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Abstract
The Euler equation of an ideal (i.e. inviscid incompressible) fluid can be regarded, following
V. Arnold, as the geodesic flow of the right-invariant L2-metric on the group of volume-
preserving diffeomorphisms of the flow domain. In this paper we describe the common
origin and symmetry of generalized flows, multiphase fluids (homogenized vortex sheets),
and conventional vortex sheets: they all correspond to geodesics on certain groupoids of
multiphase diffeomorphisms. Furthermore, we prove that all these problems are Hamiltonian
with respect to a Poisson structure on a dual Lie algebroid, generalizing the Hamiltonian
property of the Euler equation on a Lie algebra dual.
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1 Introduction

Classical hydrodynamics deals with an ideal (i.e. inviscid incompressible) fluid, whose
motion is described by the Euler equation. In this paper we consider a broader setting of
multiphase fluids and generalized flows. A multiphase fluid consists of several fractions that
can freely penetrate through each other without resistance and are constrained only by the
conservation of total density. Such flows arise, in particular, in connection with vortex sheets
in an ideal fluid, i.e. hypersurfaces of discontinuity in fluid velocity with different speed of
fluid layers on different sides of the hypersurface. By relaxing the condition of a sharp border
between the layers one obtains homogenized vortex sheets [5], which allowmixing of the two
parts of the fluid, rather than separating them by a hypersurface. Such homogenized vortex
sheets can be thought of as examples of multiphase flows. Beyond the vortex sheet setting,
multiphase fluids arise e.g. in plasma physics and chemistry.

Of particular interest are multiphase fluids with continuum of phases (or generalized
flows), introduced by Brenier [6]. One can think of them as flows in which every fluid
particle spreads into a cloud thus moving to any other point of the manifold with certain
probability (we define this precisely below), see Fig. 1. While, according to Shnirelman [17],
a shortest curve on the group of volume-preserving diffeomorphisms does not exist between
some pairs of maps, generalized flows of Brenier do allow such a shortest solution for a large
class of diffeomorphisms.

In this paper we describe the common origin and symmetry of both multiphase fluids
(equivalently, homogenized vortex sheets) and generalized flows (fluids with continuum of

Fig. 1 Trajectories of particles in one-dimensional analogues of generalized flows corresponding to a contin-
uumof phases for the flip of the interval [0, 1] andb amultiphase flowwith two phases for the interval-exchange
map [0, 1/2] ↔ [1/2, 1]; see [2]
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phases): they both correspond to geodesics on certain groupoids of multiphase diffeomor-
phisms. Groupoids can be thought of as groups with partially defined multiplication. We also
present the Hamiltonian framework for them by describing the corresponding dynamics as
Euler–Arnold flows for right-invariant energy metrics on the groupoid. In other words, we
prove that generalized flows are Hamiltonian for the corresponding Poisson structure on the
dual Lie algebroid, generalizing Lie–Poisson structures.

Recall that in 1966 Arnold proved that the Euler equation for an ideal fluid describes the
geodesic flow of a right-invariant metric on the group of volume-preserving diffeomorphisms
of the flow domain [1]. This insight turned out to be indispensable for the study of geometry
and topology of fluid flows, Hamiltonian properties and conservation laws in hydrodynam-
ics, as well as a powerful tool for obtaining sharper existence and uniqueness results for
Euler-type equations [2]. However, such objects as the above-mentioned multiphase fluids
or generalized flows do not fit into Arnold’s approach. In the paper [12] on classical vortex
sheets in incompressible flows we introduced the language of Lie groupoids in hydrodynam-
ics. In the present paper we demonstrate its universality by extending Arnold’s framework to
other Lie groupoids with one-sided invariant metrics, thus treating generalized flows (which
did not allow any group interpretation before) and vortex sheets on the same footing, as well
as developing a groupoid-theoretic description for many fluid dynamical settings.

1.1 Groupoid framework for generalized flows

Recall that the hydrodynamical Euler equation for an incompressible fluid filling a closed
compact Riemannian manifold M is the following evolution law on the velocity field u:

∂t u + ∇uu = −∇ p,

supplemented by the divergence-free condition div u = 0 on M . The pressure function p is
defined uniquely modulo an additive constant by those conditions. This setting also extends
to manifolds with boundary, as well as non-compact manifolds (such as R

n), by imposing
appropriate boundary or decay conditions. Arnold’s theorem sheds light on the origin of this
equation:

Theorem 1.1 (Arnold [1]) The Euler equation can be regarded as an equation of the geodesic
flow on the group SDiff(M) of volume-preserving diffeomorphisms of M with respect to the
right-invariant metric given at the identity of the group by the squared L2-norm of the fluid’s
velocity field (i.e., the fluid kinetic energy.1)

This theorem provides an attractive way to construct Euler solutions as shortest curves,
i.e. geodesics, joining two volume-preserving diffeomorphisms of M . However, in [17]
Shnirelman proved that not all pairs of such diffeomorphisms admit a shortest curve connect-
ing them. This variational problem was “cured” by Brenier [6], who introduced the space of
generalized fluid flows and proved the existence in that space of a shortest curve joining any
two volume-preserving diffeomorphisms from a large class.

Generalized flows satisfy the following equations:{
∂t (ρaua) + div (ρaua ⊗ ua) + ρa∇ p = 0, (1a)

∂tρa + div (ρaua) = 0, (1b)

1 The L2-metric is twice the kinetic energy of the fluid, which leads to a simple time rescaling, and we will
not be mentioning this throughout the paper.
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along with the constraint
∫
A ρa da = 1. Here ua ∈ Vect(M) is the fluid velocity field,

depending on an additional parameter a belonging to a certain measure space A. One can
think of A as enumerating fractions of the fluid, with ua being the velocity of a particular
fraction. Likewise ρa ∈ C∞(M) is the mass density of the fraction with label a ∈ A. The
pressure function p ∈ C∞(M) is common for all fractions.

Remark 1.2 Using (1b) one can rewrite (1a) in the form similar to the classical Euler equation:

∂t ua + ∇ua ua = −∇ p. (2)

The above form is given for consistency with [6], and it also simplifies the derivation of
equation for the pressure function.

Namely, the pressure can be obtained from the velocities ua and densities ρa as follows.
Integrating (1b) over the space A we get the condition

div

(∫
A

ρauada

)
= 0, (3)

which can be thought of as an analogue of the condition div u = 0 for the classical Euler
equation. Further, taking the divergence of (1a), integrating over A, and using (3) we get

�p = −div
∫
A
div (ρaua ⊗ ua) da, (4)

which is a Poisson equation and hence has a unique solution for the pressure function, up to
an additive constant.

Theorem 1.3 (= Theorem 5.3) The Euler equations (1) for a generalized flow are geodesic
equations for the right-invariant L2-metric on (source fibers of) the Lie groupoidGDiff(M) of
generalized diffeomorphisms. Equivalently, the Euler equations (1) are the groupoid Euler–
Arnold equations corresponding to the L2-metric on the algebroid GVect(M).

The Lie groupoid GDiff(M) of generalized diffeomorphisms is a natural generalization of
the group SDiff(M) of volume-preserving diffeomorphisms. (Just like the latter arises from
“integrating” the condition div u = 0 on fluid velocities, the groupoid GDiff(M) “integrates”
Eq. (3).) The definition of that groupoid is as follows. Its base is the space GDens(M) of
generalized densities, i.e. sets of densities μμμ := {μa ∈ Dens(M) | a ∈ A} such that all μa

are positive, have prescribed masses ca , i.e.∫
M

μa = ca, (5)

and together constitute the fixed volume form volM on M , i.e.
∫
A μa da = volM at each

point of M (in particular,
∫
A cada = ∫

M volM ). One can think of those densities as a set
A of different fractions of an incompressible fluid, penetrating through each other without
resistance. Such a generalized densityμμμ can also be interpreted as a doubly stochasticmeasure
μa ∧ da on the direct product M × A. The relation between densities μa and functions ρa
introduced above isμa = ρavolM . In particular, the condition

∫
A μa da = volM is equivalent

to the constraint
∫
A ρa da = 1.

The elements of GDiff(M) are triples (φφφ;μμμ,μμμ′) where φφφ := {φa ∈ Diff(M) | a ∈ A}
is a generalized diffeomorphism, andμμμ,μμμ′ ∈ GDens(M) are generalized densities such that
φφφ∗μμμ = μμμ′ component-wisely, i.e. φa∗μa = μ′

a for each a ∈ A. The multiplication of such
triples is defined by the natural composition, (ψψψ;μμμ′,μμμ′′)(φφφ;μμμ,μμμ′) := (ψψψφφφ;μμμ,μμμ′′).
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The infinitesimal object corresponding to this Lie groupoid is the Lie algebroid GVect(M)

describing the space of velocities for a generalized fluid. It is a vector bundle over GDens(M)

with the following structure. Its fiber over μμμ ∈ GDens(M) is the space GVect(M,μμμ) that
consists of generalized vector fields on M of the form uuu := {ua | a ∈ A} with ua ∈ Vect(M)

that are “divergence-free”with respect to the generalized volume form:
∫
A Luaμa da = 0 (the

latter equation is equivalent to (3)). The vector bundleGVect(M) carries additional structures,
namely a bracket on sections and a so-called anchor map, see Sect. 5. These structures endow
the dual bundle GVect(M)∗ with a Poisson structure. Equations (1) are Hamiltonian with
respect to that structure:

Theorem 1.4 (= Theorem 5.2) The Euler equations (1) for a generalized flow written on
the dual GVect(M)∗ of the algebroid are Hamiltonian with respect to the natural Poisson
structure on the dual algebroid and the Hamiltonian function given by the L2 kinetic energy.

The above two theorems provide the group-theoretic and Hamiltonian frameworks for
generalized flows.

Remark 1.5 The smoothness of the groupoid and algebroid is understood below in the Fréchet
C∞ setting. Similarly, one can consider the setting of Hilbert manifolds modeled on Sobolev
Hs spaces for sufficiently large s, s > dim M/2 + 1, cf. [11].

Remark 1.6 Theorem 1.4 remains valid if we exclude the condition (5) from the definition of
the groupoid. That condition is added for technical reasons (specifically, tomake the groupoid
transitive, see Definition 2.3 below) and does not affect Eqs. (1). Indeed, preservation of
masses

∫
M μa is just a consequence of those equations.

