
classes of measured Reeb graphs with involution compatible with (N, ρ).

Equivalently, and in more detail, this theorem can be formulated as
follows.

Theorem 3.12. Let (M,ω) be a closed connected symplectic surface to-
gether with a fixed-point-free anti-symplectic involution I : M →M . Then
there is a one-to-one correspondence between odd (i.e. anti-symmetric un-
der I) simple Morse functions on M , considered up to symplectic diffeomor-
phisms which commute with I, and isomorphism classes of measured Reeb
graphs with involution compatible with M . In other words, the following
statements hold.

i) Let F, G ∈ Ω0
odd(M) be two odd simple Morse functions. Then the

following conditions are equivalent:
a) There exists a symplectic diffeomorphism Φ: M →M such that

Φ ◦ I = I ◦ Φ and Φ∗F = G.
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16 A. Izosimov, B. Khesin, and I. Kirillov

b) Measured Reeb graphs with involution associated with F and G are
isomorphic.

Moreover, any isomorphism between measured Reeb graphs with invo-
lution associated with F and G can be lifted to a symplectic diffeomor-
phism Φ: M →M such that Φ ◦ I = I ◦ Φ and Φ∗F = G.

ii) For each measured Reeb graph with involution (Γ, ι, f, µ) compatible
with (M,ω) there exists an odd simple Morse function F ∈ Ω0

odd(M)
such that the corresponding measured Reeb graph with involution is
isomorphic to (Γ, ι, f, µ).

Proof. We begin with part (i). The implication (a) ⇒ (b) is immediate from
the definition of a measured Reeb graph of a function. To prove (b) ⇒ (a) we
will show that any isomorphism between measured Reeb graphs with invo-
lution associated with F and G can be lifted to a symplectic diffeomorphism
Φ: M →M such that Φ ◦ I = I ◦ Φ and Φ∗F = G. Let ϕ : ΓF → ΓG be an
isomorphism of measured Reeb graphs with involution. Then, by [12, The-
orem 3.11(i)], it can be lifted to a symplectic diffeomorphism Φ: M →M
such that Φ∗F = G. We need to show that Φ can be chosen so that it com-
mutes with the involution I. The idea is to pick an arbitrary Φ and then
compose it on the right with a suitable “shear flow”.

The required shear flow on every level of F will be simply a shift along
the Hamiltonian vector field ω−1dF by an amount depending on the level.
To find the needed magnitude of the shift on every level, consider the com-
mutator

(1) Ψ := [I,Φ−1] = I ◦ Φ−1 ◦ I ◦ Φ.

This map Ψ is symplectic and preserves each F -level. Let E be the
union of open edges of ΓF containing points where f = 0. Let also π be
the projection M → ΓF . Then M0 := π−1(E) is a union of open cylinders
foliated into regular F -levels. For any smooth function ψ on E (where we
define charts of E by using the function f) denote by Sψ : M0 →M0 a
symplectomorphism defined as follows: every point x ∈M0 moves for time
ψ(π(x)) along trajectories of the Hamiltonian vector field ω−1dF .

Lemma 3.13. There exists a smooth function ψ : E → R which is odd (i.e.
ι∗ψ = −ψ) and satisfies Ψ|M0

= Sψ, where Ψ|M0
is the restriction of the

commutator map (1) to M0.

Proof. Since Ψ is symplectic and preserves each F -level, there exists some (a
priori not necessarily odd) smooth function ψ : E → R such that Ψ|M0

= Sψ.
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Coadjoint orbits of area-preserving diffeomorphisms 17

Further, observe that since the Hamiltonian vector field ω−1dF is even, we
have

(2) Sψ ◦ I = I ◦ Sι∗ψ.

Furthermore, from the definition of the map Ψ we get I ◦Ψ = Ψ−1 ◦ I, so,
since Ψ|M0

= Sψ, we obtain

I ◦ Sψ = S−ψ ◦ I = I ◦ S−ι∗ψ,

meaning that Sψ+ι∗ψ is the identity map. Now, let t : E → R be a smooth
function defined as follows: for every x ∈ E, it is equal to the period of the
Hamiltonian vector field ω−1dF on the circle π−1(x). Then, since Sψ+ι∗ψ =
Id, we have that

λ :=
ψ + ι∗ψ

t

is a continuous integer-valued function on E, i.e. an element of H0(E;Z).
Furthermore, since the period function t is even, the same is true for the
function λ, i.e. λ ∈ H0

even(E;Z). Consider the map H0(E;Z) → H0
even(E;Z)

given by η 7→ η + ι∗η. The image of that map consists of those integral
cochains η ∈ H0

even(E;Z) which take even values on all edges in E fixed
by ι. We claim that λ has that property and hence belongs to the image.
Indeed, every edge e fixed by ι has a point xe whose preimage under the
projection π : M → ΓF is an F -level γe fixed by I (that xe is the unique
point on e where F = 0). Since I has no fixed points, the restriction of I to
that level must be a half-period shift along the vector field ω−1dF . Likewise,
the restriction of I to the corresponding G-level Φ(γe) is a half-period shift
along ω−1dG. But since the diffeomorphism Φ maps the Hamiltonian vector
field ω−1dF to the Hamiltonian field ω−1dG, it follows that the commutator
Ψ on the F -level γe is the identity. Therefore, ψ(xe) must be an integer mul-
tiple of T (xe), which forces λ(e) to be an even number. So indeed we have
λ = η + ι∗η for some η ∈ H0(E;Z), and replacing ψ with ψ − ηt we get a
function with desired properties. □

