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GEOMETRY OF HIGHER HELICITIES

BORIS A. KHESIN

To Vladimir Igorevich Arnold on the occasion of his 65th birthday

Abstract. We revisit an interpretation of higher-dimensional helicities
and Hopf–Novikov invariants from the point of view of the Brownian
ergodic theorem. We also survey various results related to Arnold’s the-
orem on the asymptotic Hopf invariant on three-dimensional manifolds
and recent work on linking of a vector field with a foliation, the asymp-
totic crossing number, short path systems, and relations with the Calabi
invariant.
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1. Introduction

The helicity of a vector field in a three-dimensional space can be thought of as
a real-valued version of the integral-valued Hopf invariant for a continuous map
S3 → S2. The latter has two well-known definitions: topological or analytic ones.
Topologically, the Hopf invariant of a map S3 → S2 is defined as the linking number
in S3 of the curves which are preimages of two arbitrary generic points in S2.
Alternatively, the Hopf invariant can be defined as the integral∫

S3
ω ∧ d−1ω,

where a 2-form ω is the pullback to S3 of any area form on S2, normalized by the
condition that the area of S2 equals 1. The equivalence of these two definitions is
a manifestation of the Poincare duality.

The integral above can serve as a definition of an invariant for any exact 2-form
ω on S3 [1]. This invariant is called the helicity or asymptotic Hopf invariant of
the form ω (or of the corresponding divergence-free vector field, in the presence of a
volume form). It is invariant with respect to (volume-preserving) diffeomorphisms
of S3 and it is independent of the choice of a primitive d−1ω.

The asymptotic Hopf invariant is not necessarily an integer, if ω does not come
from a map of S3 to S2, as well as there is no straightforward analog of the homotopy

Received April 4, 2003.
Supported in part by the ESI, PREA, and NSERC research grants.

c©2003 Independent University of Moscow

989



990 B. KHESIN

invariance of the Hopf invariance for map after this generalization. However, its
importance is related to the fact that helicity of the vorticity field curl v is invariant
as a divergence-free field v evolves according to the Euler equation for an ideal 3D
fluid

∂tv + (v · ∇)v = −∇p.

In such a flow the field ξ = curl v satisfies the equation of “frozenness” in the ideal
fluid: ∂tξ = {v, ξ}, i. e., it is transported by domain diffeomorphisms. Similarly, in
the setting of magnetohydrodynamics, the magnetic field B in a perfectly conduct-
ing medium is transported by the medium flow: ∂tB = {v, B}, which implies the
preservation of its helicity.

In [1] Arnold showed that for an arbitrary exact 2-form ω its helicity integral
is equal to the asymptotic linking number of the trajectories of the divergence-free
vector field naturally associated with this form (in the presence of a fixed volume
form on S3).

This elegant result prompted numerous generalizations in the recent literature.
In this paper we relate to each other some of these new directions. In particular,
we give a Brownian ergodic description of higher helicities, inspired in part by the
paper [22] on Novikov’s invariants. We also survey various related results, mostly
concentrating on the new developments. A review and guide to the preceding
literature, as well as various tools and other details not covered in this paper, can
be found in [2], [20].

One of motivations for this paper was the recent discovery of the impact of
topological invariants of fluid flows on the characteristics of developed turbulence,
see [6]. One can hope that a better understanding of the topological nature of
ideal flows could explain the meaning and give more precise corrections to the
Kolmogorov exponents for correlators of the velocity field of a turbulent flow.

The topics covered in this note include a survey of the energy estimates for vector
fields in the three-dimensional case by means of helicity and asymptotic crossing
number [9], the modification of the latter for a solid torus and an ergodic meaning
of Calabi invariant [10], [12], as well as the short path problem [25]. For higher
dimensions we discuss the linking of a vector field with a foliation with transverse
invariant measure [16], [17], the mutual linking of several foliation with transverse
invariant measures, as well as an interpretation of the Hopf and Novikov invariants
[21], [16], [22] by means of the Brownian ergodic theorem for foliations [13].

