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a b s t r a c t

We revisit recent results on integrable cases for higher-dimensional generalizations of the
2D pentagram map: short-diagonal, dented, deep-dented, and corrugated versions, and
define a universal class of pentagrammaps, which are proved to possess projective duality.
We show that inmany cases the pentagrammap cannot be included into integrable flows as
a time-one map, and discuss how the corresponding notion of discrete integrability can be
extended to include jumps between invariant tori. We also present a numerical evidence
that certain generalizations of the integrable 2D pentagram map are non-integrable and
present a conjecture for a necessary condition of their discrete integrability.

© 2014 Elsevier B.V. All rights reserved.

The goal of this paper is three-fold. First we revisit the recent progress in finding integrable generalizations of the 2D
pentagrammap. Secondly, we discuss a natural framework for the notion of a discrete integrable Hamiltonian map. It turns
out that the Arnold–Liouville theorem on existence of invariant tori admits a natural generalization to allow discrete dy-
namics with jumps between invariant tori, which is relevant for many pentagram maps. Lastly, we define a universal class
of pentagram-type maps, describe a projective duality for them, and present a numerical evidence for non-integrability
of several pentagram maps in 2D and 3D. In view of many new integrable generalizations found recently, a search for a
non-integrable generalization of the pentagrammap was brought into light, and the examples presented belowmight help
focusing the efforts for such a search.

1. Types of pentagrammaps

Recall that the pentagrammap is amap on plane convex polygons considered up to their projective equivalence, where a
new polygon is spanned by the shortest diagonals of the initial one, see [1]. It exhibits quasi-periodic behavior of (projective
classes of) polygons in 2D under iterations, which indicates hidden integrability. The integrability of this map was proved
in [2], see also [3].

While the pentagram map is in a sense unique in 2D, its generalizations to higher dimensions allow more freedom. It
turns out that while there seems to be no natural generalization of this map to polyhedra, one can suggest several natural
integrable extensions of the pentagram map to the space of generic twisted polygons in higher dimensions.

Definition 1.1. A twisted n-gon in a projective space Pd with amonodromyM ∈ SLd+1 is a doubly-infinite sequence of points
vk ∈ Pd, k ∈ Z, such that vk+n = M ◦ vk for each k ∈ Z, and where M acts naturally on Pd. We assume that the vertices vk

∗ Corresponding author.
E-mail address: khesin@math.toronto.edu (B. Khesin).

http://dx.doi.org/10.1016/j.geomphys.2014.07.027
0393-0440/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.geomphys.2014.07.027
http://www.elsevier.com/locate/jgp
http://www.elsevier.com/locate/jgp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geomphys.2014.07.027&domain=pdf
mailto:khesin@math.toronto.edu
http://dx.doi.org/10.1016/j.geomphys.2014.07.027


276 B. Khesin, F. Soloviev / Journal of Geometry and Physics 87 (2015) 275–285

Fig. 1. Deeper pentagram map T1,3 in 2D.

Fig. 2. Different diagonal planes in 3D: for Tsh, T1 , and T2 .

are in general position (i.e., no d + 1 consecutive vertices lie in the same hyperplane in Pd), and denote by Pn the space of
generic twisted n-gons considered up to the projective equivalence.

We use projective spaces defined over reals R (as the easiest ones to visualize), over complex numbers C (to describe
algebraic–geometric integrability), and over rational numbers Q (to perform a non-integrability test). All definitions below
work for any base field. General pentagram maps are defined as follows.

Definition 1.2. We define 3 types of diagonal hyperplanes for a given twisted polygon (vk) in Pd. (a) The short-diagonal
hyperplane Psh

k is defined as the hyperplane passing through d vertices of the n-gon by taking every other vertex starting
with vk:

Psh
k := (vk, vk+2, vk+4, . . . , vk+2(d−1)).

(b) The dented diagonal plane hyperplane Pm
k for a fixed m = 1, 2, . . . , d − 1 is the hyperplane passing through all vertices

from vk to vk+d but one, by skipping only the vertex vk+m:

Pm
k := (vk, vk+1, . . . , vk+m−1, vk+m+1, vk+m+2, . . . , vk+d).

(c) The deep-dented diagonal plane hyperplane Pm
k for fixed positive integers m and p ≥ 2 is the hyperplane as above that

passes through consecutive vertices, except for one jump, when it skips p − 1 vertices vk+m, . . . , vk+m+p−2:

Pm,p
k := (vk, vk+1, . . . , vk+m−1, vk+m+p−1, vk+m+p, . . . , vk+d+p−2).

(Here Pm,2
k corresponds to Pm

k in (b).)
Now the corresponding pentagram maps Tsh, Tm, and Tm,p are defined on generic twisted polygons (vk) in Pd by intersecting
d consecutive diagonal hyperplanes:

Tvk := Pk ∩ Pk+1 ∩ · · · ∩ Pk+d−1,

where each of the maps Tsh, Tm, and Tm,p uses the definition of the corresponding hyperplanes Psh
k , Pm

k , and Pm,p
k . These

pentagram maps are generically defined on the classes of projective equivalence of twisted polygons T : Pn → Pn.