Back to the proof of the theorem, let m < 0 be a real number such that
infx∈e f(x) < m for any edge e ∈ E. Let also ζ : R → R be an odd smooth
function which is equal to −1 for x < m. Define a smooth function ξ : E → R

by ξ := 1
2(1 + ζ ◦ f)ψ. Then ξ is equal to 0 near lower (i.e. where f < 0)
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18 A. Izosimov, B. Khesin, and I. Kirillov

endpoints of edges in E and satisfies

(3) ξ − ι∗ξ = ψ

everywhere in E. Let Φ̃ := Φ ◦ S−ξ. That is a symplectomorphismM0 →M0

pushing F to G. Moreover,

[I, Φ̃−1] = I ◦ Φ̃−1 ◦ I ◦ Φ̃ = I ◦ Sξ ◦ Φ
−1 ◦ I ◦ Φ ◦ S−ξ

= Sι∗ξ ◦ I ◦ Φ
−1 ◦ I ◦ Φ ◦ S−ξ = Sι∗ξ ◦ Sψ ◦ S−ξ = Id,

where the third equality follows from (2) and the last one from (3). So, Φ̃
commutes with I. Also, since ξ = 0 near lower endpoints of edges in E, one
can smoothly extend Φ̃ to M− := (M \M0) ∩ {F < 0} by setting Φ̃ := Φ
in M−. Furthermore, since Φ commutes with I in M0, it can be smoothly
extended to M+ := (M \M0) ∩ {F > 0} by setting Φ̃ := IΦ̃I in M+. That
way we get an extension of Φ̃ to all of M . It is symplectic, commutes with
I, and maps F to G, as needed. Thus, part (i) of the theorem is proved.

Now, let us prove part (ii). The proof consists of four steps: (1) we con-
struct a function F on a symplectic surface which has a given measured
Reeb graph and is anti-invariant under an anti-symplectic map I1 (which
is not necessarily an involution); (2) we modify I1 so that it becomes an
involution, which we call I2; (3) by composing I2 with appropriate Dehn
twists we turn it into a fixed-point-free involution I3; (4) we find a sym-
plectomorphism conjugating I3 and I, which yields a function with desired
properties.

Step 1. By [12, Theorem 3.11(ii)], there exists a (not necessarily odd)
simple Morse function F : M → R whose measured Reeb graph (without
involution) is (Γ, f, µ). Consider also −F as a simple Morse function on the
symplectic surface (M,−ω). The measured Reeb graph of the latter function
is (Γ,−f, µ). So, the involution ι is an isomorphism of measured Reeb graphs
of F and −F and hence it lifts, by [12, Theorem 3.11(i)], to a diffeomorphism
I1 : M →M such that I∗1F = −F and I∗1ω = −ω.

Step 2. Consider the restriction of I21 to the set M0 defined in the proof
of part (i). It is a symplectic diffeomorphism preserving F -levels and, hence,
can be written as Sj for a suitable smooth function j : E → R. Furthermore,
we claim that j can be chosen to be even. The proof is similar to that of
Lemma 3.13: since the map I21 commutes with I1, which is a lift of ι, we
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Coadjoint orbits of area-preserving diffeomorphisms 19

must have

λ :=
j − ι∗j

t
∈ H0(E;Z).

Furthermore, λ is odd and hence can be written as η − ι∗η for some η ∈
H0(E;Z) (in contrast to the map H0(E;Z) → H0

even(E;Z) given by η 7→
η + ι∗η, the mapH0(E;Z) → H0

odd(E;Z) given by η 7→ η − ι∗η is surjective).
So, one can make the function j even by replacing it with j − ηt.

Consider now the function ξ : E → R defined by ξ := 1
2(1 + ζ ◦ f)j,

where ζ : R → R is a function from the proof of part (i). Then ξ + ι∗ξ = ψ,
and thus I2 := I1 ◦ S−ξ is an involution M0 →M0:

I22 = I1 ◦ S−ξ ◦ I1 ◦ S−ξ = S−ι∗ξ ◦ I
2
1 ◦ S−ξ = S−ι∗ξ ◦ Sψ ◦ S−ξ = Id.

Furthermore, I2 is anti-symplectic and takes F to −F . Also observe that I2
coincides with I1 near preimages of lower endpoints of edges in E and thus
can be extended to M− by setting I2 := I1 in that domain. Similarly, in M+

we set I2 := I−11 . That way we get an anti-symplectic involution I2 : M →M
which takes F to −F .