2. What is Helicity?

Let M be a simply connected three-dimensional manifold with a volume form
µ, and ξ a divergence-free vector field on M . The divergence-free property means
that the Lie derivative of µ along ξ vanishes: Lξµ = 0, or, which is the same,
the substitution ωξ := iξµ of the field ξ to the volume form µ, is a closed 2-form:
dωξ = 0. On a simply connected manifold M (or, even, for an M with H1(M) = 0)
the latter implies that ωξ is exact: ωξ = dα for some 1-form α, called a potential (or,
primitive) 1-form. If M has boundary, we require ξ to be tangent to the boundary.
(If H1(M) 6= 0 for the manifold M , we confine ourselves to null-homologous fields
ξ, i. e., such fields that the 2-form ωξ is exact.)
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In this section we always follow [1] for the definitions and results, unless otherwise
is cited.

Definition 2.1. The helicity H(ξ) of a null-homologous field ξ on a three-dimen-
sional manifold M (possibly with boundary) equipped with a volume element µ is
the integral of the wedge product of the form ωξ := iξµ and its potential:

H(ξ) =
∫

M

ωξ ∧ d−1ωξ.

An immediate consequence of this definition is the following

Theorem 2.2 [1]. The helicity H(ξ) is preserved under the action on ξ of a volume-
preserving diffeomorphism of M .

Indeed, the helicity H(ξ) was defined without coordinates or metric. Hence,
H(ξ) is the same for all fields that differ only by a volume-preserving change of
coordinates. In this sense, helicity is a topological invariant.

The word “helicity” was coined by K. Moffatt in [19] and it reveals the topological
meaning of this characteristic of a vector field (see also [20] for a historical survey).

Example 2.3. In a simply connected domain M ⊂ R3 one can rewrite the helicity
of a field ξ (tangent to the boundary of M) as follows:

H(ξ) =
∫

M

(ξ, curl−1 ξ) d3x,

where ( , ) is the Euclidean inner product, and A = curl−1 ξ is a divergence-free
vector potential of the field ξ, i. e., ∇×A = ξ. (One can easily see that the integral
is independent of the choice of A defined up to an addition of a gradient ∇f .)

For instance, consider a divergence-free field ξ which is identically zero except
in two narrow flux tubes whose axes are two linked closed curves C1 and C2. Sup-
pose that there is no net twist within each tube or, more precisely, that the field
trajectories foliate each of the tubes into pairwise unlinked circles. Then one can
show (see [19]) that the helicity of such a field is given by

H(ξ) = 2 lk(C1, C2) · |Flux1| · |Flux2|,
where Fluxi is the magnetic flux of the field in the ith tube and lk(C1, C2) is the
linking number of C1 and C2.

Recall, that the (Gauss) linking number lk(C1, C2) of two oriented closed curves
C1, C2 in R3 is the signed number of the intersection points of one curve with an
arbitrary (oriented) surface spanning the other curve. If the curves Ci : S1 → R3

are parameterized by parameters in [0, 2π] the linking number can be given by the
following Gauss integral:

lk(C1, C2) =
1
4π

∫ 2π

0

∫ 2π

0

(Ċ1(t1)× Ċ2(t2), C1(t1)− C2(t2))
|C1(t1)− C2(t2)|3

dt1 dt2. (1)

V. Arnold proposed the following ergodic interpretation of helicity for any diver-
gence-free field as the average linking number of the field’s trajectories.

Let ξ be a divergence-free field on M and {gt : M → M} its phase flow. We will
associate to each pair of points in M a number that characterizes the “asymptotic
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Figure 1. The long segments of the trajectories are closed by the
“short paths”

linking” of the trajectories of the flow {gt} passing through these points. Given
any two points x1, x2 in M and two large numbers T1 and T2, we consider “long
segments” gtx1 (0 ≤ t ≤ T1) and gtx2 (0 ≤ t ≤ T2) of the trajectories of ξ issuing
from x1 and x2. Close up these long pieces by the shortest geodesics between gTkxk

and xk. We obtain two closed curves, ΓT1(x1) and ΓT2(x2); see Fig.1. Assume that
these curves do not intersect (which is true for almost all pairs x1, x2 and for almost
all T1, T2). Then the linking number lkξ(x1, x2; T1, T2) := lk(ΓT1(x1), ΓT2(x2)) of
the curves ΓT1(x1) and ΓT2(x2) is well-defined.