Example 1.3. For d = 2 one can have only m = 1 and the definitions of Tsh and Tm coincide with the standard 2D
pentagram map Tst in [1] (up to a shift in vertex numbering). The deep-dented maps T1,p in 2D are the maps T1,pvk :=

(vk, vk+p) ∩ (vk+1, vk+p+1) obtained by intersecting deeper diagonals of twisted polygons, see Fig. 1.
For d = 3 the map Tsh uses the diagonal planes Psh

k := (vk, vk+2, vk+4), while for the dented maps T1 and T2 one has
P1
k = (vk, vk+2, vk+3) and P2

k = (vk, vk+1, vk+3), respectively, see Fig. 2.

Theorem 1.4. The short-diagonal Tsh, dented Tm and deep-dented Tm,p maps are integrable in any dimension d on both twisted
and closed n-gons in a sense that they admit Lax representations with a spectral parameter.

The integrability of the standard 2D pentagram map Tst := Tsh = Tm was proved in [2], while its Lax representation was
found in [3]. In [4] integrability of the pentagrammap for corrugated polygons (which we discuss below) was proved, which
implies integrability of the maps T1,p in 2D.
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For higher pentagram maps in any dimension d, their Lax representations with a spectral parameter were found in [5].
The dependence on spectral parameter was based on the scale invariance of such maps, which was proved in [5] for 3D, and
in [6] for higher d. For the dented and deep-dented pentagram maps their Lax representations and scale invariance in any
dimension d were established in [7]. We present formulas for those Lax representations in Section 2. Such representations
with a spectral parameter provide first integrals of the maps (as the coefficients of the corresponding spectral curves) and
allow one to use algebraic–geometric machinery to prove various integrability properties.

In [5,7] we proved that the proposed Lax representation implies algebraic–geometric integrability for themaps Tsh, T1, T2
in 3D. In particular, this means that the space of twisted n-gons in the complex space CP3 is generically fibered into (Zariski
open subsets of) tori whose dimension is described in terms of n. In Section 3 we discuss features of the pentagram maps
which emphasize their discrete nature.

Definition 1.5. More generally, one can define generalized pentagrammaps TI,J on (projective equivalence classes of) twisted
polygons in Pd, associatedwith (d−1)-tuples of integers I and J: the jump tuple I = (i1, . . . , id−1) determineswhich vertices
define the diagonal hyperplanes P I

k:

P I
k := (vk, vk+i1 , . . . , vk+i1+···+id−1), (1.1)

while the intersection tuple J = (j1, . . . , jd−1) determines which hyperplanes to intersect in order to get the image of the
point vk:

TI,Jvk := P I
k ∩ P I

k+j1 ∩ · · · ∩ P I
k+j1+···+jd−1

.

In general, the integrability of TI,J is yet unknown, but there exists the following duality between such pentagrammaps:

T−1
I,J = TJ∗,I∗ ◦ Sh, (1.2)

where I∗ and J∗ stand for the (d− 1)-tuples taken in the opposite order and Sh is any shift in the indices of polygon vertices,
see [7]. In particular, the maps TI,J and TJ∗,I∗ are integrable or non-integrable simultaneously.

The pentagram maps Tsh, Tm, and Tm,p considered above correspond to J = (1, . . . , 1) (cf. Definitions 1.2 and 1.5). The
duality (1.2) of TI,J and TJ∗,I∗ along with Theorem 1.4 implies integrability of the maps with I = (1, . . . , 1) and appropriate
J ’s.

The simplest pentagram map which is neither short-diagonal, nor dented or deep-dented appears in dimension d = 3
and corresponds to I = (2, 3) and J = (1, 1). We conjecture that it is indeed non-integrable and outline supporting evidence
from computer experiments in Sections 5 and 6, along with several other cases both integrable and not.

Remark 1.6. In [5,7] it was also proved that the continuous limit of any short-diagonal or dented pentagrammap (andmore
generally, of any generalized pentagram map) in RPd is the (2, d + 1)-KdV flow of the Adler–Gelfand–Dickey hierarchy on
the circle. For 2D this is the classical Boussinesq equation on the circle: utt + 2(u2)xx + uxxxx = 0, which appears as the
continuous limit of the 2D pentagram map [2].

Remark 1.7. Note also that a different integrable generalization to higher dimensions was proposed in [4], where the pen-
tagram map was defined not on generic, but on the so-called corrugated polygons. These are twisted polygons in Pd, whose
vertices vk−1, vk, vk+d−1, and vk+d span a projective two-dimensional plane for every k ∈ Z. The pentagram map Tcorvk :=

(vk−1, vk+d−1) ∩ (vk, vk+d) on corrugated polygons turns out to be integrable and admits an explicit description of the Pois-
son structure, a cluster algebra structure, and other interesting features [4]. Furthermore, it turns out that the pentagram
map Tcor can be viewed as a particular case of the dented pentagram map:

Theorem 1.8 ([7]). This pentagram map Tcor is a restriction of the dented pentagram map Tm for any m = 1, . . . , d − 1 from
generic n-gons Pn in Pd to corrugated ones (or differs from it by a shift in vertex indices). In particular, these restrictions for
different m coincide modulo an index shift.