Step 3. The set of fixed points of I2 is a union of F -levels, each of which
projects to a fixed point of ι. So the fixed point set of I2 is a union of finitely
many circles. To show that such fixed points can be removed, it suffices to
prove that we can get rid of one fixed circle. This is done by composing I2
with a Dehn twist about that circle. Specifically, to get rid of a fixed circle
π−1(x0), where x0 ∈ Γ is a fixed point of ι, and π : M → Γf is the projection,
consider the edge e of Γ containing x0. Let t : e→ R be the period function
defined as in Lemma 3.13: for every x ∈ e, it is equal to the period of the the
Hamiltonian vector field ω−1dF on the circle π−1(x). Since the involution I2
preserves the Hamiltonian vector field ω−1dF , the period function t is even:
ι∗t = t. Define a function η : e→ R by η := 1

2(1 + ζ ◦ f)t, where ζ : R → R

is as above. Then η + ι∗η = t, and so the map Ĩ2 := I2 ◦ Sη, extended to the

whole M by setting Ĩ2 := Id away from π−1(e), is again an involution:

Ĩ22 = I2 ◦ Sη ◦ I2 ◦ Sη = Sι∗η+η = St = Id.

Furthermore, just like I2, the involution Ĩ2 is anti-symplectic and maps F
to −F . In addition to that, it has less fixed circles than I2. Proceeding in
this fashion, we finally get an anti-symplectic fixed-point-free involution I3
such that I∗3F = −F .

Step 4. It follows from Moser’s theorem for non-orientable surfaces [6,
p. 4894] that I3 = ΦIΦ−1 for some symplectic diffeomorphism Φ. But then
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Φ∗F is a function anti–invariant under I whose measured Reeb graph with
involution is the given one. Thus, Theorem 3.12 (and hence Theorem 3.11)
is proved. □

Remark 3.14. The above description of invariants of pseudo-functions un-
der the action of area-preserving diffeomorphisms extends to the case of
non-orientable surfaces N with boundary, cf. [14]. Recall that in the bound-
ary case simple Morse functions F have to satisfy the following conditions:
a) all critical points of F are non-degenerate; b) F does not have critical
points on the boundary ∂N ; c) the restriction of F to the boundary ∂N is
a Morse function; and d) all critical values of F and of its restriction F |∂N
are distinct.

A pseudo-function F on a non-orientable surface N with boundary is
simple Morse if its lift F̃ to the orientation double cover Ñ is simple Morse.
The Reeb graph of such pseudo-function F (defined as the Reeb graph of
F̃ ) contains both solid edges (corresponding to F̃ -levels diffeomorphic to a
circle) and dashed edges (corresponding to F̃ -levels diffeomorphic to a seg-
ment). That graph is equipped with an involution induced by the involution
of Ñ . The involution on the graph cannot have fixed points on dashed edges,
since the corresponding fixed-point-free involution on the surface Ñ cannot
map a segment to itself.

4. Classification of coadjoint orbits in 2D

4.1. Coadjoint orbits and pseudo-functions

Let Diffρ(N) be the group of area-preserving diffeomorphisms of a non-
orientable surface N endowed with a density ρ. In this section we classify
generic orbits of the coadjoint action of Diffρ(N) on its regular dual space
Vect∗ρ(N) = Ω1(N) / dΩ0(N). Recall that this action coincides with the nat-
ural action by pull-backs.

Consider the mapping

curl : Ω1(N) / dΩ0(N) → Ω̃0(N),

defined by taking the vorticity pseudo-function

curl[α] :=
dα

ρ
.
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This mapping is well-defined on cosets since d(α+ df) = dα. Furthermore,
the mapping curl is a surjection onto the space Ω̃0(N) of pseudo-functions,
since H2(N ;R) = 0. Finally, observe that the mapping curl is Diffρ(N)-
equivariant. In other words, the following diagram commutes for any Φ ∈
Diffρ(N):

Ω1(N) / dΩ0(N) Ω1(N) / dΩ0(N)

Ω̃0(N) Ω̃0(N).

Φ∗

curl curl

Φ∗

Definition 4.1. A coset [α] ∈ Ω1(N) / dΩ0(N) is called simple Morse if
curl[α] is a simple Morse function. A coadjoint orbit O is called simple
Morse if some (and hence every) coset [α] ∈ O is simple Morse.

With every simple Morse coset [α] ∈ Ω1(N) / dΩ0(N) one can associate
a measured Reeb graph Γcurl[α] with involution. If two simple Morse cosets
[α] and [β] belong to the same coadjoint orbit then the corresponding Reeb
graphs are isomorphic.

The converse statement is more subtle. Indeed, suppose that cosets [α]
and [β] have isomorphic Reeb graphs. Then it follows from Theorem 3.11
that there exists an area-preserving diffeomorphism Φ such that Φ∗curl[β] =
curl[α]. Therefore, the 1-form Φ∗β − α is closed. Since this 1-form is not
necessarily exact, the cosets [α] and [β] do not necessarily belong to the
same coadjoint orbit. Nevertheless, we conclude that the space of coadjoint
orbits corresponding to the same measured Reeb graph with involution is
finite-dimensional and its dimension is at most dimH1(N ;R).

4.2. Even circulation functions on Reeb graphs with involution

In order to obtain a complete set of invariants of simple coadjoint orbits
for the group Diffρ(N), we lift all objects discussed in the previous sec-

tion to the orientation double cover M = Ñ of N . That orientation double
cover is a symplectic surface with a symplectic form ω and a fixed-point-
free anti-symplectic involution I. Our aim is to classify simple Morse cosets
Ω1
even(M) / dΩ0

even(M) up to even (i.e. commuting with I) symplectic dif-
feomorphisms. To that end we employ the notion of a circulation function
introduced in [12].