Definition 2.4. The asymptotic linking number of the pair of trajectories gtx1 and
gtx2 (x1, x2 ∈ M) of the field ξ is defined as the limit

λξ(x1, x2) = lim
T1,T2→∞

lkξ(x1, x2; T1, T2)
T1 · T2

,

where T1 and T2 are to vary so that ΓT1(x1) and ΓT2(x2) do not intersect.

It turns out that this limit exists (as an element of the space L1(M × M) of
the Lebesgue-integrable functions on M ×M) and is independent of the system of
geodesics (i. e., of the Riemannian metric), see Remark 2.6 below.

Theorem 2.5 [1]. Helicity of a divergence-free vector field ξ on a simply connected
manifold M with a volume element µ is equal to the average pairwise linking of tra-
jectories of this field, i. e., to the asymptotic linking number λξ(x1, x2) of trajectory
pairs integrated over M ×M :

H(ξ) =
∫

M

∫
M

λξ(x1, x2) µ1µ2.

Remark 2.6. In the original paper [1], instead of segments of shortest geodesics,
one considered “systems of short paths” between every two points of the manifold
M . These systems have to satisfy some conditions to provide the existence of
λξ(x1, x2) almost everywhere as a pointwise limit as T1, T2 → ∞. Such a system
of “short paths” would, generally speaking, depend on a vector field. In [25] T. Vogel
suggested to use the L1-convergence, rather than the pointwise one, and showed
that in the L1-approach it is sufficient to use the system of shortest geodesics for any
vector field, see Section 3.4. His approach settled in a universal way the existence
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question for the short paths systems. It might also shed some light on the following
long-standing problem.

Problem 2.7 [1]. Is the helicity of a divergence-free vector field invariant under
the action of homeomorphisms preserving the measure on the manifold? Here,
a measure-preserving homeomorphism is supposed to transform the flow of one
smooth divergence-free vector field into the flow of the other, both fields having
well-defined helicities.

The above problem is a counterpart of the homotopy invariance of the classical
Hopf invariant for maps π : S3 → S2. The latter (integral-valued) invariant is also
equal to the helicity of a vector field tangent to the levels of π (so that all orbits of
this field are closed).

The homeomorphism invariance was proved in [10] for a field in a solid torus
with nonzero longitude component. Note that for such a field there is an alter-
native definition of short path systems as paths that are “no longer than half
the circumference,” which is applicable after the action of a homeomorphism as
well, see the discussion in Section 3.4. One should also mention that the class of
measure-preserving homeomorphisms that are not diffeomorphisms is apparently
very limited, where just few examples are known [14].

Remark 2.8. Just like the two definitions of the Hopf invariant manifest the
Poincare duality, the ergodic interpretation of the helicity-type integrals in dimen-
sion three and higher can be thought of in similar terms. The “Poincare duality”
here is as follows. Consider foliations of codimension k with transverse holonomy-
invariant measure, and the corresponding Ruelle–Sullivan currents. (If the measure
is represented by a smooth form, the kernel distribution of the form spans the
foliation leaves.) The operations ∧ and d−1 on currents (or forms) correspond,
respectively, to the intersection and “filling” of the submanifolds. The final inte-
gration of a volume form over the ambient manifold corresponds to the total sum
of signed intersection points of submanifolds, similar to considering the definition
of linking. Thus, the invariants under consideration become properly understood
average linking numbers.

3. Three-Dimensional Ramifications

In this section we consider vector fields on three-dimensional manifolds.