1.2 Groupoid setting for multiphase fluids

In this section we discuss the “discrete version” of generalized flows, namely, multiphase
flows on a Riemannian manifold M . Such flows appear in [5] in the context of homogenized
vortex sheets and are governed by the following equations:{

∂t u j + ∇u j u j = −∇ p,

∂tρ j + div (ρ j u j ) = 0.
(6)

Hereρ1, . . . , ρn ∈ C∞(M) aremass densities of n phases of the fluid subject to the constraint∑n
j=1 ρ j = 1, the vector fields u1, . . . , un ∈ Vect(M) are the corresponding fluid velocities,

and the pressure p ∈ C∞(M) is common for all phases. These equations can be thought of
as a discrete analogue of (1), which becomes particularly transparent upon rewriting Eq. (1a)
in the form (2). Conversely, we can rewrite the first equation in (6) in the form

∂t (ρ j u j ) + div (ρ j u j ⊗ u j ) + ρ j∇ p = 0.

Furthermore, the second equation implies

div
n∑
j=1

ρ j u j = 0, (7)

which results in the following equation for the pressure, cf. (4):

�p = −div
n∑
j=1

div (ρi ui ⊗ ui ).
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The Lie groupoid MDiff(M) underlying Eq. (6) is a discrete version of the groupoid
GDiff(M). Its base is the space MDens(M) ofmultiphase densities, i.e. n-tuples of densities
μμμ := (μ1, . . . , μn) satisfying the conditions that all densities μi are positive and sum to a
fixed density volM everywhere on M , while their total masses are given by a fixed n-tuple of
constants c1, . . . , cn ∈ R. These densities can be thought of as densities of different mutually
penetrating fractions of the fluid, subject only to the total incompressibility condition.

Now the elements of our Lie groupoid MDiff(M) are n-tuples of diffeomorphisms
of M preserving the property of incompressibility of multiphase densities, i.e. the set of
tuples (φφφ;μμμ,μμμ′) := (φ1, . . . , φn;μ1, . . . , μn, μ

′
1, . . . , μ

′
n) with multiphase forms μμμ,μμμ′ ∈

MDens(M) such that the multiphase diffeomorphism φφφ push-forwards one of them to the
other, φφφ∗μμμ = μμμ′ component-wisely. The multiplication in MDiff(M) is defined in the same
way as for GDiff(M).

The corresponding Lie algebroid MVect(M) is the space of possible velocities of the
multiphase fluid. It is a vector bundle over MDens(M) where the fiber of MVect(M) over
μμμ ∈ MDens(M) is the space MVect(M,μμμ) which consists of multiphase vector fields on M
“divergence-free” with respect to the multiphase volume form, i.e. vector fields of the form
uuu := (u1, . . . , un), where ui ∈ Vect(M) are such that

∑n
j=1 Lu j μ j = 0.

Theorem 1.7 (=Theorem4.4)TheEuler equations (6) for amultiphase fluidflowaregeodesic
equations for the right-invariant L2-metric on (source fibers of) the Lie groupoidMDiff(M)

of multiphase volume-preserving diffeomorphisms. Equivalently, they are groupoid Euler–
Arnold equations corresponding to the L2-metric on the algebroidMVect(M).

For the case of a flat spaceM the geodesic (although not the group) nature of homogenized
vortex sheets (i.e. multiphase flows) was established in [14, Proposition 6]. One can see that
the standard hydrodynamical Euler equation is a particular case of the above multiphase
equations with only one phase, n = 1. Furthermore, Eq. (6) can be described within the
Hamiltonian framework:

Theorem 1.8 (= Theorem 4.2) The Euler equations (6) for a multiphase flow written on
the dual MVect(M)∗ of the algebroid are Hamiltonian with respect to the natural Poisson
structure on the dual algebroid and the Hamiltonian function given by the L2 kinetic energy.

This theorem is an analogue of the Hamiltonian property of the Euler–Arnold equation
on the dual to a Lie algebra with respect to the Lie–Poisson structure.

Return to the metric properties of the groupoid Euler–Arnold equation. Given any initial
density μμμ ∈ MDens(M), consider the subset MDiff(M)μμμ ⊂ MDiff(M) of multiphase
diffeomorphisms which push μμμ forward to another multiphase density (a so-called source
fiber of the groupoid MDiff(M)). That set is equipped with an L2-metric. At the same time,
there is a natural metric 〈 , 〉MDens on the spaceMDens(M) ofmultiphase densities induced by
the well known Wasserstein metric. The connection between those two metrics is described
by the following result.

Theorem 1.9 (= Theorem 4.7) For any multiphase density μμμ ∈ MDens(M) the groupoid
target mapping trg : (MDiff(M)μμμ, 〈 , 〉L2) → (MDens(M), 〈 , 〉MDens) is a Riemannian
submersion. In particular, horizontal geodesics on MDiff(M)μμμ project to geodesics on
MDens(M). Those geodesics correspond to potential solutions of the system (6).

In particular, this result implies a geodesic description of potential solutions to (6), cf.
[14, Proposition 7]. These potential solutions have the form uuu = (∇ f1, . . . ,∇ fn) in M ,
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Fig. 2 Riemannian submersion
for the groupoid. Here
SDiffμμμ(M) := {φφφ | φ∗

i μi = μi }
is the group of volume-preserving
multiphase diffeomorphisms, and
uuu is a horizontal vector field
projecting to ξξξ = −Luuuμμμ. The
latter can be regarded as the
velocity of the multiphase density
μμμ, and 〈ξξξ, ξξξ 〉MDens = 〈uuu,uuu〉L2

see Fig. 2. The Wasserstein-type metric 〈 , 〉MDens is apparently related to the metric between
vector densities described recently in [8, 9].

One of the byproducts of the groupoid approach is the following generalized Kelvin’s
theorem. Namely, define the multiphase vorticity ωωω := duuu	 for an n-tuple of vector fields
uuu ∈ MVect(M) as the component-wise vorticity n-tuple, i.e. ω j := du	

j with u
	
j standing for

the 1-forms metric-dual to the vector fields u j .

Corollary 1.10 (= Corollary 4.5) For a multiphase fluid the vorticity is “frozen into the flow”
in the generalized sense: ∂tωωω + Luuuωωω = 0, that is the vorticity of each phase is transported
by the corresponding velocity field: ∂tω j + Lu j ω j = 0.

We would like to emphasize that in the classical Euler equation, the vorticity (along
with circulations in a non-simply-connected M) fully determine the velocity field. In the
multiphase setting the situation is different: in particular, there are nontrivial solutions with
zero vorticity and zero circulation. The reason is in the different geometry of symplectic
leaves for the corresponding Poisson bracket. Indeed, in the group setting these leaves are
coadjoint orbits in g∗ of the corresponding group, while in the case of an algebroid one has
the group action only in the kernel bundle of the corresponding anchor map (and in its dual
bundle). The corresponding symplectic leaves are obtained by taking the inverse images of
the orbits for the action under the projection of A∗ into that dual bundle, cf. [12]. We hope
to return to this description in a future publication.

1.3 Structure of the paper

The rest of the paper is a detailed discussion of objects involved in the above theorems,
along with proofs of those theorems. We start with the discrete case (Theorems 1.7–1.9). It
is discussed in Sects. 3 and 4 (while in Sect. 2 we recall basics of the groupoid and algebroid
theory). The continuous case (Theorems 1.3 and 1.4) is discussed in Sect. 5. The proofs in
that case are very similar to the discrete situation, so we only discuss necessarymodifications.

Several open problems are suggested in Sect. 6. It is worth mentioning that the groupoid
approach above may also allow one to give a geometric description for yet another equivalent
point of view on generalized flows, taken by Brenier [4] and Shnirelman [18] (see also [2,
Section IV.7]), as probabilistic measures on the space of parametrized continuous paths in
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the flow domain. It would be also interesting to describe the group and Hamiltonian picture
for vector and matrix densities in [8, 9] and the surprising appearance of the general relativity
equation for matrix measures in [7].

2 Lie groupoids and algebroids

In this section we briefly recall basic facts about Lie groupoids and algebroids (details can
be found, e.g., in [10, 15]).

2.1 Lie groupoids

Definition 2.1 A groupoid G ⇒ B is a pair of sets, B (the base of the groupoid) and G (the
groupoid itself), endowed with the following structures:

1. Two maps src, trg : G → B, called source and target respectively.
2. Partial binary operation (g, h) �→ gh on G which is defined for all pairs g, h ∈ G such

that src(g) = trg(h) and has the following properties:

(a) The source of the product is the source of the right factor: src(gh) = src(h), while
the target of the product is the target of the left factor: trg(gh) = trg(g).

(b) Associativity: g(hk) = (gh)k whenever any of those expressions is well-defined.
(c) Identity: for any x ∈ B, there exists an element idx ∈ G such that idtrg(g) · g =

g · idsrc(g) = g for every g ∈ G.
(d) Inverse: for any g ∈ G, there exists an element g−1 ∈ G such that g−1g = idsrc(g)

and gg−1 = idtrg(g).

A groupoid G ⇒ B is called a Lie groupoid if G, B are manifolds, the source and target
are submersions, and the maps (g, h) �→ gh, x �→ idx , and g �→ g−1 are smooth. (The
domain of the multiplication map is {(x, y) ∈ G × G | src(x) = trg(y)}. The submersion
property of source and target ensures that this set is a submanifold of G × G, so smoothness
of multiplication is well-defined.)

Example 2.2 (a) Any Lie group G is a Lie groupoid over a point.
(b) For any smooth manifold B, the set G := B × B is a Lie groupoid over B, called the

pair groupoid. The source and target are defined by src(x, y) = x , trg(x, y) = y, while
the product is given by (y, z)(x, y) := (x, z).

(c) Let B be a smooth manifold, and let G be a Lie group acting on B. Then the action Lie
groupoidG�B ⇒ B is defined as follows.Thepoints ofG�B are triples (g; x, y),where
x, y ∈ B, g ∈ G, and gx = y. The source map is given by src(g; x, y) := x , the target
is trg(g; x, y) := y, and the multiplication is defined by (h; y, z)(g; x, y) := (hg; x, z).

Definition 2.3 A groupoid G ⇒ B is called transitive if for any x, y ∈ B there exists g ∈ G
such that src(g) = x and trg(g) = y.

For example, an action groupoid G � B is transitive if and only if the G-action on B is
transitive.

Definition 2.4 Let G ⇒ B be a groupoid. Then the source fiber Gx of G corresponding to
x ∈ B is the set Gx := {g ∈ G | src(g) = x}.

For instance, for an action groupoid G � B, any source fiber is canonically identified with
the group G.
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Fig. 3 A groupoid G ⇒ B. The
vertical projection is the source
map src : G → B, the horizontal
projection is the target map
trg : G → B, while horizontal
arrows are right translations. A
section of the algebroid is a
collection of vertical vectors
attached to the diagonal src = trg

2.2 Lie algebroids

The infinitesimal object corresponding to a Lie groupoid is a Lie algebroid.