Consider a simple Morse coset [α] ∈ Ω1
even(M) / dΩ0

even(M). Then F :=
dα/ω is an odd simple Morse function on M . Let Γ be the set of F -levels.
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Recall that this set has a structure of a measured Reeb graph with invo-
lution ι, and such graphs classify pseudo-functions up to area-preserving
diffeomorphisms. To obtain classification of orbits, we define an additional
structure on Γ.

Let π : M → Γ be the natural projection. Take any point x lying in the
interior of some edge e of Γ. Then π−1(x) is a closed curve C in M . It is
naturally oriented by the Hamiltonian vector field ω−1dF . The integral of α
over C does not change if we change α by a function differential. Thus, we
obtain a function C : Γ \ V (Γ) → R given by

C(x) =

∮

π−1(x)

α

and defined outside of the set of vertices V (Γ) of the graph Γ.

Proposition 4.2. The function C has the following properties.

i) Assume that x, y are two interior points of an edge e of Γ. Then

(4) C(y)− C(x) =

y∫

x

fdµ.

ii) Let v be a vertex of Γ. Then C satisfies the Kirchhoff rule at v:

∑

e→v

lim
x

e

−→v
C(x) =

∑

e←v

lim
x

e

−→v
C(x) ,

where
∑

e→v stands for summation over edges pointing at the vertex
v,

∑
e←v stands for summation over edges pointing away from v, and

x
e
−→ v means x ∈ Γ \ V (Γ) tends to v along e.

iii) The function C is even with respect to the involution ι on Γ.

Proof. The first two properties hold regardless of the presence of involution
[12]. The last property holds because the form α and the vector field ω−1dF
are both even. □

Definition 4.3. Let (Γ, ι, f, µ) be a measured Reeb graph with involution.
Any function C : Γ \ V (Γ) → R satisfying properties listed in Proposition 4.2
is called an even circulation function. A measured Reeb graph with involu-
tion endowed with an even circulation function is called a circulation graph
with involution (Γ, ι, f, µ, C).
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Two circulation graphs with involution are isomorphic if they are iso-
morphic as measured Reeb graphs with involution, and the isomorphism
between them preserves the circulation function.

Above we associated a circulation graph with involution Γ[α] :=
(Γ, ι, f, µ, C) to any simple Morse coset [α] ∈ Ω1

even(M) / dΩ0
even(M).

Remark 4.4. Note that the function f on a circulation graph can be re-
covered from the circulation function C, as (4) implies f = dC/dµ.

The following result describes the space of even circulation functions on
a given measured Reeb graph with involution.

Proposition 4.5. The space of even circulation functions on a measured
Reeb graph with involution (Γ, ι, f, µ) is an affine space whose associated
vector space is Hodd

1 (Γ;R) := {λ ∈ H1(Γ;R) | ι∗λ = −λ}.

Proof. By definition, a function C : Γ \ V (Γ) → R is an even circulation func-
tion if it satisfies certain inhomogeneous linear equations. So, the set of even
circulation functions on Γ is indeed an affine space. Let us first show that it is
non-empty. To that end, observe that since f is odd, we have

∫
Γ fdµ = 0, so

by [12, Propoisition 4.5(i)] the measured Reeb graph (Γ, f, µ) admits a circu-
lation function C. Furthermore, the latter can be made even by considering
the averaged function 1

2(C + ι∗C). So, the space of even circulation func-
tions is a solution space of a consistent inhomogeneous linear system, which
means that the corresponding vector space is the solution space of the asso-
ciated homogeneous system. That solution space consists of even functions
ξ : Γ \ V (Γ) → R which are constant on each edge and satisfy Kirchhoff’s
rule at each vertex. For each element ξ of that solution space, consider a
1-chain on Γ given by λ(ξ) :=

∑
ξ|e · e, where the sum is over all edges of

Γ. Then Kirchhoff’s equations on ξ are equivalent to λ(ξ) being a cycle, i.e.
λ(ξ) ∈ H1(Γ;R). Furthermore, since the involution ι reverses orientation of
edges, ξ is even if and only if λ(ξ) is odd. So, the vector space associated
with the affine space of even circulation functions on Γ is indeed Hodd

1 (Γ;R),
as claimed. □

Corollary 4.6. The dimension d of the space of even circulation functions
on a measured Reeb graph with involution (Γ, ι, f, µ) is given by

(5) d = dimHodd
1 (Γ;R) =

1

2
(#Fix(ι) + b1(Γ)− 1),
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where #Fix(ι) is the number of fixed points of ι, and b1(Γ) = dimH1(Γ,R)
is the first Betti number of Γ. In particular,

(6)
1

2
(b1(Γ)− 1) ≤ d ≤ b1(Γ).

Proof. By the Hopf trace formula we have

#Fix(ι) = 1− dimHeven
1 (Γ;R) + dimHodd

1 (Γ;R)

= 1− dimH1(Γ;R) + 2 dimHodd
1 (Γ;R),

hence the result. □

Remark 4.7. Another way to express this dimension is d = b1(Γ)−
b1(Γ/ι). Indeed, this follows from the fact that odd classes form the ker-
nel of the projection H1(Γ;R) → H1(Γ/ι,R).

