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Abstract

We show that the following three systems related to various hydrodynamical approxima-

tions: the Korteweg–de Vries equation, the Camassa–Holm equation, and the Hunter–Saxton

equation, have the same symmetry group and similar bihamiltonian structures. It turns out

that their configuration space is the Virasoro group and all three dynamical systems can be

regarded as equations of the geodesic flow associated to different right-invariant metrics on

this group or on appropriate homogeneous spaces. In particular, we describe how Arnold’s

approach to the Euler equations as geodesic flows of one-sided invariant metrics extends from

Lie groups to homogeneous spaces.

We also show that the above three cases describe all generic bihamiltonian systems which

are related to the Virasoro group and can be integrated by the translation argument principle:

they correspond precisely to the three different types of generic Virasoro orbits. Finally, we

discuss interrelation between the above metrics and Kahler structures on Virasoro orbits as

well as open questions regarding integrable systems corresponding to a finer classification of

the orbits.
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1. Introduction

One of the main mechanisms of integrability of evolution equations is the presence
of two compatible Hamiltonian structures. In this paper, we compare Hamiltonian
properties of three extensively studied nonlinear equations of mathematical physics,
related to various hydrodynamical approximations: the Korteweg–de Vries equation

ut ¼ �3uux þ cuxxx; ð1:1Þ

the Camassa–Holm equation

ut � utxx ¼ �3uux þ 2uxuxx þ uuxxx þ cuxxx ð1:2Þ

derived as a shallow water equation in [CH] (see also the paper [FF]), and the
Hunter–Saxon equation [HS]

utxx ¼ �2uxuxx � uuxxx; ð1:3Þ

describing weakly nonlinear unidirectional waves. All three equations are known to
be bihamiltonian and to possess infinitely many conserved quantities, as well as
remarkable soliton or soliton-like solutions. A motivation for our paper was the
paper [BSS], which described scattering theory for all three equations in a unified
way.
As we show in this paper, the main reason why such a common treatment is

possible is that all these equations have the same symmetry group. It turns out to be
the Virasoro group, a one-dimensional extension of the group of smooth
transformations of the circle. More precisely, the Virasoro group serves as the
configuration space, and all three equations can be regarded as equations of the
geodesic flow related to different right-invariant metrics on this group (in the case of
KdV and CH) or on an associated homogeneous space (in the case of HS). (Here, we
will be mostly concerned with the periodic case, though many statements can be
extended to the case of rapidly decaying potentials on the real line.)
The main goal of this paper is to give a description of the three equations as

bihamiltonian systems on the dual to the Virasoro algebra, and to relate them to the
geometry of the Virasoro coadjoint orbits. One of the corresponding Hamiltonian
(or Poisson) structures is provided by the linear Lie–Poisson bracket, and it is the
same for all three equations. The other Poisson structure is constant and can be
viewed as a ‘‘linear structure frozen at a point’’. The corresponding ‘‘freezing points’’
are different for each equation. We will also see that, in a sense, Eqs. (1.1)–(1.3)
exhaust all generic possibilities, and among them the Camassa–Holm equation (1.2)
is the ‘‘most general’’ equation that can be obtained by the ‘‘freezing argument’’
method on the dual Virasoro space.
We tried to make the paper self-contained, including in it necessary background

on the Euler equations and the classification of Virasoro orbits. For additional
information we refer the interested reader to the expositions in [Seg] or [AK], as well
as to the original papers listed in the bibliography.
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In [Arn] Arnold suggested a general framework for the Euler equations on an
arbitrary (possibly infinite-dimensional) group, which we recall below. In this
framework the Euler equation describes a geodesic flow with respect to a suitable
one-sided invariant Riemannian metric on the given group.
In Section 2 we show how Arnold’s approach to the Euler equation works for the

Virasoro group and provides a natural geometric setting for the Korteweg–de Vries
and Camassa–Holm equations. In Section 3 we give a Hamiltonian reformulation of
the Euler equation. In Section 4 we extend this approach to include geodesic flows on
homogeneous spaces and then use it to describe the Hunter–Saxton equation and its
relatives.1 This extension might be thought of as a version of the Hamiltonian
formalism for homogeneous spaces developed in [GS,Th], which is applied to the
case of a degenerate metric and in our infinite-dimensional situation.
In Sections 5 and 6 we develop the bihamiltonian formalism for the Euler systems.

We show why the three equations above represent three main classes (and exhaust
the rotation-invariant) bihamiltonian systems on the Virasoro algebra that can be
integrated by means of the ‘‘freezing’’ (called also, the translation of ) argument
method. It turns out that the above three equations correspond to three different
types of Virasoro coadjoint orbits of low codimensions.
In our classification of Poisson pairs and the corresponding equations we rely

heavily on the classification of the Virasoro orbits, and we recall it in the appendix.
An interesting open question is to extend the classification of the equations to orbits
of higher codimension, as well as to show how the discrete invariant of Virasoro
orbits manifests itself in the related bihamiltonian systems.

2. The Euler properties of the KdV, CH, and HS equations

The main objects in our consideration will be the group Diff ðS1Þ of all

diffeomorphisms of a circle, its Lie algebra vectðS1Þ of vector fields, and their
central extensions. The following nontrivial one-dimensional extension of the
algebra of vector fields has a special name.

Definition 2.1. The Virasoro algebra is an extension of the Lie algebra vectðS1Þ of
vector fields on the circle:

vir ¼ vectðS1Þ"R

with the commutator between pairs (consisting of a vector field and a real number)
given by

½ðvðxÞ@x; bÞ; ðwðxÞ@x; cÞ� ¼ ðð�vwx þ vxwÞðxÞ@x;Cðv@x;w@xÞÞ;

1 In particular, the Harry Dym equation [HZh,Kru] can be found as one of the equations in the

bihamiltonian hierarchy associated with the HS system. This equation was also considered in [BSS]. In this

way, the Harry Dym equation also becomes associated to the geodesic interpretation.
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where

Cðv@x;w@xÞ ¼
Z

S1
vwxxx dx

is the Gelfand–Fuchs cocycle. (Here x is a coordinate on the circle, the subscript x

stands for the derivative in x; and @x denotes the vector field
@
@x
on S1:)

Define the following two-parameter family of quadratic forms, ‘‘H1
a;b-energies’’,

on the Lie algebra vir:

/ðvðxÞ@x; bÞ; ðwðxÞ@x; cÞSH1
a;b

¼
Z

S1
ðavw þ bvxwxÞ dx þ bc: ð2:4Þ

The case a ¼ 1; b ¼ 0 corresponds to the L2 inner product, while a ¼ b ¼ 1

corresponds toH1:Given aa0 and any b; extend theH1
a;b-energy to a right-invariant

metric on the Virasoro group Vir: This group corresponds to the Virasoro algebra
and is defined as follows.

Definition 2.2. The Virasoro group Vir is the product

Vir ¼ Diff ðS1Þ � R;

where the group multiplication between the pairs is given by

ðcðxÞ; aÞ3ðfðxÞ; bÞ ¼ ððc3fÞðxÞ; a þ b þ Bðc;fÞÞ

and

Bðc;fÞ :¼
Z

S1
logððc3fÞxÞ d logðfxÞ

is the Bott cocycle. (Here the diffeomorphisms of S1 are described by functions, e.g.,
x/fðxÞ:)

Having equipped the Virasoro group with those right-invariant metrics, one can
consider the geodesic flows they generate.

Theorem 2.3. (1) [OK] The KdV equation is the Euler equation, describing the geodesic

flow on the Virasoro group with respect to the right-invariant L2-metric.

(2) [Mi] The CH equation is the Euler equation for the geodesic flow on the same

group with respect to the right-invariant Sobolev H1-metric.

It turns out that one can give a similar description of the Hunter–Saxton equation
as a geodesic flow on a homogeneous space related to the Virasoro algebra.