Definition 2.5 A Lie algebroid A over amanifold B is a vector bundleA → B endowedwith
a Lie bracket [ , ] on smooth sections and a vector bundlemap # : A → T B, called the anchor,
such that for any two smooth sections ζ, η of A and any smooth function f ∈ C∞(B), one
has [ζ, f η] = f [ζ, η] + (L#ζ f )η .

The Lie algebroid A → B corresponding to a Lie groupoid G ⇒ B is constructed
as follows. The fiber of A over x ∈ B is the tangent space to the source fiber Gx at the
identity idx . The anchor map on that fiber is defined as the differential of the target map
trg : Gx → B, while the bracket on sections is defined as follows. Every section of A can
be uniquely extended to a right-invariant vector field on G tangent to source fibers, and the
correspondence between such vector fields and sections of A is a vector space isomorphism
(see Fig. 3). This allows one to define the bracket of sections of A as the Lie bracket of
the corresponding right-invariant vector fields (which is again a right-invariant vector field
tangent to source fibers, and, therefore, corresponds to a section of A).

Example 2.6 For Lie groupoids of Example 2.2, the corresponding algebroids are:

(a) The Lie algebra g of the groupG, considered as a Lie algebroid over a point. The anchor
map is trivial, while the bracket on sections (which are simply elements of g) is just the
bracket on g.

(b) The tangent bundle T B of B. The corresponding bracket on sections is the standard Lie
bracket of vector fields, while the anchor map is the identity.

(c) The action Lie algebroid g � B, where g is the Lie algebra of the group G. As a vector
bundle, g � B is a trivial bundle over B with fiber g. The anchor map g � B → T B is
defined for an element (u, x) ∈ g� B by #(u, x) = ρu(x), where ρu is the infinitesimal
generator of the G-action corresponding to u ∈ g. The bracket of sections is given by

[ζ, η](x) := [ζ(x), η(x)]g + (L#ζ η)(x) − (L#ηζ )(x), (8)
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where [ , ]g is the bracket in g, and the derivatives L#ζ η, L#ηζ are defined by identifying
sections of g � B with g-valued functions on B.2

Definition 2.7 A Lie algebroid A → B is called transitive if the anchor map is surjective.

The Lie algebroid associated with a transitive Lie groupoid is transitive.

2.3 Dual Lie algebroids as Poisson vector bundles

Recall that the dual space g∗ of any Lie algebra g carries a natural linear Poisson structure.
This result extends to the algebroid setting: the dual of a Lie algebroid is a Poisson vector
bundle.

Definition 2.8 A Poisson vector bundle E → B is a vector bundle whose total space E
is endowed with a fiberwise linear Poisson structure, i.e. a Poisson structure such that the
bracket of any two fiberwise linear functions is again a fiberwise linear function.

Two basic examples of Poisson vector bundles are a vector space endowed with a linear
Poisson structure (which is a Poisson vector bundle over a point), and the cotangent bundle
of a manifold B. These Poisson vector bundles are dual, respectively, to Lie algebroids g and
T B from Example 2.6(a) and (b). For general Lie algebroids, one has the following result.

Proposition 2.9 The dual bundle3 A∗ → B of any Lie algebroid A → B has a natural
structure of a Poisson vector bundle. The Poisson structure on A∗ is uniquely determined
by requiring that for arbitrary fiberwise linear functions ζ, η and an arbitrary fiberwise
constant function f , one has {ζ, η} := [ζ, η], {ζ, f } := L#ζ f . Here we identify fiberwise
linear functions on A∗ with sections of A, and fiberwise constant functions on A∗ with
functions on the base B.

In what follows, we will need the following explicit formula for the Poisson structure on
a Lie algebroid dual.

Proposition 2.10 [3] Let A be a Lie algebroid. Then, for any α ∈ A∗ and for any smooth
functions f , g ∈ C∞(A∗), one has

{ f , g}(α) = 〈α, [dF f (α̂), dFg(α̂)]〉 + L#dF f (α)

(
g ◦ α̂ − 〈α̂, dFg(α̂)〉

)

− L#dF g(α)

(
f ◦ α̂ − 〈α̂, dF f (α̂)〉

)
, (9)

where α̂ is an arbitrary section of A∗ extending α, and dF f (α), dFg(α) ∈ A are fiber-wise
differentials of f and g at α (i.e. differentials restricted to the tangent space of the fiber of
α ∈ A∗).

This formula can be used as a definition in the infinite-dimensional case. Although for
general infinite-dimensional algebroids it is not even clear why this expression makes sense,

2 It is useful to compare this bracket to that of a semidirect product Lie algebra g̃ := g � B, where the group
of the Lie algebra g acts on a vector space B (e.g. the Lie algebra for the group of affine transformations of B,
the semidirect product of linear transformations and translations). The Lie bracket of g̃ between two elements
(u, α), (v, β) ∈ g � B is ([u, v]g, aduβ − advα).

3 If the fibers of A are infinite-dimensional, then the fibers of A∗ consist of sufficiently regular functionals
on fibers ofA. In the hydrodynamical setting we will make this precise below.
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weprove it belowbyobtaining an explicit formula in the settingofmultiphase diffeomorphism
groupoids.

Also note that for an action algebroid (see Example 2.6(c)) formula (9) becomes

{ f , g}(α) = 〈α, [dF f (α), dFg(α)]〉 + q( f , g) − q(g, f ), (10)

where

q( f , g) := 〈α,L#dF f (α)d
Fg(α̂)〉 + L#dF f (α)

(
g ◦ α̂ − 〈α̂, dFg(α̂)〉

)
. (11)

2.4 Euler–Arnold equations on Lie algebroids

Let A → B be a finite- or infinite-dimensional Lie algebroid, and let I : A → A∗ be
an invertible bundle morphism. (In the infinite-dimensional case one needs to consider the
smooth dual bundle A∗, similarly to consideration of smooth duals of infinite-dimensional
Lie algebras, cf. [2]. In the hydrodynamical setting we define this smooth dual in detail in
Sect. 3.) We call such I an inertia operator. An inertia operator I defines a metric onA given
by

〈u, v〉A := 〈I(u), v〉
for any u, v in the same fiber of A. Since the inertia operator I is invertible, one also has a
dual metric on A∗:

〈α, β〉A∗ := 〈I−1(α), β〉 = 〈I−1(α), I−1(β)〉A
for any α, β in the same fiber of A∗. Consider also a function H ∈ C∞(A∗) defined by

H(α) := 1

2
〈α, α〉A∗ ∀ α ∈ A∗.

Definition 2.11 theHamiltonian equation associatedwith the Poisson structure onA∗ and the
functionH is called the groupoid Euler–Arnold equation corresponding to the metric 〈 , 〉A.

Example 2.12 When A is a Lie algebra, we obtain the standard notion of an Euler–Arnold
equation on a Lie algebra dual. When A = T B is the tangent bundle of a manifold B, the
Euler–Arnold equation is the geodesic equation on B. (The latter is, of course, a second
order equation on B, but it becomes first order—specifically, the algebroid Euler–Arnold
equation—if we interpret it as an equation on T B.)

Remark 2.13 In the case when the algebroid A is associated with a certain Lie groupoid G,
solutions of the Euler–Arnold equation can be interpreted as geodesics of a right-invariant
source-wise (i.e. defined only for vectors tangent to source fibers)metric onG. In the transitive
case those solutions can also be thought of as geodesics on any source fiber Gx .

Furthermore, an Euler–Arnold equation on a transitive algebroid A → B always gives
rise to a certain geodesic flow on the base B. Indeed, let A → B be a Lie algebroid. Then,
since the anchor map # : A → T B is an algebroid morphism, the dual map #∗ : T ∗B → A∗
is Poisson. Note that if, moreover, the algebroidA is transitive, then #∗(T ∗B) is a symplectic
leaf inA∗. Indeed, ifA is transitive, then the Poisson map #∗ is injective, while the image of
a closed injective Poisson map of a symplectic manifold is always a symplectic leaf.
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Proposition 2.14 LetA → B be a transitive Lie algebroid, and let 〈 , 〉A be a positive-definite
metric onA for an invertible inertia operator I : A → A∗. Assume also4 that for this metric
〈 , 〉A there is an orthogonal decompositionA = Ker#⊕ (Ker#)⊥. Then the following holds:

1. The pullback of the groupoid Euler–Arnold flow corresponding to the metric 〈 , 〉A from
the symplectic leaf #∗(T ∗B) to T ∗B is the geodesic flow for a certain metric 〈 , 〉B on B.
Explicitly, for any x ∈ B and any ζ, η ∈ Tx B, the metric 〈 , 〉B reads

〈ζ, η〉B = 〈#−1(ζ ), #−1(η)〉A, (12)

where #−1 : T B → (Ker#)⊥ is the inverse for the restriction of the anchor map to
(Ker#)⊥.

2. Assume, in addition, that the algebroidA corresponds to a certain transitive groupoid G.
Then, for every x ∈ B, the target mapping trg : (Gx , 〈 , 〉G) → (B, 〈 , 〉B) is a Riemannian
submersion. (Here the metric 〈 , 〉G on Gx is defined using the identification between
metrics on A and right-invariant source-wise metrics on G, see Remark 2.13.)

For the proof see [12].

Example 2.15 Let M be a Riemannian manifold. Consider the natural transitive action of its
diffeomorphism group Diff(M) on the space Dens(M) of densities on M of unit total mass,
and let Diff(M) � Dens(M) be the corresponding action groupoid (see Example 2.2(c)).
Define a metric on the corresponding action algebroid Vect(M) � Dens(M) by setting

〈u, v〉L2 :=
∫
M

(u, v)μ

for u, v lying in the fiber of Vect(M) �Dens(M) over μ ∈ Dens(M). (Recall that the fibers
of Vect(M) � Dens(M) are identified with the Lie algebra Vect(M), see Example 2.6(c).)
Then, according to Remark 2.13, for any μ ∈ Dens(M), there is a corresponding metric on
the source fiber (Diff(M)�Dens(M))μ = Diff(M). It is an L2-type metric on Diff(M), and
there is a Riemannian submersion of that metric onto Wasserstein metric on Dens(M), see
[16] and Remark 4.8 below.

