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A NONHOLONOMIC MOSER THEOREM AND
OPTIMAL TRANSPORT

Boris Khesin and Paul Lee

We prove the following nonholonomic version of the classical Moser
theorem: given a bracket-generating distribution on a connected com-
pact manifold (possibly with boundary), two volume forms of equal
total volume can be isotoped by the flow of a vector field tangent to
this distribution. We describe formal solutions of the corresponding
nonholonomic mass transport problem and present the Hamiltonian
framework for both the Otto calculus and its nonholonomic counter-
part as infinite-dimensional Hamiltonian reductions on diffeomorphism
groups.

Finally, we define a nonholonomic analog of the Wasserstein (or,
Kantorovich) metric on the space of densities and prove that the sub-
riemannian heat equation defines a gradient flow on the nonholonomic
Wasserstein space with the potential given by the Boltzmann relative
entropy functional.
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1. Introduction

The classical Moser theorem establishes that the total volume is the only
invariant for a volume form on a compact connected manifold with respect
to the diffeomorphism action. In this paper we prove a nonholonomic coun-
terpart of this result and present its applications in the problems of non-
holonomic optimal mass transport.

The equivalence for the diffeomorphism action is often formulated in terms
of “stability” of the corresponding object: the existence of a diffeomorphism
relating the initial object with a deformed one means that the initial object
is stable, as it differs from the deformed one merely by a coordinate change.
Gray showed in [9] that contact structures on a compact manifold are stable.
Moser [16] established stability for volume forms and symplectic structures.
A leafwise counterpart of Moser’s argument for foliations was presented by
Ghys in [8], while stability of symplectic–contact pairs in transversal folia-
tions was proved in [4]. In this paper we establish stability of volume forms
in the presence of any bracket-generating distributions on connected com-
pact manifolds: two volume forms of equal total volume on such a manifold
can be isotoped by the flow of a vector field tangent to the distribution. We
call this statement a nonholonomic Moser theorem.

Recall that a distribution τ on the manifold M is called bracket generating,
or completely nonholonomic, if local vector fields tangent to τ and their
iterated Lie brackets span the entire tangent bundle of the manifold M .
Nonholonomic distributions arise in various problems related to rolling or
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skating, wherever the “no-slip” condition is present. For instance, a ball
rolling over a table defines a trajectory in a configuration space tangent to
a nonholonomic distribution of admissible velocities. Note that such a ball
can be rolled to any point of the table and stopped at any a priori prescribed
position. The latter is a manifestation of the Chow–Rashevsky theorem (see,
e.g., [15]): for a bracket-generating distribution τ on a connected manifold
M any two points in M can be connected by a horizontal path (i.e., a path
everywhere tangent to the distribution τ).1

Note that for an integrable distribution there is a foliation to which it
is tangent and a horizontal path always stays on the same leaf of this foli-
ation. Furthermore, for an integrable distribution, the existence of an iso-
topy between volume forms requires an infinite number of conditions. On
the contrary, the nonholonomic Moser theorem shows that a nonintegrable
bracket-generating distribution imposes only one condition on total volume
of the forms for the existence of the isotopy between them.

Closely related to the nonholonomic Moser theorem is the existence of
a nonholonomic Hodge decomposition, and the corresponding properties of
the subriemannian Laplace operator, see Section 2.4. We also formulate the
corresponding nonholonomic mass transport problem and describe its formal
solutions as projections of horizontal geodesics on the diffeomorphism group
for the L2-Carnot–Caratheodory metric.

In order to give this description, we first present the Hamiltonian frame-
work for what is now called the Otto calculus — the Riemannian submersion
picture for the problems of optimal mass transport. It turns out that the sub-
mersion properties can be naturally understood as an infinite-dimensional
Hamiltonian reduction on diffeomorphism groups, and this admits a gener-
alization to the nonholonomic setting. We define a nonholonomic analog of
the Wasserstein metric on the space of densities. Finally, we extend Otto’s
result on the heat equation and prove that the subriemannian heat equa-
tion defines a gradient flow on the nonholonomic Wasserstein space with
potential given by the Boltzmann relative entropy functional.

2. Around Moser’s theorem

2.1. Classical and nonholonomic Moser theorems. The main goal of
this section is to prove the following nonholonomic version of the classical
Moser theorem. Consider a distribution τ on a compact manifold M (without
boundary unless otherwise stated).

Theorem 2.1. Let τ be a bracket-generating distribution, and μ0, μ1 be two
volume forms on M with the same total volume:

∫
M μ0 =

∫
M μ1. Then there

1The motivation for considering volume forms (or, densities) in a space with distribution
can be related to problems with many tiny rolling balls. It is more convenient to consider
the density of such balls, rather than look at them individually.
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exists a diffeomorphism φ of M which is the time-one-map of the flow φt of
a nonautonomous vector field Vt tangent to the distribution τ everywhere on
M for every t ∈ [0, 1], such that φ∗μ1 = μ0.

Note that the existence of the “nonholonomic isotopy” φt is guaranteed
by the only condition on equality of total volumes for μ0 and μ1, just like
in the classical case:

Theorem 2.2 [16]. Let M be a manifold without boundary, and μ0, μ1 are
two volume forms on M with the same total volume:

∫
M μ0 =

∫
M μ1. Then

there exists a diffeomorphism φ of M , isotopic to the identity, such that
φ∗μ1 = μ0.

Remark 2.3. The classical Moser theorem has numerous variations and
generalizations, some of which we would like to mention.

(a) Similarly one can show that not only the identity, but any diffeo-
morphism of M is isotopic to a diffeomorphism which pulls back μ1
to μ0.

(b) The Moser theorem also holds for a manifold M with boundary. In
this case a diffeomorphism φ is a time-one-map for a (nonautonomous)
vector field V on M , tangent to the boundary ∂M .

(c) Moser also proved in [16] a similar statement for a pair of symplectic
forms on a manifold M : if two symplectic structures can be deformed
to each other among symplectic structures in the same cohomology
class on M , these deformations can be carried out by a flow of diffeo-
morphisms of M .

Below we describe to which degree these variations extend to the non-
holonomic case.

2.2. The Moser theorem for a fibration. Apparently, the most straight-
forward generalization of the classical Moser theorem is its version “with
parameters.” In this case, volume forms on M smoothly depend on param-
eters and have the same total volume at each value of this parameter:∫
M μ0(s) =

∫
M μ1(s) for all s. The theorem guarantees that the correspond-

ing diffeomorphism exists and depends smoothly on this parameter s.
The following theorem can be regarded as a modification of the parameter

version:

Theorem 2.4. Let π : N → B be a fibration of an n-dimensional mani-
fold N over a k-dimensional base manifold B. Suppose that μ0, μ1 are two
smooth volume forms on N . Assume that the pushforwards of these n-forms
to B coincide, i.e., they give one and the same k-form on B: π∗μ0 = π∗μ1.
Then, there exists a diffeomorphism φ of N which is the time-one-map of
a (nonautonomous) vector field V tangent everywhere to the fibers of this
fibration and such that φ∗μ1 = μ0.
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Remark 2.5. Note that in this version the volume forms are given on the
ambient manifold N , while in the parameter version of the Moser theorem
we are given fiberwise volume forms. There is also a similar version of this
theorem for a foliation, cf., e.g., [8]. In either case, for the corresponding
diffeomorphism to exist, the volume forms have to satisfy infinitely many
conditions (the equality of the total volumes as functions in the parame-
ter s or as the pushforwards π∗μ0 and π∗μ1). The case of a fibration (or
a foliation) corresponds to an integrable distribution τ , and presents the
“opposite case” to a bracket-generating distribution. Unlike the case of an
integrable distribution, the existence of the corresponding isotopy between
volume forms in the bracket-generating case imposes only one condition,
the equality of the total volumes of the two forms (regardless, e.g., of the
distribution growth vector at different points of the manifold).

2.3. Proofs. First, we recall a proof of the classical Moser theorem. To
show how the proof changes in the nonholonomic case, we split it into several
steps.

Proof. (1) Connect the volume forms μ0 and μ1 by a “segment” μt = μ0 +
t(μ1 − μ0), t ∈ [0, 1]. We will be looking for a diffeomorphism gt sending
μt to μ0: g∗

t μt = μ0. By taking the t-derivative of this equation, we get the
following “homological equation” on the velocity Vt of the flow gt: g∗

t (LVtμt+
∂tμt) = 0, where ∂tgt(x) = Vt(gt(x)). This is equivalent to

LVtμt = μ0 − μ1,

since ∂tμt = −(μ0 − μ1).
By rewriting μ0−μ1 = ρtμt for an appropriate function ρt, we reformulate

the equation LVtμt = ρtμt as the problem divμt Vt = ρt of looking for a vector
field Vt with a prescribed divergence ρt. Note that the total integral of the
function ρt (relative to the volume μt) over M vanishes, which manifests the
equality of total volumes for μt.

(2) We omit the index t for now and consider a Riemannian metric on M
whose volume form is μ. We are looking for a required field V with prescribed
divergence among gradient vector fields V = ∇u, which “transport the
mass” in the fastest way. This leads us to the elliptic equation divμ(∇u) = ρ,
i.e., Δu = ρ, where the Laplacian Δ is defined by Δu := divμ∇u and depends
on the Riemannian metric on M .