Consider the ’H1-quadratic form (which is the H1
a;b-form with a ¼ 0; b ¼ 1) on the
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Virasoro algebra:

/ðvðxÞ@x; bÞ; ðwðxÞ@x; cÞS ’H1 ¼
Z

S1
vxwx dx þ bc: ð2:5Þ

Although this form is degenerate, as is the corresponding right-invariant metric on
the Virasoro group, one can define a nondegenerate metric by descending on an
appropriate quotient space.

Theorem 2.4. The HS equation is the equation describing the geodesic flow on the

homogeneous space Vir=RotðS1Þ of the Virasoro group modulo rotations with respect

to the right-invariant homogeneous ’H1 metric.

Note that one can also obtain the HS equation by considering the smaller

homogeneous space Diff ðS1Þ=RotðS1Þ of all diffeomorphisms of the circle modulo
rotations, see the end of Section 4.
These three equations essentially exhaust the list of integrable systems associated

with the Virasoro algebra and integrated by the freezing argument method, as we
discuss below. Note that their degenerations include, e.g., the inviscid Burgers

equation (it corresponds to the L2-metric on the ‘‘centerless Virasoro’’ group,

Diff ðS1Þ).

Remark 2.5. Before proving the theorems, we recall the general set-up for the Euler
equation on an arbitrary Lie group, suggested by Arnold [Arn]. Consider a (possibly
infinite-dimensional) Lie group G; which can be thought of as the configuration
space of some physical system. (Examples from [Arn]: SOð3Þ for a rigid body or the
group SDiff ðMÞ of volume-preserving diffeomorphisms for an ideal fluid filling a
domain M:) The tangent space at the identity of the Lie group G is the
corresponding Lie algebra g: Fix some (positive definite) quadratic form, the
‘‘energy’’, on g:We consider right translations of this quadratic form to the tangent
space at any point of the group (the ‘‘translational symmetry’’ of the energy). This
way the energy defines a right-invariant Riemannian metric on the group G: The
geodesic flow on G with respect to this energy metric represents the extremals of the
least action principle, i.e. the actual motions of our physical system.2

To describe a geodesic on the Lie group with an initial velocity vð0Þ; we transport
its velocity vector at any moment t to the identity of the group (by using the right
translation). In this way we obtain the evolution law for vðtÞ; given by a (nonlinear)
dynamical system dv=dt ¼ FðvÞ on the Lie algebra g:

Definition 2.6. The system on the Lie algebra g; describing the evolution of the
velocity vector along a geodesic in a right-invariant metric on the Lie group G; is
called the Euler equation corresponding to this metric on G:

2For a rigid body one has to consider left translations, but in our exposition we stick to the right-

invariant case in view of its applications to the groups of diffeomorphisms.
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In particular, the above scheme works for the Virasoro group (see Theorem 2.3)
and allows one to describe the Korteweg–de Vries and Camassa–Holm equations as
geodesic equations on that group. It also can be extended to include geodesic flows
on homogeneous spaces and to describe the Hunter–Saxton equation, as we discuss
below.

3. Hamiltonian framework for the Euler equations

We start with preliminaries on Lie algebras and Poisson structures.

Definition 3.1. The dual space gn to any Lie algebra g carries a natural Lie–Poisson

structure:

ff ; ggLPðmÞ :¼ /½df ; dg�;mS

for any mAgn and any two smooth functions f ; g on gn: (Here the differentials are
taken at the point m; and /�; �S is a natural pairing between g and gn:)

In other words, the Lie–Poisson bracket of two linear functions on gn is equal to
their commutator as elements of the Lie algebra g itself.

Proposition 3.2. The Hamiltonian vector field on gn corresponding to a Hamiltonian

function f and computed with respect to the Lie–Poisson structure has the following

form:

dm

dt
¼ adn

df m: ð3:6Þ

Proof. Let dm=dt ¼ Xf be the corresponding Hamiltonian field. Then for any

function gACNðgnÞ one has the identities

iXf
dgjm ¼ LXf

gjm ¼ ff ; ggLPðmÞ ¼ /½df ; dg�;mS ¼ /dg; adn

df mS:

This implies that Xf ¼ adn
df m: &

Remark 3.3. The differential-geometric description of the Euler equation as a
geodesic flow on a Lie group has a Hamiltonian reformulation.

Fix the notation EðvÞ ¼ 1
2
/v;AvS for the energy quadratic form on g which we

used to define the Riemannian metric. Identify the Lie algebra and its dual with the

help of this quadratic form. This identification A : g-gn (called the inertia operator)

allows one to rewrite the Euler equation on the dual space gn; see Fig. 1.
It turns out that the Euler equation on gn is Hamiltonian with respect to the Lie–

Poisson structure [Arn]. Moreover, the corresponding Hamiltonian function is
minus the energy quadratic form lifted from the Lie algebra to its dual space by the
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same identification: �HðmÞ ¼ �1
2
/A�1m;mS; where m ¼ Av: Here, we are going to

take it as the definition of the Euler equation (we use the Proposition above and the

observation dHðmÞ ¼ A�1m).

Definition 3.4. The Euler equation on gn corresponding to the Hamiltonian �HðmÞ ¼
�1
2
/A�1m;mS is given by the following explicit formula:

dm

dt
¼ �adnA�1mm

as an evolution of a point mAgn:

Remark 3.5. The underlying reason for the Hamiltonian reformulation is the fact
that any geodesic problem in Riemannian geometry can be described in terms of
symplectic geometry. Geodesics on M are extremals of a quadratic Lagrangian

(metric) on TM: They can also be described by the Hamiltonian flow on TnM for the
quadratic Hamiltonian function obtained from the Lagrangian via the Legendre
transform.
If the manifold is a group G with a right-invariant metric then there exists the

group action on the tangent bundle TG; as well as on the cotangent bundle TnG: By
taking the quotient with respect to the group action, we obtain from the (symplectic)

cotangent bundle TnG the Lie–Poisson structure on the cotangent space TnGje ¼ gn;

i.e., on the dual to the Lie algebra. The Hamiltonian function on TnG is dual to the

Riemannian metric (viewed as a form on TG), and its restriction to gn is the

quadratic form HðmÞ ¼ 1
2
/A�1m;mS; mAgn:

The geodesics of a left-invariant metric on G correspond to the Hamiltonian
function HðmÞ; while those of a right-invariant metric correspond to �HðmÞ:

Now we are ready to prove Theorem 2.3 on the Eulerian nature of the KdV and
CH equations in the following slightly more general setting.

Fig. 1. The vector v in the Lie algebra g traces the evolution of the velocity vector of a geodesic g on the
group. The inertia operator A sends v to a vector m in the dual space gn:
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Theorem 3.6 (¼ 2:30). The Euler equation describing the geodesic flow on the

Virasoro group with respect to the right-invariant H1
a;b-metric with aa0 has

the form

aðvt þ 3vvxÞ � bðvxxt þ 2vxvxx þ vvxxxÞ � bvxxx ¼ 0; ð3:7Þ

bt ¼ 0:

Remark 3.7. By choosing a ¼ 1; b ¼ 0 one obtains the KdV equation, related to the

L2-metric on the Virasoro algebra [OK]. Similarly, for a ¼ b ¼ 1 one recovers a
general form of the CH equation [Mi]. Note that by shifting v/v þ const: we get
another form of the CH equation, in which the term vxxx is replaced by vx: Finally, if
a ¼ 0; b ¼ 1 then Eq. (3.7) becomes the HS (Hunter–Saxton) equation, which we
discuss in the next section.

The case b ¼ 0 corresponds to considering the nonextended Lie algebra vectðS1Þ of
vector fields rather than the Virasoro algebra vir: Depending on the values of a and b
one obtains either the inviscid Burgers (also called, Hopf) equation vt þ 3vvx ¼ 0 or
the nonextended CH equation.