Example 2.16 Another example is given by the metric on the space VS(M) of vortex sheets
in a manifold M , discussed in [12, 14] and in Appendix below. In that case one considers
the Lie groupoid DSDiff(M) of volume-preserving diffeomorphisms of a manifold M that
are discontinuous along a hypersurface. Its Lie algebroid DSVect(M) → VS(M) consists
of velocities of the fluid with a vortex sheet: given a vortex sheet �, the corresponding
velocities are discontinuous vector fields on M of the form u = χ+

� u+ + χ−
� u−, where

χ+
� , χ−

� are the indicator functions of connected components D±
� ofM\�, and u± are smooth

divergence-free vector fields on D±
� such that the restrictions of u+ and u− to� have the same

normal component, see Appendix. There is a Riemannian submersion from an L2 metric on
DSDiff(M) to a metric on the space of classical vortex sheets, cf. [12, 14].

3 Kinematics of multiphase fluids

In this section,M is a compact connectedmanifoldwithout boundary endowedwith a volume
form volM .

4 Note that this property is automatic in the finite-dimensional case.
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3.1 The Lie groupoid of multiphase diffeomorphisms

In this subsection, we define the Lie groupoid MDiff(M) of volume-preserving multiphase
diffeomorphisms. This groupoid (or, more precisely, any of its source fibers) can be viewed
as the configuration space of a fluid with several phases penetrating through each other. The
conditions defining the groupoid MDiff(M) can be seen as integration of the corresponding
infinitesimal Eq. (7), just like the group of volume-preserving diffeomorphisms arises from
“integrating” the divergence-free condition on the corresponding velocity field u.

The base of the groupoid MDiff(M) is, by definition, the space MDens(M) of multiphase
densities, i.e. the space of n-tuples μμμ := (μ1, . . . , μn), where each μi ∈ Dens(M) is a
density (top-degree form) on M , satisfying the following conditions:

1.
∑n

j=1 μ j = volM .
2. μ j > 0 for all j = 1, . . . , n everywhere on M .
3.

∫
M μ j = c j for fixed constants c1, . . . , cn ∈ R (such that

∑n
j=1 c j = ∫

M volM ).

These densities can be thought of as densities of different fractions of the fluid, that can
penetrate through each other without resistance, subject only to the total incompressibility
condition. The case of two densities, n = 2, supported on two different sides of the separating
hypersurface � ⊂ M corresponds to the regular vortex sheet � for an incompressible flow
in M . This case belongs to the closure of our space of positive densities. The general case
with densities (μ1, . . . , μn) corresponds to a multiphase fluid where different phases can
percolate through each other.

The elements of MDiff(M) are n-tuples of diffeomorphisms of M preserving the above
property of incompressibility of multiphase densities, i.e. the set of tuples (φφφ;μμμ,μμμ′) :=
(φ1, . . . , φn;μ1, . . . , μn, μ

′
1, . . . , μ

′
n) with multiphase forms μμμ,μμμ′ ∈ MDens(M) such

that the multiphase diffeomorphism φφφ push-forwards one of them to the other, φφφ∗μμμ = μμμ′
component-wisely. The source and the target of (φφφ;μμμ,μμμ′) are, by definition,μμμ andμμμ′ respec-
tively. The multiplication in MDiff(M) is given by composition of diffeomorphisms:

(ψψψ;μμμ′,μμμ′′)(φφφ;μμμ,μμμ′) := (ψψψφφφ;μμμ,μμμ′′).

Remark 3.1 The groupoid MDiff(M) ⇒ MDens(M) is a transitive Lie–Fréchet groupoid.
The proof of the Lie–Fréchet property is the standard consideration similar to that for groups
of diffeomorphisms, cf. [12]. One can consider a more general case of densities μ j ≥ 0 on
M , in which case the groupoid is not necessarily transitive. The latter case covers that of
the usual vortex sheets � ⊂ M , corresponding to the indicator densities supported on two
different sides of M\�, see Appendix.

Since MDiff(M) is a Lie–Fréchet groupoid, it follows that the corresponding algebroid
is well-defined as a Fréchet vector bundle over MDens(M) with a bracket and anchor on
smooth sections. We describe this algebroid in detail in the next section.

Remark 3.2 One can also consider the groupoid MDiff(M) in the category of Hilbert mani-
folds modeled on Sobolev Hs spaces for sufficiently large s, s > dim M/2+ 1, similarly to,
e.g., [11] or [13, Remark 3.3]. Note also that if n = 1, i.e. we have a one-phase fluid, with
the groupoid MDiff(M) becoming the group SDiff(M) of μ-preserving diffeomorphisms of
M .

Remark 3.3 Note that if we drop the requirement that the densitiesμ j sum to volM in the defi-
nition of the groupoidMDiff(M), we obtain the definition of the action groupoid Diff(M)n �

Dens(M)n , which is the product of n copies of the action groupoid Diff(M)�Dens(M) (see
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Example 2.2(c)) corresponding to the natural action of the groupDiff(M) on the space of den-
sities Dens(M). So, the action groupoid Diff(M)n � Dens(M)n comes with a subgroupoid
MDiff(M). The subgroupoid MDiff(M) inherits certain properties of the ambient action
groupoid. In particular, the brackets in the algebroids corresponding to these groupoids are
given by the same formulas.

3.2 The Lie algebroid of multiphase vector fields

In this subsection we describe the Lie algebroidMVect(M) → MDens(M) corresponding to
the Lie groupoid MDiff(M). This algebroid serves as the space of velocities for a multiphase
fluid.

Theorem 3.4 The Lie algebroid MVect(M) → MDens(M) corresponding to the groupoid
MDiff(M) is as follows:

1. The fiber of MVect(M) overμμμ :=(μ1, . . . , μn)∈MDens(M) is the spaceMVect(M,μμμ)

which consists of multiphase vector fields on M of the form uuu := (u1, ..., un), where
u j ∈ Vect(M) are such that

n∑
j=1

Lu j μ j = 0 (13)

(in other words, the multiphase vector field is “divergence-free” with respect to the
multiphase volume form).

2. The anchor map # : MVect(M,μμμ) → TμμμMDens(M) is given by the negative Lie deriva-
tive,

uuu := (u1, . . . , un) �→ −Luuuμμμ := (−Lu1μ1, . . . ,−Lunμn).

3. Let U , V be sections ofMVect(M). Then their algebroid bracket is

[U , V ](μμμ) = [U (μμμ), V (μμμ)] + L#U (μμμ)V − L#V (μμμ)U , (14)

where the first summand in the right-hand side is the usual Lie bracket of vector fields
on M.

Remark 3.5 The derivative L#U (μμμ)V is a multiphase vector field defined by

L#U (μμμ)V := d

dt

∣∣∣∣
t=0

V (μμμ(t)),

where μμμ(t) is any smooth curve in MDens(M) with μμμ(0) = μμμ and the tangent vector at μμμ
given by #U (μμμ). That derivative does not have to lie in MVect(M,μμμ), but belongs to the
bigger space Vect(M)n := {(u1, . . . , un) | u j ∈ Vect(M))} of n-tuples of vector fields on
M with no condition (13).

Remark 3.6 Note that the first term on the right-hand side of (14) is not an element of
MVect(M,μμμ). Indeed, for two multiphase vector fields uuu and vvv satisfying

∑
i Lu j μ j =∑

i Lv j μ j = 0, their (component-wise) Lie bracket does not necessarily have this property.
However, the last two terms do not have this property either (see Remark 3.5) and compensate
the first term.
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Remark 3.7 The Lie algebroid MVect(M) is a subalgebroid in the action algebroid
Vect(M)n � Dens(M)n of smooth multiphase vector fields without restrictions acting on
volume multiphase forms (see Remark 3.3). Because of that the bracket in MVect(M) auto-
matically has form (14) (cf. Example 2.6(c)). However,MVect(M) is not an action algebroid.
In particular, the fibers of MVect(M) are not closed under the Lie bracket of vector fields
(see Remark 3.6) and hence do not have any natural Lie algebra structure.

Proof of Theorem 3.4 We begin with the first statement. By definition, the fiber of MVect(M)

overμμμ consists of tangent vectors at idμμμ ∈ MDiff(M) to curves of the form (φφφ(t);μμμ,μμμ(t)),
where μμμ(0) = μμμ and φφφ(0) = (id, . . . , id). The tangent vector to such a curve is an n-tuple
of vector fields

u j = d

dt

∣∣∣∣
t=0

φ j (t) ∈ Vect(M).

Also note that
n∑
j=1

φ j (t)∗μ j =
n∑
j=1

μ j (t) = volM .

Differentiating this relation with respect to t at t = 0, we get (13), as needed.
Conversely, given any n-tuple of vector fields u j ∈ Vect(M) satisfying (13), one can

construct a curve φφφ(t) in the source fiber MDiff(M)μμμ whose tangent vector at idμμμ coincides
with uuu. So, the fiber of MVect(M) overμμμ is indeed the space MVect(M,μμμ).

To prove the second statement we need the following. ��
Lemma 3.8 The tangent space TμμμMDens(M) is the space of multiphase top-degree forms
ξξξ = (ξ1, . . . , ξn) satisfying the following conditions:

1.
∑n

j=1 ξ j = 0 on M.
2.

∫
M ξ j = 0 for each i = 1, . . . , n.

Proof These are infinitesimal versions of the conditions
∑

i μ j = volM and
∫
M μ j = c j

respectively. ��
Now, we compute the anchor map (one can also get the formula for the anchor map

using that our algebroid is a subalgebroid in the action algebroid, see Remark 3.7). Let
uuu ∈ MVect(M)μμμ. Consider a curve (φφφ(t);μμμ,μμμ(t)) ∈ MDiff(M)μμμ where μμμ(t) := φφφ(t)∗μμμ
and whose tangent vector at idμμμ is uuu. Then, by definition of the anchor map for the algebroid
of a Lie groupoid, we have

#uuu = d

dt

∣∣∣∣
t=0

trg(φφφ(t)) = d

dt

∣∣∣∣
t=0

φφφ(t)∗μμμ = −Luuuμμμ,

as desired. Finally, the last statement of the theorem follows from the fact that our algebroid
is a subalgebroid in the action algebroid (see Remark 3.7) and formula (8) for the action
algebroid bracket. Thus, Theorem 3.4 is proved.

3.3 The dual algebroid and its tangent space

In this subsection, we describe the dual of the Lie algebroid MVect(M). This space can be
viewed as the space of momenta for a multiphase fluid.

As the dual of MVect(M), we consider the “smooth dual bundle” defined as follows.
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Definition 3.9 The smooth dual MVect(M,μμμ)∗ of the space MVect(M,μμμ) is the space of
linear functions f : MVect(M,μμμ) → R that admit a smooth density, which means that there
exist smooth 1-forms α1, . . . , αn such that

f (uuu) =
n∑
j=1

∫
M

α j (u j )μ j (15)

for all uuu ∈ MVect(M,μμμ).