(3) The key part of the proof is the following

Lemma 2.6. The Poisson equation Δu = ρ on a compact Riemannian
manifold M is solvable for any smooth function ρ with zero mean:

∫
M ρ μ = 0

(with respect to the Riemannian volume form μ).
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Proof. Describe the space Coker Δ := (Im Δ)⊥L2 , i.e., find the space of all
functions h which are L2-orthogonal to the image Im Δ. By applying inte-
gration by parts twice, one has

0 = 〈h, Δu〉L2 = −〈∇h, ∇u〉L2 = 〈Δh, u〉L2

for all smooth functions u on M . Then such functions h must be (weakly)
harmonic, and hence they are constant functions on M : (Im Δ)⊥L2 =
{const}. Since the image Im Δ is closed, it is the L2-orthogonal comple-
ment of the space of constant functions Im Δ = {const})⊥L2 . The condition
of orthogonality to constants is exactly the condition of zero mean for ρ:
〈const, ρ〉L2 =

∫
M ρ μ = 0. Thus the equation Δu = ρ has a weak solution

for ρ ∈ L2(M) with zero mean, and the ellipticity of Δ implies that the
solution is smooth for a smooth function ρ. �

(4) Now, take Vt := ∇ut where ut is the solution of Δut = ρt and let gt
V

be the corresponding flow on M . Since M is compact and Vt is smooth, the
flow exists for all time t. The diffeomorphism φ := g1

V , the time-one-map of
the flow gt

V , gives the required map which pulls back the volume form μ1 to
μ0: φ∗μ1 = μ0. �

Proof of Theorem 2.4. The Moser theorem for a fibration: We start by defin-
ing the new volume form on the fibers F using the pushforward k-form
ν0 := π∗μ0 on the base B and the volume n-form μ0 on N . Namely, consider
the pull-back k-form π∗ν0 on N . Then there is a unique (n − k)-form μF

0 on
fibers such that μF

0 ∧ π∗ν0 = μ0. Similarly we find μF
1 . Due to the equality

of the pushforwards π∗μ0 and π∗μ1, the total volumes of μF
0 and μF

1 are
fiberwise equal. Hence by the Moser theorem applied to the fibers, there is
a smooth vector field tangent to the fibers, smoothly depending on a base
point, and whose flow sends one of the (n − k)-forms, μF

1 , to the other, μF
0 .

This field is defined globally on N , and hence its time-one-map pulls back
μ1 to μ0. �

Now we turn to a nonholonomic distribution on a manifold.

Proof of Theorem 2.1. The nonholonomic version of the Moser theorem:
(1) As before, we connect the forms by a segment μt, t ∈ [0, 1], and we

come to the same homological equation. The latter reduces to divμV = ρ
with

∫
ρ μ = 0, but the equation now is for a vector field V tangent to the

distribution τ .
(2) Consider some Riemannian metric on M . Now we will be looking

for the required field V in the form V := P τ∇u, where P τ is a pointwise
orthogonal projection of tangent vectors to the planes of our distribution τ .

We obtain the equation divμ(P τ∇u) = ρ. Rewrite this equation by intro-
ducing the sub-Laplacian Δτu := divμ(P τ∇u) associated to the distribution
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τ and the Riemannian metric on M . The equation on the potential u
becomes Δτu = ρ.

(3) An analog of Lemma 2.6 is now as follows.

Proposition 2.7. (a) The sub-Laplacian operator Δτu := divμ(P τ∇u) is a
self-adjoint hypoelliptic operator. Its image is closed in L2.

(b) The equation Δτu = ρ on a compact Riemannian manifold M is
solvable for any smooth function ρ with zero mean:

∫
M ρ μ = 0.

Proof. (a) The principal symbol δτ of the operator Δτ is the sum of squares
of vector fields forming a basis for the distribution τ : δτ =

∑
X2

i , where Xi

form a horizontal orthonormal frame for τ . This is exactly the Hörmander
condition of hypoellipticity [10, 11] for the operator Δτ . The self-adjointness
follows from the properties of projection and integration by parts. The
closedness of the image in L2 follows from the results of [21, 22].

(b) We need to find the condition of weak solvability in L2 for the equation
Δτu = ρ. Again, we are looking for all those functions h which are L2-
orthogonal to the image of Δτ (or, which is the same, belonging to the
kernel of this operator):

0 = 〈h, Δτu〉L2 = 〈h, divμ(P τ∇u)〉L2

for all smooth functions u on M . In particular, this should hold for u = h.
Integrating by parts we come to

0 = 〈h, divμ(P τ∇h)〉L2 = −〈∇h, P τ∇h〉L2 = −〈P τ∇h, P τ∇h〉L2 ,

where in the last equality we used the projection property (P τ )2 = P τ =
(P τ )∗. Then P τ∇h = 0 on M , and hence the equation Δτu = ρ is solvable
for any function ρ ⊥L2 {h | P τ∇h = 0}. We claim that all such functions h
are constant on M . (More precisely, by setting u = h we implicitly assumed
that h is smooth. For any h ∈ L2(M) consider a smooth approximation h̄
of h with any given precision in the L2 norm and set u = h̄. We obtain that
P τ∇h̄ = 0 on M . We are going to show that any smooth approximation h̄
must be constant, which implies that all such functions h are constant as
elements of L2(M).)

Indeed, the condition P τ∇h = 0 means that LXh = 0 for any horizontal
field X, i.e., a field tangent to the distribution τ . But then h must be constant
along any horizontal path, and due to the Chow–Rashevsky theorem it must
be constant everywhere on M . Thus the functions ρ must be L2-orthogonal
to all constants, and hence they have zero mean. This implies that the
equation divμ(P τ∇u) = ρ is solvable for any L2 function ρ with zero mean.
For a smooth ρ the solution is also smooth due to hypoellipticity of the
operator. �
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(4) Now consider the horizontal field Vt := P τ∇ut. As before, the time-
one-map of its flow exists for the smooth field Vt on the compact manifold
M , and it gives the required diffeomorphism φ. �

2.4. The nonholonomic Hodge decomposition and sub-Laplacian.
According to the classical Helmholtz–Hodge decomposition, any vector field
W on a Riemannian manifold M can be uniquely decomposed into the sum
W = Ṽ + Ũ , where Ṽ = ∇f and divμ Ũ = 0. Proposition 2.7 suggests the
following nonholonomic Hodge decomposition of vector fields on a manifold
with a bracket-generating distribution:

Proposition 2.8. (1) For a bracket-generating distribution τ on a Rie-
mannian manifold M , any vector field W on M can be uniquely decomposed
into the sum W = V + U , where the field V = P τ∇f and it is tangent to
the distribution τ , while the field U is divergence-free: divμ U = 0. Here P τ

is the pointwise orthogonal projection to τ .
(2) Moreover, if the vector field W̄ is tangent to the distribution τ on

M , then W̄ = V̄ + Ū , where V̄ = P τ∇f || τ as before, while the field Ū is
divergence-free, tangent to τ , and L2-orthogonal to V̄ , see Figure 1.

Proof. Let ρ := divμ W be the divergence of W with respect to the Rie-
mannian volume μ. First, note that

∫
M ρ μ = 0. Indeed,

∫
M (divμ W ) μ =∫

M LW μ = 0, since the volume of μ is defined in a coordinate-free way, and
does not change along the flow of the field W .

Figure 1. A nonholonomic Hodge decomposition.
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Now, apply Proposition 2.7 to find a solution of the equation div(P τ∇f) =
ρ. The field V := P τ∇f is defined uniquely. Then the field U := W − V is
divergence free, which proves (1).

For a field W̄ || τ , we define V̄ := P τ∇f in the same way. Note that
V̄ || τ as well. Then Ū := W̄ − V̄ is both tangent to τ and divergence free.
Furthermore,

〈Ū , V̄ 〉L2 = 〈Ū , P τ∇f〉L2 = 〈P τ Ū ,∇f〉L2 = 〈Ū ,∇f〉L2 = 〈divμ Ū , f〉L2 = 0,

where we used the properties of Ū established above: Ū || τ and
divμ Ū = 0. �

Above we defined a sub-Laplacian Δτu := divμ(P τ∇u) for a function u
on a Riemannian manifold M with a distribution τ .

Proposition 2.9 (cf. [15]). The sub-Laplacian Δτ depends only on a sub-
riemannian metric on the distribution τ and a volume form in the ambient
manifold M .

Proof. Note that the operator P τ∇ on a function u is the horizontal gradient
∇τ of u, i.e., the vector of the fastest growth of u among the directions in
τ . If one chooses a local orthonormal frame X1, . . . , Xk in τ , then P τ∇u =∑k

i=1(LXi u)Xi. Thus the definition of the horizontal gradient relies on the
subriemannian metric only.

The sub-Laplacian Δτψ = divμ(P τ∇ψ) needs also the volume form μ in
the ambient manifold to take the divergence with respect to this form. �

The corresponding nonholonomic heat equation ∂tu = Δτu is also defined
by the subriemannian metric and a volume form.

2.5. The case with boundary. For a manifold M with nonempty bound-
ary ∂M and two volume forms μ0, μ1 of equal total volume, the classi-
cal Moser theorem establishes the existence of diffeomorphism φ which is
the time-one-map for the flow of a field Vt tangent to ∂M and such that
φ∗μ1 = μ0.

The existence of the required gradient field Vt = ∇u is guaranteed by the
following

Lemma 2.10. Let μ be a volume form on a Riemannian manifold M with
boundary ∂M . The Poisson equation Δu = ρ with Neumann boundary con-
dition ∂

∂nu = 0 on the boundary ∂M is solvable for any smooth function ρ
with zero mean:

∫
M ρ μ = 0.

Here ∂
∂n is the differentiation in the direction of outer normal n on the

boundary.