Remark 4.8. The inequality d ≤ b1(Γ) holds since the space Hodd
1 (Γ;R)

is a subspace of H1(Γ;R). That inequality is also equivalent to #Fix(ι) ≤
b1(Γ) + 1. The latter is true since the set {f = 0} splits Γ into two connected
components and hence consists of at most b1(Γ) + 1 points, while the fixed
point set Fix(ι) is a subset of {f = 0}.

It is easy to see that there are no other restrictions on the number
#Fix(ι) in addition to 0 ≤ #Fix(ι) ≤ b1(Γ) + 1 and #Fix(ι) ≡ b1(Γ) + 1
mod 2, so that all integer dimensions d satisfying (6) can occur.

Example 4.9. Assume that the graph Γ is a tree. Then dimHodd
1 (Γ;R) =

0, so there is a unique even circulation function on Γ.

Example 4.10. Assume that b1(Γ) = 1. Then inequalities (6) imply that
the dimension d of the space of even circulation functions on Γ is 0 or 1.
Furthermore, by formula (5) we have that d = 0 if and only if the involution
ι on Γ has no fixed points. An example of such an involution is shown in
Figure 2 in the introduction. As for the case d = 1, that corresponds to two
fixed points, see Figure 3.

4.3. Proof of the classification theorem

The main result of this section is the following classification of generic coad-
joint orbits for the group of measure-preserving diffeomorphisms of a non-
orientable surface:
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Theorem 4.11. Let N be a closed connected non-orientable surface
equipped with a density ρ. Then simple Morse coadjoint orbits of Diffρ(N)
are in one-to-one correspondence with isomorphism classes of circulation
graphs compatible with (N, ρ).

Compatibility of a graph and non-orientable surface is understood as
in Definition 3.10. Since a circulation graph is also a measured Reeb graph
(with an additional structure), the definition applies.

An equivalent and more detailed form of this classification, which we are
going to prove, can be formulated in terms of the corresponding orientation
double cover:

Theorem 4.12. Let (M, I, ω) be a closed connected symplectic surface
equipped with a fixed-point-free anti-symplectic involution I. Then generic
orbits of the action of even (i.e. commuting with I) symplectomorphisms of
M on the coset space [α] ∈ Ω1

even(M) / dΩ0
even(M) are in one-to-one corre-

spondence with (isomorphism classes of) circulation graphs compatible with
M (in the sense of Definition 3.9). In other words, the following statements
hold:

i) For two simple Morse cosets [α], [β] ∈ Ω1
even(M) / dΩ0

even(M), the fol-
lowing conditions are equivalent:
a) Φ∗[α] = [β] for some even symplectomorphism Φ;
b) circulation graphs Γ[α] and Γ[β] corresponding to the cosets [α] and

[β] are isomorphic.

ii) For each circulation graph (Γ, ι, f, µ, C) which is compatible with
(M,ω), there exists a simple Morse coset [α] ∈ Ω1

even(M) / dΩ0
even(M)

such that Γ[α] = (Γ, ι, f, µ, C).

Proof. We first prove part (i). The implication (a) ⇒ (b) is by construction,
so we only need to prove (b) ⇒ (a). In view of Theorem 3.12, it suffices to
consider the case d[α] = d[β] = Fω and prove that if the circulation func-
tions on the graph Γ of F given by cosets [α], [β] are the same, then there
is an even symplectic diffeomorphism Φ ∈ Diffω(M) such that Φ∗[β] = [α].
Consider ξ := [α]− [β]. Then ξ ∈ H1

even(M). Furthermore, since the circu-
lation functions of [α] and [β] coincide, it follows that the class ξ has zero
periods over F -levels. Therefore, by [12, Lemma 4.8], there exists a smooth
function G ∈ Ω0(M) such that the 1-form GFdF is closed and its cohomol-
ogy class is ξ. (The lemma says that there is H ∈ Ω0(M) such that HdF is
closed and its class is ξ. Furthermore, that H is divisible by F in Ω0(M),
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so we just set G := H/F .) Furthermore, since the class ξ is even, without
loss of generality we can assume that G is even as well, i.e. G ∈ Ω0

even(M)
(if not, we replace G with 1

2(G+ I∗G)).
Consider even symplectic vector field X := Gω−1dF . Then, for the flow

Φt of X, we have

d

dt
Φ∗t [β] = Φ∗tLX [β] = Φ∗t [iXFω] = [GFdF ] = ξ.

In particular, the time-1 flow Φ1 of V takes [β] to [α], as needed.

We now prove part (ii). By Theorem 3.12, there exists an odd simple
Morse function F ∈ Ω0

odd(M) whose measured Reeb graph with involution
is (Γ, ι, f, µ). We need to show that the map from the affine space of cosets
[α] ∈ Ω1

even(M) / dΩ0
even(M) such that dα = Fω to the space of even circula-

tion functions on Γ, given by mapping a coset [α] to the associated circulation
function C[α], is surjective. To that end consider the associated map of vec-

tor spaces H1
even(M ;R) → Hodd

1 (Γ;R) which takes a class [β] ∈ H1
even(M ;R)

to a chain
∑
β(e)e where β(e) is the integral of β over the preimage of

any interior point of e under the projection π : M → Γ. Upon identification
H1
even(M ;R) ≃ Hodd

1 (M ;R) given by (twisted) Poincaré duality, that vector
space map becomes the projection π∗ : H

odd
1 (M ;R) → Hodd

1 (Γ;R), which is
surjective. Therefore, the map [α] 7→ C[α] between affine spaces is surjective
as well. Thus, the theorem is proved. □

Corollary 4.13. Let N be a closed connected non-orientable surface
equipped with a density ρ. Then the space of coadjoint orbits of the group
Diffρ(N) corresponding to the same measured Reeb graph (Γ, ι, f, µ) is an
affine space of dimension

d = dimHodd
1 (Γ;R) =

1

2
(#Fix(ι) + b1(N)− 1),

where #Fix(ι) is the number of fixed points of ι, and b1(N) = dimH1(N,R)
is the first Betti number of N . In particular,

1

2
(b1(N)− 1) ≤ d ≤ b1(N).