3.1. Bilinear and multi-linear forms. The helicity can be thought of as a
quadratic form on divergence-free vector fields, as the explicit formula in Defi-
nition 2.1 shows. Similarly, one defines a symmetric form, the cross-helicity, for
two divergence-free vector fields:

H(ξ, η) =
∫

M

ωξ ∧ d−1ωη. (2)

Its value turns out to be equal to the asymptotic linking of the ξ- and η-trajecto-
ries [1].
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The bilinear form H(ξ, η) corresponds to the linking of curves in 3D. For links
with zero linking number there are higher invariants (Massey numbers, higher Mil-
nor numbers, etc.). However, the adaptation of the higher link invariants to con-
structing the corresponding functionals on divergence-free vector fields (or on exact
differential forms) requires much stronger assumptions than just vanishing of the
total helicity of a field, or vanishing of the cross-helicity for a pair of such fields.

Consider, for instance, the construction of a trilinear form on divergence-free
vector fields on a three-dimensional manifold [15]. Let ξj , j = 1, 2, 3, be three
(null-homologous) divergence-free vector fields on a compact manifold M with a
volume form µ. Consider the corresponding exact 2-forms ωj on M , defined by
iξj µ = ωj . Since these forms are exact, there are potential 1-forms αj such that
dαj = ωj .

Definition 3.1. Assume, in addition, that one can choose these potential 1-forms
αj in such a way that d(αi ∧ αj) = 0 for all pairs i, j = 1, 2, 3. Then the cross-
helicity of the three vector fields ξ1, ξ2, and ξ3 is the trilinear form

H(ξ1,2,3) =
∫

M

α1 ∧ α2 ∧ α3.

One can immediately see that this form is well-defined, i. e., it is independent of
the choice of the potential 1-forms αj satisfying the condition above.

Example 3.2. An example of such a triple of fields is given by a divergence-free
vector field confined to three solid tori which form a Borromean link and have no
net twist inside each of the tori. One can think of such a field as a triple, where
each of the three fields is supported in its own component. In this case, one can
choose the potential 1-forms αj satisfying d(αi ∧ αj) = 0. Note that since the
pairwise linking numbers of the components are zero, so are the cross-helicities for
each pair of the fields. The absence of the net twist in each solid torus implies
vanishing of the corresponding helicity. The trilinear form H(ξ1,2,3) distinguishes
the Borromean link from a trivial link, i. e., a set of three unlinked solitori, see [3].

Similarly, for the special class of fields confined to solid tori and without the
net twist, or, a little more general, for the fields satisfying similar to the above
restrictive conditions on their potentials, one can describe higher Massey numbers,
provided the preceding ones vanish, see the corresponding helicity-type integrals
in [4].

3.2. Energy estimates. One of the main sources of divergence-free vector fields
in physics are magnetic fields. Imagine a magnetic field frozen in an infinitely
conducting, but viscous medium. Then moving according to the system of the MHD
equations, the medium kinetic energy will be dissipating due to the fluid viscosity,
until it comes to a rest. The magnetic energy of the transported magnetic field
should tend to its minimal value during the evolution, as any energy excess beyond
the minimum would be converted to further motion, see [1].

It turns out that helicity of a divergence-free (magnetic) vector field is that it
bounds from below field’s (magnetic) energy, i. e., the square of its L2-norm in some
Riemannian metric. Namely, one has the following
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Theorem 3.3 [1]. For a divergence-free vector field ξ in a compact domain M∫
M

(ξ, ξ) dx3 ≥ c(M) · H(ξ),

where c(M) is a positive constant related to the shape and size of M .

The proof is a composition of the Schwarz inequality and the Poincare inequality,
applied to the potential field A := curl−1 ξ. (One can take the constant c(M) to
be reciprocal of the largest modulus of the curl−1 eigenvalues.) Below we discuss
several directions how to sharpen this result and, in particular, to extend it to fields
with zero helicity, where the above inequality is useless. For explicit estimates for
the constant c(M) for domains in R3, as well as a discussion of the geometry of
extremal vector fields we refer to [5].

Remark 3.4. In a sense, the above theorem gives an estimate of a geometric quan-
tity via topology. A geometric meaning of this inequality can be seen in the example
of the field with closed orbits filling linked tori, which was discussed in Section 2.
To minimize the energy of a vector field with closed orbits by acting on the field by
a volume-preserving diffeomorphism, one has to shorten the length of most trajec-
tories. (Indeed, the orbit periods are preserved under the diffeomorphism action;
therefore, a reduction of the orbits’ lengths shrinks the velocity vectors along the
orbits.) In turn, the shortening of the trajectories implies a fattening of the solitori
(since the acting diffeomorphisms are volume-preserving).