Proof of Lemma 2.10. Proceed in the same way as in Lemma 2.6 to find all
functions h that are L2-orthogonal to the image Im Δ. The first integration
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by parts gives

0 =
∫

M
h(Δu)μ = −

∫

M
〈∇h, ∇u〉μ +

∫

∂M
h

(
∂

∂n
u

)

μ = −
∫

M
〈∇h, ∇u〉μ,

where in the last equality we used the Neumann boundary conditions. The
second integration by parts gives

0 =
∫

M
〈Δh, u〉μ −

∫

∂M

(
∂

∂n
h

)

u μ.

This equation holds for all smooth functions u on M , so any such function h
must be harmonic in M and satisfy the Neumann boundary condition ∂

∂nh =
0. Hence, these are constant functions on M : (Im Δ)⊥L2 = {const} (see the
treatment of the Neumann boundary problem in this weak formulation in
[24], Chapter 5, Section 7). This gives the same description as in the no-
boundary case: the image (Im Δ) with the Neumann condition consists of
functions ρ with zero mean. �

Geometrically, the Neumann boundary condition means that there is no
flux of density through the boundary ∂M : 0 = ∂u

∂n = n · ∇u = n · V on ∂M .
For plane distributions on manifolds with boundary, the solution of the

Neumann problem becomes a much more subtle issue, as the behavior of
the distribution near the boundary affects the flux of horizontal fields across
the boundary, and hence the solvability in this problem. However, there is a
class of domains in length spaces for which the solvability of the Neumann
problem was established.

Let LS be a length space with the distance function d(x, y), defined as
infimum of lengths of continuous curves joining x, y ∈ LS. Consider domains
in this space with the property that sufficiently close points in those domains
can be joined by a not very long path which does not get too close to the
domain boundary. The formal definition is as follows.

Definition 2.11. An open set Ω ⊆ LS is called an (ε, δ)-domain if there
exist δ > 0 and 0 < ε ≤ 1 such that for any pair of points p, q ∈ Ω with
d(p, q) ≤ δ there is a continuous rectifiable curve γ : [0, T ] → Ω starting at
p and ending at q such that the length l(γ) of the curve γ satisfies

l(γ) ≤ 1
ε
d(p, q)

and
min{d(p, z), d(q, z)} ≤ 1

ε
d(z, ∂Ω)

for all points z on the curve γ.

A large source of (ε, δ)-domains is given by some classes of open sets
in Carnot groups, where the Carnot group itself is regarded as a length
space with the Carnot–Caratheodory distance, defined via the lengths of
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admissible (i.e., horizontal) paths, see, e.g., [17]. There is a natural notion
of diameter (or, radius) for domains in length spaces.

Theorem 2.12. Let τ be a bracket-generating distribution on a subrieman-
nian manifold M with smooth boundary ∂M , and μ0, μ1 be two volume forms
on M with the same total volume:

∫
M μ0 =

∫
M μ1. Suppose that the interior

of M is an (ε, δ)-domain of positive diameter.
Then there exists a diffeomorphism φ of M which is the time-one-map of

the flow φt of a nonautonomous vector field Vt tangent to the distribution
τ everywhere on M and to the boundary ∂M for every t ∈ [0, 1], such that
φ∗μ1 = μ0.

The proof immediately follows from the result on solvability of the corre-
sponding Neumann problem Δτu = ρ with n · (P τ∇u)|∂M = 0 (or, which is
the same, ∂u

∂(P τ n) |∂M = 0) for such domains, established in [17, 18]. Indeed,
the same (weak) reduction of the infinitesimal mass transport to the corre-
sponding Neumann problem as in Lemma 2.10 gives

0 =
∫

M
h(Δτu)μ =

∫

M
〈Δτh, u〉μ −

∫

∂M

∂h

∂(P τn)
u μ.

By taking first test functions u vanishing on ∂M and then any test func-
tions satisfying Neumann boundary conditions we obtain Δτh = 0 and

∂h
∂(P τ n) |∂M = 0. The corresponding solvability and uniqueness result (cf.
Theorem 1.5 in [17]) implies that h = const, which in turn gives us the
description of the image of the Neumann operator as above.

We note that this solvability in the Neumann problem was shown for
u ∈ L1,2 and hence the above theorem is also valid for V = P τ∇u in
the corresponding Sobolev class. Apparently this solvability holds in higher
Sobolev classes and in the smooth category, but the proof does not seem to
be available in the literature.2

3. Distributions on diffeomorphism groups

3.1. A fibration on the group of diffeomorphisms. Let D be the group
of all (orientation-preserving) diffeomorphisms of a manifold M . Its Lie alge-
bra X consists of all smooth vector fields on M . The tangent space to the
diffeomorphism group at any point φ ∈ D is given by the right translation
of the Lie algebra X from the identity id ∈ D to φ:

TφD = {X ◦ φ | X ∈ X}.

Fix a volume form μ of total volume 1 on the manifold M . Denote by
Dμ the subgroup of volume-preserving diffeomorphisms, i.e., the diffeomor-
phisms preserving the volume form μ. The corresponding Lie algebra Xμ is

2We thank Duy-Minh Nhieu for clarification on this point.
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the space of all vector fields on the manifold M which are divergence free
with respect to the volume form μ.

Let W be the set of all smooth normalized volume forms in M , which is
called the (smooth) Wasserstein space. Consider the projection map πD :
D → W defined by the pushforward of the fixed volume form μ by the
diffeomorphism φ, i.e., πD(φ) = φ∗μ. The projection πD : D → W defines
a natural structure of a principal bundle on D whose structure group is the
subgroup Dμ of volume-preserving diffeomorphisms of M and fibers F are
right cosets for this subgroup in D. Two diffeomorphisms φ and φ̃ lie in
the same fiber if they differ by a composition (on the right) with a volume-
preserving diffeomorphism: φ̃ = φ ◦ s, s ∈ Dμ.

On the group D we define two vector bundles Ver and Hor whose spaces
at a diffeomorphism φ ∈ D consist of right translated divergence-free fields

Verφ = {X ◦ φ | divφ∗μ X = 0}
and gradient fields

Horφ := {∇f ◦ φ | f ∈ C∞(M)},

respectively. Note that the bundle Ver is defined by the fixed volume form
μ, while Hor requires a Riemannian metric.3

Proposition 3.1. The bundle Ver of translated divergence-free fields is the
bundle of vertical spaces TφF for the fibration πD : D → W. The bundle Hor
over D defines a horizontal distribution for this fibration πD.

Proof. Let φt be a curve in a fiber of πD : D → W emanating from the
point φ0 = φ. Then φt = φ0 ◦st, where s0 = id and st are volume-preserving
diffeomorphisms for each t. Let Xt be a family of divergence-free vector fields,
such that ∂tst = Xt ◦ st. Then the vector tangent to the curve φt = φ0 ◦ st

is given by d
dt

∣
∣
∣
t=0

(φ0 ◦ st) = (φ0∗X0) ◦ φ0. Since X0 is divergence free with
respect to μ, φ0∗X0 is divergence free with respect to φ0∗μ. Hence, any vector
tangent to the diffeomorphism group at φ is given by X ◦ φ, where X is a
divergence-free field with respect to the form φ∗μ.

By the Hodge decomposition of vector fields, we have the direct sum
TD = Hor ⊕ Ver. �
Remark 3.2. The classical Moser theorem 2.2 can be thought of as the
existence of path-lifting property for the principal bundle πD : D → W: any
deformation of volume forms can be traced by the corresponding flow, i.e.,
a path on the diffeomorphism group, projected to the deformation of forms.
Its proof shows that this path-lifting property holds and has the uniqueness

3The metric on M does not need to have the volume form μ. In the general case, Xμ

consists of vector fields divergence free with respect to μ, while the gradients are considered
for the chosen metric on M .
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Figure 2. The Moser theorem in both the classical and non-
holonomic settings is a path-lifting property in the diffeomor-
phism group.

property in the presence of the horizontal distribution defined above by using
the Hodge decomposition. Namely, given any path μt starting at μ0 in the
smooth Wasserstein space W and a point φ0 in the fiber (πD)−1μ0, there
exists a unique path φt in the diffeomorphism group which is tangent to the
horizontal bundle Hor, starts at φ0, and projects to μt, see Figure 2.

3.2. A nonholonomic distribution on the diffeomorphism group.
Let τ be a bracket-generating distribution on the manifold M . Consider the
right-invariant distribution T on the diffeomorphism group D defined at the
identity id ∈ D of the group by the subspace in X of all those vector fields
which are tangent to the distribution τ everywhere on M :

Tφ = {V ◦ φ | V (x) ∈ τx for all x ∈ M}.

Proposition 3.3. The infinite-dimensional distribution T is a non-
integrable distribution in D. Horizontal paths in this distribution are flows of
nonautonomous vector fields tangent to the distribution τ on manifold M .

Proof. To see that the distribution T is nonintegrable we consider two hor-
izontal vector fields V and W on M and the corresponding right-invariant
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vector fields Ṽ and W̃ on D. Then their bracket at the identity of the group
is (minus) their commutator as vector fields V and W in M . This commuta-
tor does not belong to the plane Tid, since the distribution τ is nonintegrable
and hence at least somewhere on M the commutator of horizontal fields V
and W is not horizontal.

The second statement immediately follows from the definition of T . �
Remark 3.4. Consider now the projection map πD : D → W in the pres-
ence of the distribution T on D. The path-lifting property in this case is
a restatement of the nonholonomic Moser theorem. Namely, for a curve
{μt | μ0 = μ} in the space W of smooth densities Theorem 2.1 proves that
there is a curve {gt | g0 = id} in D, everywhere tangent to the distribution
T and projecting to {μt}: πD(gt) = μt.

