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Abstract: We define the Krichever-Novikov-type Lie algebras of differential operators
and pseudodifferential symbols on Riemann surfaces, along with their outer derivations
and central extensions. We show that the corresponding algebras of meromorphic oper-
ators and symbols have many invariant traces and central extensions, given by the loga-
rithms of meromorphic vector fields. Very few of these extensions survive after passing
to the algebras of operators and symbols holomorphic away from several fixed points.
We also describe the associated Manin triples and KdV-type hierarchies, emphasizing
the similarities and differences with the case of smooth symbols on the circle.

1. Introduction

The Krichever-Novikov algebras are the (centrally extended) Lie algebras of meromor-
phic vector fields on a Riemann surface �, which are holomorphic away from several
fixed points [7, 8], see also [11, 15]. They are natural generalizations of the Virasoro
algebra, which corresponds to the case of � = CP1 with two punctures. Central exten-
sions of the corresponding algebras of vector fields on a given Riemann surface are
defined by fixing a projective structure (that is a class of coordinates related by pro-
jective transformations) and the corresponding Gelfand-Fuchs cocycle, along with the
change-of-coordinate rule.

In this paper we deal with two generalizations of the Krichever-Novikov (KN) alge-
bras. The first one is the Lie algebras of all meromorphic differential operators and
pseudodifferential symbols on a Riemann surface, while the second one is the Lie alge-
bras of meromorphic differential operators and pseudodifferential symbols which are
holomorphic away from several fixed points. The main tool which we employ is fixing a
reference meromorphic vector field instead of a projective structure on �. It turns out that
such a choice allows one to write more explicit formulas for the corresponding cocycles,
both for the Krichever-Novikov algebra of vector fields and for its generalizations.
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Several features of these algebras of meromorphic symbols make them different from
their smooth analogue, the algebra of pseudodifferential symbols with smooth coeffi-
cients on the circle. First of all, this is the existence of many invariant traces on the former
algebras: one can associate such a trace to every point on the surface. Furthermore, we
show that the logarithm log X of any meromorphic pseudodifferential symbol X defines
an outer derivation of the Lie algebra of meromorphic symbols. In turn, the combination
of invariant traces and outer derivations produces a variety of independent non-trivial
2-cocycles on the Lie algebras of meromorphic pseudodifferential symbols and differ-
ential operators, as well as it gives rise to Lie bialgebra structures (see Sect. 2). Note that
the above mentioned scheme of generating numerous 2-cocycles in the meromorphic
case, which involve log X for any meromorphic pseudodifferential symbol X , provides
a natural unifying framework for the existence of two independent cocycles (generated
by log ∂/∂x and log x) in the smooth case, cf. [6, 5].

The second type of algebras under consideration, those of holomorphic differential
operators and pseudodifferential symbols, are more direct generalizations of the Krich-
ever-Novikov algebra of holomorphic vector fields on a punctured Riemann surface.
For them we prove the density and filtered generalized grading properties, similarly to
the corresponding properties of the KN algebras [7, 8]. Furthermore, one can adapt the
notion of a local cocycle proposed in [7] to the filtered algebras of (pseudo)differential
symbols. It turns out that all logarithmic cocycles become linearly dependent when we
confine to local cocycles on holomorphic differential operators. On the other hand, for
holomorphic pseudodifferential symbols the local cocycles are shown to form a two-
dimensional space (see Sect. 3).

Finally, for meromorphic differential operators, as well as for holomorphic differ-
ential operators on surfaces with trivialized tangent bundle, there exist Lie bialgebra
structures and integrable hierarchies mimicking the structures in the smooth case.

We deliberately put the exposition in a form which emphasizes the similarities with
and differences from the algebras of (pseudo)differential symbols with smooth coeffi-
cients on the circle, developed in [3, 5]. In many respects the algebras of holomorphic
symbols extended by local 2-cocycles turn out to be similar to their smooth counterparts
on the circle. On the other hand, by giving up the condition of locality, one obtains
higher-dimensional extensions of the Lie algebras of holomorphic symbols by means of
the 2-cocycles related to different paths on the surface. This way one naturally comes
to holomorphic analogues of the algebras of “smooth symbols on graphs,” which also
have central extensions given by 2-cocycles on different loops in the graphs.

2. Meromorphic Pseudodifferential Symbols on Riemann Surfaces

2.1. The algebras of meromorphic differential and pseudodifferential symbols. Let �

be a compact Riemann surface and M be the space of meromorphic functions on �.
Fix a meromorphic vector field v on the surface and denote by D (or Dv) the operator
of Lie derivative Lv along the field v. Then D sends the space M to itself, and one can
consider the operator algebras generated by it.

Definition 2.1. The associative algebras of meromorphic differential operators

M DO :=
{

A =
n∑

k=0

ak Dk | ak ∈ M
}
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and meromorphic pseudodifferential symbols

M�DS :=
{

A =
n∑

k=−∞
ak Dk | ak ∈ M

}

are the above spaces of formal polynomials and series in D which are equipped with
the multiplication ◦ defined by

Dk ◦ a =
∑
�≥0

(
k

�

)
(D�a)Dk−� , (2.1)

where the binomial coefficient
(k
�

) = k(k−1)...(k−�+1)
�! makes sense for both positive and

negative k. This multiplication law naturally extends the Leibnitz rule D◦a = aD+(Da).
The algebras M DO and M�DS are also Lie algebras with respect to the bracket

[A, B] = A ◦ B − B ◦ A .

Note that the algebra M DO is both an associative and Lie subalgebra in M�DS. (In
the sequel, we will write simply XY instead of X ◦ Y whenever this does not cause an
ambiguity.)

For different choices of the meromorphic vector field v the corresponding algebras
of (pseudo) differential symbols are isomorphic: any other meromorphic field w on �

can be presented as w = f v for f ∈ M, and then the relation Dw = f Dv delivers
the (both associative and Lie) algebra isomorphism. Meromorphic vector fields on �

embed both into M DO and M�DS as Lie subalgebras.

Remark 2.2. Equivalently, one can define the product of two pseudodifferential symbols
by the following formula: if A(D) = ∑m

i=−∞ ai Di and B(D) = ∑n
j=−∞ b j D j , for

D := Lv then

A ◦ B :=
⎛
⎝∑

k≥0

1

k!∂
k
ξ A(ξ)∂k

v B(ξ)

⎞
⎠

ξ=D

. (2.2)

Here ∂v is the operator of taking the Lie derivative of coefficients of a symbol (i.e. of
functions b j ) along v. Note that the right-hand side of this formula expresses the com-
mutative multiplication of functions A(z, ξ) and B(z, ξ). Of course, this formula also
extends the usual composition of differential operators.

2.2. Outer derivations of pseudodifferential symbols. It turns out that both the asso-
ciative and Lie algebras of meromorphic pseudodifferential symbols have many outer
derivations.