Proof of Theorem 3.6. Recall that the Virasoro coadjoint action can be computed as

follows. Let fðuðdxÞ2; aÞ j uACNðSÞ; aARg be the dual space to the Virasoro
algebra with the natural pairing given by

/ðuðdxÞ2; aÞ; ðw@x; cÞS ¼
Z

S1
uw dx þ ac:

(Here we denote by uðxÞðdxÞ2 (or, shorter, by uðdxÞ2) a quadratic differential on the
circle.) The coadjoint operator is defined by the identity

/adnðv@x;bÞðuðdxÞ2; aÞ; ðw@x; cÞS ¼ /ðuðdxÞ2; aÞ; ½ðv@x; bÞ; ðw@x; cÞ�S:

Using the definition of the Virasoro commutator and integrating by parts we obtain
that the right-hand side is equal toZ

S1
wð2uvx þ uxv � avxxxÞ dx:

Thus the coadjoint operator is

adnðv@x;bÞðuðdxÞ2; aÞ ¼ ðð2uvx þ uxv � avxxxÞðdxÞ2; 0Þ: ð3:8Þ

The H1
a;b-energy (2.4) on the Virasoro algebra

/ðv@x; bÞ; ðw@x; cÞS ¼
Z

S1
ðavw þ bvxwxÞ dx þ bc ¼

Z
S1

vLw dx þ bc:
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corresponds to the general inertia operator A : vir-virn; given by

ðv@x; bÞ/ððLvÞðdxÞ2; bÞ;

where L :¼ a� b@2x is a second-order differential operator. This operator is

nondegenerate on vir for aa0; while for a ¼ 0 it has a nontrivial kernel consisting

of constant vector fields on S1:
Now the Euler equation

d

dt
ðuðdxÞ2; aÞ ¼ �adn

A�1ðuðdxÞ2;aÞðuðdxÞ2; aÞ

on virn (see Definition 3.4) assumes the form

d

dt
ðuðdxÞ2; aÞ ¼ �ðð2uL�1ux þ uxL�1u � aL�1uxxxÞðdxÞ2; 0Þ:

(Here we substituted ðv@x; bÞ ¼ A�1ðuðdxÞ2; aÞ ¼ ððL�1uÞðdxÞ2; aÞ into the expression
for adn:)

In terms of v ¼ L�1u (the first component of ) this equation becomes

d

dt
ðLvÞ ¼ �2ðLvÞvx � ðLvxÞv þ bvxxx;

which is equivalent to Eq. (3.7), since L ¼ a� b@2x: For the second component we
find that b does not change in time: bt ¼ 0: &

Remark 3.8. In the proof we assumed that the inertia operator is invertible. In the
next section we discuss the precise relation of the geodesic and Hamiltonian
approaches in the case of a degenerate metric and show what reductions are
necessary for the corresponding Euler equation to make sense.

4. The Euler equations on homogeneous spaces

Let G be a Lie group and K its subgroup. Consider the space G=K of right cosets
fKg j gAGg: Then the group G acts on them on the right. Here, we are going to
develop the formalism for the Euler equation, describing the geodesic flow on G=K

with respect to a right-invariant metric.
One immediately encounters the following difficulty: not every right-invariant

metric on the group G; degenerate along K at the identity, descends to a metric on
the space of right cosets G=K (see Example 4.3a). To formulate the condition, which
the degenerate metric should satisfy, let us consider the corresponding problem at
the level of Lie algebras.

Let g be a Lie algebra, and A : g-gn a degenerate inertia operator. Suppose that
the kernel of A is a Lie subalgebra k: (In other words, the corresponding energy form

EðvÞ ¼ 1
2
/v;AvS vanishes for all vAk:) Consider the right-invariant degenerate
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metric EG on the group G obtained by translating the quadratic form E from identity
to any point of the group.

Theorem 4.1. The right-invariant form EG on a group G descends to a form on the

space G=K of right cosets if and only if the quadratic form E on the Lie algebra g

vanishes on the Lie subalgebra k and is Ad-invariant with respect to the action of this

subalgebra.

Remark 4.2. The condition of Ad-invariance for E reads as follows:

/adwv;AuS ¼ �/v;AðadwuÞS

for all wAk and any u; vAg: The above is an infinitesimal version of the invariance of
E with respect to the subgroup action:

/ðAdkvÞ;AðAdkuÞS ¼ /v;AuS

for all kAK :

Example 4.3. (a) (Rotations of a rod). The configuration space of a rod in R3 fixed at

its center of mass is S2: It can be obtained from the configuration space of a rigid

body by moding out rotations about one of its axes: S2 ¼ S1WSOð3Þ:

Suppose that A :R3-R3 is a degenerate inertia operator with one vanishing
eigenvalue. The corresponding eigenvector generates the one-dimensional rotation

subgroup S1 in SOð3Þ: It is not difficult to see that the bi-invariance condition
imposes the following restriction on A: its nonvanishing eigenvalues must be equal.

(Indeed, the S1-action sends one of these two eigenvectors to the other.) Then the
corresponding degenerate metric on SOð3Þ descends to (a multiple of ) the standard
metric on the sphere, which is the space of cosets: S2 ¼ S1WSOð3Þ: Geodesics with
respect to the standard metric on S2 are the great circles. These geodesics describe all
free motions of the rod.3 (We can see that the only parameter of the rod is its length.
In terms of the inertia operator, this corresponds to the choice of the nonzero
eigenvalue.)
Note that the inertia operator A ¼ diagðl; m; 0Þ with lam does not correspond to

any physical object. The corresponding degenerate metric on SOð3Þ is not S1-

invariant, and hence it does not descend to S2:
(b) (The Hunter–Saxton equation). Consider the group of diffeomorphisms

Diff ðS1Þ and its quotient Diff ðS1Þ=RotðS1Þ by the subgroup of rotations RotðS1Þ:
Consider the degenerate quadratic form on the corresponding Lie algebra vectðS1Þ

3For the rod, as well as for a rigid body mentioned above, we consider the left-invariant metrics, and

hence, left cosets S1WSOð3Þ: For the group of diffeomorphisms, we study the right-invariant metrics and
the space of right cosets Diff ðS1Þ=RotðS1Þ:
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given by the homogeneous ’H1-energy

E0ðv@xÞ ¼
1

2

Z
S1

v2x dx:

(Similarly, for the Virasoro algebra, consider the energy E0ðv@x; bÞ ¼
1
2
ð
R

S1
v2x dx þ b2Þ:)

This energy vanishes on constant vector fields. Those fields generate the subgroup

RotðS1Þ of rotations of the circle S1: One can see that the form E0ðv@xÞ is bi-invariant
with respect to the circle action, since the energy is invariant with respect to
translations x/x þ const: (The same holds for the Gelfand–Fuchs cocycle, and the
energy E0ðv@x; bÞ on the extended algebra.) Hence the corresponding right-invariant
metric on Diff ðS1Þ descends to the quotient Diff ðS1Þ=RotðS1Þ: We will see that the
geodesics with respect to this metric are described by the HS equation.

Remark 4.4. One hopes that a certain modification of this approach can be applied
to generalized flows in [Bre], where the fluid particles in 3D can move freely and
independently along one coordinate. The corresponding subgroup K here might be
that of fiberwise diffeomorphisms along a coordinate.

Proof of Theorem 4.1. First of all we note that the quadratic form E on g induced
from a nondegenerate form on the quotient g=k is degenerate exactly along k (i.e., k is
its null subspace).
Let k be a Lie subalgebra and consider the quotient of the corresponding groups

G=K : Note that the restriction of the energy form to the subgroup K is zero. Indeed,
the latter is nothing but the right translation from the identity of the energy form on
the subalgebra k:
We would like to compare the right-invariant metric EG on G at two different

points k1g and k2g of the same coset Kg: Then the element %k ¼ k2k
�1
1 AK sends k1 to

k2 by means of the left translation. This translation also identifies the tangent spaces
to G along the same coset Kg; see Fig. 2. The energy form EG is invariant under this
identification, since it is bi-invariant with respect to the action of elements of K:
Finally, note that the energy EG is degenerate along cosets. (Indeed, it vanishes on K ;
the ‘‘identity coset’’, and it is invariant with respect to right translations, which
shuffle the cosets.)
Therefore, the corresponding energy form descends to the coset space. &

Fig. 2. Defining a right-invariant form on the space of right cosets G=K :
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Remark 4.5. From the Hamiltonian point of view, the geodesic picture on a
homogeneous space corresponds to a Hamiltonian reduction of the nondegenerate
case with respect to the subgroup K action.