Recall that in the classical case the corresponding path lifting becomes
unique once we fix the gradient horizontal bundle Horφ ⊂ TφD for any diffeo-
morphism φ ∈ D. Similarly, in the nonholonomic case we consider the spaces
of gradient projections instead of the gradient spaces: Horτ

id := {P τ∇f | f ∈
C∞(M)}, where P τ stands for the orthogonal projection onto the distribu-
tion τ in a given Riemannian metric on M . The right-translated gradient
projections Horτ

φ := {(P τ∇f) ◦ φ | f ∈ C∞(M)} define a horizontal bundle
for the principal bundle D → W by the nonholonomic Hodge decompo-
sition. (Note also that in both the classical and nonholonomic cases, the
obtained horizontal distributions on D are nonintegrable, cf. [20]. Indeed,
the Lie bracket of two gradient fields is not necessarily a gradient field, and
similarly for gradient projections. Hence there are no horizontal sections of
the bundle D → W, tangent to these horizontal gradient distributions.)

As we will see in Sections 4 and 6, both gradient fields {∇f} in the
classical case and gradient projections {P τ∇f} in the nonholonomic case
allow one to move the densities in the “fastest way,” and are important in
transport problems of finding optimal (“shortest”) paths between densities.

3.3. Accessibility of diffeomorphisms and symplectic structures.
Presumably, even a stronger statement holds:

Conjecture 3.5. Every diffeomorphism in the diffeomorphism group D can
be accessed by a horizontal path tangent to the distribution T .

This conjecture can be thought of as an analog of the Chow–Rashevsky
theorem in the infinite-dimensional setting of the group of diffeomorphisms,
provided that the distribution T is bracket generating on D. Note, however,
that the Chow–Rashevsky theorem is unknown in the general setting of an
infinite-dimensional manifold, while there are only “approximate” analogs
of it, e.g., on a Hilbert manifold.

A proof of this conjecture on accessibility of all diffeomorphisms by flows
of vector fields tangent to a nonholonomic distribution would imply the
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nonholonomic Moser theorem 2.1 on volume forms. Moreover, it would also
imply the following nonholonomic version of the Moser theorem on symplec-
tic structures from [16].

Conjecture 3.6. Suppose that on a manifold M two symplectic structures
ω0 and ω1 from the same cohomology class can be connected by a path of
symplectic structures in the same class. Then for a bracket-generating dis-
tribution τ on M there exists a diffeomorphism φ of M which is the time-
one-map of a nonautonomous vector field Vt tangent to the distribution τ
everywhere on M and for every t ∈ [0, 1], such that φ∗ω1 = ω0.

This conjecture follows from the one above since one would consider the
diffeomorphism from the classical Moser theorem, and realize it by the hor-
izontal path (tangent to the distribution T ) on the diffeomorphism group,
which exists if Conjecture 3.5 holds.

4. The Riemannian geometry of diffeomorphism groups
and mass transport

The differential geometry of diffeomorphism groups is closely related to the
theory of optimal mass transport, and in particular, to the problem of mov-
ing one density to another while minimizing certain cost on a Riemannian
manifold. In this section, we review the corresponding metric properties of
the diffeomorphism group and the space of volume forms.

4.1. Optimal mass transport. Let M be a compact Riemannian mani-
fold without boundary (or, more generally, a complete metric space) with a
distance function d. Let μ and ν be two Borel probability measures on the
manifold M which are absolutely continuous with respect to the Lebesgue
measure. Consider the following optimal mass transport problem: find a
Borel map φ : M → M that pushes the measure μ forward to ν and attains
the infimum of the L2-cost functional

∫
M d2(x, φ(x))μ among all such maps.

The set of all Borel probability measures is called the Wasserstein space.
The minimal cost of transport defines a distance d̃ on this space:

(4.1) d̃2(μ, ν) := inf
φ

{∫

M
d2(x, φ(x))μ | φ∗μ = ν

}

.

This mass transport problem admits a unique solution φ (defined up to
measure zero sets), called an optimal map (see [6] for M = R

n and [14]
for any compact connected Riemannian manifold M without boundary).
Furthermore, there exists a one-parameter family of Borel maps φt starting
at the identity map φ0 = id, ending at the optimal map φ1 = φ and such
that φt is the optimal map pushing μ forward to νt := φt∗μ for any t ∈ (0, 1).
The corresponding one-parameter family of measures νt describes a geodesic
in the Wasserstein space of measures with respect to the distance function
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d̃ and is called the displacement interpolation between μ and ν, see [25] for
details. (More generally, in mass transport problems one can replace d2 in
the above formula by a cost function c : M ×M → R, while we mostly focus
on the case c = d2/2 and its subriemannian analog.)

In what follows, we consider a smooth version of the Wasserstein space,
cf. Section 3.1. Recall that the smooth Wasserstein space W consists of
smooth volume forms with the total integral equal to 1. One can consider
an infinite-dimensional manifold structure on the smooth Wasserstein space,
a (weak) Riemannian metric 〈, 〉W , corresponding to the distance function d̃,
and geodesics on this space. Similar to the finite-dimensional case, geodesics
on the smooth Wasserstein space W can be formally defined as projections
of trajectories of the Hamiltonian vector field with the “kinetic energy”
Hamiltonian in the tangent bundle TW.

4.2. The Otto calculus. For a Riemannian manifold M both spaces D and
W can be equipped with (weak) Riemannian structures, i.e., can be formally
regarded as infinite-dimensional Riemannian manifolds, cf. [7, 13]. (One can
consider Hs-diffeomorphisms and Hs−1-forms of Sobolev class s > n/2 + 1.
Both sets can be considered as smooth Hilbert manifolds. However, this is
not applicable in the subriemannian case, discussed later, hence we confine
to the C∞ setting applicable in the both cases.)

From now on we fix a Riemannian metric 〈, 〉M on the manifold M , whose
Riemannian volume is the form μ. On the diffeomorphism group we define
a Riemannian metric 〈, 〉D whose value at a point φ ∈ D is given by

(4.2) 〈X1 ◦ φ, X2 ◦ φ〉D :=
∫

M
〈X1 ◦ φ(x), X2 ◦ φ(x)〉M

φ(x)μ.

The action along a curve (or, “energy” of a curve) {φt | t ∈ [0, 1]} ⊂ D in
this metric is defined in the following straightforward way:

E({φt}) =
∫ 1

0
dt

∫

M
〈∂tφt, ∂tφt〉M μ.

If M is flat, D is locally isometric to the (pre-)Hilbert L2-space of (smooth)
vector-functions φ, see, e.g., [3, 23]. The following proposition is well known.

Proposition 4.1. Let φt be a geodesic on the diffeomorphism group D with
respect to the above Riemannian metric 〈, 〉D, and Vt be the (time-dependent)
velocity field of the corresponding flow: ∂tφt = Vt ◦ φt. Then the velocity Vt

satisfies the inviscid Burgers equation on M :

∂tVt + ∇VtVt = 0,

where ∇VtVt stands for the covariant derivative of the field Vt on M along
itself.
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Proof. In the flat case the geodesic equation is ∂2
t φt = 0: this is the Euler–

Lagrange equation for the action functional E. Differentiate ∂tφt = Vt ◦ φt

with respect to time t and use this geodesic equation to obtain

(4.3) ∂tVt ◦ φt + ∇Vt∂tφt = 0.

After another substitution ∂tφt = Vt ◦ φt, the later becomes

(∂tVt + ∇VtVt) ◦ φt = 0,

which is equivalent to the Burgers equation.
The non-flat case involves differentiation in the Levi–Civita connection

on M and leads to the same Burgers equation, see details in [7, 12]. �
Remark 4.2. Smooth solutions of the Burgers equation correspond to non-
interacting particles on the manifold M flying along those geodesics on M
which are defined by the initial velocities V0(x). The Burgers flows have the
form φt(x) = expM (tV0(x)), where expM : TM → M is the Riemannian
exponential map on M .

Proposition 4.3 [20]. The bundle projection πD : D → W is a Riemann-
ian submersion of the metric 〈, 〉D on the diffeomorphism group D to the
Riemannian metric 〈, 〉W on the smooth Wasserstein space W for the L2-
cost. The horizontal (i.e., normal to fibers) spaces in the bundle D → W are
right-translated gradient fields.

Recall that for two Riemannian manifolds Q and B, a Riemannian sub-
mersion π : Q → B is a mapping onto B which has maximal rank and
preserves lengths of horizontal tangent vectors to Q, see, e.g., [19]. For a
bundle Q → B, this means that there is a distribution of horizontal spaces
on Q, orthogonal to the fibers, which is projected isometrically to the tan-
gent spaces to B. One of the main properties of a Riemannian submersion
gives the following feature of geodesics:

Corollary 4.4. Any geodesic, initially tangent to a horizontal space on
the full diffeomorphism group D, always remains horizontal, i.e., tangent
to the horizontal distribution. There is a one-to-one correspondence between
geodesics on the base W starting at the measure μ and horizontal geodesics
in D starting at the identity diffeomorphism id.