Definition 2.3. (cf. [6]) Let v be a meromorphic vector field on � and set D := Lv .
Define the operator log D or, rather, [log D, ·] : M�DS → M�DS by

[log D, aDn] :=
∑
k≥1

(−1)k+1

k
(Dka)Dn−k . (2.3)
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The above formula is consistent with the Leibnitz formula (2.1): it can be obtained
from the latter by regarding k as a complex parameter, say, λ and differentiating in λ

at λ = 0: d/dλ|λ=0 Dλ = log D. (Below we will be using the notation log D for the
derivation and [log D, ·] for explicit formulas.)

Proposition 2.4. The operator log D : M�DS → M�DS defines a derivation of the
(both associative and Lie) algebra M�DS of meromorphic pseudodifferential symbols
for any choice of the meromorphic vector field v.

Proof. One readily verifies that for any two symbols A and B,

[log D, AB] = [log D, A]B + A[log D, B] ,
i.e. log D is a derivation of the associative algebra M�DS. This also implies that log D
is a derivation of the Lie algebra structure. ��

It turns out that one can describe a whole class of derivations in a similar way.

Definition 2.5. Associate to any meromorphic pseudodifferential symbol X the deriva-
tion log X : M�DS → M�DS, where the commutator [log X, A] with a symbol A is
defined by means of the formula (2.2).

Namely, recall that log(v(z)ξ) can be regarded as a (multivalued) symbol for log Dv ,
i.e. a multivalued function on T ∗�. Indeed, only the derivatives of this function in ξ

or along the field v appear in the formula for the commutator [log D, A] = log D ◦ A
− A ◦ log D, where the products in the right-hand-side are defined by formula (2.2).
Similarly, one can regard log X (ξ) as a function on T ∗� and only its derivatives appear
in the commutators [log X, A] with any meromorphic symbol A ∈ M�DS.

Remark 2.6. We note that the formula for [log X, A] involves the inverse X−1, which is a
well-defined element of M�DS. Indeed, to find, say, the inverse of a pseudodifferential
symbol X we have to solve X ◦ A = 1 with unknown coefficients. If

X = fn Dn + fn−1 Dn−1 + . . . , A = an D−n + an−1 D−n−1 + . . . .,

we solve recursively the equations

fnan = 1, fnan−1 + fn−1an + n fn(Dan) = 0, . . . .

Each equation involves only one new unknown a j as compared to preceding ones and
hence the series for X−1 = A can be obtained term by term, i.e. its coefficients are
meromorphic functions.

Example 2.7. To any meromorphic function f ∈ M on � we associate the operator
log f : M�DS → M�DS given by

[log f, aDn] := na
D f

f
Dn−1 + n(n − 1)a

f (D2 f ) − (D f )2

f 2 Dn−2 + . . . .

Note that, while the function log f is not meromorphic and branches at poles and zeros
of f , all its derivatives Dk(log f ) with k ≥ 1 are meromorphic, and the right-hand side
of the above expression is a meromorphic pseudodifferential symbol.
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We shall show that log X for any symbol X is an outer derivation of the Lie algebra
M�DS, i.e. it represents a nontrivial element of H1(M�DS, M�DS). The latter space
is by definition the space of equivalence classes of all derivations modulo inner ones.

Theorem 2.8. All derivations defined by log X for any meromorphic pseudodifferen-
tial symbol X are outer and equivalent to a linear combination of derivations given by
logarithms log Dvi of meromorphic vector fields vi on �.

This theorem is implied by the following two properties of the log-map.
Theorem 2.8′. The map X 
→ log X ∈ H1(M�DS, M�DS) is nonzero and satisfies
the properties:

a) the derivation log(X ◦ Y ) is equivalent to the sum of derivations log X + log Y ,
and

b) the derivation log(X + Y ) is equivalent to the derivation log X if the degree of the
symbol X is greater than the degree of Y .

One can see that any derivation log X is equivalent to a linear combination of log f
for some meromorphic function and log Dv for one fixed field v. The above properties
of derivations log X modulo inner ones are similar to those of tropical calculus.1 We
prove this theorem in Sect. 2.5.

Conjecture 2.9. All outer derivations of the Lie algebra M�DS are equivalent to those
given by log X for pseudodifferential symbols X.

2.3. The traces. The Lie algebra M�DS has a trace attached to any choice of the “spe-
cial” points on �. All the constructions below will be relying on this choice of the points
and we fix such a point (or a collection of points) P ∈ � from now on.

Definition 2.10. Define the residue map res
D

from M�DS to meromorphic 1-forms on

� by setting

res
D

(
n∑

k=−∞
ak Dk

)
:= a−1 D̃−1.

Here D̃−1 in the right-hand side is understood as a (globally defined) meromorphic
differential on �, the pointwise inverse of the meromorphic vector field v.

On the algebra M�DS we define the trace associated to the point P ∈ � by

Tr A := res
P

res
D

(A).

Here

res
P

f D−1 = res
P

f

v
= res

P

f

h
dz = 1

2π i

∫
γ

f

h
dz,

where v = h(z)∂/∂z is a local representation of the vector field v at a neighborhood
of the point P , while γ is a sufficiently small contour on � around P which does not
contain poles of f/h other than P . (Here and below we omit the index P in the notation
of the trace Tr P .)

1 We are grateful to A. Rosly for drawing our attention to this analogy.
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Proposition 2.11. Both the residue and trace are well-defined operations on the algebra
M�DS, i.e. they do not depend on the choice of the field v. Furthermore, for any choice
of the point(s) P, Tr is an algebraic trace, i.e. Tr [A, B] = 0 for any two pseudo-differ-
ential symbols A, B ∈ M�DS.

In particular, this property allows us to use the notation res
D

or Tr without mentioning

a specific field v.

Proof. Under the change of a vector field v 
→ w = gv only the terms D−1
v contribute

to D−1
w , which implies that the corresponding 1-form a−1 D̃−1

v and hence the residue
operator are well-defined.

The algebraic property of the trace is of local nature, since Tr is defined locally near
P . One can show that for any two X, Y ∈ M�DS the residue of the commutator is a
full derivative, i.e.

res
D

[X, Y ] = (D f )D−1

for some function f defined in a neighborhood of P (see [1], p.11). Then the proposition
follows from the fact that a complete derivative has zero residue:∫

γ

(D f )D−1 =
∫

γ

Lv f

v
=

∫
γ

d f = 0

for a contour γ around P . ��
This proposition allows one to define the pairing ( , ) on M�DS, associated with

the chosen point P ∈ �:

(A, B) := Tr (AB) . (2.4)

This pairing is symmetric, non-degenerate, and invariant due to the proposition above.
The pairings associated to different choices of the point(s) P ∈ � are in general not
related by an algebra automorphism (unless there exists a holomorphic automorphism
of the surface � sending one choice to the other).