For a linked configuration the solitori prevent each other from endless fattening
and therefore from further shrinking of the orbits. Therefore, heuristically, in the
volume-preserving relaxation process the magnetic energy of the field supported on
a pair of linked tubes is bounded from below and cannot attain too small values.
In particular, a nonzero helicity (or average linking of the trajectories) of a field ξ
provides a lower bound for the energy.

Note that this heuristic argument is somewhat more general than the inequality
in Theorem 3.3 in the following sense. It demonstrates that there exists a lower
bound for the energy for a field which has at least one linked pair of solitori as in
the example above. However, the helicity of such a field might turn out to be zero,
if, e. g., it has another (“mirror”) pair of solitori linked in the opposite direction
which makes vanish the total averaged self-linking of trajectories of the vector field.
This shows that one needs a more subtle energy estimates, where, in particular, the
contribution of any nontrivially linked “tube of trajectories” into the energy bound
could not be canceled out.

For instance, the energy estimate via helicity is not helpful in the case of a
Borromean link. Heuristically, however, there should be some lower energy bound
for this field, since the components cannot be unlinked. One can show that indeed,
the energy is bounded away from zero, but direct energy estimates by means of
H(ξ1,2,3) are not very explicit and rather complicated, cf. [18].

Remark 3.5. More direct energy estimates were provided in [9] with the help of
the notion of asymptotic crossing number. The crossing number of two curves is
given by the Gauss integral (1) where, however, one takes the absolute value of the
numerator. Geometrically, such an integral gives the number of over-crossings in
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a plane projection of two curves and averaged over all directions of the projection.
This number is not a homotopy invariant, but one can “force” it to be invariant by
minimizing over all homotopies of two given space curves.

Similarly to the linking number, one defines an asymptotic version of the crossing
number for two vector fields. This way one obtains a more subtle invariant than
asymptotic linking, which is, in particular, often applicable to vector fields with
non-zero divergence. One of the the best energy estimates obtained with the help
of this notion is as follows.

Theorem 3.6 [9]. Suppose a vector field ξ in R3 has an invariant torus T forming
a nontrivial knot K. Then∫

T

(ξ, ξ) dx3 ≥
(

16
π ·Vol(T )

)1/3

· |Flux ξ|2 · (2 · genus(K)− 1),

where Flux ξ is the flux of ξ through a crossection of T , Vol(T ) is the volume of the
solid torus, and genus(K) is the genus of the knot K.

Recall, that for any knot its genus is the minimal number of handles of a spanning
(oriented) surface for this knot. For an unknot the genus is 0, since one can take
a disk as a spanning surface. For a nontrivial knot one has genus(K) ≥ 1 and,
therefore, the above energy is bounded away from zero:

∫
(ξ, ξ) dx3 > 0.

Note that there are no restrictions on the behavior of the divergence-free field
inside this invariant torus, and hence this result has a wide range of applicability. In
particular, it is sufficient for the field to have at least one closed knotted trajectory
of the elliptic type. The latter means that its Poincaré map has two eigenvalues of
modulus 1. Then the KAM theory implies that a generic elliptic orbit is confined
to a set of nested invariant tori. Hence any such orbit ensures that the energy of
the corresponding field has a non-zero lower bound.

Problem 3.7. Does the presence of any nontrivially knotted closed trajectory (of
any type: hyperbolic, non-generic, etc.) or the presence of chaotic behavior of trajec-
tories for a field provide a positive lower bound for the energy (even if the averaged
linking of all trajectories totals zero) and therefore prevent a relaxation of the field
to arbitrarily small energies?

Remark 3.8. The rotation field in the three-dimensional ball is an example of
an opposite type: all its trajectories are pairwise unlinked. It was suggested by
A. Sakharov and Ya. Zeldovich, and proved by M. Freedman [8], that this field can
be transformed by a volume-preserving diffeomorphism to a field whose energy is
arbitrarily close to 0.