2. Formulas for Lax representations

In this section we recall explicit formulas of the Lax representation for pentagram maps. First we introduce coordinates
on the space Pn of generic twisted n-gons in Pd considered over C. For simplicity, we focus only on the case when
gcd(n, d + 1) = 1 (see the general case in [5,7]).

One can show that there exists a lift of the vertices vk = φ(k) ∈ CPd to the vectors Vk ∈ Cd+1 satisfying det(Vj, Vj+1,
. . . , Vj+d) = 1 and Vj+n = MVj, j ∈ Z, whereM ∈ SLd+1(C). (Strictly speaking, this lift is not unique, because it is defined up
to a simultaneous multiplication of all vectors by (−1)1/(d+1), but the coordinates introduced below have the same values
for all lifts.)1

1 Note also that over R for odd d to obtain the lifts of n-gons from RPd to Rd+1 one might need to switch the sign of the monodromy matrix:
M → −M ∈ SLd+1(R), since the field is not algebraically closed. These monodromies correspond to the same projective monodromy in PSLd+1(R).
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The coefficients of the following difference equation

Vj+d+1 = aj,dVj+d + aj,d−1Vj+d−1 + · · · + aj,1Vj+1 + (−1)dVj, j ∈ Z

turn out to be n-periodic in j due to the monodromy relation on vectors Vj, and, in particular, coefficients {aj,k | j = 0, . . . ,
n − 1, k = 1, . . . , d} play the role of the coordinates on the space Pn. The dimension of the space Pn of generic n-gons in
CPd is dimPn = nd.

Now we are in a position to define Lax representations for the maps Tsh and Tm. The above pentagram maps can be pre-
sented in the Lax form Lj,t+1(λ) = Pj+1,t(λ)Lj,t(λ)P−1

j,t (λ) for an appropriate matrix Pj,t(λ), where λ is a spectral parameter.
We present the Lmatrices below,while the explicit expression for Pj,t(λ) is complicated and is not required for our analysis.2
The pentagram map corresponds to the time evolution t → t + 1 of the Lax matrix.

Theorem 2.1 (=Theorem 1.4′). Lax representations with a spectral parameter for the above pentagram maps are given by the
following L-matrices:

Lj,t(λ) =


0 0 · · · 0 (−1)d

D(λ)

aj,1
aj,2
· · ·

aj,d


−1

,

where D(λ) is the following diagonal (d × d)-matrix:

• for the map Tsh, D(λ) = diag(λ, 1, λ, 1, . . . , 1, λ) for odd d and D(λ) = diag(1, λ, 1, . . . , 1, λ) for even d;
• for the map Tm, D(λ) = diag(1, . . . , 1, λ, 1, . . . , 1), where the spectral parameter λ is situated at the (m + 1)th place.

The construction of a Lax representation for the deep-dented pentagrammap Tm,p relies on the lifting of generic polygons
from CPd to so-called partially corrugated polygons in a bigger space CPd+p−2. Then the corresponding Lax representation
for the deep-dentedmaps can be obtained from the above Lax form for themap on generic polygons inCPd+p−2 by restricting
it to the subset of partially corrugated ones, see details in [7].

3. Discrete integrability

The above Lax representation allows one to give amore detailed description of the dynamics. In particular, in low dimen-
sions one can explicitly express the pentagram maps as a discrete dynamics on the Jacobian of the corresponding spectral
curve. The following result is a corollary of that description.

Theorem 3.1. The above integrable pentagrammaps on twisted n-gons in CPd cannot be included into a Hamiltonian flow as its
time-one map, at least for some values of n,m, and d.

Proof. In [3,5,7] we gave a detailed description of the pentagram maps Tsh and Tm in 2D and 3D (denote these maps by T∗).
It turned out that for even n one observes the staircase-like dynamics on the Jacobian of the corresponding spectral curve. In
the space Pn of generic twisted n-gons this corresponds to the following phenomenon. This space is a.e. fibered into (Zariski
open subsets of) complex tori, which are invariant for the square T 2

∗
of the pentagram map, but not for the map T∗ itself.

(More generally, the tori are invariant for a certain power T q
∗ , while we set q = 2 for the rest of the proof.) In turn, the map

T∗ sends almost every n-gon from the space Pn to jump between two tori. The square of this map is a shift on each torus.
Now assume that such a map T∗ were the time-one map of a smooth autonomous Hamiltonian field v on Pn. Then this

Hamiltonian field admits the same fibration a.e. into invariant tori, since T 2
∗
is its time-two map and its frequencies are

known to be nondegenerate. Then the flow of this field v would describe the linear evolution on tori, and hence it would be
integrable itself. Themap T∗ is by assumption the time-onemap of the same flow, and hence it must have the same invariant
tori, rather than jumping between them. This contradiction proves that inclusion into a flow is impossible. �

Note that the dynamics of (partially) corrugated polygons, described in [7], allows jumps between 3 different tori for
some values of n,m, p, and d.

We conjecture that the pentagram dynamics cannot be included into a flow for all values of n,m, and d (even when the
above simple argument does not alreadywork). The consideration and examples above suggest the following generalization
of a discrete integrable Hamiltonian system. It can be regarded as a particular case of an integrable correspondence [8].