Remark 2.12. The existence of the invariant trace(s) on M�DS allows one to identify
this Lie algebra with (the regular part of) its dual space. This identification relies on the
choice of the point P .

We also note that both res
D

and Tr vanish on the subalgebra M DO of meromorphic

purely differential operators. In particular, this subalgebra is isotropic with respect to
the above pairing, i.e. ( , ) |M DO = 0. The complementary subalgebra to M DO is the
Lie algebra M I S of meromorphic integral symbols {∑−1

k=−∞ ak Dk}, which is isotropic
with respect to this pairing as well.

2.4. The logarithmic 2-cocycles. Being in the possession of a variety of outer deriva-
tions, as well as of the invariant trace(s), we can now construct many central extensions
of the Lie algebra �DS. The simple form of the invariant trace allows us to follow
the analogous formalism for pseudodifferential symbols on the circle [3, 5, 6]. We start
by defining a logarithmic 2-cocycle attached to the given choice of the point P and a
meromorphic field v on �:
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Theorem 2.13. (cf. [6]) The bilinear functional

cv(A, B) := Tr ([log Dv, A] ◦ B) (2.5)

is a nontrivial 2-cocycle on M�DS and on its subalgebra M DO for any meromorphic
field v and any choice of the point P on �, where the trace is taken.

In particular, the skew-symmetry property of this cocycle follows from the fact that
the derivation log Dv preserves the trace functional: Tr ([log Dv, A]) = 0 for all symbols
A ∈ M�DS.

Remark 2.14. The restriction of this 2-cocycle to the algebra of vector fields is the
Gelfand-Fuchs 2-cocycle

cv(aDv, bDv) = 1

6
res

P

(D2
va)(Dvb)

Dv

on the Lie algebra of meromorphic vector fields on �. The restriction of the cocycle
(2.5) to the algebra M DO gives the Kac-Peterson 2-cocycle

cv(aDm
v , bDn

v ) = m!n!
(m + n + 1)! res

P

(Dn+1
v a)(Dm

v b)

Dv

, m, n ≥ 0,

on meromorphic differential operators on � (see [10]).

The above construction can be generalized in the following way.

Definition 2.15. Associate the logarithmic 2-cocycle

cX (A, B) := Tr ([log X, A] ◦ B)

to a meromorphic pseudodifferential symbol X and a point P ∈ � (where the trace Tr
is taken).

Theorem 2.8′′. For any meromorphic pseudodifferential symbols X and Y
a) the logarithmic 2-cocycle cXY is equivalent to the sum of the 2-cocycles cX + cY ,

and
b) the logarithmic 2-cocycle cX+Y is equivalent to the logarithmic 2-cocycle cX pro-

vided the degree of the symbol X is greater than the degree of Y .

Proof. This follows from Theorem 2.8′ thanks to the following claim (see e.g. [2]). Let
g be a Lie algebra with a symmetric invariant nondegenerate pairing ( , ). Consider a
derivation φ : g → g preserving the pairing, i.e. satisfying (φ(a), b) + (φ(b), a) = 0
for any a, b ∈ g, and associate to it the 2-cocycle c(a, b) := (φ(a), b) ∈ H2(g) on g.
Then the subspace in H1(g, g) consisting of invariant derivations (and understood up
to coboundary) is isomorphic to the space H2(g): the 2-cocycle c is cohomologically
nontrivial if and only if the derivation φ is outer.

Since the outer derivation log X preserves the pairing (2.4), it defines a nontrivial 2-
cocycle. The properties of the outer derivations in Theorem 2.8′ are equivalent to those
of the logarithmic 2-cocycles in Theorem 2.8′′. ��
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Corollary 2.16. (i) For any meromorphic pseudodifferential symbol X the logarithmic
2-cocycle cX is equivalent to a linear combination of the 2-cocycles cvi (A, B) :=
Tr ([log Dvi , A] ◦ B) associated to meromorphic vector fields vi .

(ii) For two meromorphic vector fields v and w related by w = f v the cocycles cv

and cw are related by

cw = cv + c f ,

where c f (A, B) := Tr ([log f, A] ◦ B) is the 2-cocycle associated to the meromor-
phic function f ∈ M, and the equality is understood in H2(M�DS, C), i.e. modulo a
2-coboundary.

Theorem 2.17. All the 2-cocycles cv are nontrivial and non-cohomologous to each other
on the algebra M�DS for different choices of meromorphic fields v �= 0. Equivalently,
cocycles c f are all nontrivial for non-constant functions f .

Proof. Note that the 2-cocycle cv is nontrivial, since its restriction to the subalgebra of
vector fields holomorphic in a punctured neighborhood of the point P already gives the
nontrivial Gelfand-Fuchs 2-cocycle. (In other words, the nontriviality of the cocycle cv

for a meromorphic vector field v follows from its nontriviality on the Krichever-Novikov
subalgebra L of holomorphic vector fields on � \ {P, Q}, where Q is any other point
on �, see the next section.)

To show the nontriviality of the cocycle c f for a non-constant function f we use
the existence of many traces on M�DS. First we choose the point P (and the corre-
sponding trace Tr P ) at a zero of the function f . The corresponding 2-cocycle c f is
non-trivial, since so is its restriction to pseudodifferential symbols holomorphic in a
punctured neighborhood of P . The latter is obtained by exploiting the nontriviality of
the 2-cocycle c′(A, B) = Tr ([log z, A]◦B) on holomorphic pseudodifferential symbols
on C

∗, see [5, 2].
Now, by applying the above-mentioned equivalence between derivations and cocy-

cles, we conclude that log f defines an outer derivation of the algebra M�DS. Once
we know that the derivation is outer, we can use the same equivalence “in the opposite
direction” for the point P anywhere on � to obtain a nontrivial 2-cocycle from any other
invariant trace. ��
Remark 2.18. Note that the cocycle cf for a meromorphic function f vanishes on the
subalgebra M DO of meromorphic differential operators: for any purely differential
operators X and Y , the expression [log f, X ] ◦ Y is also a meromorphic differential
operator (see Example 2.7) and hence its coefficient at D−1

v is 0. This shows that all the
2-cocycles cv for the same point P ∈ �, but for different choices of the meromorphic
field v are cohomologous when restricted to the algebra M DO . The choice of a different
point P to define the trace may lead to a non-cohomologous 2-cocycle cv .

2.5. Proof of the theorem on outer derivations. In this section we will prove
Theorem 2.8′ on properties of the derivation log X : M�DS → M�DS.