Remark 4.5. In the PDE terms, the horizontality of a geodesic means
that a solution of the Burgers equation with a potential initial condition
remains potential forever. This also follows from the Hamiltonian formalism
and the moment map geometry discussed in the next section. Since horizon-
tal geodesics in the group D correspond to geodesics on the density space
W, potential solutions of the Burgers equation (corresponding to horizontal
geodesics) move the densities in the fastest way. The corresponding time-
one-maps for Burgers potential solutions provide optimal maps for moving
the density μ to any other density ν, see [6, 14].
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The Burgers potential solutions have the form φt(x) = expM (−t∇f(x))
as long as the right-hand side is smooth. The time-one-map φ1 for the flow
φt provides an optimal map between probability measures if the function f
is a (d2/2)-concave function. The notion of c-concavity for a cost function
c on M is defined as follows. For a function f its c-transform is f c(y) =
infx∈M (c(x, y) − f(x)) and the function f is said to be c-concave if f cc = f .
Here, we consider the case c = d2/2. The family of maps φt defines the
displacement interpolation mentioned in Section 4.1.

Let θ and ν be volume forms with the same total volume and let g and h be
functions on the manifold M defined by θ = g vol and ν = h vol, where vol be
the Riemannian volume form. Then a diffeomorphism φ moving one density
to the other (φ∗θ = ν) satisfies h(φ(x)) det(Dφ(x)) = g(x), where Dφ is the
Jacobi matrix of the diffeomorphism φ. In the flat case the optimal map φ
is gradient, φ = ∇f̃ , and the corresponding convex potential f̃ satisfies the
Monge–Ampère equation

det(Hess f̃(x))) =
g(x)

h(∇f̃(x))
,

since D(∇f̃) = Hess f̃ . In the nonflat case, the optimal map is φ(x) =
expM (−∇f(x)) for a (d2/2)-concave potential f , and the equation is Monge–
Ampère like, see [14, 25] for details. Below we describe the corresponding
nonholonomic analogs of these objects.

5. The Hamiltonian mechanics on diffeomorphism groups

In this section we present a Hamiltonian framework for the Otto calculus
and, in particular, give a symplectic proof of Proposition 4.3 and Corollary
4.4 on the submersion properties along with their generalizations.

5.1. Averaged Hamiltonians. We fix a Riemannian metric 〈, 〉M on the
manifold M and consider the corresponding Riemannian metric 〈, 〉D on the
diffeomorphism group D. This defines a map (X ◦ φ) �→ 〈X ◦ φ, ·〉D from
the tangent bundle TD to the cotangent bundle T ∗D. By using this map,
one can pull back the canonical symplectic form ωT ∗D from the cotangent
bundle T ∗D to the tangent bundle TD, and regard the latter as a manifold
equipped with the symplectic form ωTD.4 Similarly, a symplectic structure
ωTM can be defined on the tangent bundle TM by pulling back the canonical
symplectic form on the cotangent bundle T ∗M via the Riemannian metric
〈, 〉M . The two symplectic forms are related as follows. A tangent vector V
in the tangent space TX◦φTD at the point X ◦ φ ∈ TD is a map from M to

4The consideration of the tangent bundle TD (instead of T ∗D) as a symplectic manifold
allows one to avoid dealing with duals of infinite-dimensional spaces here.
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T (TM) = T 2M such that πT 2M ◦ V = X ◦ φ, where πT 2M : T (TM) → TM
is the tangent bundle projection. Let V1 and V2 be two tangent vectors in
TX◦φTD at the point X ◦ φ, then the symplectic forms are related in the
following way:

ωTD(V1, V2) =
∫

M
ωTM (V1(x), V2(x))μ(x),

where ωTM is understood as the pairing on T (TM) = T 2M .

Definition 5.1. Let HM be a Hamiltonian function on the tangent bundle
TM of the manifold M . The averaged Hamiltonian function is the function
HD on the tangent bundle TD of the diffeomorphism group D obtained by
averaging the corresponding Hamiltonian HM over M in the following way:
its value at a point X ◦ φ ∈ TφD is

(5.1) HD(X ◦ φ) :=
∫

M
HM (X ◦ φ(x))μ(x)

for a vector field X ∈ X and a diffeomorphism φ ∈ D.

Consider the Hamiltonian flows for these Hamiltonian functions HM and
HD on the tangent bundles TM and TD, respectively, with respect to the
standard symplectic structures on the bundles. The following theorem can
be viewed as a generalization of Propositions 4.1 and 4.3.

Theorem 5.2. Each Hamiltonian trajectory for the averaged Hamiltonian
function HD on TD describes a flow on the tangent bundle TM , in which
every tangent vector to M moves along its own HM -Hamiltonian trajectory
in TM .

Example 5.3. For the Hamiltonian KM (p, q) = 1
2〈p, p〉M given by the

“kinetic energy” for the metric on M , the above theorem implies that any
geodesic on D is a family of diffeomorphisms of M , in which each particle
moves along its own geodesic on M with constant velocity, i.e., its velocity
field is a solution to the Burgers equation, cf. Remark 4.2.

Below we discuss this theorem and its geometric meaning in detail. In
particular, in the above form, the statement is also applicable to the case of
nonholonomic distributions (i.e., subriemannian, or Carnot–Caratheodory
spaces) discussed in the next section.

5.2. Riemannian submersion and symplectic quotients. We start
with a Hamiltonian proof of Proposition 4.3 on the Riemannian submer-
sion D → W of diffeomorphisms onto densities. Recall the following general
construction in symplectic geometry. Let π : Q → B be a principal bundle
with the structure group G.
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Lemma 5.4 (see, e.g., [2]). The symplectic reduction of the cotangent bundle
T ∗Q over the G-action gives the cotangent bundle T ∗B = T ∗Q//G.

Proof. The moment map J : T ∗Q → g∗ associated with this action takes
T ∗Q to the dual of the Lie algebra g = Lie(G). For the G-action on T ∗Q the
moment map J is the projection of any cotangent space T ∗

a Q to cotangent
space T ∗

a F ≈ g∗ for the fiber F through a point a ∈ Q. The preimage J−1(0)
of the zero value is the subbundle of T ∗Q consisting of covectors vanishing
on fibers. Such covectors are naturally identified with covectors on the base
B. Thus factoring out the G-action, which moves the point a over the fiber
F , we obtain the bundle T ∗B. �

Suppose also that Q is equipped with a G-invariant Riemannian metric
〈, 〉Q.

Lemma 5.5. The Riemannian submersion of (Q, 〈, 〉Q) to the base B with
the induced metric 〈, 〉B is the result of the symplectic reduction.

Proof. Indeed, the metric 〈, 〉Q gives a natural identification T ∗Q ≈ TQ of
the tangent and cotangent bundles for Q, and the “projected metric” is
equivalent to a similar identification for the base manifold B.

In the presence of metric in Q, the preimage J−1(0) is identified with all
vectors in TQ orthogonal to fibers, that is J−1(0) is the horizontal subbundle
in TQ. Hence, the symplectic quotient J−1(0)/G can be identified with the
tangent bundle TB. �

Proof of Proposition 4.3. Now we apply this “dictionary” to the diffeomor-
phism group D and the Wasserstein space W. Consider the projection map
πD : D → W as a principal bundle with the structure group Dμ of volume-
preserving diffeomorphisms of M . Recall that the vertical space of this
principal bundle at a point φ ∈ D consists of right translations by the
diffeomorphism φ of vector fields which are divergence free with respect to
the volume form φ∗μ: Verφ = {X ◦ φ | divφ∗μX = 0}, and the horizontal
space is given by translated gradient fields: Horφ = {∇f ◦ φ | f ∈ C∞(M)}.

For each volume-preserving diffeomorphism ψ ∈ Dμ, the Dμ-action Rψ of
ψ by right translations on the diffeomorphism group is given by

Rψ(φ) = φ ◦ ψ.

The induced action TRψ : TD → TD on the tangent spaces of the diffeo-
morphism group is given by

TRψ(X ◦ φ) = (X ◦ φ) ◦ ψ.

One can see that for volume-preserving diffeomorphisms ψ this action pre-
serves the Riemannian metric (4.2) on the diffeomorphism group D (it is the
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change of variable formula), while for a general diffeomorphism one has an
extra factor det(Dψ), the Jacobian of ψ, in the integral. �

Remark 5.6. The explicit formula of the moment map J : TQ → X∗
μ for

the group of volume-preserving diffeomorphisms G = Dμ acting on Q = D is

J(X ◦ φ)(Y ) =
∫

M
〈X, φ∗Y 〉Mφ∗μ,

where Y ∈ Xμ is any vector field on M divergence-free with respect to the
volume form μ, X ∈ X, and φ ∈ D.

5.3. Hamiltonian flows on the diffeomorphism groups. Let HQ :
TQ → R be a Hamiltonian function invariant under the G-action on the
cotangent bundle of the total space Q. The restriction of the function HQ to
the horizontal bundle J−1(0) ⊂ TQ is also G-invariant, and hence descends
to a function HB : TB → R on the symplectic quotient, the tangent bun-
dle of the base B. Symplectic quotients admit the following reduction of
Hamiltonian dynamics:

Proposition 5.7 [2]. The Hamiltonian flow of the function HQ preserves
the preimage J−1(0), i.e., trajectories with horizontal initial conditions stay
horizontal. Furthermore, the Hamiltonian flow of the function HQ on the
tangent bundle TQ of the total space Q descends to the Hamiltonian flow of
the function HB on the tangent bundle TB of the base.