Formula (15) defines a surjective linear map π : �1(M)n → MVect(M,μμμ)∗: each col-
lection (α1, . . . , αn) ∈ �1(M)n is mapped to a linear function on MVect(M,μμμ) defined by
(15).

Proposition 3.10 The kernel of the map π : �1(M)n → MVect(M,μμμ)∗ consists of n-tuples
of the form (d f , . . . , d f ), where f ∈ C∞(M). Therefore, we have an isomorphism

MVect(M,μμμ)∗ := �1(M)n/δ(dC∞(M)),

where δ : �1(M) → �1(M)n is the diagonal embedding δ(α) = (α, . . . , α).

Proof First observe that δ(dC∞(M)) ⊂ Ker π . This is due to condition (13):

〈(d f , . . . , d f ),uuu〉 =
n∑
j=1

∫
M
d f (u j )μ j = −

n∑
j=1

∫
M

f ∧ Lu j μ j

= −
∫
M

f ∧
n∑
j=1

Lu j μ j = 0.

So, the map π : �1(M)n → MVect(M,μμμ)∗ descends to a surjective linear map

π : �1(M)n/δ(dC∞(M)) → MVect(M,μμμ)∗.

We need to show that the latter is injective. This is based on the following.

Proposition 3.11 For any choice of a Riemannian metric on M, any coset [ααα] ∈
�1(M)n/δ(dC∞(M)) has a unique (“co-closed”) representative ααα ∈ �1(M)n such that

d∗
n∑
j=1

ρ jα j = 0, (16)

where ρ j := μ j/volM.

Proof This is equivalent to saying that for any ααα ∈ �1(M)n there exists a function f ∈
C∞(M), unique up to an additive constant, such that

d∗
n∑
j=1

ρ j (α j + d f ) = 0 ⇔ d∗
⎛
⎝d f +

n∑
j=1

ρ jα j

⎞
⎠ = 0 ⇔ � f = −d∗

n∑
j=1

ρ jα j .

This is a Poisson equation on f whose solution is unique up to an additive constant, as
needed. ��
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Returning to the proof of Proposition 3.10, given [ααα] ∈ �1(M)n/δ(dC∞(M)), [ααα] �= 0,
consider its representative ααα satisfying (16) for some Riemannian metric on M . Then the
multiphase vector field ααα� satisfies (13), so ααα� ∈ MVect(M,μμμ). Furthermore, we have

〈
π([ααα]),ααα�

〉 =
n∑
j=1

∫
M

(
α

�
j , α

�
j

)
μ j > 0,

and hence π([ααα]) �= 0. So π is indeed injective, as needed. ��
In what follows we make an identification MVect(M,μμμ)∗ � �1(M)n/δ(dC∞(M)).

Accordingly, the smooth dual of the algebroid MVect(M) is the trivial vector bundle

MVect(M)∗ =
⋃

μμμ∈MDens(M)
MVect(M,μμμ)∗ = (

�1(M)n/δ(dC∞(M))
) × MDens(M)

over the space of multiphase densities MDens(M).
An important property of the smooth dual MVect(M,μμμ)∗ = �1(M)n/δ(dC∞(M)) is

that this subspace of the full dual space “separates points”, meaning that for any non-zero
uuu ∈ MVect(M,μμμ) there exists [ααα] ∈ MVect(M,μμμ)∗ such that 〈[ααα],uuu〉 �= 0 (indeed, one
can take ααα := uuu	). This is equivalent to saying that MVect(M,μμμ) injects into the dual of its
smooth dual, which is needed for the Poisson bracket onMVect(M)∗ to be well-defined. This
Poisson bracket is described in the next section. For thiswe describe the tangent and cotangent
spaces to MVect(M)∗. First we note that sinceMVect(M)∗ is a trivial vector bundle, we have
the following natural splitting of its tangent space.

Proposition 3.12 There is a natural splitting

T[ααα],μμμMVect(M)∗ � MVect(M,μμμ)∗ ⊕ TμμμMDens(M). (17)

3.4 Poisson bracket on the dual algebroid

In this section we show that formula (9) gives a well-defined Poisson bracket onMVect(M)∗.
For this we need to describe the cotangent space to MVect(M)∗ and we start by defining the
cotangent space to the base, T ∗

μμμMDens(M).

Definition 3.13 The smooth cotangent space T ∗
μμμMDens(M) is the quotient

C∞
0 (M)n / δ(C∞

0 (M)), where C∞
0 (M) := C∞(M) / R, and δ : C∞

0 (M) → C∞
0 (M)n

is the diagonal embedding h �→ (h, . . . , h). The pairing between a coset [ fff ] ∈
C∞
0 (M)n / δ(C∞

0 (M)) and a tangent vector ξξξ ∈ TμμμMDens(M) (i.e. a collection (ξ1, . . . , ξn)

of top-degree forms on M such that
∑n

j=1 ξ j = 0, see Lemma 3.8) is given by

〈[ fff ], ξξξ 〉 :=
n∑
j=1

∫
M

f jξ j .

(The right-hand side does not depend on the choice of a representative fff ∈ [ fff ] thanks to
the zero sum condition on ξξξ . The integral

∫
M f jξ j is well-defined for f j ∈ C∞

0 (M) since∫
M ξ j = 0.)

Now we define the cotangent space to MVect(M)∗ by dualizing splitting (17).

Definition 3.14 Let ([ααα],μμμ) ∈ MVect(M)∗. Then the smooth cotangent space toMVect(M)∗
at ([ααα],μμμ) is

T ∗[ααα],μμμMVect(M)∗ := MVect(M,μμμ) ⊕ T ∗
μμμMDens(M), (18)
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where the second summand is the smooth cotangent space.

Further, we define the notion of a differentiable function on MVect(M)∗. Roughly speak-
ing, a function is differentiable if it has a differential belonging to the smooth cotangent
space.

Definition 3.15 A functionF : MVect(M)∗ → R is differentiable if there exists a section dF
of the smooth cotangent bundle T ∗MVect(M)∗ such that for any smooth curve ([ααα](t), μ(t))
in MVect(M)∗ one has

d

dt
F ([ααα](t),μμμ(t)) =

〈
dF ([ααα](t),μμμ(t)) ,

(
d

dt
[ααα](t), d

dt
μμμ(t)

)〉
.

Using splitting (18), we decompose dF([ααα]) for [ααα] ∈ MVect(M,μμμ)∗ into the fiber and
base parts:

dF ([ααα],μμμ) =
(
dFF ([ααα],μμμ) , dBF ([ααα],μμμ)

)
,

where

dFF ([ααα],μμμ) ∈ MVect(M,μμμ), dBF ([ααα],μμμ) ∈ T ∗
μμμMDens(M) = C∞

0 (M)n / δ(C∞
0 (M)).

Theorem 3.16 LetF1,F2 : MVect(M)∗ → R be differentiable functions. Then their Poisson
bracket reads

{F1,F2} = P(dF1, dF2),

where the value of the Poisson tensor P on two cotangent vectors

(uuu, [ fff ]), (vvv, [ggg]) ∈ T ∗[ααα],μμμMVect(M)∗ = MVect(M,μμμ) ⊕ T ∗
μμμMDens(M)

at a point ([ααα],μμμ) ∈ MVect(M)∗ is

P[ααα],μμμ ((uuu, [ fff ]), (vvv, [ggg])) =
n∑
j=1

∫
M

(−dα j (u j , v j ) + Lu j g j − Lv j f j
)
μ j . (19)

Here ααα ∈ �1(M)n is an arbitrary representative of the coset [ααα].
Remark 3.17 Equivalently, this bracket can be written in the form, similar to a Lie–Poisson
bracket with additional terms:

P[ααα],μμμ ((uuu, [ fff ]), (vvv, [ggg]))

=
n∑
j=1

∫
M

(
αi ([u j , v j ]) + Lv j

(
iu j α j − f j

) − Lu j

(
iv j α j − g j

))
μ j . (20)

Proof of Theorem 3.16 Formulas (19) and (20) are equivalent to each other. To see this, rewrite
the first term in (20) using the formula i[u,v] = [Lu, iv]. So, it suffices to derive (20).

Since the bracket (14) on sections of MVect(M) has the same form as for an action
algebroid, we can compute the Poisson bracket in the dual using formula (10). This gives

{F1,F2} ([ααα],μμμ) = 〈ααα,
[
dFF1([ααα],μμμ), dFF2([ααα],μμμ)

]
〉 + q(F1,F2) − q(F2,F1), (21)

Here and below the pairing 〈 , 〉 between multiphase forms and multiphase vector fields is
given by (15), and the commutator of multiphase vector fields is defined component-wisely.
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To compute the q(Fk,Fl) terms we extend [ααα] to a constant section A : MDens(M) →
MVect(M), A(μμμ) := [ααα] of the trivial vector bundle MVect(M)∗. Also, letUk be the section
of MVect(M) given by Uk := dFFk(A). Then formula (11) gives

q(Fk,Fl) := 〈ααα,L#Uk (μμμ)Ul〉 + L#Uk (μμμ) (Fl ◦ A) − L#Uk (μμμ)〈A,Ul〉. (22)

Now, take any curveμμμk(t) ∈ MDens(M) such thatμμμk(0) = μμμ, and the tangent vector to
μμμk(t) atμμμ is #Uk(μμμ). Then, using that A is a constant section, we get

L#Uk (μμμ) (Fl ◦ A) = d

dt

∣∣∣∣
t=0

Fl(A(μμμk(t))) = 〈dBFl([ααα],μμμ), #Uk(μμμ)〉. (23)

Further, we have

L#Uk (μμμ)〈A,Ul〉 = d

dt

∣∣∣∣
t=0

〈
A(μμμk(t)),Ul(μμμk(t))

〉 = d

dt

∣∣∣∣
t=0

n∑
j=1

∫
M

(
iUl (μμμk (t)) j α j

)
μk(t) j

=
n∑
j=1

∫
M

(
i d
dt

∣∣∣
t=0

Ul (μμμk (t)) j
α j

)
μk(t) j

+
n∑
j=1

∫
M

(
iUl (μμμk (t)) j α j

) d

dt

∣∣∣∣
t=0

μk(t) j

= 〈
ααα,L#Uk (μμμ)Ul

〉 + 〈
iUl (μμμ)ααα, #Uk(μμμ)

〉
.

Substituting this, along with (23), into (22), we get

q(Fk,Fl) :=
〈
dBFl([ααα],μμμ) − iUl (μμμ)ααα, #Uk(μμμ)

〉
.