More precisely, consider the cotangent bundle TnðG=KÞ of the metric space G=K :

Similarly to the nondegenerate case, look at the fiber ðg=kÞn over the ‘‘identity coset’’
K : This space ðg=kÞn can be naturally identified with the image L ¼ im ACgn of the

degenerate inertia operator A : g-gn; for which k ¼ kerA; (or, equivalently, with the

subspace L ¼ k>Cgn; the annihilator of k in gn).

The subgroup K ; being a stabilizer of the ‘‘identity coset’’and hence of L ¼ ðg=kÞn;
acts on L respecting the Poisson structure. Therefore, there is a natural Poisson

structure on the quotient L=K :¼ im A=adnK :
Furthermore, one can define the corresponding Hamiltonian function on L by the

same formula as above:

HLðmÞ ¼ 1
2
/m;A�1mS: ð4:9Þ

This function is adnK-invariant and hence is well-defined on the quotient L=K :
Suppose A generates a right-invariant and adK-invariant metric on the group G

(i.e., satisfies the conditions of Theorem 4.1), so that it makes sense to consider
geodesics of the corresponding metric on G=K :
Then the above consideration provides the following limiting (degenerate) case of

Arnold’s theorem (cf. Definition 3.4).

Theorem 4.6. The Euler equation, which corresponds to the inertia operator A and

describes the geodesic flow on the space G=K of right cosets, has the following

Hamiltonian form on L=K ¼ im A=adnK : it is the quotient with respect to the K-action

of the restriction to LCgn of the following Hamiltonian equation on gn:

dm

dt
¼ �adn

A�1mm

for mAL ¼ im A:

Now we are ready to complete the argument showing the Eulerian nature of the
Hunter–Saxton equation.

Theorem 4.7 (¼ 2:40). The HS equation

vtxx ¼ �2vxvxx � vvxxx

is a well-defined equation on the equivalence classes of periodic functions

fvðxÞBvðx þ pÞ þ q for any p; qg:

It describes the geodesic flow on the homogeneous space Vir=RotðS1Þ of the Virasoro

group modulo rotations with respect to the right-invariant homogeneous ’H1 metric.
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Proof. The homogeneous ’H1-metric on the Virasoro algebra is related to the

degenerate inertia operator A : vir-virn sending

ðv@x; bÞ/ð�ð@2xvÞðdxÞ2; bÞ:

Its image LCvirn consists of pairs ðuðdxÞ2; aÞ; where functions u have zero mean:

L ¼ ðuðdxÞ2; aÞ
n ��� Z

S1
uðxÞ dx ¼ 0

�
:

The action of the subgroup K ¼ RotðS1Þ identifies those functions u that differ by a
rotation: uðxÞBuðx þ pÞ: Thus, we come to a Hamiltonian equation on L=K :
For explicit calculations, recall that the present case corresponds to setting a ¼

0; b ¼ �1 in the proof of Theorem 3.6. Choosing these values in Eq. (3.7), one
arrives at the HS equation

vtxx ¼ �2vxvxx � vvxxx � bvxxx

on vir. In order to obtain equation describing the evolution of v rather than that of
vxx we observe that

2vxvxx þ vvxxx þ bvxxx ¼ ðvvxx þ 1
2
ðvxÞ2 þ bvxxÞx

and hence, integrating both sides in x; we obtain

vtx ¼ �vvxx � 1
2ðvxÞ2 � bvxx þ r;

where r is an arbitrary constant. This constant is uniquely determined by the

condition that the right-hand side is a complete derivative, i.e., by
R

S1
ððvxÞ2=2þ

r0Þ dx ¼ 0: Then

vt ¼ �vvx þ @�1
x ððvxÞ2=2þ r0Þ � bvx þ q;

where q is an arbitrary constant.
Whence vt (and hence the evolution of v) is defined only up to addition of a

parameter q and a multiple of vx: (The latter is the velocity of the rotation subgroup:

vx ¼ d
dp
jp¼0vðx þ pÞ:) This manifests the fact that the evolution of v is defined on the

equivalence classes fvðx þ pÞ þ qg: The inertia operator A sends this equation on
classes to the Hamiltonian equation on the quotient L=K :
Note that the equivalence classes above absorb the term bvx (respectively, bvxxx for

vtxx: consider a shift v/v þ const:) and one obtains the HS equation in its standard
form (1.3). &

One should notice that setting b ¼ 0 corresponds to the Euler equation on the

quotient Diff ðS1Þ=RotðS1Þ: Thus in the homogeneous case the consideration of the
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central extension does not give anything new, since the Euler equations for

Diff ðS1Þ=RotðS1Þ and Vir=RotðS1Þ are equivalent.

5. Bihamiltonian structures for the equations

To formulate our next result, we need to recall some generalities on bihamiltonian
systems.

Definition 5.1. Assume that a manifold M is equipped with two Poisson structures
f:; :g0 and f:; :g1: They are said to be compatible (or, form a Poisson pair) if all of

their linear combinations f:; :g0 þ lf:; :g1 are also Poisson structures.
A dynamical system dm=dt ¼ FðmÞ on M is called bi-Hamiltonian if the vector

field F is Hamiltonian with respect to both structures f:; :g0 and f:; :g1:

Consider the dual space gn to a Lie algebra g: As we discussed above, it is
equipped with the Lie–Poisson structure:

ff ; ggLPðmÞ :¼ /½df ; dg�;mS;

where mAgn and f ; g are two arbitrary functions on gn:
Now fix a point m0 in gn: One can associate to this point another Poisson bracket

on gn as follows, see [Ma].

Definition 5.2. The constant Poisson bracket associated to a point m0Agn is the

bracket f:; :g0 on the dual space gn defined by

ff ; gg0ðmÞ :¼ /½df ; dg�;m0S

for any two smooth functions f ; g on the dual space, and any mAgn: The differentials
df ; dg of the functions f ; g are taken, as above, at the point m and are regarded as
elements of the Lie algebra itself.

The constant bracket depends on the choice of the ‘‘freezing’’ point m0; while the
Lie–Poisson bracket is defined by the Lie algebra structure only. Note that the
brackets f:; :gLP and f:; :g0 coincide at the point m0 itself, and, moreover, the bivector

defining the constant bracket f:; :g0 is the same at all points m:

Proposition 5.3. The brackets f:; :gLP and f:; :g0 are compatible for every ‘‘freezing’’

point m0:

Proof. Indeed, any linear combination f:; :gl :¼ f:; :gLP þ lf:; :g0 is again a Poisson
bracket, since it is just the linear Lie–Poisson structure f:; :gLP translated from the

origin to the point �lm0: &
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Remark 5.4. Explicitly, the Hamiltonian equation on gn with the Hamiltonian
function f and computed with respect to the constant Poisson structure frozen at a

point m0Agn has the following form:

dm

dt
¼ adn

df m0; ð5:10Þ

as a modification of Proposition 3.2 shows.

Now we can formulate another main result.

Theorem 5.5. The Euler equation (3.7) for the H1
a;b-metric (with aa0) on the Virasoro

group is bihamiltonian on the dual virn of the Virasoro algebra. The corresponding

‘‘freezing’’ point in virn is ða
2
ðdxÞ2; bÞ:

In the appendix, we show that the dual space virn ¼ fðuðxÞðdxÞ2; aÞg can be

thought of as the space of Hill’s operators f�a@2x þ uðxÞg: In these terms the above
theorem can be stated as follows: The H1

a;b-metric on vir given by the inertia operator

L ¼ a� b@2x is bihamiltonian on virn with ‘‘freezing’’ at the point a=2� b@2x:

Remark 5.6. The KdV and CH equations are bihamiltonian on the Virasoro dual.