Definition 3.2. Suppose that (M, ω) is a 2n-dimensional symplectic manifold and I1, . . . , In are n independent functions in
involution. Let Mc be a (possibly disconnected) level set of these functions: Mc = {x ∈ M | Ij(x) = cj, 1 ≤ j ≤ n}. A map
T : M → M is called generalized integrable if

2 One can recover the P-matrix from the coordinate formulas of the map and the fact that the ordered product Ln−1 . . . L1L0 of L-matrices transforms by
conjugation after the application of the map, see [5] for more details.
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• it is symplectic, i.e., T ∗ω = ω;
• it preserves the integrals of motion: T ∗Ij ≡ Ij, 1 ≤ j ≤ n;
• there exists a positive integer q ≥ 1 such that the map T q leaves all connected components of level setsMc invariant for

all c = (c1, . . . , cn).

In other words, the qth iteration T q of the map T is integrable in the usual sense. This definition lists almost verbatim
the assertions of the Arnold–Liouville theorem [9] for continuous flows, which implies that one has a conditionally periodic
motion for the map T q and its ‘‘integrability by quadratures’’. The difference with the classical case, corresponding to q = 1,
may occur if level setsMc are disconnected, since the discrete map can ‘‘jump’’ from one component to another.

Our analysis (in the complexified case) shows that the pentagrammaps Tsh for d = 3 and even n (in that case q = 2) and
Tcor in the corrugated case for d = 3 and n = 6l + 3 (then one has q = 3) are generalized integrable. Note that compact
connected components of generic level setsMc are tori, and the map T can be used to establish an isomorphism of different
connected components. Under such an isomorphism one obtains a ‘‘staircase’’ dynamics on the same torus (as discussed,
e.g., in Theorem B in [3,5]).

4. Universal pentagrammaps

In this section we define a general class of pentagram maps in any dimension, which allows one to intersect different
diagonals at each step.

Definition 4.1. Let (vk) be a generic twisted n-gon in Pd. We fix d, pairwise different, d-tuples I1, . . . , Id of integers which
are jump tuples defining d hyperplanes P I1

k , . . . , P Id
k , i.e., each hyperplane P Iℓ

k passes through the vertices defined by its own
jump d-tuple Iℓ = (iℓ,1, . . . , iℓ,d):

P Iℓ
k := (vk+iℓ,1 , vk+iℓ,2 , . . . , vk+iℓ,d).

Now we define the skew pentagram map TI1,...,Id : Pn → Pn, where vertices of a new n-gon are obtained by intersecting
these d hyperplanes P Iℓ

k , ℓ = 1, . . . , d:

TI1,...,Idvk := P I1
k ∩ P I2

k ∩ · · · ∩ P Id
k .

Remark 4.2. (a) The general pentagram map TI,J described in Definition 1.5 is a particular case of the skew pentagram
map TI1,...,Id : one can obtain both the jump (d − 1)-tuple I and the intersection (d − 1)-tuple J from the set of d-tuples
I1, . . . , Id.

(b) The pentagrammaps in [10] are defined by intersecting a segment (vk−1, vk+1)with P I
k for an appropriate choice of jumps

I . This is a particular case of TI1,...,Id with Id = I , and d-tuples I1, . . . , Id−1 all containing (−1, +1, . . .), so that all planes P Iℓ
k

contain the pair of vertices (vk−1, vk+1), while their other vertices differ. In this case P I1
k ∩P I2

k ∩· · ·∩P Id−1
k = (vk−1, vk+1).

In particular, the class of pentagram maps TI1,...,Id with different d-tuples includes pentagram maps defined by taking
intersections of subspaces of complimentary dimensions (and spanned by vertices (vk)) to obtain a point as the intersection.
For instance, the 3D map defined by the intersection (vk, vk+3) ∩ (vk+1, vk+2, vk+4) of a segment and a plane can be
equivalently defined as the intersection of three planes: (vk, vk+3, vk+5)∩ (vk, vk+3, vk+6)∩ (vk+1, vk+2, vk+4). Note that the
intersections of hyperplanes provide a more general definition, since their intersection subspaces might not necessarily be
spanned by vertices (vk) themselves, but by their linear combinations.

Finally, define a universal pentagram map by starting with d polygons.

Definition 4.3. Let (vℓ
k) be d twisted polygons in Pd, ℓ = 1, . . . , d and k ∈ Z, with the same monodromy matrixM ∈ SLd+1.

Now we fix two sets of d-tuples, jump tuples I1, . . . , Id and intersection tuples J1, . . . , Jd. Let Iℓ = (iℓ,1, . . . , iℓ,d) and
Jp = (jp,1, . . . , jp,d). Define the hyperplane

P Iℓ
k := (v1

k+iℓ,1 , v
2
k+iℓ,2 , . . . , v

d
k+iℓ,d)

i.e., this plane P Iℓ
k uses one vertex from each n-gon. Now one can define d skew pentagrammaps, or rather a universal penta-

grammap, whose image consists of d twisted n-gons: for every p = 1, . . . , d themap Tp uses the corresponding intersection
tuple Jp:

Tpvk := P I1
k+jp,1

∩ P I2
k+jp,2

∩ · · · ∩ P Id
k+jp,d

.