Now we are going to apply this scheme to the bundle D → W. (Simi-
larly to Section 4.2 we consider this setting either formally or in the cor-
responding Sobolev spaces, cf. [7].) For a fixed Hamiltonian function HM

on the tangent bundle TM to the manifold M , consider the correspond-
ing averaged Hamiltonian function HD on TD, given by formula (5.1):
HD(X ◦ φ) :=

∫
M HM (X ◦ φ(x))μ. The latter Hamiltonian is Dμ-invariant

(as also follows from the change of variable formula) and it will play the
role of the function HQ. Thus the flow for the averaged Hamiltonian HD

descends to the flow of a certain Hamiltonian HW on TW.
Describe explicitly the corresponding flow on the tangent bundles of D and

W. Let ΨHM

t : TM → TM be the Hamiltonian flow of the Hamiltonian HM

on the tangent bundle of the manifold M and ΨHD
t : TD → TD denotes

the flow for the Hamiltonian function HD on the tangent bundle of the
diffeomorphism group.

Theorem 5.8 (=5.2′). The Hamiltonian flows of the Hamiltonians HD and
HM are related by

ΨHD
t (X ◦ φ)(x) = ΨHM

t (X(φ(x))),
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where, on the right-hand side, the flow ΨHM

t on TM transports the shifted
field X(φ(x)), while, on the left-hand side, X ◦ φ is regarded as a tangent
vector to D at the point φ.

Proof. Prove this infinitesimally (cf. [7]). Let XHD and XHM be the Hamil-
tonian vector fields corresponding to the Hamiltonians HD and HM , respec-
tively. We claim that XHD(X ◦ φ) = XHM ◦ X ◦ φ. Indeed, by the definition
of Hamiltonian fields, we have

ωTD(XHM ◦ X ◦ φ, Y ) =
∫

M
ωTM (XHM (X(φ(x))), Y (x))μ

=
∫

M
dHM

X(φ(x))(Y (x))μ(x)

for any Y ∈ TφD. By interchanging the integration and exterior differentia-
tion, the latter expression becomes dHD

X◦φ(Y ) and the result follows. Note
that the 2-form ωTD is weakly symplectic (see [7]), hence the corresponding
Hamiltonian field on TD is defined uniquely. �

Remark 5.9. This theorem has a simple geometric meaning for the “kinetic
energy” Hamiltonian function KM (v) := 1

2〈v, v〉M on the tangent bundle
TM . One of the possible definitions of geodesics in M is that they are
projections to M of trajectories of the Hamiltonian flow on TM , whose
Hamiltonian function is the kinetic energy. In other words, the Riemannian
exponential map expM on the manifold M is the projection of the Hamil-
tonian flow ΨKM

t on TM . Similarly, the Riemannian exponential expD of
the diffeomorphism group D is the projection of the Hamiltonian flow for
the Hamiltonian KD(X ◦ φ) := 1

2

∫
M 〈X ◦ φ, X ◦ φ〉Mμ on TD.

Recall that the geodesics on the diffeomorphism group (described by the
Burgers equation, see Proposition 4.1) starting at the identity with the ini-
tial velocity V ∈ TidD are the flows which move each particle x on the
manifold M along the geodesic with the direction V (x). Such a geodesic
is well defined on the diffeomorphism group D as long as the particles do
not collide. The corresponding Hamiltonian flow on the tangent bundle TD
of the diffeomorphism group describes how the corresponding velocities of
these particles vary (cf. Example 5.3).

For a more general Hamiltonian HM on the tangent bundle TM , each
particle x ∈ M with an initial velocity V (x) will be moving along the corre-
sponding characteristic, which is the projection to M of the corresponding
trajectory ΨHM

t (V (x)) in the tangent bundle TM .

Now we would like to describe more explicitly horizontal geodesics and
characteristics on the diffeomorphism group D. Recall that ΨHD

t denotes the
Hamiltonian flow of the averaged Hamiltonian HD on the tangent bundle
TD of the diffeomorphism group D. If this Hamiltonian flow is gradient at
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the initial moment, it always stays gradient, as implied by Corollary 4.4.
Furthermore, the corresponding potential can be described as follows.

Corollary 5.10. Let f be a function on the manifold M . Then the Hamil-
tonian flow for HD with the initial condition ∇f ◦ φ ∈ TφD has the form
∇ft ◦ φt, where φt ∈ D is a family of diffeomorphisms and ft is the family
of functions on M starting at f0 = f and satisfying the Hamilton–Jacobi
equation

(5.2) ∂tft + HM (∇ft(x)) = 0.

Proof. This follows from the method of characteristics, which gives the
following way of finding ft, the solution to the Hamilton–Jacobi equa-
tion (5.2). Consider the tangent vector ∇f(x) for each point x ∈ M .
Denote by ΨHM

t : TM → TM the Hamiltonian flow for the Hamiltonian
HM : TM → R and consider its trajectory t �→ ΨHM

t (∇f(x)) starting at
the tangent vector ∇f(x). Then project this trajectory to M using the tan-
gent bundle projection πTM : TM → M to obtain a curve in M . It is given
by the formula t �→ πTM (ΨHM

t (∇f(x))). As x varies over the manifold M ,
this defines a flow φt := πTM ◦ ΨHM

t ◦ ∇f on M . (Note that this procedure
defines a flow for small time t, while for larger times the map φt may cease to
be a diffeomorphism, i.e., shock waves can appear.) The corresponding time-
dependent vector field is gradient and defines the family ∇ft, the gradient
of the solution to the Hamilton–Jacobi equation above, see Figure 3. �

Figure 3. Hamiltonian flow of the Hamiltonian HM and
its projection: the curve φt(x) is the projection of the curve
ΨHM

t (∇f(x)) to the manifold M .
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Remark 5.11. The above corollary manifests that the Hamilton–Jacobi
equation (5.2) can be solved using the method of characteristics due to the
built-in symmetry group of all volume-preserving diffeomorphisms.

5.4. Hamiltonian flows on the Wasserstein space. What is the corre-
sponding flow on the tangent bundle TW of the Wasserstein space, induced
by the Hamiltonian flow on TD for the diffeomorphism group D after the
projection πD : D → W? Fix a Hamiltonian HM on the tangent bundle TM
which defines the averaged Hamiltonian function HD on the tangent bundle
TD, see equation (5.1). Describe explicitly the induced Hamiltonian HW on
the tangent bundle TW.

Let (ν, η) be a tangent vector at a density ν on M , regarded as a point
of the Wasserstein space W. The normalization of densities (

∫
ν = 1 for all

ν ∈ W) gives the constraint for tangent vectors:
∫
M η = 0. Let f : M → R

be a function that satisfies (−divν∇f)ν = η. (Given (ν, η), such a function is
defined uniquely up to an additive constant.) Then the induced Hamiltonian
on the tangent bundle TW of the base W is given by

(5.3) HW(ν, η) =
∫

M
HM (∇f(x)) ν,

since ∇f is a vector of the horizontal distribution in TD.
Now, the flow ΨHW

t of the corresponding Hamiltonian field on TW can
be found explicitly by employing Proposition 5.7. Consider the flow φt :=
πTM ◦ ΨHM

t ◦ ∇f defined on M for small t in Corollary 5.10.

Theorem 5.12. The Hamiltonian flow ΨHW
t of the Hamiltonian function

HW on the tangent bundle TW of the Wasserstein space W is

ΨHW
t (ν, η) = (νt,−L∇ftνt),

where L is the Lie derivative, the family of functions ft satisfies the
Hamilton–Jacobi equation (5.2) for the Hamiltonian function HM on
the tangent bundle TM , and the family νt = (φt)∗ν is the pushforward of
the volume form ν by the map φt defined above.

Proof. The function HD(X ◦ φ) =
∫
M HM (X(φ(x)))μ(x) on the tangent

bundle TD of the diffeomorphism group induces the Hamiltonian HW on
TW. By virtue of the Hamiltonian reduction, Hamiltonian trajectories of HD

contained in the horizontal bundle Hor = {∇f ◦ φ | f ∈ C∞(M)} descend
to Hamiltonian trajectories of HW . Then the Hamiltonian flow ΨHD

of the
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Hamiltonian HD is given by ΨHD
(X ◦ φ) = ΨHM ◦ X ◦ φ, due to Theorem

5.8. By restricting this to the horizontal bundle Hor we have

(5.4) ΨHD
(∇f ◦ φ) = ΨHM ◦ ∇f ◦ φ.

The flow ΨHD
is described in Corollary 5.10 and has the form ΨHD

(∇f◦φ) =
∇ft ◦ φt, where ft and φt are defined as required.

On the other hand, recall that the projection πD : D → W is defined by
πD(φ) = φ∗μ. The differential Dπ of this map πD is

Dπ(X ◦ φ) := (φ∗μ,−LX(φ∗μ)).

The application of this relation to (5.4) gives the result. �

Remark 5.13. The time-one-map for the above density flow νt in the
Wasserstein space W formally describes optimal transport maps for the
Hamiltonian HM . In particular, it recovers the optimal map recently
obtained in [5]. One considers the optimal transport problem for the func-
tional

inf
φ

{
∫

M
c(x, φ(x))μ | φ∗μ = ν}

with the cost function c defined by

c(x, y) = inf
{γ paths between x and y}

∫ 1

0
L(γ, γ̇) dt,

where the infimum is taken over paths γ joining x and y and the Lagrangian
L : TM → R satisfies certain regularity and convexity assumptions, see [5].
The corresponding Hamiltonian HM in Theorem 5.12 is the Legendre trans-
form of the Lagrangian L. Note that for the “kinetic energy” Lagrangian
KM , the above map becomes the optimal map expM (−∇f) mentioned at
the beginning of this section, with expM : TM → M being the Riemannian
exponential of the manifold M .