Proof. For the part a) we rewrite the product XY of two symbols as XY = exp(log X)◦
exp(log Y ) and use the Campbell-Hausdorff formula:

XY = exp(log X + log Y + R(log X, log Y )) .
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Note that the remainder term R(log X, log Y ) is a pseudodifferential symbol, since only
(iterated) commutators of log X and log Y appear in it, but not the logarithms them-
selves. (In particular, the commutator [log X, log Y ] defined by the formula (2.2) is a
pseudodifferential symbol from M�DS.) Hence

log XY = log X + log Y + R(log X, log Y ) .

Thus the derivation log XY is cohomological to the sum of derivations log X + log Y ,
since the commutation with the symbol R(log X, log Y ) defines an inner derivation of
the algebra M�DS. This proves a).

To prove the part b) we will show that the derivation log X for X = ∑n
i=−∞ ai Di

v is
defined by an Dn

v , the principal term of X . Indeed, rewrite X as

X = (an Dn
v ) ◦ (1 + Y ),

where Y = ∑−1
j=−∞ b j D j

v is a meromorphic integral symbol. Then due to a), log X is
cohomological to log(an Dn

v )+log(1+Y ). However, the derivation log(1+Y ) is inner, i.e.
log(1 + Y ) is itself a meromorphic pseudodifferential symbol. Indeed, expand log(1 + Y )

in the series: log(1 + Y ) = Y −Y 2/2 + Y 3/3− . . . . The right-hand side is a well-defined
meromorphic integral symbol, since so is Y . Thus log X is cohomological to log(an Dn

v ),
which proves b). ��

2.6. The double extension of the meromorphic symbols and Manin triples.

Definition 2.19. Consider the following double extension of the Lie algebra M�DS by
means of both the central term and the outer derivation for a fixed meromorphic field v:

M̃�DS = C · log D ⊕ M�DS ⊕ C · I =
{

λ log D +
n∑

k=−∞
ak Dk + µ · I

}
,

where the commutator of a pseudodifferential symbol with another one or with log D
for D = Dv was defined above, while the cocycle direction I commutes with everything
else.

There is a natural invariant pairing on the Lie algebra M̃�DS, which extends the
pairing Tr (A ◦ B) on the non-extended algebra M�DS. Namely,

〈(λ1 log D + A1 + µ1 · I, λ2 log D + A2 + µ2 · I)〉 = Tr (A1 ◦ A2) + λ1 · µ2 + λ2 · µ1 .

Consider also two subalgebras of the Lie algebra M̃�DS: the subalgebra of centrally
extended meromorphic differential operators

M̂ DO =
{

n∑
k=0

ak Dk + µ · I

}

and the subalgebra of co-centrally extended meromorphic integral symbols

M̃ I S = C · log D ⊕ M I S =
{

λ log D +
−1∑

k=−∞
ak Dk

}
.

Similarly to the case of smooth coefficients, one proves the following
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Theorem 2.20. Both the triples of algebras (M�DS, M DO, M I S) and

(M̃�DS, M̂ DO, M̃ I S) are Manin triples.

Definition 2.21. A Manin triple (g, g+, g−) is a Lie algebra g along with two Lie sub-
algebras g± ⊂ g and a nondegenerate invariant symmetric form ( , ) on g, such that

(a) g = g+ ⊕ g− as a vector space and
(b) g+ and g− are isotropic subspaces of g with respect to the inner product ( , ).

The existence of a Manin triple means the existence of a Lie bialgebra structure on
both g± and allows one to regard each of the subalgebras as dual to the other with respect
to the pairing (see the Appendix for the definitions).

Corollary 2.22. Both the Lie algebras M I S and M̃ I S are Lie bialgebras, while the
groups corresponding to them are Poisson-Lie groups.

This makes the meromorphic consideration parallel to the case of smooth pseudo-
differential symbols developed in [3, 5]. For holomorphic symbols, however, such a
Manin triple exists only in special cases, as we discuss below.

3. Holomorphic Pseudodifferential Symbols on Riemann Surfaces

3.1. The Krichever-Novikov algebra. Let � be a Riemann surface of genus g. Fix two
generic points P+ and P− on the surface. Consider the Lie algebra L of meromorphic

vector fields on �, holomorphic on
◦
� := � \ {P±}. We will call such fields simply

holomorphic (on
◦
�).

Definition 3.1. The Lie algebra L of holomorphic on
◦
� vector fields is called the

Krichever-Novikov (KN) algebra.

A special basis in L, called the Krichever-Novikov basis, is formed by vector fields
ek having a pole of order k at P+ and a pole of order 3g − k − 2 at P− (as usual we refer
to a pole of negative order k as to a zero of order −k). (More precisely, this prescription
of basis elements works for surfaces � of genus g ≥ 2, while for g = 1 one has to alter
it for certain small values of k, see [7].) Note that each field ek has g additional zeros
elsewhere on � \ {P±}, since the degree of the tangent bundle of � is 2 − 2g.

This algebra was introduced and studied in [7, 8] along with its central extensions.

It generalizes the Virasoro algebra, which corresponds to the case
◦
� = CP1 \ {0,∞}.

Below we will be concerned with the case of two punctures P± on �, although most of
the results below hold for the case of many punctures as well, cf. [11–13, 16, 18].

3.2. Holomorphic differential operators and pseudodifferential symbols. Denote by O
the sheaf of holomorphic functions on

◦
�, which are meromorphic at P±.

Definition 3.2. The sheaves of holomorphic differential operators and pseudodiffer-

ential symbols on � \ {P±} are defined by assigning to each open set U ⊂ ◦
� an abelian

group (a vector space) of sections
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HDO(U ) :=
{

X =
n∑

i=0

ui Di | ui ∈ OU

}
and

H�DS(U ) :=
{

X =
n∑

i=−∞
ui Di | ui ∈ OU

}
,

respectively, where D := Dv stands for some holomorphic non-vanishing vector field
v in U. (Another choice of a non-vanishing field v gives the same spaces of operators
and symbols.)

The Lie algebras of global sections of the sheaves HDO and H�DS are called the
Lie algebras of holomorphic differential operators and of pseudodifferential symbols,
respectively. We denote these algebras of global sections by H DO and H�DS.

Note that the definitions of the residue and trace of symbols are local and hence can be
defined on holomorphic symbols in the same way as they were defined for meromorphic

ones: resD X is a globally defined holomorphic 1-form on
◦
�, given in local coordinates

by u−1 D̃−1, while

Tr X := res
P+

res
D

X = res
P+

(
u−1 D̃−1

)

for a section X given by X = ∑n
i=−∞ ui Di in a (punctured) neighborhood of P+.

The algebra H�DS has two subalgebras: that of holomorphic differential operators
(H DO) and of holomorphic integral symbols (H I S). They consist of those symbols

whose restriction to any open subset U ⊂ ◦
� are, respectively, holomorphic purely

differential operators or holomorphic purely integral symbols. As in the meromorphic
case, these holomorphic subalgebras are isotropic with respect to the natural pairing.