The corresponding ‘‘freezing’’ points ðu0ðdxÞ2; a0Þ in virn are ðu0 ¼ 1=2; a0 ¼ 1Þ for
the CH equation and ðu0 ¼ 1=2; a0 ¼ 0Þ for the KdV equation, see Fig. 3, as they are
related to the H1- and L2-energies, respectively.

To describe bihamiltonian nature of the HS equation on the reduced space L=K ;
discussed in Theorems 4.6 and 4.7, one should consider the following analog of

the constant Poisson structure. Take the Lie–Poisson structure on virn ‘‘frozen’’ at
the point ðu0 ¼ 0; a0 ¼ 1Þ and then push it forward to the corresponding quotient
space for the HS equation. An alternative way to show integrability (rather than the
bihamiltonian property) of this equation is to use integrability of CH and an infinite-
dimensional version of the formalism developed in [GS,Th].

Fig. 3. Locations of the ‘‘freezing’’ points for the KdV, CH, and HS equations in the Virasoro dual virn:
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Question 5.7. Which metrics on the Virasoro group (or which quadratic forms on

the Virasoro algebra) correspond to the bihamiltonian system on virn with ‘‘freezing’’

at a point ðu0ðxÞðdxÞ2; a0Þ for nonconstant u0ðxÞ?4 For which u0ðxÞ are these metrics
positive definite (i.e., Riemannian rather than pseudo-Riemannian)?

Proof of Theorem 5.5. Let Fðu; aÞ be a function on virn and let ðv@x; bÞ ¼
ðdF=du; dF=daÞ be a (variational) derivative of F at ðuðdxÞ2; aÞ: Then the
Hamiltonian equation with Hamiltonian function F computed with respect to the

constant Poisson structure ‘‘frozen’’ at ðu0ðdxÞ2; a0Þ has the form

d

dt
ðuðdxÞ2; aÞ ¼ adnðv@x;bÞðu0ðdxÞ2; a0Þ ¼ ðð2u0vx � a0vxxxÞðdxÞ2; 0Þ:

(Here we used Remark 5.4, the explicit form (3.8) of adn for the Virasoro algebra,
and the fact that u0 ¼ const:)
For the first component of this equation one has

du

dt
¼ ð2u0 � a0@

2
xÞ@x

dF

du

� �
:

Setting u0 ¼ a=2 and a0 ¼ b we obtain 2u0 � a0@
2
x ¼ a� b@2x ¼ L; and this simplifies

the equation to

du

dt
¼ L @x

dF

du

� �� �
: ð5:11Þ

To prove the theorem one needs to show that for any aa0 and any b the Euler
equation (3.7) can also be expressed in form (5.11) for an appropriate Hamiltonian
function F :
Next, consider the Hamiltonian function F of the form

Fðu; aÞ ¼ �
Z

a
3
ðL�1uÞ3 þ 1

4
ðL�1uÞ2u þ a

2
ðL�1uxÞ2

� �
dx:

(The operator L :¼ a� b@2x is invertible for aa0:) By definition, the variational
derivative ðdF=du; dF=daÞAvir of the functional F is determined by the following

identity satisfied for any ðxðdxÞ2; cÞAvirn:

ðxðdxÞ2; cÞ; dF

du
;
dF

da

� �� 	
¼ d

de

����
e¼0

Fðu þ ex; a þ ecÞ:

4After this paper was submitted, Zakharevich found a formula for the corresponding quadratic form on

the Lie algebra in terms of Bloch solutions of the operator �@2x þ uðxÞ [Za].
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Since we need only the partial variational derivative dF=du; we compute:

d

de

����
e¼0

Fðu þ ex; aÞ

¼ d

de

����
e¼0

Z
a
3
ðL�1ðu þ exÞÞ3 þ 1

4
ðL�1ðu þ exÞÞ2ðu þ exÞ þ a

2
ðL�1ðu þ exÞxÞ

2

� �
dx

¼ �
Z

x � aL�1ðL�1uÞ2 þ 1
4
ðL�1uÞ2 þ 1

2
L�1ððL�1uÞuÞ � aL�2uxx

� �
dx:

Thus, we have found that

dF

du
¼ � aL�1ðL�1uÞ2 þ 1

4
ðL�1uÞ2 þ 1

2
L�1ððL�1uÞuÞ � aL�2uxx

� �
@x:

Now, we substitute the variational derivative dF=du into Eq. (5.11) and then rewrite

the obtained equation on the algebra vir; rather than on its dual virn: The latter

corresponds to rewriting the equation in terms of ðv@x; bÞ ¼ A�1ðuðdxÞ2; aÞ; i.e., in
terms of an unknown function v ¼ L�1u and setting b ¼ a:
Finally, applying L to the equation we obtain

L
dv

dt

� �
¼ � 2avvx þ

1

2
LðvvxÞ þ

1

2
vLvx þ

1

2
vxLv � bvxxx

� �
:

Recalling that L ¼ a� b@2x and collecting the terms we recover Eq. (3.7). &

To explain in what sense the above equations are generic bihamiltonian systems on

virn (obtained by the freezing argument method), we need to consider symplectic
leaves of the above Poisson structures.

6. Hierarchies of Hamiltonians from compatible structures

Recall that the symplectic leaves, i.e., maximal nondegenerate submanifolds, of

the Lie–Poisson structure are the coadjoint orbits of the group action on gn (see, e.g.,
[Kir] or this also follows from Proposition 3.2). Therefore the functions constant on
symplectic leaves (called Casimir functions) of the Lie–Poisson bracket are those

functions on the dual space gn that are invariant under the coadjoint action. The
tangent plane to the group coadjoint orbit at the point m0; as well as all the planes in
gn parallel to this tangent plane are the symplectic leaves of the constant bracket
frozen at the point m0 .

Definition 6.1. The codimension of the coadjoint orbit passing through m0 will be
called the codimension of the Poisson pair f:; :g0 and f:; :gLP:
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It turns out that there are no Poisson pairs of codimension 0 or 1 in the (smooth)

Virasoro dual virn; and that the Poisson pairs of codimension 2 can all be classified.

Theorem 6.2. All Poisson pairs f:; :g0 and f:; :gLP on virn of codimension 2 belong to

one of three classes according to the orbit type of the ‘‘freezing’’ point ðu0ðdxÞ2; a0Þ:
These classes can be represented by the points (a) ððdxÞ2=2; 1Þ; (b) ððdxÞ2=2; 0Þ; and (c)
ð0; 1Þ:

Proof. First we observe that for any Lie algebra g the list of coadjoint orbits in gn

provides the list of normal forms for the constant and Lie–Poisson pairs as well.

Indeed, let a point %m0Agn be a normal form for all points m0 belonging to the same
coadjoint orbit as %m0: This means that m0 can be mapped by the group coadjoint

action to its normal form: %m0 ¼ Adn
g m0: The group action Adn

g : g
n-gn is a linear

operator on gn; which preserves the Lie–Poisson bracket on gn: It also maps the
constant bracket frozen at m0 to that frozen at %m0: Thus the group action Adn

g sends

one Poisson pair to the other.
The proof of Theorem 6.2 is based on the Virasoro orbit classification, which we

recall in the appendix. Notice that a ‘‘cocentral value’’ a0 is invariant on the orbits in

virn: This allows us to fix a0 and consider the orbits in the hyperplane

fðuðxÞðdxÞ2; aÞ j a ¼ a0g:
As shown in Corollary A.8 of the appendix, for a0a0 there are exactly two types

of Virasoro orbits of codimension 1 in this hyperplane that correspond to either a

generic or a Jordan 2� 2 block holonomy for Hill’s operator �a0@
2
x þ uðxÞ: If we

discard the discrete invariant of these orbits (see the appendix), representatives for
their normal forms can be chosen as stated in (a) and (b) parts of the theorem.
If a0 ¼ 0 there is just one orbit type of codimension 1 in the corresponding

hyperplane, and represented by (c), see Remark A.2. Note that in the whole dual
space those orbits have codimension 2, taking extra dimension a into account. &

Given a Poisson pair one can generate a bihamiltonian dynamical system, by
producing a sequence of Hamiltonians in involution, according to the following
Lenard scheme, see [Mag]. Let f:; :gl :¼ f:; :g0 þ lf:; :g1 be the Poisson bracket on a
manifold M for any l: Denote by hl its Casimir function on M parameterized by l:
This means that fhl; f gl ¼ 0 for any function f : Expand hl in a power series: hl ¼
h0 þ h1lþ?; where each coefficient hj is a function on M: The following theorem is

well-known.