6. The subriemannian geometry of diffeomorphism groups

In this section we develop the subriemannian setting for the diffeomorphism
group. In particular, we derive the geodesic equations for the “nonholonomic
Wasserstein metric,” and describe nonholonomic versions of the Monge–
Ampère and heat equations.

Let M be a manifold with a fixed distribution τ on it. Recall that a
subriemannian metric is a positive definite inner product 〈, 〉τ on each plane
of the distribution τ smoothly depending on a point in M . Such a metric can
be defined by the bundle map I : T ∗M → τ , sending a covector αx ∈ T ∗

xM
to the vector Vx in the plane τx such that αx(U) = 〈Vx, U〉τ on vectors U ∈
τx. The subriemannian Hamiltonian Hτ : T ∗M → R is the corresponding
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fiberwise quadratic form:

(6.1) Hτ (αx) =
1
2
〈Vx, Vx〉τ .

Let ΨHτ

t be the Hamiltonian flow for time t of the subriemannian Hamilton-
ian Hτ on T ∗M , while πT ∗M : T ∗M → M is the cotangent bundle projec-
tion. Then the subriemannian exponential map expτ : T ∗M → M is defined
as the projection to M of the time-one-map of the above Hamiltonian flow
on T ∗M :

(6.2) expτ (tαx) := πT ∗MΨHτ

t (αx).

This relation defines a normal subriemannian geodesic on M with the initial
covector αx. Note that the initial velocity of the subriemannian geodesic
expτ (tαx) is Vx = Iαx ∈ τx. So, unlike the Riemannian case, there are many
subriemannian geodesics having the same initial velocity Vx on M .

Let dτ be a subriemannian (or, Carnot–Caratheodory) distance on the
manifold M , defined as the infimum of the length of all absolutely continuous
admissible (i.e., tangent to τ) curves joining given two points. For a bracket-
generating distribution τ any two points can be joined by such a curve, so
this distance is always finite. Consider the corresponding optimal transport
problem by replacing the Riemannian distance d in (4.1) with the subrie-
mannian distance dτ . Below we study the infinite-dimensional geometry of
this subriemannian version of the optimal transport problem. Although, in
general, normal subriemannian geodesics might not exhaust all the length
minimizing geodesics in subriemannian manifolds (see [15]), we will see that
in this problem of subriemannian optimal transport one can confine oneself
to only such geodesics! The reason for this is that the subriemannian optimal
transport induces a Riemannian metric structure on the space of densities.

6.1. Subriemannian submersion. Consider the following general setting:
Let (Q, T ) be a subriemannian space, i.e., a manifold Q with a distribution
T and a subriemannian metric 〈, 〉τ on it. Suppose that Q → B is a bundle
projection to a Riemannian base manifold B.

Definition 6.1. The projection π : (Q, T ) → B is a subriemannian sub-
mersion if the distribution T contains a horizontal subdistribution T hor,
orthogonal (with respect to the subriemannian metric) to the intersections
of T with fibers, and the projection π maps the spaces T hor isometrically to
the tangent spaces of the base B, see Figure 4.

Let a subriemannian submersion π : (Q, T ) → B be a principal G-bundle
Q → B, where the distribution T and the subriemannian metric are invari-
ant with respect to the action of the group G. The following theorem is an
analog of Corollary 4.4.
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Figure 4. Subriemannian submersion: horizontal subdistri-
bution T hor is mapped isometrically to the tangent bundle
TB of the base.

Theorem 6.2. For each point b in the base B and a point q in the fiber
π−1(b) ⊂ Q over b, every Riemannian geodesics on the base B starting at b
admits a unique lift to the subriemannian geodesic on Q starting at q with
the velocity vector in T hor.

Example 6.3. Consider the standard Hopf bundle π : S3 → S2, with the
two-dimensional distribution T transversal to the fibers S1. Fix the standard
metric on the base S2 and lift it to a subriemannian metric on S3, which
defines a subriemannian submersion. If the distribution T is orthogonal to
the fibers, the manifold (S3, T ) can locally be thought of as the Heisenberg
three-dimensional group. Then all subriemannian geodesics on S3 with a
given horizontal velocity project to a one-parameter family of circles on S2

with a common tangent element. However, only one of these circles, the
equator, is a geodesic on the standard sphere S2. Thus the equator can
be uniquely lifted to a subriemannian geodesic on S3 with the given initial
vector.

Note that the uniqueness of this lifting holds even if the distribution T is
not orthogonal, but only transversal, say at a fixed angle, to the fibers S1,
see Figure 5.



408 B. KHESIN AND P. LEE

Figure 5. Projections of subriemannian geodesics from
(S3, T ) in the Hopf bundle give circles in S2, only one of
which, the equator, is a geodesic on the base S2.

Proof of Theorem 6.2. To prove this theorem we describe the Hamiltonian
setting of the subriemannian submersion.

Let Ver be the vertical subbundle in TQ (i.e., tangent planes to the fibers
of the projection Q → B). Define Ver⊥ ⊂ T ∗Q to be the corresponding
annihilator, i.e., Ver⊥

q is the set of all covectors αq ∈ T ∗
q Q at the point q ∈ Q

which annihilate the vertical space Verq.

Definition 6.4. The restriction of the subriemannian exponential map
expτ : T ∗Q → Q to the distribution Ver⊥ is called the horizontal expo-
nential

expτ : Ver⊥ → Q

and the corresponding geodesics are the horizontal subriemannian geodesics.

The symplectic reduction identifies the quotient Ver⊥/G with the cotan-
gent bundle T ∗B of the base. Note that the subdistribution T hor defines a
horizontal bundle for the principal bundle Q → B in the usual sense. The
definition of subriemannian submersion (translated to the cotangent spaces,
where we replace T hor by Ver⊥) gives that the subriemannian Hamiltonian
HT defined by (6.1) descends to a Riemannian Hamiltonian HB,T on T ∗B.
Moreover, Hamiltonian trajectories of HB,T starting at the cotangent space
T ∗

b B are in one-to-one correspondence with the trajectories of HT starting
at the space Ver⊥

q . The projection of these Hamiltonian trajectories to the
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manifolds B and Q via the cotangent bundle projections πT ∗B and πT ∗Q,
respectively, gives the result. �

Corollary 6.5. For a subriemannian submersion, geodesics on the base give
rise only to normal geodesics in the total space.

In order to describe the geodesic geometry on the tangent, rather than
cotangent, bundle of the manifold Q, we fix a Riemannian metric on Q whose
restriction to the distribution τ is the given subriemannian metric 〈, 〉τ . This
Riemannian metric allows one to identify the cotangent bundle T ∗Q with
the tangent bundle TQ. Then the exponential map expτ can be viewed as a
map TQ → Q. It is convenient to think of T hor as the horizontal bundle and
identify it with the annihilator Ver⊥. This way horizontal subriemannian
geodesics are geodesics with initial (co)vector in the horizontal bundle T hor.
This identification is particularly convenient for the infinite-dimensional set-
ting, where we work with the tangent bundle of the diffeomorphism group.

6.2. A subriemannian analog of the Otto calculus. Fix a Riemannian
metric 〈 , 〉M on the manifold M . Let P τ : TM → τ be the orthogonal
projection of vectors on M onto the distribution τ with respect to this
metric. Let (ν, η1) and (ν, η2) be two tangent vectors in the tangent space at
the point ν of the smooth Wasserstein space. Recall that for a fixed volume
form μ, we define the subriemannian Laplacian as Δτf := divμ(P τ∇f).

Define a nonholonomic Wasserstein metric as the (weak) Riemannian
metric on the (smooth) Wasserstein space W given by

(6.3) 〈(ν, η1), (ν, η2)〉W,T :=
∫

M
〈P τ∇f1(x), P τ∇f2(x)〉Mν,

where functions f1 and f2 are solutions of the subriemannian Poisson
equation

−(Δτfi)ν = ηi

for the measure ν.

Theorem 6.6. The geodesics on the Wasserstein space W equipped with
the nonholonomic Wasserstein metric (6.3) have the form (expτ (tP τ∇f))∗ν,
where expτ : T hor → M is the horizontal exponential map and ν is any point
of W.

To prove this theorem we first note that the Riemannian metric 〈, 〉D

defined on the diffeomorphism group restricts to a subriemannian metric
〈, 〉D,T on the right invariant bundle T .

Proposition 6.7. The map π : (D, T ) → W is a subriemannian submer-
sion of the subriemannian metric 〈, 〉D,T on the diffeomorphism group with
distribution T to the nonholonomic Wasserstein metric 〈, 〉W,T .
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Proof. This statement can be derived from the Hamiltonian reduction, sim-
ilarly to the Riemannian case.

Here we prove it by an explicit computation. Recall that the map π : D →
W is defined by π(φ) = φ∗μ. Let X ◦φ be a tangent vector at the point φ in
the diffeomorphism group D. Consider the flow φt of the vector field X, and
note that π(φt ◦φ) = φt∗φ∗μ. To compute the derivative Dπ we differentiate
this equation with respect to time t at t = 0:

Dπ(X ◦ φ) = L−X(φ∗μ) = −(divφ∗μX)φ∗μ,

by the definition of Lie derivative. A vector field X from the horizontal
bundle T hor has the form (P τ∇f) ◦ φ, and for it the equation becomes

Dπ((P τ∇f) ◦ φ) = −(Δτf) φ∗μ,

where the Laplacian Δτ is taken with respect to the volume form φ∗μ.
Therefore, for horizontal tangent vectors (P τ∇f1) ◦φ and (P τ∇f2) ◦φ at

the point φ their subriemannian inner product is

〈(P τ∇f1) ◦ φ, (P τ∇f2) ◦ φ〉D =
∫

M
〈P τ∇f1 ◦ φ, P τ∇f2 ◦ φ〉Mμ.