3.3. Ergodic meaning of the Calabi invariant. So far we discussed vector
fields with an invariant solid torus knotted in a complicated way. However, in
the case of a “complicated field” in a “simple” standard solid torus the following
approach based on the notion of Calabi invariant in symplectic geometry sometimes
gives sharper estimates, see [10], [12]. One has to note that the asymptotic Hopf
invariant (unlike the Hopf invariant for a map) is difficult to find explicitly for a
somewhat generic divergence-free vector field. Here, however, we discuss the case
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where these calculations can be done explicitly for a field in a solid torus, coming
from a generic area-preserving diffeomorphism of a two-disk.

Let D2 be a two-dimensional disk equipped with an area-form ω. Take any
primitive 1-form α, such that ω = dα. Consider a smooth area-preserving dif-
feomorphism φ of the disk, which is identity near the disk boundary. Then the
1-form φ∗α − α is closed and vanishes near ∂D. Hence there is a unique function
h(φ) : D2 → R, which vanishes near the boundary ∂D and satisfies

dh(φ) = φ∗α− α.

Definition 3.9. The Calabi invariant of the area-preserving diffeomorphism φ is
defined by the integral:

C(φ) :=
∫

D2
h(φ) ω.

One can check that this integral does not depend on the choice of the primitive
1-form α, see, e. g., [10] or [2].

Remark 3.10. Another way to define this invariant is to consider a Hamiltonian
isotopy {φt}, t ∈ [0, 1], which starts with the identity map at t = 0, and at t = 1
coincides with φ. Such an isotopy can be defined by a t-dependent Hamiltonian
function Ht : D2 → R, which vanishes near the boundary and satisfies the identity

dHt( . ) = ω

(
∂φt

∂t
, .

)
for all t ∈ [0, 1]. Then one can show (see, e. g., [2]) that the Calabi invariant is
(twice) the volume under the graph of the Hamiltonian function Ht over D2× [0, 1]:

C(φ) = 2
∫ 1

0

∫
D2

Ht(x) ω dt,

Remark 3.11. One more definition of the Calabi invariant, due to A. Fathi, has
an ergodic meaning of an average orbit braiding, and was used in [10], [12] for a
variety of applications. Let {φt}, t ∈ [0, 1], be a Hamiltonian isotopy. Consider the
map

Angφ : (D2 ×D2) \∆ → R2,

which associates to any pair of points x 6= y in D2 the angular variation of the vector
from φt(x) to φt(y) when t goes from 0 to 1 (here ∆ stands for the diagonal). Note
that this map does not depend on the isotopy. Then the Calabi invariant is the
integral of this function (see [10]):

C(φ) =
∫∫

D2×D2
Angφ(x, y) ωxωy.

Note that the latter definition is pure two-dimensional, while the former ones
allow generalizations to higher dimensional symplectic manifolds.

Problem 3.12 [10]. Find a higher-dimensional analog of the angular definition of
the Calabi invariant.
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Consider a divergence-free vector field ξ in a solid torus in R3 with a nonva-
nishing longitude component ∂/∂θ. It defines a Poincare map of a section, the
two-dimensional disk, from θ = 0 to θ = 2π. This Poincare map is area-preserving
(i. e. symplectic) for the area form ω = ωξ defined by the substitution of this vector
field to the volume 3-form (more precisely, by the restriction of this substitution to
a cross-section of the solid torus). One can describe the asymptotic linking num-
ber of the field trajectories in the solitorus in terms of the Calabi invariant of the
Poincare map. The the latter definition was used to prove the homeomorphism in-
variance of the asymptotic linking (i. e., helicity) of a field in a solid torus [10] and
to give more precise energy estimates for such fields in a torus in terms of average
braiding of their orbits [12]. The paper [11] shows, in particular, that signatures
of links behave much more regularly than their linking numbers under iterations
of the Poincare map. We also refer to [24] for a similar in spirit description of
an asymptotic version of the Bennequin invariant for a vector field in a contact
manifold and an ergodic interpretation of the Godbillon-Vey class of a foliation of
codimension 1.