Thus one obtains a universal map TI,J on d-tuples of twisted n-gons which is associated with two sets of tuples I =

(I1, . . . , Id)t and J = (J1, . . . , Jd)t , where these sets I = (iℓ,s) and J = (jp,s) can be thought of as two (d × d)-matrices
composed of d-tuples I1, . . . , Id and, respectively, J1, . . . , Jd written as their rows.
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Theorem 4.4. The universal pentagram maps possess the following duality:

T−1
I,J = T−I∗,−J∗ ,

where I∗ and J∗ stand for the transposed matrices I∗
= (is,ℓ) and J∗

= (js,p), respectively.

This duality generalizes the one (1.2) for the TI,J pentagram maps. Note that this theorem fully specifies the indices as
opposed to the description in terms of jump (d − 1)-tuples, which does not contain minuses, but gives a similar equality
only up to a shift of indices.
Proof. To prove this theorem we modify the notion of a duality map, cf. [2,7].

Definition 4.5. Given d generic sequences of points φℓ(j) ∈ RPd, j ∈ Z, ℓ = 1, . . . , d and a d-tuple I = (i1, . . . , id) we
define the following sequence of hyperplanes in RPd enumerated by j:

αI(φ⋆(j)) := (φ1(j + i1), φ2(j + i2), . . . , φd(j + id)),

which is regarded as a sequence of points in the dual space: αI(φ⋆(j)) ∈ (RPd)∗, j ∈ Z. For d tuples I1, . . . , Id we get d
sequences αI(φ⋆(j)) = (αI1(φ⋆(j)), . . . , αId(φ⋆(j))) ∈ (RPd)∗ × · · · × (RPd)∗ enumerated by j. In other words, starting with
d sequences of points in RPd, the map αI gives d sequences of points in the dual space (RPd)∗.

The universal pentagram map TI,J on d twisted polygons can be defined as a composition of two such maps: TI,J =

αI ◦ αJ . Note that these maps by definition possess the following duality property: TI,−I∗ = αI ◦ α−I∗ = Id.
For instance, in RP2 consider two twisted polygons (v1

k ) and (v2
k ) and two 2-tuples I = (1, −2) and I2 = (−5, 3). Then in

the dual space, by applying αI we obtain two twisted polygons, formed by lines P1
k := (v1

k+1, v
2
k−2) and P2

k := (v1
k−5, v

2
k+3).

Then the vertex v1
k can be recovered from v1

k = P1
k−1 ∩ P2

k+5, while v2
k = P1

k+2 ∩ P2
k−3, i.e. by applying the map α−I∗ to the

sequences (P1
k ) and (P2

k ). Similarly this works in any dimension.
Now we see that

TI,J ◦ T−J∗,−I∗ = αI ◦ αJ ◦ α−J∗ ◦ α−I∗ = Id,

as required. �

Note that if J = −J∗, i.e. the matrix J is skew-symmetric, then the map αJ is an involution: αJ ◦ αJ = Id.

Corollary 4.6. If J is skew-symmetric, then the pentagram maps TI,J and TJ,I are conjugated to each other, i.e., the map αJ

takes the map TI,J on d-tuples of twisted n-gons in RPd into the map TJ,I on d-tuples of twisted n-gons in (RPd)∗. In particular,
all four maps TI,J, T−I∗,J, TJ,I and TJ,−I∗ are integrable or non-integrable simultaneously.
Proof. First note that

αJ ◦ TI,J ◦ α−1
J = αJ ◦ (αI ◦ αJ) ◦ αJ = αJ ◦ αI = TJ,I.

Hence the pentagram map TI,J is conjugated to TJ,I. Furthermore, the pentagram maps TI,J and TJ,−I∗ , as well as TJ,I and
T−I∗,J , are inverses to each other for J = −J∗, as follows from Theorem 4.4. This proves the corollary. �

Conjecture 4.7. (a) All universal pentagram maps TI,J are discrete Hamiltonian systems (i.e., preserve a certain Poisson
structure), although not necessarily integrable.

(b) A necessary condition for integrability of the universal pentagram maps TI,J is their equivalence to a map TI,J , see
Definition 1.5.

In the next two sections we provide a numerical evidence to Conjecture 4.7(b) and explain why this equivalence to an
appropriate map TI,J cannot be sufficient for integrability.

5. Non-integrability in 2D

The classical case. In this sectionwe are going to compare several pentagrammaps in 2D. To detect integrabilitywe use the
height criterion following [11] (see more references on ‘height’ in [12]). Recall that the height of a rational number a/b ∈ Q,
written in the lowest terms, is ht(a/b) = max(|a|, |b|). We employ the cross-ratio coordinates (x, y) (defined in [2]) on the
space of twisted n-gons Pn sitting inside QP2 (i.e., having only rational values of coordinates).

Definition 5.1. The height of a twisted n-gon P ∈ Pn in QP2 is defined as

H(P) := max
0≤i≤n−1

max(ht(xi), ht(yi)).