After the change of variables this becomes
∫

M
〈P τ∇f1, P

τ∇f2〉Mφ∗μ = 〈Dπ((P τ∇f1) ◦ φ), Dπ((P τ∇f2) ◦ φ)〉W,T ,

which completes the proof. �
Proof of Theorem 6.6. To describe geodesics in the nonholonomic Wasser-
stein space we define the Hamiltonian HT : TD → R by

(6.4) HT (X ◦ φ) :=
∫

M
〈(P τX) ◦ φ, (P τX) ◦ φ〉μ.

The Hamiltonian flow with Hamiltonian HT has the form expτ ((tP τX) ◦
φ) according to Theorem 5.8. By taking its restriction to the bundle T hor

and projecting to the base we obtain that the geodesics on the smooth
Wasserstein space are

(expτ ((tP τ∇f) ◦ φ))∗ν,

where ν = φ∗μ and P τ∇f is defined by the Hodge decomposition for the
field X. This completes the proof of Theorem 6.6. �
Remark 6.8. For a horizontal subriemannian geodesic ϕt(x) :=
expτ (tP τ∇f(x)) with a smooth function f , the diffeomorphism ϕt satisfies
d
dtϕt = (P τ∇ft) ◦ ϕt and ft is the solution of the Hamilton–Jacobi equation

(6.5) ḟt + Hτ (∇ft) = 0

with the initial condition f0 = f , see Corollary 5.10. This equation deter-
mines horizontal subriemannian geodesics on the diffeomorphism group D.
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In the Riemannian case, one can see that the vector fields Vt = d
dtϕt =

∇ft ◦ ϕt satisfy the Burgers equation by taking the gradient of the both
sides in (6.5), cf. Proposition 4.1. Hence equation (6.5) can be viewed as a
subriemannian analog of the potential Burgers equation in D. However, a
subriemannian analog of the Burgers equation for nonhorizontal (i.e., non-
potential) normal geodesics on the diffeomorphism group is not so explicit.

Remark 6.9. If the function f is smooth, the time-one-map ϕ(x) :=
expτ (P τ∇f(x)) along the geodesics described in Theorem 6.6 satisfies the
following nonholonomic analog of the Monge–Ampère equation: h(ϕ(x))
det(Dϕ(x)) = g(x), where g and h are functions on the manifold M defining
two densities θ = g vol and ν = h vol.

Furthermore, for the case of the Heisenberg group this formal solution
ϕ(x) coincides with the optimal map obtained in [1]. The (minus) potential
−f of the corresponding optimal map satisfies the c-concavity condition for
c = d2

τ/2, where d2
τ is the subriemannian distance, cf. Remark 4.5.

6.3. The nonholonomic heat equation. Consider the heat equation
∂tu = Δu on a function u on the manifold M , where the operator Δ is
given by Δf = divμ∇f . Upon multiplying both sides of the heat equation
by the fixed volume form μ, one can regard it as an evolution equation on
the smooth Wasserstein space W. Note that the right-hand side of the heat
equation gives a tangent vector (Δu)μ at the point uμ of the Wasserstein
space. The Boltzmann relative entropy functional Ent : W → R is defined
by the integral

(6.6) Ent(ν) :=
∫

M
log(ν/μ) ν.

The gradient flow of Ent on the Wasserstein space with respect to the metric
d̃ gives the heat equation, see [20].

Recall that one can define the subriemannian Laplacian: Δτf :=
divμ(P τ∇f) for a fixed volume form μ on M . The natural generalization
of the heat equation to the nonholonomic setting is as follows.

Definition 6.10. The nonholonomic (or, subriemannian) heat equation is
the equation ∂tu = Δτu on a time-dependent function u on M .

Below we show that this equation in the nonholonomic setting also admits
a gradient interpretation on the Wasserstein space.

Theorem 6.11. The nonholonomic heat equation ∂tu = Δτu describes the
gradient flow on the Wasserstein space with respect to the relative entropy
functional (6.6) and the nonholonomic Wasserstein metric (6.3).

Namely, for the volume form νt := gt∗μ and the gradient ∇W,T with
respect to the metric 〈, 〉W,T on the Wasserstein space one has

∂

∂t
νt = −∇W,T Ent(νt) = Δτ (νt/μ)μ.
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Proof. Denote by (ν, η) a tangent vector to the Wasserstein space W at a
point ν ∈ W, where η is a volume form of total integral zero. Let Δτ

ν be the
subriemannian Laplacian with respect to the volume form ν.

Let h and hEnt be real-valued functions on the manifold M such that
−(Δτ

νh)ν = η and −(Δτ
νhEnt)ν = ∇W,T Ent(ν) for the entropy functional

Ent. Then, by definition of the metric 〈, 〉W,T given by (6.3), we have

(6.7) 〈(ν,∇W,T Ent(ν)), (ν, η)〉W,T =
∫

M
〈P τ∇hEnt(x), P τ∇h(x)〉Mν.

On the other hand, by definitions of Ent and the gradient ∇W,T on the
Wasserstein space, one has

〈(ν,∇W,T Ent(ν)), (ν, η)〉W,T :=
d

dt

∣
∣
∣
t=0

Ent(ν + tη)

=
d

dt

∣
∣
∣
t=0

∫

M

[
log

(ν + tη

μ

)]
(ν + tη).

After differentiation and simplification the latter expression becomes∫
M log(ν/μ) η, where we used that

∫
M η = 0. This can be rewritten as

∫

M
log(ν/μ) η = −

∫

M
log(ν/μ)LP τ ∇hν =

∫

M
(LP τ ∇h log(ν/μ)) ν,

by using the Leibnitz property of the Lie derivative L on the Wasserstein
space and the fact that −(Δτ

νh)ν = η. Note that the Lie derivative is the
inner product with the gradient, and hence

∫

M

(LP τ ∇h log(ν/μ)) ν =
∫

M

〈∇ log(ν/μ), P τ∇h〉Mν

=
∫

M

〈P τ∇ log(ν/μ), P τ∇h〉Mν.

Comparing the latter form with (6.7), we get P τ∇hEnt = P τ∇ log(ν/μ), or,
after taking the divergence of both parts and using the definition of function
hEnt,

∇W,T Ent(ν) = −Δτ
ν(log(ν/μ)) ν.

Finally, let us show that the right-hand side of the above equation coin-
cides with −Δτ

μ(ν/μ) μ. Indeed, the chain rule gives

LP τ ∇ log(ν/μ)ν = L(μ/ν)P τ ∇(ν/μ)ν = (μ/ν)LP τ ∇(ν/μ)ν + d(μ/ν) ∧ iP τ ∇(ν/μ)ν.

The last term is equal to (iP τ ∇(ν/μ)d(μ/ν))ν = LP τ ∇(ν/μ)(μ/ν) ν, which
implies that

LP τ ∇ log(ν/μ)ν = LP τ ∇(ν/μ)μ
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by the Leibnitz property of Lie derivative. Thus

Δτ
ν(log(ν/μ)) ν = divν(P τ∇(log(ν/μ))ν

= LP τ ∇ log(ν/μ)ν = LP τ ∇(ν/μ)μ = Δτ
μ(ν/μ)μ.

The above shows that the nonholonomic heat equation is the gradient
flow on the Wasserstein space for the same potential as the classical heat
equation, but with respect to the nonholonomic Wasserstein metric. �
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[11] L. Hörmander, The analysis of linear partial differential operators III, Pseudo-
differential operators, Springer, Berlin, 2007.

[12] B. Khesin and G. Misiolek, Shock waves for the Burgers equation and curvatures of
diffeomorphism groups, Proc. Steklov Inst. Math. v.250 (2007), 1–9.

[13] J. Lott, Optimal transport and Perelman’s reduced volume, Calc. Var. Partial Differ-
ential Equations, 36 (2009), 49–84.



414 B. KHESIN AND P. LEE

[14] R. McCann, Polar factorization of maps in Riemannian manifolds, Geom. Funct.
Anal. 11(3) (2001), 589–608.

[15] R. Montgomery, A tour of subriemannian geometries, their geodesics and appli-
cations, Mathem. Surveys and Monographs, 91. American Mathematical Society,
Providence, RI, 2002.

[16] J. Moser, On the volume elements on a manifold, Trans. AMS, 120(2) (1965), 286–
294.

[17] D.-M. Nhieu, The Neumann problem for sub-Laplacians on Carnot groups and the
extension theorem for Sobolev spaces, Ann. Mat. Pura Appl. IV, 180(1) (2001), 1–25.

[18] D.-M. Nhieu and N. Garofalo, Lipschitz continuity, global smooth approximations
and extension theorems for Sobolev functions in Carnot–Caratheodory spaces, J.
Anal. Math. 74 (1998), 67–97.

[19] B. O’Neill, Submersions and geodesics, Duke Math. J. 34 (1967), 363–373.

[20] F. Otto, The geometry of dissipative evolution equations: the porous medium equa-
tion, Comm. Partial Differential Equations 26(1–2) (2001), 101–174.

[21] L.P. Rothschild and E. Stein, Hypoelliptic differential operators and nilpotent group,
Acta Math. 137 (1976), 247–320.

[22] L.P. Rothschild and D. Tartakoff, Parametrices with C∞ error for cmb and operators
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