Theorem 6.3. The functions hj; j ¼ 1; 2;y are Hamiltonians of a hierarchy of

bihamiltonian systems. In other words, each function hj generates the Hamiltonian field

Xj with respect to the Poisson bracket f:; :g1 (i.e., Xj satisfies LXj
f ¼ fhj; f g1 for any

f ), which is also Hamiltonian for the other bracket f:; :g0 with Hamiltonian function

�hjþ1 (i.e., LXj
f ¼ �fhjþ1; f g0 for any f ). Other functions hi; iaj are first integrals of

the corresponding dynamical systems Xj :
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In other words, the functions hj; j ¼ 0; 1;y are in involution with respect to each

of the two Poisson brackets f:; :g0 and f:; :g1:

Proof. Substituting the power series for hl into the Casimir condition we obtain:

0 ¼ fhl; f gl ¼ fh0 þ h1lþ?; f g0 þ lfh0 þ h1lþ?; f g1:

Collecting the terms at l0; l1; l2;y we obtain a sequence of identities:

fh0; f g0 ¼ 0; fh1; f g0 þ fh0; f g1 ¼ 0; fh2; f g0 þ fh1; f g1 ¼ 0;y

for any function f : The first identity expresses the fact that h0 is a Casimir function
for the bracket f:; :g0: The next one says that the Hamiltonian field for h1 with

respect to f:; :g0 coincides with the Hamiltonian field for �h0 and the bracket f:; :g1;
and so on.
To see that every function hi is a first integral for the equation generated by hj with

respect to each bracket, we check that fhi; hjgk ¼ 0; k ¼ 0; 1: Indeed, e.g., if ioj

fhi; hjg1 ¼ �fhiþ1; hjg0 ¼ fhiþ1; hj�1g1 ¼ ? ¼ 0;

since we finally obtain the bracket (either f:; :g0 or f:; :g1) of one of the functions hl

with itself. &

Thus the choice of Casimir functions hl determines the corresponding (hierarchy
of ) dynamical systems. By combining Theorems 6.2 and 6.3 we get the following:

Corollary 6.4. The three types of Poisson pairs of codimension 2 on the Virasoro

algebra correspond to the three integrable systems: CH, KdV, and HS. These three

systems represent all generic Hamiltonian systems on virn (modulo the ambiguity in the

choice of Casimir), which can be integrated by the freezing argument method.

Remark 6.5. The corresponding ‘‘freezing’’ points in virn represent all three types of
the Virasoro coadjoint orbits of codimension 2.

If the ‘‘freezing’’ point ðu0ðdxÞ2; a0Þ is generic, one obtains an equation
‘‘equivalent’’ to the CH equation. In this sense, the CH equation is the most
general equation, which is encountered by applying the freezing argument method of
integration; this is case (a) in Theorem 6.2.
Two other equations can be recovered by confining the ‘‘freezing’’ point to special

hypersurfaces in virn: (In turn, these hypersurfaces are foliated into coadjoint orbits.
Those orbits are of codimension 1 in the hypersurfaces, and hence of total

codimension 2 in virn: The classification of the orbits will be discussed in detail in
Appendix.) A generic point on the hyperplane a0 ¼ 0 produces the KdV equation;
see case (b) in Theorem 6.2. Case (c) in the same theorem corresponds to the HS
equation if we consider the cone-like Virasoro orbits in the a0a0-case (see the
appendix and Fig. 4). The latter (e.g., ‘‘freezing’’ at the point ðu0ðdxÞ2; a0Þ ¼ ð0; 1Þ)
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corresponds to the Euler equation with a degenerate metric on the group, which we
discussed in Section 4.
One could also consider a more subtle Virasoro orbit classification, where

one distinguishes between the two types of generic orbits in virn: hyperbolic
and elliptic ones, according to the eigenvalues of the monodromy, as well as
between the orbits which differ by the discrete invariant (see Corollary A.8). All
elliptic orbits with arbitrary values of the discrete invariant can be represented
by Hill’s operators with constant coefficients. However, just one of the hyper-
bolic and one of the Jordan block classes has such representatives, while others
do not.
Note that the bihamiltonian equations corresponding to elliptic orbits with

different discrete invariants are almost the same: these are the CH equations with
different coefficients. It would be very interesting to see whether an analogous
similarity holds for the hyperbolic and Jordan block orbits with different discrete
invariants.

Remark 6.6. When the symplectic leaves of the bracket f:; :gl are of codimension 1,
then the choice of a Casimir function is essentially unique for every l: (Any two
Casimir functions for every fixed l are functionally dependent.) Therefore, the choice
of the Poisson pair itself defines the bihamiltonian system (modulo the mentioned
functional dependence of the initial Hamiltonian), provided that the symplectic
leaves are hypersurfaces.
This is indeed the case for the Virasoro coadjoint orbits discussed above, which

have codimension 1 for a fixed cocentral value a: It turns out that a natural Casimir

function hlðuðxÞðdxÞ2; aÞ corresponding to the KdV Poisson pair on the dual space
to the Virasoro algebra is the trace of the monodromy operator associated to Hill’s

operator �a@2x þ uðxÞ � l2: It generates the first integrals of the KdV equation, see
Remark A.11 in the appendix. Similarly, one can expand Casimir functions for the
two other integrable cases, the CH and HS equations.
Note that for orbits of higher codimension one can start with several Casimirs and

consider several Lenard schemes to generate the sequences of Hamiltonians.

Remark 6.7. A generic Virasoro coadjoint orbit Diff ðS1Þ=S1 can be equipped with a
complex structure and a two-parameter family of compatible (pseudo) Kahler
metrics [Kir2].
This family of Kahler metrics has a simple origin: a generic Virasoro orbit has

codimension 2, i.e., it is locally included in a two-parameter family of orbits, each
equipped with its own symplectic structure compatible with the complex structure.
Alternatively, one could consider a two-parameter family of symplectic structures on

the same orbit, given by the Hamiltonian operators a@3x þ b@x:

It turns out that the restriction of the two-parameter family of H1
a;b-metrics on virn

to a generic Virasoro orbit Diff ðS1Þ=S1 coincides with the family of Kahler metrics
on the orbits. Proof is achieved by comparison with formula (7) in [Kir2] for those
homogeneous metrics at one point of the orbit.
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This is yet another fact manifesting a special role of the H1
a;b-metrics in Virasoro

geometry.
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Appendix A. Classification of Virasoro orbits

In this section, we recall the classification result for Virasoro coadjoint orbits (see,
e.g., [Kir,Seg] or the book [GR]). The dual spaces to the infinite-dimensional Lie
algebras considered below are always understood as smooth duals, i.e. identified
with appropriate spaces of smooth functions.
(A) Classification of quadratic differentials: We start with the nonextended group

of diffeomorphisms of the circle. Let Diff ðS1Þ be the group of all orientation-
preserving diffeomorphisms of S1 and let vectðS1Þ be its Lie algebra.