We trace how fast the height of an initial n-gon grows with the number of iterates of the pentagram map (i.e., with an
integer parameter t). We perform the comparison for n-gons with n = 11. To specify a twisted 11-gon, we need 11 vectors
in Q3 (which we then project to 11 vertices in QP2) and a monodromy from SL3, which can be defined by fixing 3 more
vectors in Q3. Overall we choose 14 vectors in Q3 uniformly distributed in [1, 10]3.
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o

Fig. 3. Polynomial growth of logH for the map Tst in 2D as a function of t .

First, we start with the standard 2D pentagram map Tst. After 10 iterations, the height becomes of the order of 10250.
Because of its magnitude, it is natural to use the log scale and even the log–log scale for the height, see Fig. 3.

More generally, we are going to study the following TI,J maps in 2D with I = (i) and J = (j), where the diagonals are
chords Pk = (vk, vk+i) and the maps are defined by intersecting those chords: TI,Jvk := Pk ∩ Pk+j.

Note that all these maps are integrable: the integrability of Tst := T(2),(1) and of T(3),(1) follows from [2,4] (see also The-
orem 1.4 in Section 1). The integrability in the case of T(3),(2), as well as of its dual T(2),(3) = T−1

(3),(2) ◦ Sh, on 2D n-gons can
be proved in a similar way by changing numeration of vertices, at least for n mutually prime with i or j and closed poly-
gons. The integrability of such pentagram maps was also observed experimentally in the applet of R. Schwartz (personal
communication).

In the table below we collected the order of magnitude for the height growth after 10 iterations for the following maps,
see Fig. 4:

# Notation for pent. map T = TI,J Definition of Tvk Height H after 10 iterations
1. Tst = T(2),(1) (vk, vk+2) ∩ (vk+1, vk+3) 10320

2. T(3),(1) (vk, vk+3) ∩ (vk+1, vk+4) 10350

3. T(3),(2) (vk, vk+3) ∩ (vk+2, vk+5) 10750

4. T(2),(3) (vk, vk+2) ∩ (vk+3, vk+5) 10800

The skew case. In all the cases above the pentagrammaps were defined by taking intersections of the same type diagonals
at each step. Now we generalize the definition of the classical 2D pentagram map to allow intersection of different type
diagonals at each step.

As an example, we define the skew pentagrammap on twisted polygons in P2 by intersecting at each step a short diagonal
(vk, vk+2) of ‘‘length’’ 2 and a longer diagonal (vk+1, vk+4) of ‘‘length’’ 3: T̄vk := (vk, vk+2) ∩ (vk+1, vk+4), see Fig. 5. (This
map can be described as a universal map TI,J of Section 4, also cf. [10], where for any d one intersects a short diagonal with
a hyperplane.) Note that the skew map T̄ is not a generalized map of type TI,J from Definition 1.5 for any tuples I and J , as
the latter maps were using the same definition of diagonals at each step. Now we are going to compare the height growth
for this map T̄ , as well as for several similar maps, with that for the previously discussed integrable pentagrammaps in 2D.

It turns out that for the skew map T̄ after 10th iteration the height reaches the order of 10106
, see Fig. 6. The same order

of magnitude for the height growth is observed for several similar maps, as summarized in the following table. We sketch
the corresponding diagonals for these maps in Fig. 7.

# Definition of Tvk Height H after 10 iterations
5. T̄vk := (vk, vk+2) ∩ (vk+1, vk+4) 10106

6. (vk, vk+2) ∩ (vk+1, vk+5) 10106

7. (vk+1, vk+2) ∩ (vk, vk+3) 10106

8. (vk+1, vk+2) ∩ (vk, vk+4) 10106

Such a super fast growth is in sharp contrast with the classical integrable cases discussed earlier and suggests noninte-
grability of all these skew pentagram maps.

Remark 5.2. Note that the above classical and skew examples are conjectured to be Hamiltonian, regardless of whether
they are integrable or not, see Conjecture 4.7(a) and [7]. An example of a different type, the projective heat map in 2D, was
proposed in [13]: it can be thought of as a dissipative system on polygons, while its continuous analog is the curvature flow



282 B. Khesin, F. Soloviev / Journal of Geometry and Physics 87 (2015) 275–285

Fig. 4. The pentagrammaps T(i),(j) on twisted polygons in 2D, where T(i),(j)vk := (vk, vk+i)∩ (vk+j, vk+i+j), cf. the table below: 1. T(2),(1) , 2. T(3),(1) , 3. T(3),(2) ,
4. T(2),(3) .

Fig. 5. The skew pentagram map T̄ is obtained by intersecting diagonals of lengths 2 and 3 at each step.

Fig. 6. Linear growth of log logH for the skew pentagram map T̄ in 2D, which indicates super fast growth of its height.

Fig. 7. The 2Dpentagrammapswith the following diagonals intersecting: 5. (vk, vk+2)∩(vk+1, vk+4), 6. (vk, vk+2)∩(vk+1, vk+5), 7. (vk+1, vk+2)∩(vk, vk+3),
8. (vk+1, vk+2) ∩ (vk, vk+4), cf. the table above.

on curves. This map turns out to converge to a (projectively) regular n-gon, at least for n = 5. Such a dynamical system
cannot be integrable due to ‘‘dissipation’’, and this non-integrability is of a ‘‘non-Hamiltonian’’ nature.