The KN-algebra L of holomorphic vector fields on
◦
� can be naturally viewed as

a subalgebra of the algebras of holomorphic differential operators and pseudodifferen-
tial symbols (H�DS). In turn, the algebra H�DS is a subalgebra in the algebra of
meromorphic symbols M�DS.

Remark 3.3. The Lie algebra H DO can be alternatively defined as the universal envel-
oping algebra H DO = U(O �L)/J of the Lie algebra O �L quotiented over the ideal
J , generated by the elements f ◦ g − f g, f ◦ v − f v, and 1 − 1, where ◦ denotes the
multiplication in H DO , 1 is the unit of U , while f, g, 1 ∈ O and v ∈ L, see e.g. [12].
It is easy to see that this definition matches the one above.

A convenient way to write some global sections of the above sheaves is by fixing a
holomorphic field v ∈ L. Then the symbols X = ∑n

i=−∞ ui Di
v with any holomorphic

coefficients ui ∈ O define global sections of H�DS, provided that for every i < 0 the
coefficient ui has zero of order at least i at zeros of v (this way we compensate all the
poles of the negative powers Di

v by appropriate zeros of the corresponding coefficients).

3.3. Holomorphic pseudodifferential symbols and the spaces of densities. One can think
of holomorphic (pseudo)differential symbols as sequences of holomorphic densities on
◦
�. Namely, let K be the canonical line bundle over � and consider the tensor power Kn

of K for any n ∈ Z. Denote by Fn the space of holomorphic n-densities on
◦
�, i.e. the
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space of global meromorphic sections of Kn which are holomorphic on
◦
�. Note that F0

is the ring O of holomorphic functions, F1 is the space of holomorphic differentials on
◦
�, and F−1 is the space L of holomorphic vector fields.

Holomorphic vector fields act on holomorphic n-densities by the Lie derivative: to
v ∈ L and ω ∈ Fn one associates Lvω ∈ Fn . Explicitly, in local coordinates for
v = h(z)∂/∂z and ω = f (z)(dz)n one has

Lvω =
(

h(z)
∂ f

∂z
+ n f (z)

∂h

∂z

)
(dz)n .

This action turns the space Fn of n-densities into an L-module. The following proposi-
tion is well-known:

Proposition 3.4. Each graded space for the filtration of pseudodifferential symbols by
degree is naturally, as an L-module, isomorphic to the corresponding space of holomor-
phic densities. Namely,

H�DSn/H�DSn−1
≈ F−n ,

where H�DSn is the space of pseudodifferential symbols of degree n and the isomor-
phism is given by taking the principal symbol of the pseudodifferential operator.

Proof. The action of vector fields from L on pseudodifferential operators of degree n is
explicitly given by:

[h D, f Dn] =
(

h(D f ) − n f (Dh)
)

Dn + (terms of degree < n in D).

Thus the action on their principal symbols coincides with the above L-action on (−n)-
densities F−n , i.e. they satisfy the same change of coordinate rule.

Furthermore, taking the principal symbols of the operators of a given degree n is a
surjective map onto F−n . One can see this first for differential operators, i.e. for n ≥ 0,
where it follows from their description as H DO = U(O�L)/J and the PBW theorem.
Indeed, one can form a basis in differential operators of degree n from the products
f Dei1

...Dein
, where f ∈ F0 and ei form the KN-basis in L = F−1. Their principal

symbols will be the (commutative) products of the principal symbols of the basis ele-
ments, which, by definition, span the space of meromorphic sections of Kn , holomorphic

on
◦
�, i.e. the space F−n .
The surjectivity for negative n, i.e. for principal symbols of integral operators, can be

derived by considering natural pairing on densities (Fn ×F−n−1 → C) and on pseudo-
differential symbols (H�DS−n × H�DSn−1 → C) given by taking at the point P+
the residue for densities and the trace for symbols, respectively. ��

The whole vector space H�DS can be treated as the direct limit of the semi-infi-
nite products of the spaces of holomorphic n-densities: H�DS ≈ lim−→ �k

n=−∞F−n as

k → ∞, on which one has a Lie algebra structure.
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3.4. The density of holomorphic symbols in the smooth ones. The algebra H�DS of

holomorphic symbols on
◦
�, as well as the KN-algebra L of holomorphic vector fields,

can be regarded as a subalgebra of smooth symbols on the circle S1 in the following
way.

In [7] a family of special contours Cτ , τ ∈ R on � was constructed as level sets of

some harmonic function on
◦
�. These contours separate the points P±, and as τ → ±∞

the contours Cτ become circles shrinking to P±. Denote by S1
≈ Cτ an arbitrary con-

tour from this family for a sufficiently large τ , thought of as a small circle around P+.

Consider the natural restriction homomorphism from
◦
� to S1 ⊂ ◦

�.

Theorem 3.5 [7, 8]. The restrictions of holomorphic functions, vector fields, and differ-

entials on
◦
� to the contour S1

≈ Cτ are dense among, respectively, smooth functions,
vector fields, and differentials on the circle S1.

Now we consider the algebra of all smooth pseudodifferential symbols on the circle
(with a coordinate x):

�DS(S1) =
{

n∑
i=−∞

fi (x)∂ i | ∂ := d

dx
, fi ∈ C∞(S1)

}
.

The latter is a topological space under the natural topology (on the Laurent series)
while the sum, multiplication, and taking the inverse (for a nowhere vanishing highest
coefficient fn) are continuous operations.

The following theorem is a natural extension of the one above. Consider the restric-
tion homomorphism H�DS → �DS(S1) of holomorphic symbols to the smooth ones
for the contour S1

≈ Cτ ⊂ � and denote by H�DS |S1 the corresponding image.

Theorem 3.6. The restriction H�DS |S1 of holomorphic symbols is dense in the smooth
ones �DS(S1).

Proof. It suffices to prove that the monomials of the form f (x)∂ i , i ∈ Z, f ∈ C∞(S1)

can be approximated by holomorphic ones. Write out such a monomial as a product of
f (x), ∂ and ∂−1. Since the smooth function f (x), the vector field ∂ := d

dx and the
1-form ∂−1 := dx on the circle can be approximated by the restrictions of holomorphic
ones [8], the result follows by the continuity of the multiplication in �DS(S1). ��

Note that the original density result in [7] for a pair of points P± extends to a collec-
tion of points by representing functions, fields, etc. with many poles as sums of the ones
with two poles only.

3.5. The property of generalized grading.

Definition 3.7. An associative or Lie algebra A is generalized graded (or N-graded)
if it admits a decomposition A = ⊕n∈Z An into finite-dimensional subspaces, with the
property that there is a constant N such that

Ai A j ⊂
N⊕

s=−N

Ai+ j+s,

for all i, j .
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Similarly, a module M over a generalized graded algebra A is generalized graded,
if M = ⊕n∈ZMn, and there is a constant L such that

Ai M j ⊂
L⊕

s=−L

Mi+ j+s,

for all i, j .