Proposition A.1 (Kirillov [Kir]). The dual space vectðS1Þn is naturally identified with

the space of quadratic differentials fuðxÞðdxÞ2g on the circle. The pairing is given by

the formula:

/uðxÞðdxÞ2; vðxÞ@xS ¼
Z

S1
uðxÞvðxÞ dx

for any vector field vðxÞ@xAvectðS1Þ: The coadjoint action coincides with the action of a

diffeomorphism on the quadratic differential: for a diffeomorphism jADiff ðSÞ the

action is

Adn

j : uðdxÞ2/uðjÞ � j2xðdxÞ2 ¼ uðjÞ � ðdjÞ2:

Hence, for instance, if uðxÞ40 for all xAS1 then the square root

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðxÞðdxÞ2

q
transforms under a diffeomorphism as a differential 1-form. In particular,

FðuðxÞðdxÞ2Þ ¼
R

S1

ffiffiffiffiffiffiffiffiffi
uðxÞ

p
dx is a Casimir function (i.e., an invariant of the coadjoint

action). One can see that there is only one Casimir function in this case, since the

corresponding orbit has codimension 1 in the dual space vectðS1Þn: Indeed, a
diffeomorphism action sends the quadratic differential uðxÞðdxÞ2 to the constant
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quadratic differential CðdxÞ2; where the constant C is the average value of the 1-

form
ffiffiffiffiffiffiffiffiffi
uðxÞ

p
dx on the circle:

C ¼ 1

2p

Z
S1

ffiffiffiffiffiffiffiffiffi
uðxÞ

p
dx:

On the other hand, if a differential uðxÞðdxÞ2 changes sign on the circle, then the
integral

R b

a

ffiffiffiffiffiffiffiffiffiffiffiffi
juðxÞj

p
dx; evaluated between any two consecutive zeros a and b of the

function uðxÞ; is invariant. In particular, the coadjoint orbit of such a differential
uðxÞðdxÞ2 has necessarily codimension higher than 1.

Remark A.2. In our study of the KdV equation we pick the ‘‘freezing’’ point in the

dual space vectðS1Þn to be u0 ¼ 1=2: (Actually, we consider the dual space to
the Virasoro algebra, but we choose the cocentral term equal to zero, so that the

‘‘freezing’’ point ðu0ðdxÞ2; a0Þ ¼ ððdxÞ2=2; 0Þ belongs to the dual space to the Lie
algebra of vector fields.) Other values of C give equivalent equations, differing from
the KdV by scaling only.

(B) Virasoro dual and Hill’s operators: Let vir be the Virasoro algebra. We can

think of its dual space as the space of pairs virn ¼ fðuðxÞðdxÞ2; aÞg consisting of a
quadratic differential and a real number (cocentral term). It is more convenient,

however, to regard such pairs as Hill’s operators, i.e. differential operators �a@2x þ
uðxÞ; as we will see below.

Proposition A.3. The Virasoro coadjoint group action is given by the formula

Adn

ðj;bÞ : ðuðdxÞ2; aÞ/ðuðjÞ � j2xðdxÞ2 � aSðjÞðdxÞ2; aÞ; ðA:1Þ

where

SðjÞ ¼
jxjxxx � 3

2
j2xx

j2x

is the Schwarzian derivative of j:

This group action on Hill’s operators:

Adn

ðj;bÞ : � a@2x þ uðxÞ/� a@2x þ uðjÞ � j2x � aSðjÞ

has the following geometric interpretation (see, e.g., [Kir,Ovs,Seg]). Fix a ¼ �1 and
consider Hill’s operators of the form @2x þ uðxÞ; xAS1: Let f and g be two
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independent solutions of the corresponding differential equation

ð@2x þ uðxÞÞy ¼ 0

for an unknown function y: Although the equation has periodic coefficients, the
solutions need not necessarily be periodic, but instead are defined over R: Consider

the ratio Z :¼ f =g :R-RP1:

Proposition A.4. The potential u is (one half of) the Schwarzian derivative of the

ratio Z:

u ¼ SðZÞ
2

:

Proof. Note that the Wronskian Wðf ; gÞ :¼ fgx � fxg is constant, since it should
satisfy the differential equation Wx ¼ 0: Here we normalize W by setting W ¼ �1:
This additional condition allows one to find the potential u from the ratio Z: Indeed,
first one reconstructs the solutions f ; g from the ratio Z by differentiating:

Zx ¼ fxg � fgx

g2
¼ �W

g2
¼ 1

g2
:

Therefore,

g ¼ 1ffiffiffiffiffi
Zx

p ; f ¼ g � Z ¼ Zffiffiffiffiffi
Zx

p :

Given two solutions f and g; one immediately finds the corresponding differential
equation they satisfy by writing out the following 3� 3-determinant:

det

y f g

yx fx gx

yxx fxx gxx

264
375 ¼ 0:

Since f and g satisfy the equation yxx þ u � y ¼ 0; one obtains from the determinant
above that

u ¼ �det
fx gx

fxx gxx

" #
:

The explicit formula for u expressed in terms of Z turns out to be one half of the
Schwarzian derivative of Z: &

Corollary A.5. The Schwarzian derivative SðZÞ is invariant with respect to a Möbius

transformation Z-ðaZþ bÞ=ðcZþ dÞ; where ad � bc ¼ 1:
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Proof. Indeed, for a given potential u the solutions f and g of the corresponding
differential equation are not defined uniquely, but up to a transformation of the pair
ðf ; gÞ by a matrix from SL2ðRÞ: Then the ratio Z changes by a Möbius
transformation. &

Proposition A.6. The Virasoro coadjoint action of a diffeomorphism j on the potential

uðxÞ gives rise to a diffeomorphism change of coordinate in the ratio Z:

j : ZðxÞ-ZðjðxÞÞ:

Proof. We look at the corresponding infinitesimal action on the solutions of the

differential equation ð@2x þ uðxÞÞy ¼ 0: For jðxÞ ¼ x þ evðxÞ close to the identity,
consider the infinitesimal Virasoro action of j on the potential uðxÞ:

u/u þ e � du where du ¼ 2uvx þ uxv � 1
2
vxxx:

(cf. formula (3.8) for a ¼ 1
2
). It is consistent with the following action on a solution y

of the above differential equation:

y/y þ e � dy where dy ¼ �1
2
yvx þ yxv:

The consistency means that ð@2x þ u þ e � duÞðy þ e � dyÞ ¼ 0þ Oðe2Þ:
Note that the action e � dy ¼ e � ð�1

2
yvx þ yxvÞ is an infinitesimal version of the

following action of the diffeomorphism jðxÞ ¼ x þ evðxÞ on y:

j : y/yðjÞðjxÞ
�1=2:

Thus solutions to Hill’s equation transform as forms of degree �1=2: Therefore, the
ratio Z of two solutions transforms as a function under a diffeomorphism
action. &

In short, to calculate the coadjoint action on the potential u one can first pass from
this potential to the ratio of two solutions, then change the variable in the ratio, and
finally take the Schwarzian derivative of the new ratio to reconstruct the new

potential Adn

ðj;bÞu:

All of the above considerations of Hill’s operators were local in x: To describe the
Virasoro orbits, we now recall that uðxÞ is defined on a circle.

Theorem A.7 (Kirillov [Kir]; Segal [Seg]). The coadjoint Virasoro orbits (for a

given cocentral term aa0) are enumerated by the conjugacy classes in ðfSLSL2ðRÞW
fidgÞ=Z2; the universal covering of SL2ðRÞ without the identity and modulo the Z2-
action.
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Proof. For a periodic potential u the solutions of ð@2x þ uÞy ¼ 0 are quasiperiodic.

In other words, the boundary values of the fundamental set of solutions F :¼ ðf ; gÞ
on ½0; 2p� are related by a holonomy matrix MASL2ðRÞ: Fð2pÞ ¼ Fð0ÞM:
(Similarly, one can consider the ‘‘projective solution’’ Y :¼ ðZ; ZxÞ; which consists
of the solution ratio Z and its derivative Zx with the corresponding holonomyM now
in PSL2ðRÞ:) This holonomy matrix M changes to a conjugate matrix if x0 ¼ 0 is

replaced by any point x0AS1 or if F is replaced by another system of solutions.