Finally, plugging this into (21) and using that Ul(μμμ) = dFFl([ααα],μμμ), one gets (20). ��
Corollary 3.18 The Hamiltonian operator

P�
[ααα],μμμ : T ∗[ααα],μμμMVect(M)∗ → T[ααα],μμμMVect(M)∗

corresponding to the Poisson bracket onMVect(M)∗ is given by

(uuu, [ fff ]) �→ (−[iuuudααα] − [d fff ],−Luuuμμμ). (24)

(Note that the coset [d fff ] of d fff in �1(M)n/dC∞(M) does not depend on the choice of a
representative fff in the coset [ fff ] ∈ C∞

0 (M)n/δ(C∞
0 (M)).)

Proof By definition, we have

〈(vvv, [ggg]),P�
[ααα],μμμ(uuu, [ fff ])〉 = P[ααα],μμμ ((uuu, [ fff ]), (vvv, [ggg]))

=
n∑
j=1

∫
M

(−dα j (u j , v j ) + Lu j g j − Lv j f j
)
μ j

= 〈−[iuuudααα] − [d fff ],vvv〉 − 〈Luuuμμμ, [ggg]〉.
The result follows. ��
Remark 3.19 Using Proposition 4.6 below, the Hamiltonian operator (24) can be rewritten in
terms of the anchor map # : MVect(M) → TMDens(M), as follows:

(uuu, [ fff ]) �→ (−[iuuudααα] − #∗[ fff ], #uuu),
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which agrees with the corresponding operator for the motion of vortex sheets, see [12, Corol-
lary 6.27].

4 Dynamics of multiphase fluids

4.1 Geodesic and Hamiltonian framework for multiphase fluids

In this section, M is a compact connected oriented manifold without boundary endowed with
a Riemannian metric (, ) and the corresponding Riemannian volume form volM . We define a
metric 〈 , 〉L2 on the Lie algebroid MVect(M) as follows: for uuu,vvv ∈ MVect(M,μμμ), one has

〈uuu,vvv〉L2 :=
n∑
j=1

∫
M

(u j , v j )μ j . (25)

Proposition 4.1 1. The inertia operator I associated with the L2-metric 〈 , 〉L2 on
MVect(M) takes values in the smooth dual MVect(M)∗. For uuu ∈ MVect(M,μμμ), one
has I(uuu) = [uuu	], where

uuu	 := (u	
1, . . . , u

	
n),

u	
j denotes the 1-form dual to the vector field u j with respect to the Riemannian metric

(, ) on M, and [uuu	] stands for the coset of uuu	 in �1(M)n / δ(dC∞(M)).
2. The inertia operator I : MVect(M) → MVect(M)∗ is an isomorphism of vector bundles.

Proof By definition of the inertia operator, for uuu,vvv ∈ MVect(M,μμμ), one has

〈I(uuu),vvv〉 = 〈uuu,vvv〉L2 =
n∑
j=1

∫
M

(u j , v j )μ j =
n∑
j=1

∫
M
iv j u

	
j μ j .

This means that the functional I(uuu) coincides with the functional represented by the coset
of uuu	 ∈ �1(M)n , proving the first statement.

The second statement, i.e. invertibility of the inertia operator, is equivalent to saying
that the equation [uuu	] = [ααα] has a unique solution uuu ∈ MVect(M,μμμ) for any coset [ααα] ∈
MVect(M,μμμ)∗. Written in terms of the form ααα := uuu	, the condition uuu ∈ MVect(M,μμμ)

translates to (16). (Indeed, the defining condition (13) of MVect(M,μμμ) is equivalent to
(7), which, in turn, is equivalent to (16) since the divergence of a vector field is the same
as the co-differential of its metric dual form.) So, the result follows from Proposition 3.11.
Explicitly, we have I−1([ααα]) = ααα�, where ααα is the coset representative satisfying (16). ��

Since the inertia operator is invertible, we also obtain an L2-metric on MVect(M)∗, and
the corresponding Euler–Arnold Hamiltonian

H ([ααα],μμμ) := 1

2

n∑
j=1

∫
M

(α j , α j ) μ j ,

where ααα ∈ [ααα] is a representative satisfying (16).

123



Geometry of generalized fluid flows Page 21 of 30     3 

Theorem 4.2 The Euler–Arnold equation corresponding to the L2-metric on MVect(M)

written in terms of a coset [ααα] ∈ MVect(M,μμμ)∗ reads⎧⎨
⎩

∂t [ααα] + [iuuudααα + 1

2
diuuuααα] = 0 , (26a)

∂tμμμ = −Luuuμμμ , (26b)

where ααα ∈ [ααα] is the representative satisfying (16), and uuu := ααα� ∈ MVect(M,μμμ). It is a
Hamiltonian equation on the algebroid dualMVect(M)∗ with respect to the natural Poisson
structure described above and the energy Hamiltonian function H.

Remark 4.3 Note that for a single phase fluid (n = 1), the Eqs. (26) are equivalent to ∂t [α]+
[iudα] = 0, and therefore to the Euler equation ∂t [α] + Lu[α] = 0.

Proof of Theorem 4.2 It suffices to compute dH([ααα],μμμ) and apply the Hamiltonian operator.
Let ([ααα](s),μμμ(s)) be an arbitrary smooth curve inMVect(M)∗ = (�1(M)n / δ(dC∞(M)))×
MDens(M) with [ααα](0) = [ααα] and μμμ(0) = μμμ. Let also ααα(s) ∈ [ααα](s) be the representative
satisfying (16). Then

d

ds

∣∣∣∣
s=0

H([ααα](s),μμμ(s)) = 1

2

d

ds

∣∣∣∣
s=0

n∑
j=1

∫
M

(α j (s), α j (s))μ j (s)

=
〈
uuu,

d

ds

∣∣∣∣
s=0

[ααα](s)
〉
+ 1

2

n∑
j=1

∫
M

(α j (s), α j (s))
d

ds

∣∣∣∣
s=0

μ j (s),

implying that

dFH([ααα],μμμ) = uuu, dBH([ααα],μμμ) = 1

2
[(ααα,ααα)].

Now, to get (26), it suffices to apply the Hamiltonian operator (24), ending the proof. ��
Theorem 4.4 The Euler–Arnold equations corresponding to the L2-metric on MVect(M)

written in terms of the fluid velocities uuu := I−1([ααα]) ∈ MVect(M) read
{

∂t u j + ∇u j u j = −∇ p, (27a)

∂tμ j = −Lu j μ j , (27b)

where the pressure p ∈ C∞(M) is common for all phases and is defined uniquely up to an
additive constant by Eqs. (27) supplemented by the condition

n∑
j=1

Lu j μ j = 0. (28)

Equivalently, Eqs. (27) describe the velocity along a geodesic for the L2 metric on a source
fiber of the groupoidMDiff(M).

Proof Equation (27b) was already established by Theorem 4.2, so it suffices to derive (27a).
The latter rewrites as

∂tα j + iu j dα j + 1

2
diu j α j = d f ,
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where ααα ∈ [ααα] is the representative satisfying (16), and f ∈ C∞(M) does not depend on i .
Equivalently, this can be written as

∂tα j + Lu j α j − 1

2
diu j α j = d f .

Taking the metric dual vector field and applying the formula (Luu	 − 1
2d(u, u))� = ∇uu, we

get

∂tuuu + ∇uuuuuu = ∇ f ,

which is equivalent to (27a) for p = − f .
Now, we show that the pressure p can be expressed, using conditions (27) and (28), in

terms of velocity fields u j and densities μ j (up to an additive constant). Let ρ j := μ j/volM .
Then, from (27a), we get

−∇ p = −
⎛
⎝ n∑

j=1

ρ j

⎞
⎠∇ p = −

n∑
j=1

ρ j∇ p =
n∑
j=1

ρ j (∂t u j + ∇u j u j ).

Taking divergence, we get

− �p = div
n∑
j=1

ρ j (∂t u j + ∇u j u j ). (29)

Furthermore, (28) can be rewritten as

div
n∑
j=1

ρ j u j = 0,

so (29) rewrites as

− �p = div
n∑
j=1

(ρ j∇u j u j − (∂tρ j )u j ). (30)

Also, (26b) is equivalent to

∂tρ j = −div (ρ j u j ),

so (30) becomes

−�p = div
n∑
j=1

(ρ j∇u j u j + div (ρ j u j )u j ),

cf. (4). This is a Poisson equation on p, so the function p is indeed uniquely determined by
u j , μ j up to an additive constant. (Note that for n = 1 the second term in the right-hand side
vanishes and one gets the standard equation for the pressure −�p = div∇uu.) ��

Recall that for a fluid velocity field u, the corresponding vorticity is the 2-form ω := du	.
For an n-tuple of vector fields uuu ∈ MVect(M), the vorticity is an n-tuple

ω j := du	
j .
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Corollary 4.5 (Generalized Kelvin’s theorem) For a multiphase fluid, the vorticity of each
phase is transported by the corresponding velocity field:

∂tω j + Lu j ω j = 0.

Proof Take the exterior derivative of both sides in (26a). ��
In particular, vorticities remain in the same diffeomorphism class during the Euler–Arnold

evolution. Furthermore, solutions for potential initial conditions remain potential for all times,
as they correspond to the vanishing initial vorticity, which always remains zero thanks to the
corollary above. In the next section we discuss properties of potential solutions in detail.

4.2 Potential solutions as geodesics on the space of multiphase densities

Now, we apply Proposition 2.14 to obtain a geodesic description of potential solutions.

Proposition 4.6 Let [ fff ] ∈ T ∗
μμμMDens(M) (recall that the latter space is C∞

0 (M)n/

δ(C∞
0 (M))). Then its image under the map #∗ : T ∗

μμμMDens(M) → MVect(M,μμμ)∗ is given
by

#∗[ fff ] := [d fff ].
(Note that the coset [d fff ] of d fff in �1(M)n/δ(dC∞(M)) does not depend on the choice of
a representative fff in the coset [ fff ] ∈ C∞

0 (M)n/δ(C∞
0 (M)).)

Proof Let [ fff ] ∈ T ∗
μμμMDens(M), and let uuu ∈ MVect(M,μμμ). Then

〈
#∗[ fff ],uuu〉 = 〈[ fff ], #uuu〉 = −

n∑
j=1

∫
M

f jLu j μ j =
n∑
j=1

∫
M

(iu j d f j ) μ j = 〈d fff ,uuu〉.

The result follows. ��
It follows that the vector field vvv := I−1(#∗[ fff ]) = I−1([d fff ]) has the multiphase gradient

formvvv = ∇ fff := (∇ f1, . . . ,∇ fn). Thismeans that the symplectic leaf #∗(T ∗MDens(M)) ⊂
MVect(M)∗ is metric dual to velocity fields of potential motions of a multiphase fluid.