3.4. Short paths systems. In order to discuss linkings of infinite trajectories
one needs to pass to linkings of non-closed curves. A way to do this is to introduce
a “linking form.”

Definition 3.13. A linking form on an n-dimensional compact manifold M is
a (k, l)-form LF ∈ Ω∗(M × M) satisfying the condition: the linking number of
any two non-intersecting closed oriented compact submanifolds P and Q of linking
dimensions k and l (with k + l = n− 1) is given by the double integral∫∫

P×Q⊂M×M

LF.

For instance, the Gauss linking form in R3 is a linking (1, 1)-form, whose value
at a point (x, y) ∈ R3 × R3 on a pair of vectors v and w is

LF (x, y)|(v,w) =
1
4π

(v × w, x− y)
|x− y|3

,

cf. the Gauss formula (1). One can show that a linking form exists on a manifold M
provided that bk(M) = bk+1(M) = 0, see details in [2]. The linking form LF can
be chosen to have a singularity 1/rn−1, where r is the distance to the diagonal in
M ×M (similar to the Gauss LF , see formula (1) for n = 3), i. e. to be integrable:
LF ∈ L1(M ×M), since the diagonal is of codimension n in M ×M .

The introduction of such a form allows one to consider “linking of non-closed
submanifolds.” In particular, we define the linking of non-closed segments γ1 and
γ2 in R3 by

lk(γ1, γ2) :=
∫∫

γ1×γ2

LF. (3)

Recall that the linking of trajectories of a vector field ξ issuing from the points
x and y is the limit

λξ(x1, x2) = lim
T1,T2→∞

1
T1 · T2

lk(ΓT1(x1), ΓT2(x2)).
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Each curve ΓTj
(xj) = g

[0,Tj ]
xj ∪∆xj

consists of a long piece of a trajectory g
[0,Tj ]
xj and

a short closing segment ∆xj
. The systems of short paths (SSP) {∆} should satisfy

the following conditions ensuring the limit existence, see [1]. Due to the additivity
of the linking number (as the double integral (3) of the linking form), we have:

lk(ΓT1(x1), ΓT2(x2)) = lk(g[0,T1]
x1

∪∆x1 , g[0,T2]
x2

∪∆x2)

= lk(g[0,T1]
x1

, g[0,T2]
x2

) + lk(g[0,T1]
x1

, ∆x2) + lk(∆x1 , g[0,T2]
x2

) + lk(∆x1 , ∆x2).

The first term describes the average linking (after the division by T1 · T2) of the
corresponding trajectories. Therefore, one has to ensure that the contribution of
any of the remaining three summands is negligible. For instance, one could require
that each of them does not grow faster than a linear function of T1 or T2 for almost
all points x1, x2 ∈ M , and hence, after taking the time average (i. e., after dividing
by T1 · T2) their contributions to lk(ΓT1(x1), ΓT2(x2)) tend to 0 as T1 and T2 go to
infinity.

Remark 3.14. In [1] it was discussed that there are plenty of SSP which pro-
vide this bound for almost all pairs x1 and x2. Note that there might be some
exceptional values of x1 and x2, where, e. g., the ξ-trajectory through x1 winds
exponentially fast on a short path for x2. Then, of course, lk(g[0,T1]

x1 , ∆x2) grows
also exponentially, as T1 → ∞, even after the division by T1. One can see that a
small perturbation of such a system {∆} destroys this exponential winding. This
way, however, the definition of the SSP might depend on the field ξ. T. Vogel in
[25] suggested to replace the convergence almost everywhere by the L1 convergence,
which allowed one to present some universal SSPs.

Definition 3.15 [25]. A system {∆} is a system of short paths on M if for any
pair of points x1, x2 ∈ M there is a piecewise differentiable path ∆x1,x2 ∈ {∆} such
that the limits

lim
T1,T2→∞

1
T1 · T2

∫∫
g
[0,T1]
x1 ×∆x2

|LF |

for g
[0,T1]
x1 ×∆x2 , as well as those for ∆x1 × g

[0,T2]
x2 and ∆x1 ×∆x2 , vanish in the L1

sense.