Note that for an orientable surface M the corresponding dimension d is
always 1

2b1(M), i.e. the genus of M .

Example 4.14. Consider the projective plane RP
2. The first homology

group H1(RP
2;R) is trivial. Therefore, in this case there is a one-to one
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correspondence between generic coadjoint orbits and measured Reeb graphs
with involution, in agreement with Example 4.9.

Example 4.15. Here we elaborate on Example 1.7 from the introduction.
The function on a torus shown in Figure 2 defines a pseudo-function on the
Klein bottle K2. One has b1(K

2) = 1, while the involution ι has no fixed
points. Therefore, in this case the space of coadjoint obits corresponding to
the given measured Reeb graphs with involution is 0-dimensional, i.e. the
graph completely determines the orbit, just like in Example 4.14.

Now consider a donut lying on a horizontal table, and let F be the height
function on its surface, normalized so that the center of symmetry of the
donut is at height 0. Then F is odd with respect to the central symmetry.
Furthermore, even though F is not a Morse function (its critical points are
degenerate and form two circles), we can still consider the corresponding
graph ΓF defined as the set of F -levels with quotient topology, and that
graph is equipped with an involution ι induced by central symmetry of the
donut. Topologically, the graph ΓF is a circle, while the involution ι is given
by axial symmetry and has two fixed points. Now consider a small odd Morse
perturbation of F (e.g. consider the height function for a donut on a slightly
inclined table). Then each critical circle of F will fall apart into two Morse
critical points, and the resulting graph with involution will be as shown in
Figure 3: by continuity the involution on the graph still has two fixed points.
The so-obtained function on the torus can again be thought as a pseudo-
function on the Klein bottle K2. By Corollary 4.13, the space of coadjoint
orbits of Diffρ(K

2) corresponding to such a function is 1-dimensional, as
opposed to the height function on a “standing torus” where the dimension
of the orbit space is 0. Note that 0 and 1 are the only possible dimensions
of the orbit space for the Klein bottle, see Example 4.10.

Appendix A. Motivation: The Hamiltonian framework of

the Euler equation

A.1. The Euler equation

The main motivation for classification of coadjoint orbits for the group of
measure-preserving diffeomorphisms is related to description of first integrals
for the Euler equation of ideal hydrodynamics. Consider an inviscid incom-
pressible fluid filling a compact, possibly non-orientable, n-dimensional Rie-
mannian manifold M with the Riemannian density form ρ. The motion of
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an inviscid incompressible fluid filling M is governed by the hydrodynamic
Euler equation

∂tu+∇uu = −∇p

on the divergence-free velocity field u of a fluid flow in M . Here ∇uu stands
for the Riemannian covariant derivative of the field u along itself, while the
function p is determined by the divergence-free condition up to an additive
constant.

Arnold [2] showed that the Euler equation can be regarded as an equation
of the geodesic flow on the group Diffρ(M) := {ϕ ∈ Diff(M) | ϕ∗ρ = ρ} of
measure-preserving diffeomorphisms of M with respect to a right-invariant
metric on the group given at the identity by the L2-norm of the fluid’s veloc-
ity field. This geodesic description implies the following Hamiltonian frame-
work for the Euler equation. Consider the regular dual space g∗ = Vect∗ρ(M)
of the Lie algebra g = Vect(M) = {u ∈ Vect(M) | Luρ = 0} of divergence-
free vector fields on M . This dual space has a natural description as the
space of cosets Vect∗ρ(M) = Ω1(M) / dΩ0(M), where Ωk(M) is the space of
smooth k-forms on M . For a 1-form α on M its coset of 1-forms is

[α] = {α+ df | f ∈ C∞(M)} ∈ Ω1(M) / dΩ0(M) .

The pairing between cosets and divergence-free vector fields is given by

[α](u) :=

∫

M

α(u) ρ

for any field u ∈ Vectρ(M) (note that for a non-orientable manifold M this
integral is still well-defined as the integral of a function α(u) against the
density pseudo-form ρ). This pairing is well-defined on cosets because the
latter integral vanishes for any exact 1-form α and any u ∈ Vectρ(M). The
coadjoint action of the group Diffρ(M) on the dual g∗ is given by the change
of coordinates in (cosets of) 1-forms on M by means of measure-preserving
diffeomorphisms.

The Riemannian metric ( , ) on the manifoldM allows one to identify the
Lie algebra and its regular dual by means of the so-called inertia operator:
given a vector field u on M one defines the 1-form α = u♭ as the pointwise
inner product with the velocity field u: u♭(v) := (u, v) for all v ∈ TM . The
Euler equation rewritten on 1-forms α = u♭ becomes ∂tα+ Luα = −dP for
an appropriate function P on M . In terms of the cosets of 1-forms [α], the
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Euler equation on the dual space g
∗ takes the form

(A.1) ∂t[α] + Lu[α] = 0 .