Now regard the ratio Z ¼ f =g as a map Z : ½0; 2p�-RP1 describing a motion

(‘‘rotation’’) along the circle RP1ES1: One can see that the condition Zxa0 is
equivalent to the condition Wa0 on the Wronskian. Choosing the negative sign of
the Wronskian, Wo0; we can assume that the rotation always goes in the positive
direction: Zx ¼ �W=g240:
By a diffeomorphism change of the parameter x/jðxÞ; one can always

turn the map Z : ½0; 2p�-RP1 into a uniform rotation along RP1; while keeping the
boundary values of ZðxÞ on the segment ½0; 2p� satisfying the holonomy relation
Yð2pÞ ¼ Yð0ÞM: Furthermore, the number of rotations (the ‘‘winding number’’) for

the map Z : ½0; 2p�-RP1 does not change under a reparametrization by a
diffeomorphism j: Thus the orbits of the maps Z (or, equivalently, of the potentials
fuðxÞg) are described by the conjugacy classes of matrices in the universal covering
of SL2ðRÞ: The choice in the sign of the Wronskian reflects the Z2-action on this
universal covering.

Finally, note that the identity matrix in the universal covering fSLSL2ðRÞ (or in its
projectivization) cannot be obtained as a holonomy matrix for the maps

Z : ½0; 2p�-RP1: Indeed, any map Z starts at the identity and goes in the positive
direction. Thus, no matter how slow the rotation, one always moves out from the
identity. &

Corollary A.8. The Virasoro orbits in the hyperplane f�a@2x þ uðxÞ j a ¼ a0gCvirn

with fixed aa0 are classified by the Jordan normal form of matrices in SL2ðRÞ and a

positive integer parameter, winding number. Matrices in the group SL2ðRÞ split

into three classes, whose normal forms are equivalent to the exponents of the following

three classes:

(i) m 0

0 �m

" #
;

(ii)
0 71

0 0

" #
and

(iii)

0 0

0 0

" #
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in the corresponding Lie algebra sl2ðRÞ; see Fig. 4. The Virasoro orbit containing Hill’s

operator @2x þ uðxÞ has the codimension in the hyperplane fa ¼ a0gCvirn that is equal

to the codimension in SL2ðRÞ of (the conjugacy class of) the holonomy matrix M

corresponding to this Hill’s operator. This codimension is 1 for classes (i) and (ii), and it

is 3 for (iii) independ of the integer parameter.

Remark A.9. Note that the exponents of real matrices with the normal form (i) split
into rotation matrices (with mAiR) and hyperbolic rotations (with mAR), the elliptic
and hyperbolic cases, cf. Remark A.11. In the paper, we regard these cases as
belonging to the same general class (and similarly we do not distinguish between the
cases71 in type (ii)), since we are interested in the algebraic (rather than geometric)
question of constructing the corresponding integrable equations.
One should also mention that the equality of codimension of the Virasoro coadjoint

orbits in virn and (the conjugacy class of ) the corresponding holonomy matrices
in SL2ðRÞ can be seen by checking the smooth dependence on a parameter in the above
classification. (The versal deformations of the orbits can be given in terms of the Jordan–
Arnold normal forms of the holonomy matrices depending on a parameter, cf. [OK2].)
Alternatively, one can find the dimension of the corresponding stabilizers, see [Kir,Seg].
Regarded as homogeneous spaces, the orbits of type (i) are often denoted by

Diff ðS1Þ=S1; the notation Diff ðS1Þ=R1 stands for (ii) (and sometimes for the case
mAiR in (i)), and Diff ðS1Þ=SL2ðRÞ corresponds to (iii).

Remark A.10. For applications to bihamiltonian systems we would like to describe

all points in virn belonging to orbits of codimension at most 2. As we have shown
above, in the smooth dual there are no orbits of codimension 0 or 1, as a is a Casimir
function, and in each hyperplane the orbits are of codimension at least 1.5

Fig. 4. The points M1;M2 and 0 in sl2ðRÞ (which is a local picture of SL2ðRÞ) correspond to the Virasoro
orbits of types (i), (ii) and (iii), respectively.

5There exist Virasoro orbits of codimension 1 if in the dual space virn besides smooth elements we also

admit singular ones, cf. [Wit]. In this paper, we consider the classification of the smooth dual elements

only.
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For a0a0 the orbits are represented by the Hill’s operators, whose holonomy
matrices were classified above, while for a0 ¼ 0 they are quadratic differentials. Our
choices of representatives for the orbits of codimension 1 for a fixed a0 (i.e. of total

codimension 2 in virn) will be as follows.
(a) For a generic point representing case (i) above we take Hill’s operator

�@2x þ 1=2 ði:e:; u0 ¼ ðdxÞ2=2; a0 ¼ 1Þ: It corresponds to the differential equation
ð@2x � 1=2Þy ¼ 0 and has the holonomy matrix diagðexpðp

ffiffiffi
2

p
Þ; expð�p

ffiffiffi
2

p
ÞÞ;

the exponent of type (i). This freezing point corresponds to the CH
equation.
(b) The matrix of type (ii) can be encountered in a generic 1-parameter family of

matrices in sl2ðRÞ: Its exponent, a Jordan 2� 2-block with the eigenvalue 1, can be
represented as the holonomy matrix by the Hill’s operator �@2x ði:e:; u0 ¼ 0; a0 ¼ 1Þ:
The latter point in virn corresponds (after an appropriate reduction) to the HS
equation.

(c) The hyperplane a0 ¼ 0 in the Virasoro dual is the dual space vectn to the non-

extended Lie algebra of vector fields. The orbits of codimension 1 in the space vectn

are represented, e.g., by the quadratic differential 1
2
ðdxÞ2 (i.e., by the point

ðu0 ¼ ðdxÞ2=2; a0 ¼ 0Þ) as we discussed in Section A. Freezing the Poisson structure
at the latter point leads to the KdV equation.
The above three cases are described in Corollary 6.4.

Remark A.11. Recall that the holonomy matrix M of Hill’s operator @2x þ uðxÞ
changes to a conjugate one under the Virasoro action. This implies that hð@2x þ
uðxÞÞ ¼ logðtrace MÞ is a Casimir function on virn: One can use it to generate the
KdV hierarchy via the Lenard scheme described in Theorem 6.3.
Recall that for the KdV equation the freezing point for the constant Poisson

structure f:; :g0 is ða0 ¼ 0; u0 ¼ ðdxÞ2=2Þ: Therefore, the Casimir function of the
bracket f:; :gl :¼ f:; :gLP � l2f:; :g0 has the form hlð@2x þ uðxÞÞ :¼ logðtrace MlÞ;
where Ml is the holonomy of the operator @2x þ uðxÞ � l2: The expansion of the
function hl in l produces the first integrals of the KdV equation:

hlE2pl�
XN
n¼1

cnh2n�1l
1�2n;

where

h1 ¼
Z

S1
uðxÞ dx; h3 ¼

Z
S1

u2ðxÞ dx; h5 ¼
Z

S1
u3ðxÞ � 1

2
ðuxðxÞÞ2

� �
dx;y

and c1 ¼ 1=2; cn ¼ ð2n � 3Þ!!=ð2nn!Þ for n41: One can see that the Hamiltonian h3 is
quadratic in u and coincides with the ‘‘energy’’ Hamiltonian of the KdV equation,
regarded as an Euler equation. (Note that the KdV Hamiltonians hj are differential

polynomials whose degree increases with j: The latter follows from the recurrence
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relation fh2jþ1; f g0 þ fh2j�1; f gLP ¼ 0 for Hamiltonians hj (cf. Theorem 6.3) for the

constant and linear Poisson brackets on virn:) More details on the KdV structures
can be found in [GZ].
Similar computations can be done for CH and HS, the other two equations

considered in this paper, cf. [BSS].
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