Theorem 3.8 [7, 8]. The KN-algebra L of vector fields holomorphic on
◦
� is general-

ized graded. The space Fn of holomorphic n-densities for any n is a generalized graded
module over L.

The generalized graded components M (n)
j for the module Fn are the spaces C · f (n)

j ,

where the forms f (n)
j are uniquely determined by the pole orders at both points P±

(as before, we assume the points to be generic): for n �= 0 they have the following
expansions

f (n)
j := a±

j z± j−g/2+n(g−1)
± (1 + O(z±))(dz±)n

in local coordinates z± of neighborhoods of the points P±. Here the index j runs over
the integers Z if g is even and over the half-integers Z + 1/2 if g is odd. (The formulas
differ slightly for F0 = O, see details in [7]. For the space of vector fields L ≈ F−1

this basis { f (−1)
j } differs by an index shift from the fields {e j } discussed in Sect. 3.1.)

Now we consider the spaces H DO and H�DS of holomorphic (pseudo)differen-
tial symbols not only as modules over vector fields L, but as Lie algebras. These Lie
algebras are not generalized graded, but naturally filtered by the degree of D = Dv . Con-
sider a basis {F (n)

j } (which we construct below) in pseudodifferential symbols H�DS,
which is compatible with the basis in the forms: the principal symbol of the operator
F (n)

j of degree n is the (−n)-form f (−n)
j . It turns out that the algebras of holomorphic

(pseudo)differential symbols have the following analogue of the generalized grading:

Theorem 3.9. The Lie algebras H DO and H�DS are filtered generalized graded: the
pseudodifferential symbols of an appropriate basis {F (n)

j } in H�DS satisfy

[F (n)
i , F (m)

j ] =
∞∑

k=1

N (k)∑
s=−N (k)

αs
i j F (n+m−k)

i+ j+s ,

for some constants αr
i j ∈ C, where n, m ∈ Z, the indices i, j , and s are either integers

or half-integers according to parity of the genus g, and N (k) is a linear function of k.

Proof. First we define a basis for differential operators from H DO ⊂ H�DS recur-
sively in degree n (cf. [12], where a similar basis was constructed for H DO). Assume
that the genus g is even, so that all the indices are integers (the case of an odd g is sim-
ilar). Consider the above KN-basis {F (0)

j } in differential operators of degree 0, which

constitute 0-densities F0, and the KN-basis {F (1)
j } in holomorphic vector fields, which

are differential operators of degree 1.
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For a degree n ≥ 2 consider a differential operator F̃ (n)
j whose principal symbol is

the (−n)-density f (−n)
j , and which exists due to surjectivity discussed in Proposition

3.4. One can “kill the lower order terms” of the operator F̃ (n)
j by adding a linear com-

bination of the basis elements in H DOn−1 constructed at the preceding step. (More
precisely, due to the filtered structure of H DO only the cone of lower order terms for
F̃ (n)

j is well-defined by the pole orders of the coefficients of the differential operators at

the points P±. By “killing the terms” above we mean confining F̃ (n)
j to this cone.) We

call these adjusted differential operators by F (n)
j . Along with {F (k)

j } for 0 ≤ k ≤ n − 1
they constitute a basis in H DOn , holomorphic differential operators of degree ≤ n.

Finally, for integral symbols (of negative degrees) we choose the basis dual to the
one chosen in differential operators, by using the nondegenerate pairing: H I S can be
thought of as the dual space H DO∗. It is easy to see that this basis in integral symbols of
degree −n is also given by the orders of zeros and poles at P± and hence is compatible
with the KN-basis in n-forms.

Once the basis {F (n)
j } is constructed, a straightforward substitution of these symbols

into the formula for the symbol commutator and the calculation of orders of poles/zeros
at the points P± yield the result. ��

This theorem implies the property of generalized grading for modules of holomorphic
densities, established in [7, 12, 16], as modules of principal symbols of holomorphic
pseudodifferential operators.

3.6. Cocycles and extensions. Recall first the cocycle construction for the KN-algebra

L of holomorphic vector fields on
◦
�. A closed contour γ on �, not passing through the

marked points P±, defines the Gelfand-Fuchs 2-cocycle on the algebra L. Namely, in
a fixed projective structure (where admissible coordinates differ by projective transfor-
mations) it is defined by the Gelfand-Fuchs integral

c( f, g) =
∫

γ

f ′′(z)g′(z)dz

for vector fields f = f (z) ∂
∂z and g = g(z) ∂

∂z given in such a coordinate system. One
can check that this cocycle is well-defined, nontrivial, and represents every cohomology
class in the space H2(L, C) of 2-cocycles on the algebra L for various contours γ , see
[8, 13]. In this variety of 2-cocycles there is a subset of those satisfying the following
property of locality.

Definition 3.10 [7]. Let A = ⊕n∈Z An be a generalized graded Lie algebra. A 2-cocycle
c on A is called local if there is a nonnegative constant K ∈ Z such that c(Am, An) = 0
for all |m + n| > K .

The central extensions of generalized graded Lie algebras defined by local 2-cocycles
are also generalized graded Lie algebras.

Theorem 3.11 [7]. The cohomology space of local 2-cocycles of the Krichever-Novikov
algebra L is one-dimensional. It is generated by the Gelfand-Fuchs 2-cocycle on any
separating contour Cτ on �.
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As we discussed above, for large τ one can think of Cτ as a small circle around P+.
Thus the local cocycles on L are defined by the restrictions of vector fields to a small
neighborhood of P+.

To describe the logarithmic cocycles on the algebras H DO and H�DS of holomor-

phic (pseudo)differential symbols on
◦
� we adapt the notion of the cocycle locality to

the filtered generalized grading.
First we recall the corresponding results for the algebras DO(S1) and �DS(S1) of

smooth operators and symbols of the circle.

Theorem 3.12. (i) The cohomology space of 2-cocycles on the algebra DO(S1) of
differential operators on the circle is one-dimensional ([4, 9]). A non-trivial 2-cocycle
is defined by the restriction of the logarithmic cocycle Tr ([log ∂, A] ◦ B) to differential
operators, ∂ := ∂

∂x , and A, B ∈ DO(S1) ([6]).
(ii) The cohomology space of 2-cocycles of the algebra �DS(S1) of pseudodifferen-

tial symbols is two-dimensional ([4, 2]). It is generated by the logarithmic cocycle above
and the 2-cocycle Tr ([x, A] ◦ B), where x is the coordinate on the universal covering
of S1, and A, B ∈ �DS(S1) ([5, 6]).