The latter Euler equation on g
∗ = Vect∗ρ(M) turns out to be a Hamilto-

nian equation with the Hamiltonian functional given by the fluid’s kinetic
energy. The Hamiltonian operator is given by the Lie algebra coadjoint ac-
tion ad∗u, which in the case of the diffeomorphism group corresponds to
the Lie derivative: ad∗u = Lu. The symplectic leaves of the corresponding
Lie-Poisson structure on the dual space g

∗ are coadjoint orbits of the corre-
sponding group Diffρ(M), see details in [2, 3]. All invariants of the coadjoint
action, also called Casimirs, are first integrals of the Euler equation for any
choice of Riemannian metric.

A.2. Vorticity and Casimirs

Introduce the vorticity 2-form ξ := du♭ as the differential of the 1-form α =
u♭ on M and note that the vorticity exact 2-form is well-defined for cosets
[α]: 1-forms α in the same coset have equal vorticities ξ = dα. Written in
terms of ξ, the Euler equation (A.1) assumes the vorticity (or Helmholtz)
form

∂tξ + Luξ = 0,

which means that the vorticity form is transported by (or “frozen into”) the
fluid flow (Kelvin’s theorem). The definition of vorticity ξ as an exact 2-form
ξ = du♭ makes sense for a manifold M of any dimension and regardless of
orientability of M .

In this paper, we consider the case of a non-orientable manifold of di-
mension 2. In this setting, the vorticity of the fluid can be regarded as a
vorticity pseudo-function F = du♭/ρ, where ρ is the Riemannian area form.
Since the vorticity pseudo-function F is transported by the flow, one can de-
fine Casimirs generalizing the notion of enstrophies for orientable surfaces,
which are all moments of F over the surface M . In the non-orientable case,
one considers only even moments

Ik(F ) :=

∫

M

F k ρ, k = 0, 2, 4, ...

which are well-defined since even powers of a pseudo-function are functions
and can be integrated against a density.

To obtain a full set of Casimirs (invariants of the Diffρ(M)-action), one
needs to consider similar integrals but computed for each edge of the Reeb
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graph separately, cf. [11]. Furthermore, if H1(M,ρ) ̸= 0, one needs to sup-
plement the so-defined moments with invariants which determine the cir-
culation function. In hydrodynamical terms, those invariants can be viewed
as fluid circulation, i.e., integrals of the 1-form α = u♭, along appropriately
defined cycles on M .

Appendix B. Singular coadjoint orbits in the

non-orientable setting

Assume that M is a closed, possibly non-orientable, manifold with
H1(M,R) = 0. Then the regular dual Vect∗ρ(M) to the algebra of divergence-
free vector fields on M can be dentified with the space dΩ1(M) of exact
2-form on M . The coadjoint action of Diffρ(M) on this space is given by
pull-back of 2-forms. Here, we consider an extension of this action to sin-
gular exact 2-forms (de Rham currents), in particular those of the form δP ,
where P ⊂M is a null-homologous codimension 2 closed submanifold. In
the context of hydrodynamics, voticities of the form δP correspond to point
vortices in dimension 2, and vortex membranes in higher dimensions.

B.1. Marsden–Weinstein symplectic structure on co-oriented
submanifolds

Let N be a closed non-orientable manifold. In view of the pairing

Ωk(N)× Ω̃n−k(N) → R,

it is natural to define a singular k-form (equivalently, a de Rham current of
degree n− k) as a continuous (in appropriate sense) functional on Ω̃n−k(N).
In particular, for a codimension 2 co-oriented closed submanifold P ⊂ N , one
has a singular 2-form δP whose value on a pseudo-form ω of degree n− 2 is
given by

∫
P
ω.

Proposition B.1. The current δP is closed. Furthermore, if P is a bound-
ary, then δP is exact.

Proof. Closed currents are those which vanish on exact pseudo-forms. This
is clearly the case for δP , by Stokes theorem for non-orientable manifolds.
Furthermore, if P = ∂Q, then

∫
P
ω =

∫
Q
dω = 0 for any closed pseudo-form

ω of degree n− 2, so δP is exact. □

For the author's personal use only.

For the author's personal use only.



✐

✐

“1-Izosimov” — 2025/2/18 — 11:15 — page 31 — #31
✐

✐

✐

✐

✐

✐

Coadjoint orbits of area-preserving diffeomorphisms 31

We will call codimension 2 co-oriented closed null-homologous subman-
ifolds P in N vortex membranes. The tangent space at P to the space of all
vortex membranes in N can be naturally identified with the space of smooth
sections of the normal bundle to P . Let V and W be a pair of such sections.
Suppose that N is equipped with a density ρ.

Definition B.2. The generalized Marsden–Weinstein symplectic structure
on the space of membranes is defined as

ωMW
P (V,W ) :=

∫

P

iV iWρ.

Since P is co-oriented and ρ is a pseudo-form of degree n = dimN , the
inner product iV iWρ is a well-defined pseudo-form of degree n− 2 on P .
Therefore, it can be integrated over P , and the corresponding integral is
well defined. One can see that it is skew-symmetric and non-degenerate on
normal vector fields V and W . As we will see below, it is also closed and
hence defines a symplectic structure on the space of membranes.