6. Non-integrability in 3D

In this section we present the results of the numerical integrability test for various 3D pentagrammaps. First of all, note
that the definition of the height can be naturally extended to twisted rational polygons in any dimension. For instance, in
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Fig. 8. Polynomial growth of logH for the integrable pentagram map Tsh in 3D as a function of t .

3D we employ the cross-ratio coordinates (x, y, z) (defined in [5]) on the space of twisted n-gons Pn in P3, with rational
coordinates.3

Definition 6.1. The height of a twisted n-gon P ∈ Pn in QP3 is

H(P) := max
0≤i≤n−1

max(ht(xi), ht(yi), ht(zi)).

Similarly to the above analysis we trace how fast the height of an initial n-gon for n = 11 grows with the number of
iterates of different pentagram maps in 3D. Now we specify 15 = 11 + 4 vectors in Q4 to fix a twisted 11-gon in QP3 and
its monodromy from SL4. Again, their coordinates are randomly distributed in [1, 10].

It turns out that in 3D there also exists a sharp contrast in the height growth for different maps. However, the borderline
between integrable and non-integrable ones does not lie between the classical and skew cases, and it is more difficult to
describe. This is why we group the numerically integrable and non-integrable cases separately.

Numerically integrable 3D cases. We start this study with the short-diagonal map Tsh in 3D, which is known to be
(algebraic–geometric) integrable [5]. After 8 iterations of this map, the height of the twisted 11-gon in QP3 becomes of
the order of 10500, see Fig. 8.

The height also grows moderately fast for another integrable map, dented map T1, reaching the value of the order of
10800. We also observe a similar moderate growth for the (integrable) deep-dented map Tm,p in 3D with m = 1 and p = 3:
the height remains around 101000.

The above cases correspond to taking intersections of consecutive planes, i.e., to TI,J with J = (1, 1). One can also observe
amoderate height growth for several pentagrammapswithmore elaborate tuples J . The results are collected in the following
table:

# Notation for pent. map
T = TI,J

Tvk in 3D case Height H after 8 iterations

1. Tsh := T(2,2),(1,1) Pk = (vk, vk+2, vk+4),
Tvk := Pk ∩ Pk+1 ∩ Pk+2

10500

2. T1 := T(2,1),(1,1) Pk = (vk, vk+2, vk+3),
Tvk := Pk ∩ Pk+1 ∩ Pk+2

10800

3. T1,3 := T(3,1),(1,1) Pk = (vk, vk+3, vk+4),
Tvk := Pk ∩ Pk+1 ∩ Pk+2

101000

4. T(2,2),(1,2) Pk = (vk, vk+2, vk+4),
Tvk := Pk ∩ Pk+1 ∩ Pk+3

101000

5. T(1,2),(1,2) Pk = (vk, vk+1, vk+3),
Tvk := Pk ∩ Pk+1 ∩ Pk+3

102000

6. T(1,3),(1,3) Pk = (vk, vk+1, vk+4),
Tvk := Pk ∩ Pk+1 ∩ Pk+4

103000

7. T(2,3),(2,3) Pk = (vk, vk+2, vk+5),
Tvk := Pk ∩ Pk+2 ∩ Pk+5

103000

Remark 6.2. The first three cases in the table, with J = (1, 1), have been proved to be integrable. The integrability of the
other four, with non-unit J , is unknown. Also, the pattern, which differs these cases from the non-integrable ones discussed
below is yet to be established.

3 In any dimension one may use the quasi-periodic coordinates to construct cross-ratio-type coordinates, see [7].
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Fig. 9. The pentagram map T(2,3) in 3D is defined by intersecting three consecutive diagonals P (2,3)
k := (vk, vk+2, vk+5).

Fig. 10. Linear growth of log logH for the map T(2,3) in 3D indicating super fast growth of its height and apparent non-integrability.

Note that the case T(2,2),(1,2) has the ‘‘short’’ diagonal Pk = (vk, vk+2, vk+4), and the pentagrammap would be integrable
for J = (1, 1). However, here for J = (1, 2) we take the intersection of two consecutive diagonals Pk’s and one apart.
(Similarly behaves themap T(2,1),(2,2), which is inverse of T(2,2),(1,2), and hence has the same integrability properties.) For the
cases (5) and (6) in the table, their diagonals with I = (1, 2) and I = (1, 3) are also known to be integrable in combination
with J = (1, 1), while now the numerical results show that they are also integrable in combination with J = (1, 2) and
J = (1, 3), respectively.Most surprisingly, the sameholds for the case (7): the pentagrammap for the diagonal I = (2, 3) and
the intersection J = (2, 3) is now shown to be numerically integrable. The last three cases suggest the following conjecture.

Conjecture 6.3. The pentagram maps TI,I , i.e. those with I = J , are integrable.

If proved, this would give a very large variety of integrable maps! (Note that TI,I∗ is always the identity map modulo a
shift of indices, as follows from the properties of the duality maps, see [7]. In particular, e.g., one has T(1,2),(2,1) = Sh.)