Here the trace is Tr A := ∫
S1 res ∂ A for smooth pseudodifferential symbols, which

replaces Tr A := res P+ res D A for holomorphic ones.

Example 3.13. Consider the Lie algebra of holomorphic symbols on C
∗ = CP1\{0,∞},

whose elements are allowed to have poles at 0 and ∞ only, and where we take Dv :=
z∂/∂z. Two independent outer derivations of the latter algebra are log(z∂/∂z) and log z,
the logarithms of a vector field and a function, respectively [6, 5]. The corresponding
2-cocycles are

Tr

(
[log z

∂

∂z
, A] ◦ B

)
and Tr ([log z, A] ◦ B) .

This algebra can be thought of as a graded version of smooth complex-valued sym-
bols �DS(S1) on the circle S1 = {|z| = 1}: the change of variable z = exp(i x) sends
∂ := ∂/∂x to i Dv:

∂/∂x = ∂z/∂x · ∂/∂z = i exp(i x)∂/∂z = i z∂/∂z = i Dv.

Under this change of variables (and upon restricting the symbols to the circle S1), the der-
ivations [log (i Dv), .] and −i [ log z, .] for holomorphic symbols in �DS(C∗) become
the derivations [log ∂, .] and [x, .] for smooth symbols in �DS(S1). The above theo-
rem describes the 2-cocycles on �DS(S1) constructed with the help of the latter outer
derivations and the corresponding change in the notion of trace.

After having described the smooth case, we adapt the definition of the local 2-cocycle
to the filtered generalized graded case of the algebra H�DS by allowing the constant
K in Definition 3.10 to depend on the filtered component.

Definition 3.14. A 2-cocycle on the filtered generalized graded algebra H�DS is called
local if for any integers i, j there is a number N = N (n+m) such that c(F (n)

i , F (m)
j ) = 0

for the basis pseudodifferential symbols F (n)
i and F (m)

j as soon as |i + j | > N.
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Such a cocycle preserves the property of filtered generalized grading when passing
to the corresponding central extension.

Consider a holomorphic vector field v on
◦
� and a smooth path γ on

◦
� \ (div v), i.e.

a smooth path γ avoiding P±, as well as zeros and poles of v. Associate to v and γ the
2-cocycle cv,γ defined as the following bilinear functional on H�DS and H DO:

cv,γ (A, B) :=
∫

γ

res
Dv

([log Dv, A] ◦ B) ,

where we integrate over γ the residue, which is a meromorphic 1-form on
◦
� (with

possible poles at the divisor of v, and hence off γ ). We confine ourselves to considering
cocycles of the form cv,γ .

Theorem 3.15. (i) The cohomology space of local 2-cocycles of the form cv,γ on the Lie

algebra H DO on
◦
� is one-dimensional and it is generated by the 2-cocycle cv,P+(A, B)

:= Tr ([log Dv, A] ◦ B) for a holomorphic vector field v. The cocycles cv,P+ are local

for any choice of a holomorphic field v on
◦
�.

(ii) The cohomology space of local 2-cocycles cv,γ on the algebra H�DS is two-
dimensional. It is generated by the 2-cocycles cvi ,P+ for two holomorphic vector fields
v1 and v2 with different orders of poles/zeros at P+.

Remark 3.16. Alternatively, one can generate the 2-dimensional space of local cocycles
for H�DS by considering

Tr ([log Dv, A] ◦ B) and Tr ([log f, A] ◦ B),

where v is any holomorphic vector field, while f is a function with a zero or pole (of
any non-zero order) at P+. The restriction of the latter 2-cocycle to H DO vanishes.

Proof. We have adapted the definition of grading and locality in such a way that the
locality of a 2-cocycle on the filtered algebras H DO and H�DS implies its locality on
the subalgebra L. According to the Krichever-Novikov Theorem 3.11 local cocycles on
L are given by the integrals over contours Cτ . In turn, the cocycles cv,γ for γ = Cτ for
large τ correspond to integration over a simple contour around P+, and hence reduce to

cv,P+(A, B) := Tr P+([log Dv, A] ◦ B) = res
P+

res
Dv

([log Dv, A] ◦ B) .

To find the dimension of the cohomology space of such cocycles for H DO and
H�DS we consider the restriction homomorphism to the smooth operators and sym-
bols on the contour. In both cases the image is dense in the latter due to Theorem 3.6.

One can see that the cocycle cv,P+ for any v is nontrivial in both H DO and H�DS,
since it is nontrivial on the subalgebra L. Indeed, upon restriction to the contour S1 ≈ Cτ

it gives the (nontrivial) Gelfand-Fuchs 2-cocycle on V ect (S1). Furthermore, the coho-
mology space of 2-cocycles for smooth differential operators DO(S1) is 1-dimensional,
and hence so is the cohomology space of local 2-cocycles for holomorphic differential
operators H DO , due to the density result and continuity of the cocycles. Verification of
locality of cv,P+ for any holomorphic field v is a straightforward calculation. This proves
part (i).

For part (i i) we note that the algebra �DS(S1) admits exactly two independent
nontrivial 2-cocycles up to equivalence. The density theorem will imply the required
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statement, once we show that there are two linearly independent cocycles of the type
cv,P+ . Take 2-cocycles cv,P+ and cw,P+ for two fields v and w of different orders of
pole/zero at P+. Then v = f w for a meromorphic function f on �, which is either
zero or infinity at P+. The same argument as in Corollary 2.16 (i i) gives that cv,P+ =
cw,P+ + c f,P+ , where c f,P+(A, B) := Tr P+([log f, A] ◦ B).

In order to show that the cocycle c f,P+ is nontrivial and independent of cv,P+ , provided
that f has a zero or pole at P+, we again consider the restriction homomorphism to the
smooth symbols �DS(S1) on the contour S1 ≈ Cτ . In a local coordinate system around
P+ we have f (z) = zk g(z) with holomorphic g(z) such that g(0) �= 0 and k �= 0. Since
log f (z) = k log z + log g(z), the corresponding logarithmic cocycles are related in the
same way. Note that Tr P+([log g, A] ◦ B) defines a trivial cocycle (i.e. a 2-coboundary)
upon restriction to S1. Indeed, the function log g(z) is holomorphic at P+ = 0 since
g(0) �= 0, and its restriction to a small contour around P+ = 0 is univalued. Hence, it
defines a smooth univalued function on the contour, and therefore [log g, A] is an inner
derivation of the corresponding algebra �DS(S1).

On the other hand, Tr P+([log z, A] ◦ B) upon restriction to S1 ≈ Cτ defines the sec-
ond non-trivial cocycle of the algebra �DS(S1), see Example 3.13. Hence the cocycle
c f,P+ is nontrivial and defines the same cohomology class as k · cz,P+ . This completes
the proof of (i i). ��
Conjecture 3.17. Every continuous 2-cocycle on the Lie algebras H�DS and H DO is
cohomologous to a linear combination of regular 2-cocycles cv,γ for some holomorphic

fields v and a contour γ on
◦
�.