Theorem 4.7 1. Potential solutions of Eqs. (27) of a multiphase fluid are geodesics of a
metric 〈 , 〉MDens onMDens(M) induced by the productWassersteinmetric on the ambient
space Densc1(M) × · · · × Denscn (M), where Densc(M) is the space of positive smooth
densities on M with total mass c.

2. For any multiphase density μμμ ∈ MDens(M) the groupoid target mapping
trg : (MDiff(M)μμμ, 〈 , 〉L2) → (MDens(M), 〈 , 〉MDens) is a Riemannian submersion,
see Fig.2. Here 〈 , 〉L2 is the restriction of the right-invariant source-wise metric on
MDiff(M) corresponding to the L2-metric on MVect(M).

Remark 4.8 Recall that the Wasserstein metric on the space Densc(M) of densities of fixed
total volume c on M is defined as follows: for any tangent vector ξ ∈ TμDensc(M) its square
length is

〈ξ, ξ 〉W := inf
{〈u, u〉L2 | u ∈ Vect(M), Luμ = ξ

} = 〈∇ f ,∇ f 〉L2 ,

where f ∈ C∞(M) is such that L∇ f μ = ξ .
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Proof of Theorem 4.7 We first prove the existence of a metric 〈 , 〉MDens with desired proper-
ties, and then show that it is induced by the Wasserstein metric. To prove existence, we use
Proposition 2.14.

To apply that proposition we need to show that MVect(M) = Ker# ⊕ (Ker#)⊥. Take any
uuu ∈ MVect(M,μμμ). Consider functions fff = ( f1, ..., fn) satisfying Lu j μ j = L∇ f j μ j (con-
struction of such functions boils down to the solution of the Poisson equation div ρ j∇ f j =
div ρ j u j on f j ). Then one has

uuu = (uuu − ∇ fff ) + ∇ fff . (31)

Notice thatLu j−∇ f j μ j = 0, souuu−∇ fff ∈ Ker#. Furthermore, Ker# consists of all multiphase
vector fields uuu ∈ MVect(M,μμμ) which satisfy the divergence-free condition Lu j μ j = 0 and
hence are orthogonal to multiphase gradients with respect to the metric (25). In particular,
we have ∇ fff ∈ (Ker#)⊥. Thus we obtain a decomposition MVect(M) = Ker# ⊕ (Ker#)⊥,
and hence, by Proposition 2.14, a metric 〈 , 〉MDens with the listed properties.

To show that the metric 〈 , 〉MDens is induced by the Wasserstein metric, observe from
(31) that the map #−1 : TμμμMDens(M) → (Ker#)⊥ is given by #−1(ξξξ) = ∇ fff where the
multiphase function fff is found from the requirement ξ j = L∇ f j μ j . Plugging this into (12),
we see that the metric 〈 , 〉MDens computed on any ξξξ ∈ TMDens(M) is indeed the product
Wasserstein metric, as needed. ��

Recall that MDiff(M,μμμ) is the configuration space of a multiphase fluid. The motion
of the fluid follows the geodesics of the 〈 , 〉L2 -metric on the space MDiff(M). Potential
solutions thus correspond to horizontal (with respect to the target mapping) geodesics.

Remark 4.9 The metric 〈 , 〉MDens constructed above can also be defined as follows:

〈ξξξ, ξξξ 〉MDens = inf
{〈uuu,uuu〉L2 | uuu ∈ MVect(M,μμμ), #uuu = ξξξ

}
for any ξξξ ∈ TμμμMDens(M). This directly follows from its Riemannian submersion property.

Remark 4.10 The Riemannianmetric onMDens(M)makes the latter into ametric space with
the distance between multiphase densities μμμ and μ̃μμ satisfying the following inequality:

dist2MDens(μμμ,μ̃μμ) ≥
n∑
j=1

dist2W (μ j , μ̃ j ),

where distW is the Wasserstein distance on Dens(M). In particular, the distance function
distMDens is non-degenerate (i.e. distMDens(μμμ,μ̃μμ) > 0 wheneverμμμ �= μ̃μμ).

5 Groupoid of generalized flows

The above consideration can be extended to the case of “continuous” index i , i.e. tomultiphase
flows where phases are enumerated by a continuous parameter a which belongs to a measure
space A. Below we adapt all the above definitions and statements to that setting, while the
proofs are valid mutatis mutandis.

Consider a closed compact manifold M with a fixed volume form volM and a measure
space Awith a fixed function ca : A → R. The base of the Lie groupoidGDiff(M) of volume-
preserving generalized diffeomorphisms is the space GDens(M) of generalized densities, i.e.
sets of densitiesμμμ := {μa ∈ Dens(M) | a ∈ A} satisfying the conditions: allμa are positive,
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have prescribed masses ca , i.e.
∫
M μa = ca , and they together constitute the volume form

volM , i.e.

∫
A

μa da = volM (32)

at each point of M . (Here and in what follows we assume that the dependence of all objects
on a ∈ A is such that the integrals below are well-defined. A particular example of such a
setting is described in Remark 5.1.) Nowone can think of those densities as a set A of different
fractions of an incompressible fluid, penetrating through each other without resistance.

The elements of GDiff(M) are sets of diffeomorphisms φφφ := {φa ∈ Diff(M) | a ∈ A}
of M preserving the above property of incompressibility of generalized densities, i.e. the set
of tuples (φφφ;μμμ,μμμ′) := {(φa;μa, μ

′
a) | a ∈ A} with generalized forms μμμ,μμμ′ ∈ GDens(M)

such that φφφ∗μμμ = μμμ′ component-wisely, i.e. φa∗μa = μ′
a for each a ∈ A. The source, target

and multiplication (i.e. composition) of such triples is given exactly as before.
Similarly, the space of velocities for a generalizedfluid, i.e. theLie algebroidGVect(M) →

GDens(M) corresponding to the Lie groupoid GDiff(M), is a vector bundle with the fol-
lowing structure. Its fiber of GVect(M) overμμμ ∈ GDens(M) is the space GVect(M,μμμ) that
consists of generalized vector fields on M of the form uuu := {ua | a ∈ A} with ua ∈ Vect(M)

that are “divergence-free” with respect to the generalized volume form:
∫
A Luaμa da = 0.

The corresponding anchor map # : GVect(M,μμμ) → TμμμGDens(M) is given by the negative
Lie derivative, uuu �→ −Luuuμμμ := {−Luaμa | a ∈ A}, and the algebroid bracket is given by
the same formula (14). The tangent space TμμμGDens(M) is the space of generalized forms
ξξξ satisfying the two conditions:

∫
A ξa da = 0 on M and

∫
M ξa = 0 for all a ∈ A (cf.

Lemma 3.8).

Remark 5.1 In the case when A is a manifold and the dependence of all objects on a ∈ A is
smooth, the above setting can also be reformulated as follows. Consider compact manifolds
M and A with fixed volume forms volM and volA respectively. The base of the Lie groupoid
GDiff(M) is the space GDens(M) of doubly stochastic measures on M× Awith everywhere
positive smooth density, i.e. volume forms μμμ ∈ Dens(M × A) such that (πM )∗μμμ = volM
and (πA)∗μμμ = volA, where πM and πA are projections to M and A respectively. The above
description of GDens(M) is then recovered by viewing a doubly stochastic measure μμμ as a
collection of measures μa parametrized by a ∈ A which have fixed volumes (defined by the
measure volA) and add up to the measure volM .

The elements of the groupoid GDiff(M) in this language are horizontal diffeomorphisms
φφφ ∈ Diff(M × A) which take one doubly stochastic measure to another. More precisely,
GDiff(M) is the set of triples (φφφ;μμμ,μμμ′) where φφφ ∈ Diff(M × A) is of the form (x, a) �→
(φa(x), a) and mapsμμμ ∈ GDens(M) toμμμ′ ∈ GDens(M), i.e. φφφ∗μμμ = μμμ′.

TheLie algebroidGVect(M) → GDens(M) corresponding to theLie groupoidGDiff(M)

is a vector bundle with the following structure. Its fiber of GVect(M) over μμμ ∈ GDens(M)

is the space GVect(M,μμμ) that consists of vector fields uuu ∈ Vect(M × A) which are hor-
izontal (i.e. tangent to fibers of the projection πA) and “divergence-free" in the sense that
(πM )∗Luuuμμμ = 0.

The anchor map # : GVect(M,μμμ) → TμμμGDens(M) in the algebroid GVect(M) is given
by the negative Lie derivative, uuu �→ −Luuuμμμ, and the algebroid bracket is given by the same
formula (14). The tangent space TμμμGDens(M) is the space of top-degree forms ξξξ on M × A
such that (πM )∗ξξξ = 0 and (πA)∗ξξξ = 0.
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Returning to the general case of a measure space A, the smooth dual GVect(M,μμμ)∗ of
the space GVect(M,μμμ) is defined as the quotient

GVect(M,μμμ)∗ := �1(M)A/δ(dC∞(M)),

where�1(M)A stands for functions A → �1(M). The elements of GVect(M,μμμ)∗ are cosets

[ααα] := {αa + d f | f ∈ C∞(M)},
where all 1-forms αa ∈ �1(M) in one coset differ by the same function differential. The
pairing between a coset [ααα] ∈ GVect(M,μμμ)∗ and a generalized vector fielduuu ∈ GVect(M,μμμ)

is given by the formula:

〈[ααα],uuu〉 :=
∫
A

∫
M

αa(ua) μa da.

As before, the dual algebroid is the total space

GVect(M)∗ :=
⋃

μμμ∈GDens(M)
GVect(M,μμμ)∗,

which is a trivial vector bundle over the space of generalized densities GDens(M).
The dual algebroid is a Poisson bundle, and the Poisson bracket on this space is given by

a formula analogous to (19). As a corollary, we obtain the Hamiltonian operator

P�
[ααα],μμμ : T ∗[ααα],μμμGVect(M)∗ → T[ααα],μμμGVect(M)∗

corresponding to the Poisson bracket on GVect(M)∗ given by the same formula (24):

(uuu, [ fff ]) �→ (−[iuuudααα] − [d fff ],−Luuuμμμ).

To describe geodesics on the space of generalized solutions we equip the manifold M with
a Riemannian metric (, ) whose Riemannian volume form is volM . As before, to simplify
the exposition, M is a compact connected oriented manifold without boundary, although the
results extend to noncompact M by imposing appropriate decay assumptions.