However, as we will see below, the same diagonals I in combination with other J ’s may give non-integrability: see the
cases (8) and (9) in the table below, where one mixes I = (1, 2) with J = (3, 1) or J = (1, 3). (Due to duality (1.2) one can
interchange these I and J , which would lead to the same result on numerical non-integrability for I = (1, 3) and J = (2, 1).)
Similarly, the diagonal I = (2, 3) in combination with J = (1, 1) is numerically non-integrable, see the case (10) below.

Numerically non-integrable 3D cases. Non-integrability of pentagram maps appears in several different situations. As we
mentioned in Remark 6.2, it can be obtained by taking an ‘‘unusual’’ intersection tuple J with a ‘‘usually integrable’’ jump
tuple I .

Another way to observe non-integrability is to choose a jump tuple I not covered by the integrability theorems (see
the survey in Section 1). In 3D we proved integrability for pentagram maps defined by hyperplanes Pk of the following
types: Pst

k = (vk, vk+2, vk+4), P1
k = (vk, vk+2, vk+3), P

1,p
k = (vk, vk+p, vk+p+1) (and similarly for P2

k and P2,p
k ). One of

the first cases not covered by these results is the pentagram map T(2,3) := T(2,3),(1,1) in 3D defined by the hyperplanes
P (2,3)
k := (vk, vk+2, vk+5) with the jump tuple I = (2, 3), while J = (1, 1), in notations of [7]:

T(2,3)vk := (vk, vk+2, vk+5) ∩ (vk+1, vk+3, vk+6) ∩ (vk+2, vk+4, vk+7),

see Fig. 9. We conjectured in [7] (see also Conjecture 4.7(a)) that all maps defined by taking intersections of the same
diagonals are discrete Hamiltonian. But they still might be non-integrable and T(2,3) is the first candidate for that. Here
we present a numerical evidence for such a non-integrability.

The height growth turns out to be enormously faster for the map T(2,3) than for all integrable maps discussed above:
after 8 iterations the height already reaches the order of magnitude of over 10107

, see Fig. 10. The map T(2,3) in 3D is a map
defined by the same diagonal plane at each step, i.e., it is of type TI,J . However, in a sense it is mimicking the skew map T̄
in 2D defined by different type diagonals. More cases of presumably non-integrable maps are given in the table below. We
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mention that the case (12) was discussed in [5], where the problem of its integrability was posed. It looked conjecturally
integrable as the corresponding pentagrammap T(3,3),(1,1) is the intersection of three consecutive very symmetric diagonals
Pk := (vk, vk+3, vk+6). However, the current numerical evidence suggests its non-integrability.

Finally, one more source of would-be non-integrable maps is skew pentagram maps, and, in particular, the maps con-
structed by intersecting different planes of complimentary dimensions at each step. The cases (13) and (14) in the table
below illustrate the latter.

# Tvk in 3D case Height H after 8 iterations
8. T(1,2),(3,1) 103·107

9. T(1,2),(1,3) 103·107

10. T(2,3) := T(2,3),(1,1) 10107

11. T(2,4) := T(2,4),(1,1) 10107

12. T(3,3) := T(3,3),(1,1) 10107

13. (vk, vk+3) ∩ (vk+1, vk+2, vk+4) 10106

14. (vk+1, vk+3) ∩ (vk, vk+2, vk+5) 10106

Remark 6.4. Note that all maps considered above can be expressed by rational functions. Apparently, in integrable cases
many cancelations of different terms occur after several iterations, resulting in a much lower complexity, while one does
not have those cancelations in non-integrable cases. It would be very interesting to prove the observed non-integrability
directly, rather than numerically, possibly by employing Ziglin’s or Morales–Ramis’ methods.

The above considerationprovides an evidence for Conjecture 4.7(b): a necessary condition for integrability of a pentagram
map is to be of TI,J -type, i.e., to be defined by intersections of the same-type diagonal hyperplanes at each step (see
Definition 1.5). While the class of universal pentagram maps TI,J is very broad, all known integrable examples (such as
short-diagonal, dented, deep-dented, corrugated and partially corrugated pentagrammaps) can indeed be presented as TI,J -
type maps. However, this condition is not sufficient for integrability, as many examples of this section indicate.

Remark 6.5. It is often convenient to deal with the logarithmic height h(T ) := logH(T ) of a dynamical system T . The arith-
metic complexity of a map T is defined as follows: δ(T ) := lim supn→∞(h(T n))1/n, see [14]. We observed that the quantity
log logH(T n) = log h(T n) grows linearly with the number of iterations n for numerically non-integrablemaps T , like c ·n for
c > 0, see Figs. 6 and 10. This allows one to predict that h(T n) ∼ Cn with C > 1 as n → ∞, and hence for such non-integrable
maps there should be δ(T ) = C > 1.

On the other hand, sub-linear growth of log logH(T n) = log h(T n) for integrable maps T , see Figs. 3 and 8, indicates that
apparently δ(T ) = 1 for them. We conjecture that the equality δ(T ) = 1 is a necessary condition for integrability of T in a
more general setting:

Conjecture 6.6. If a map T satisfies a Lax equation with a rational Lax matrix (i.e. rationally depending on coordinates and a
spectral parameter), then the arithmetic complexity of this map satisfies δ(T ) = 1.
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