Remark 3.18. The latter is closely related to Conjecture 2.9. Presumably, all the continu-
ous 2-cocycles on H�DS and H DO have the form cX,γ (A, B) := ∫

γ
res D([log X, A]

◦ B) for holomorphic pseudodifferential symbols X and cycles γ on the surface �. In
turn, one can reduce the cocycles cX,γ for an arbitrary symbol X to cocycles cv,γ with
X = Dv , similarly to the proof of Theorem 2.8.

3.7. Manin triples for holomorphic pseudodifferential symbols. Given the point P+ ∈ �

and the invariant pairing on H�DS associated to the trace at P+ it is straightforward to
verify the following proposition.

Proposition 3.19. The (non-extended) algebras (H�DS, H DO, H I S) form a Manin
triple.

Although to any holomorphic field v with poles at P± one can associate the central
extension of the Lie algebra H�DS by the local 2-cocycle cv(A, B) = Tr ([log Dv, A]
◦ B), the double extension of H�DS does not necessarily exist.

Confine first to the special case, in which on
◦
� there exists a holomorphic field

v without zeros, i.e. to
◦
� with a trivialized tangent bundle. Such a surface

◦
� can be

obtained from any � and any field v on it by choosing the collections of points P± to
include all zeros and poles of v. (Example: v = z ∂/∂z in C

∗.)
In this case the operator log Dv maps H�DS to itself, i.e it is an outer derivation of

the latter. Then the construction of the co-central extension H̃ I S = C · log Dv ⊕ H I S

and the double extension H̃�DS goes through in the same way as for the meromorphic
or smooth cases.
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Proposition 3.20. If the holomorphic fieldv has no zeros on
◦
�, the Lie algebras (H̃�DS,

Ĥ DO, H̃ I S) form a Manin triple. Equivalently, H̃ I S is a Lie bialgebra.

In this case the Lie bialgebra on H̃ I S defines a Poisson-Lie structure on the corre-
sponding pseudodifferential symbols of complex degree, just like in the case of C

∗ or
in the smooth case on the circle. Furthermore, the Poisson structure on this group is the
Adler-Gelfand-Dickey quadratic Poisson bracket, while the corresponding Hamiltonian
equations are given by the n-KdV and KP hierarchies on Riemann surfaces, following
the recipe for the smooth case. We recall the latter consideration from [3, 5] in the
Appendix.

Now let v have zeros in
◦
�. Consider the central extension Ĥ DO of the algebra of

holomorphic differential operators H DO by the 2-cocycle cv . One can see that now
the “regular dual” space to Ĥ DO cannot be naturally identified with the vector space
C · log Dv ⊕ H I S. Indeed, the coadjoint action of Ĥ DO is uniquely defined by the
commutator [log Dv, A] wherever v �= 0. However, this commutator may have poles
at zeros of v, i.e. the space C · log Dv ⊕ H I S does not form a Lie algebra, as it is not
closed under commutation. This does not allow one to define a natural Lie bialgebra
structure on Ĥ DO or H̃ I S. The same type of obstruction arises for the existence of a
formal group of symbols of complex degrees on the surface �.

4. Appendix

4.1. Poisson–Lie groups, Lie bialgebras, and Manin triples.

Definition 4.1. A group G equipped with a Poisson structure η is a Poisson–Lie group
if the group product G ×G → G is a Poisson morphism (i.e., it takes the natural Poisson
structure on the product G × G into the Poisson structure on G itself) and if the map
G → G of taking the group inverse is an anti-Poisson morphism (i.e. it changes the sign
of the Poisson bracket).

Theorem 4.2 [17]. For any connected and simply connected group G with Lie algebra
g there is a one-to-one correspondence between Lie bialgebra structures on g and Pois-
son-Lie structures η on G. This correspondence sends a Poisson-Lie group (G, η) into
the Lie bialgebra g tangent to (G, η).

By definition, a Lie algebra g is a Lie bialgebra if its dual space g∗ is equipped
with a Lie algebra structure such that the map g → g ∧ g dual to the Lie bracket map
g∗ ∧ g∗ → g∗ on g∗ is a 1-cocycle on g relative to the adjoint representation of g on
g ∧ g.

Theorem 4.3 [14]. Consider a Manin triple (g, g+, g−). Then g+ is naturally dual to
g− and each of g− and g+ is a Lie bialgebra. Conversely, for any Lie bialgebra g one
can find a unique Lie algebra structure on ḡ = g ⊕ g∗ such that the triple (ḡ, g, g∗)
is a Manin triple with respect to the natural pairing on ḡ and the corresponding Lie
bialgebra structure on ḡ is the given one.
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4.2. The Poisson structure and integrable hierarchies on pseudodifferential symbols.
Start with the Lie bialgebra of co-centrally extended smooth integral symbols on the
circle:

Ĩ S = C · log ∂ ⊕ I S =
{

λ log ∂ +
−1∑

k=−∞
uk(x)∂k

}
.

(Alternatively, one can start with holomorphic symbols H I S and log D corresponding
to a non-vanishing holomorphic field v on a punctured Riemann surface.) The corre-
sponding Lie group consists of monic symbols of arbitrary complex degrees:

G Ĩ S =
{

L = ∂λ

(
1 +

−1∑
k=−∞

uk(x)∂k

)
| λ ∈ C

}
.

The Poisson-Lie structure on this group is given by the generalized quadratic
Adler-Gelfand-Dickey bracket. Namely, the degree λ is a Casimir and we can con-
sider the bracket on the hyperplane of symbols {L | λ = const}. The cotangent space
to such planes can be identified with the symbols of the form X = ∂−λ ◦ Y , where Y
is a purely differential operator. Then the bracket on {L} is defined by the following
Hamiltonian mapping X 
→ VX (L) (from the cotangent space {X} to the tangent space
to symbols {L} of fixed degree):

VX (L) = (L X)+ L − L(X L)+ ,

see details in [3, 5].
To obtain dynamical systems, consider the following family of Hamiltonian functions

{Hk} on this Poisson-Lie group G Ĩ S :

Hk(L) := λ

k
T r(Lk/λ),

where L has degree λ �= 0. The corresponding Hamiltonian equations with respect
to the quadratic Adler-Gelfand-Dickey Poisson structure form the following universal
KdV-KP hierarchy:

∂L

∂tk
= [(Lk/λ)+, L], k = 1, 2, . . . ,

see [3, 5]. For λ = 1 this is the standard KP hierarchy of commuting flows. For integer
λ = n the restriction of this universal hierarchy to the Poisson submanifolds of purely
differential operators of degree n gives the n-KdV hierarchy.
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