The 〈 , 〉L2 metric on the Lie algebroid GVect(M) is as follows: for uuu,vvv ∈ GVect(M,μμμ),
one has

〈uuu,vvv〉L2 :=
∫
A

∫
M

(ua, va) μa da. (33)

The inertia operator I : GVect(M) → GVect(M)∗ associated with this L2-metric on
GVect(M) is as follows. For uuu ∈ GVect(M,μμμ) one has I(uuu) = [uuu	], where uuu	 := {u	

a | a ∈
A}. Here u	

a is the 1-form metric-dual to the vector field ua on M , and [uuu	] stands for the
coset of uuu	 in �1(M)A / δ(dC∞(M)).

The corresponding Euler–Arnold Hamiltonian on GVect(M)∗ is

H ([ααα],μμμ) := 1

2

∫
A

∫
M

(αa, αa) μa da,

where ααα ∈ [ααα] is a representative satisfying the following co-closedness type condition:

d∗
∫
A

ρaαa da = 0, (34)

for ρa := μa/volM (this is just the condition (3) written in terms of the multiform ααα = uuu	).
With this adjustment of notations the following theorem literally repeats Theorem 4.2 and
provides the Hamiltonian framework for generalized flows:
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Theorem 5.2 The Euler–Arnold equation for generalized flows corresponding to the L2-
metric on GVect(M) written in terms of a coset [ααα] ∈ GVect(M,μμμ)∗ reads{

∂t [ααα] + [iuuudααα + 1
2diuuuααα] = 0,

∂tμμμ = −Luuuμμμ,

where ααα ∈ [ααα] is the representative satisfying (34), and uuu := ααα� ∈ GVect(M,μμμ). It is a
Hamiltonian equation on the algebroid dual GVect(M)∗ with respect to the natural Poisson
structure described above and the energy Hamiltonian function H.

Let us rewrite explicitly the Euler–Arnold equations in terms of fluid velocities of gener-
alized flows.

Theorem 5.3 The Euler–Arnold equations corresponding to the L2-metric on GVect(M)

written in terms of the fluid velocities uuu and density ρa = μa/volM coincide with generalized
flow equations (1.13)–(1.15) of [6]:{

∂t (ρaua) + div (ρaua ⊗ ua) + ρa∇ p = 0, (35a)

∂tρa + div (ρaua) = 0, (35b)

subject to the constraint
∫
A ρa da = 1, where the pressure p ∈ C∞(M) is common for all

phases and is defined uniquely up to an additive constant by these equations.
Equivalently, the generalized flow Eqs. (35a)–(35b) describe the velocity along a geodesic

for the L2 metric on a source fiber of the groupoid GDiff(M).

Proof The constraint
∫
A ρa da = 1 follows from (32) and the definition ρa = μa/volM of the

density function. Using Theorem 5.2 and the same argument as in the proof of Theorem 4.4,
one gets the equations {

∂t ua + ∇ua ua = −∇ p, (36a)

∂tμa = −Luaμa . (36b)

Clearly, (36b) is equivalent to (35b), so it only remains to derive (35a). Using (35b) and
(36a), we obtain

∂t (ρaua) = (∂tρa)ua + ρa(∂t ua) = −div (ρaua)ua − ρa(∇ua ua + ∇ p)

= −(div (ρaua)ua + ∇ρaua ua) − ρa∇ p = −div (ρaua ⊗ ua) − ρa∇ p,

where the last equality follows from the identity div (u ⊗ v) = div (u)v + ∇uv. Thus, (35a)
is equivalent to (36a), as required. ��
Remark 5.4 The quantity mmm := ρρρuuu	 = {ρau	

a | a ∈ A} has the physical meaning of the
momentum. In terms of momentum the metric (33) assumes a simpler form 〈uuu,vvv〉L2 =∫
A

∫
M ma(va) volM da and the Eqs. (35a)–(35b) are often written on ma , cf. [6].

6 Open problems

Arnold’s original insight in [1] uncovered the geometry behind the hydrodynamic Euler
equation: for an ideal fluid confined to a fixed domain the Euler equation describes the
geodesic flow for the energy metric on the Lie group of volume-preserving diffeomorphisms
of that domain. The analytical part of this approach is due to Ebin and Marsden [11] who
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proved short-time existence in the setting of Sobolev spaces Hs , where s is sufficiently large
(s > dim M/2 + 1).

The present paper can be regarded as an analogue of Arnold’s take by providing the
geometric framework of Lie groupoids, instead of Lie groups, for the Euler equation for
multiphase fluids and generalized flows. We hope that it will encourage the appearance of
necessary analytical setting, in the form of existence theorems in appropriate Sobolev or tame
Fréchet spaces.

Here we summarize several open problems motivated by the groupoid approach:

– Provide an analytic framework and existence theorems for the Euler equation for multi-
phase fluids and generalized flows, extending the Ebin–Marsden setting [11] from groups
to groupoids of diffeomorphisms.

– There are (at least) two different definitions of generalized flows, both suggested by
Brenier: the one discussed above, as a continuum version of multiphase flows [5, 6], and
the other via probabilistic measures on the space of all parametrized continuous paths
X = C([0, 1]; M) satisfying the incompressibility and finiteness of action conditions
[4], see also [2, 18]. Their equivalence is intuitively assumed but, to the best of our
knowledge, not written up. Once it is formally established, it would open new ways of
applying groupoids in probabilistic settings.

– There is a natural semigroup of continuous maps, in which fluid particles are allowed to
collide and stick to each other. In that setting compositions of maps are well-defined but
inversion is not, cf. [6], which seems to be an appropriate framework for the description
of shock waves in fluids. While there seem to be a projection from the diffeomorphism
groupoid to the semigroup of maps, the corresponding Hamiltonian picture for the semi-
group is rather obscure.

– In the appendix below we give a groupoid description of vortex sheets [12], which can
be thought of as the limiting case for the relaxed problem of evolution of homogenized
vortex sheets or miltiphase flows, see [5, 14]. It would be interesting to obtain a rigorous
treatment of this limiting procedure in the Lagrangian and Hamiltonian setting.

– Finally, it would be interesting to apply the framework of Euler–Arnold equations on Lie
groupoids, along with the corresponding Hamiltonian framework on Lie algebroid duals,
to other problems in mathematical physics, both in finite and infinite dimensions. This
approach seems natural in the situations where the group symmetry is not available, e.g.
fluids with dynamic boundary, a rigid body moving in a manifold, etc.

Acknowledgements We are indebted to the MFO Institute in Oberwolfach, Germany and its program of
Research in Pairs, where this work was completed. We are also grateful to the anonymous referee for various
suggestions improving the exposition. A.I. was supported by NSF Grant DMS-2008021. B.K. was partially
supported by an NSERC Discovery grant.

7 Appendix: Dynamics of classical vortex sheets

Classical vortex sheets can be thought of as a particular case (or, rather, as belonging to a clo-
sure) of multiphase fluids where the densities are indicator functions of open sets separated
by a hypersurface in a manifold M , see [12, 14]. Namely, the multiphase Lie groupoid in
that case becomes the Lie groupoid DSDiff(M) of volume-preserving diffeomorphisms of
M that are discontinuous along a hypersurface. The elements of the groupoid DSDiff(M) are
quadruples (�1, �2, φ

+, φ−), where�1, �2 ∈ VS(M) are hypersurfaces (vortex sheets) inM
confining the same total volume, while φ± : D±

�1
→ D±

�2
are volume-preserving diffeomor-
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Fig. 4 Elements of the groupoid DSDiff(M) and their composition rule

phisms between connected components of M\�i denoted by D+
�i

, D−
�i
. The multiplication

of the quadruples in DSDiff(M) is given by the natural composition of discontinuous dif-
feomorphisms and is shown in Fig. 4.

The correspondingLie algebroidDSVect(M) → VS(M) is the space of possible velocities
of a fluid with a vortex sheet, defined as follows. Given a vortex sheet �, the corresponding
velocities are discontinuous vector fields on M of the form u = χ+

� u+ + χ−
� u−, where

χ+
� , χ−

� are indicator functions of the connected components D±
� ofM\�, and u± are smooth

divergence-free vector fields on D±
� which have the same normal component on �. The

map from such vector fields u to their normal components on � is the anchor map # of
the corresponding algebroid. Via the general procedure described above one defines a right-
invariant L2-metric on this groupoid and constructs an analogue of the geodesic Euler–Arnold
equation.

Theorem 7.1 [12] The Euler–Arnold equation corresponding to the L2-metric on the alge-
broid DSVect(M) coincides with the the Euler equation for a fluid flow discontinuous along
a vortex sheet � ⊂ M: ⎧⎪⎨

⎪⎩
∂t u+ + ∇u+u+ = −∇ p+,

∂t u− + ∇u−u− = −∇ p−,

∂t� = #u,

(37)

where u = χ+
� u++χ−

� u− is the fluid velocity, div u± = 0, and p± ∈ C∞(D±
� ) are functions

satisfying the continuity condition p+|� = p−|� .
Equivalently, Euler Eq. (37) are geodesic equations for the right-invariant L2-metric on

(source fibers of) the Lie groupoid DSDiff(M) of discontinuous volume-preserving diffeo-
morphisms.

The above consideration also defines a metric on the space VS(M) of vortex sheets, while
the target map is a Riemannian submersion of the L2-metric on the groupoid of discontinuous
diffeomorphisms to the metric on VS(M), see [12, 14].

Remark 7.2 Themultiphase groupoid studied in Sect. 3.1 can be regarded as a relaxed version
of the vortex sheet groupoid as follows.Given a hypersurface� ⊂ M wedefine themultiphase
densityμμμ := (μ+, μ−) as a pair of indicator densities μ± = χ±volM for indicator functions
χ± of the connected components D±

� of M\�, and therefore satisfying the condition μ+ +
μ− = volM on M . Now, for a groupoid element (φφφ;μμμ,μμμ′) := (φ+, φ−;μ+, μ−, μ′+, μ′−)

the pair of diffeomorphisms φ± on M satisfying φ±∗μ± = μ′± for indicator densities μ′±
representing the connected components D±

�′ ofM\�′ boils down to a pair of volM -preserving
diffeomorphisms sending, respectively, D±

� to D±
�′ , i.e. � to �′ while preserving the volume

form volM on M .
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One can see that the definitions of the corresponding algebroids, their brackets and anchor
maps, as well as the corresponding Poisson structures and Hamiltonian equations are consis-
tent with taking this relaxed version and lead to the relation between the Euler equations (6)
and (37). It would be interesting to formally establish the convergence for the relaxed solu-
tions to the classical solutions with vortex sheets, cf. Sect. 6.
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