Recall that each vortex membrane P ⊂ N gives rise to a singular exact
2-form δP . As a result, one can view the space of vortex membranes P (equiv-
alently, the space of the corresponding forms δP ) as a singular coadjoint orbit
of Diffρ(N). The action of Diffρ(N) on vortex membranes is just the natural
action of diffeomorphisms on submanifolds. Thus, since the space of vortex
membranes is a coadjoint orbit, it carries a natural (Kirillov–Kostant) sym-
plectic structure.

Proposition B.3. The Marsden–Weinstein symplectic structure ωMW co-
incides with the Kirillov–Kostant symplectic structure ωKK .

Proof. Suppose that P = ∂Q. Then δP = dδQ, where δQ is a singular 1-form
whose pairing with a pseudo-form ω of degree n− 1 is given by

∫
Q
ω. Let v, w

be divergence-free vector fields whose restrictions to the normal bundle of P
are two given sections V ,W . Note that since the coadjoint action of Diffρ(N)
on membranes is the natural action of diffeomorphisms on submanifolds, the
corresponding infinitesimal action of Vectρ(N) is precisely the restriction:
ad∗vδP = V , ad∗wδP =W . So, we have

ωKKδP (V,W ) = ωKKδP (ad∗vδP , ad
∗
wδP ) := ⟨d−1δP , [v, w]⟩

= ⟨δQ, [v, w]⟩ =

∫

N

δQ ∧ i[v,w]ρ =

∫

Q

i[v,w]ρ =

∫

P

iviwρ = ωMW
δP (V,W ).
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Note that for divergence-free vector fields v and w their commutator
satisfies the identity i[v,w]ρ = d(iviwρ), which implies the second last equal-
ity. □

B.2. Binormal equation on non-orientable manifolds

Now, suppose that the manifold N is endowed with a Riemannian metric. In
this setting, there is a natural Hamiltonian flow on the symplectic manifold
of vortex membranes in N .

Definition B.4. Define a Hamiltonian function on membranes P (which
are co-oriented closed submanifolds of codimension 2) by taking their (n−
2)-Riemannian volume:

H(P ) = volume(P ) =

∫

P

µP ,

where µP is the volume pseudo-form on P defined by restricting the metric
from N . Once again, the integral of the density µP is well-defined since P
is a co-oriented submanifold of N .

Theorem B.5. In any dimension n ≥ 3 the Hamiltonian vector field for
the Hamiltonian H and the Marsden–Weinstein symplectic ωMW structure
on codimension 2 membranes P ⊂ N is

vH(p) = C · J(MC(p)) ,

where C is a constant depending on the geometry of N , J is the operator
of positive π/2 rotation in every (oriented) normal space NpP to P , and
MC(p) is the mean curvature vector to P at the point p.

Recall that the mean curvature vector MC(p) ∈ NpP for a smooth sub-
manifold P of dimension ℓ is the normalized trace of the second fundamental
form at p, i.e. the trace divided by ℓ. Equivalently, this vector MC(p) ∈ NpP
is the mean of curvature vectors of geodesics in P passing through the point
p when averaged over the sphere Sℓ−1 of all possible unit tangent vectors in
TpP for these geodesics.

Proof. The above theorem holds for any Riemannian manifold N , oriented
or not. For oriented manifolds this was obtained in [9, 13, 18]. However,
the consideration is local and is valid for any N . The sketch of the proof
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is as follows. It is well known that the mean curvature vectors point in
the direction of the fastest decrease of the manifold’s volume, i.e. they
make the field MC(p) = −gradH(p). Furthermore, the Marsden–Weinstein
symplectic structure is in fact the symplectic structure in the normal
plane NpP averaged over all p ∈ P . Hence, to make the skew-gradient field
vH(p) = −JgradH(p) out of the gradient one, one needs to apply the opera-
tor J of the almost complex structure in each normal plane, which completes
the proof. □

Definition B.6. The binormal (or skew-mean-curvature) flow on mem-
branes P ⊂ N is given by the equation

∂tP (p) = −J(MC(p)) .

Note that the skew-mean-curvature flow does not stretch the subman-
ifold P , while moving its points orthogonally to the mean curvatures. In
particular, the volume H(P ) of the submanifold P is preserved under this
evolution, as it should, being the Hamiltonian function of the corresponding
dynamics.

For dimension n = 3 the mean curvature vector is the curvature vector
k · n of a curve γ: MC = k · n, while the skew mean-curvature flow becomes
the binormal equation:

∂tγ = −J(k · n) = k · b = γ′ × γ′′,

where the last equality is valid in the arc-length parametrization θ of γ,
γ′ := ∂γ/∂θ.

Remark B.7. Recall that one can lift all the objects to the naturally ori-
entented double cover Ñ , equipped with the orientation reversing involution
without fixed points. Then P gives rise to its orientation cover P̃ ⊂ Ñ , and
one may think of singular vorticities in the non-orientable setting as sin-
gular vorticities in the orientable setting that are equivariant under the
orientation-reversing involution. This way one can reformulate the binormal
flow on membranes via the equivariant version on the corresponding double
cover.
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