Theorem 3.16 [25]. On any compact Riemannian manifold M a system of shortest
geodesics joining any pair of points x1 and x2 is a system of short paths for any
vector field ξ.

Note that the description of the SSP might be related to the problem of the
helicity invariance with respect to volume-preserving homeomorphisms. While for
a field in a solid torus (the only case where this invariance was proved [10]) there
is a natural system of short paths, in general one has to be sure that a SSP is
not spoiled too much by a homeomorphism, in order to apply the homeomorphism
invariance of the linking number for closed curves.
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4. Linking of a Vector Field with a Measured Foliation

4.1. Linking of a curve with a foliation. An average linking of a measured
foliation of codimension 2 and a divergence-free vector field is a direct generaliza-
tion of the cross-helicity, cf. [2], [16], [17]. The corresponding helicity invariants in
higher dimensions are similar to those appearing in higher-dimensional ideal hy-
drodynamics, an odd-dimensional ideal incompressible fluid moving according to
the Euler equations. It should be mentioned however, that they do not seem to be
related to higher-dimensional physical problems, similar, e. g. to the helicity-energy
interaction in the MHD theory in two and three dimensions.

Let M be a closed manifold with b1(M) = 0 and equipped with a volume form µ.
Consider an oriented codimension 2 foliation F with a holonomy-invariant trans-
verse measure β. To such a foliation one can associate a current C(F) : Ωn−2(M) →
R, which sends any smooth (n− 2)-form θ on M to its integral against β:

C(F) : θ 7→
∫

M

θ ∧ β.

(The integral here can be defined via a partition of unity subordinated to a folia-
tion chart for F : one integrates the summands over the leaf plaques in the charts,
and then integrates the result over transversals using the measure β.) This current
is closed and is called the Ruelle–Sullivan cycle of the invariant measure β [23].
Assume that this cycle is null-homologous: [C(F)] = 0 ∈ Hn−2(M, R). (Geometri-
cally one might think of this condition that the “leaves would be boundaries if they
were compact manifolds,” cf. Remark 2.8.)

If we imagine that the measure β is represented by a smooth 2-form on M ,
then necessarily this form is exact, since [C(F)] = 0. Moreover, the foliation F is
spanned by the distribution of kernels of this form: β = iFµ. In the sequel we will
be often dealing with the measure β as it were a smooth 2-form, while one has to
use the language of the Ruelle–Sullivan cycles to furnish the details, see the careful
study in [17].

Definition 4.1. The average linking of a curve Γ with the measured foliation F
is the β-measure of an arbitrary surface ∂−1Γ bounded by Γ. In other words, it is
the flux of the 2-form β = iF µ through ∂−1Γ:

lk(Γ, F) =
∫

∂−1Γ

β =
∫

Γ

d−1β.

The motivation of this definition is as follows. Suppose, that we are given a mea-
sured foliation F , where the total weight is supported on a single (null-homologous)
compact leaf N of codimension 2. Then

∫
Γ

d−1β is equal to the linking number of
N and the curve Γ. Similarly, for a foliation with compact nonsingular fibers, the
number lk(Γ, F) gives the average for the linking numbers of the curve Γ with every
fiber, cf. [16], [2].

4.2. Linking of a vector field with a foliation. By analogy with the three-
dimensional case, we can now define an asymptotic and average linking numbers
for a vector field and a measured foliation. For a field ξ on M denote by ΓT (x) a
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closed curve consisting of the long segment (for time 0 ≤ t ≤ T ) of the ξ-trajectory
gt

ξx starting at x ∈ M and of a short closing path (e. g., geodesic).

Definition 4.2. An asymptotic linking lkξ(x, F) of the trajectory of a vector field
ξ emanating from a point x ∈ M with the measured foliation F is the time-average
of the linking number of the curve ΓT (x) with F :

lkξ(x, F) = lim
T→∞

1
T

lk(ΓT (x), F).

The average linking number of the vector field ξ and the measured foliation F
on the manifold M equipped with the volume form µ is

lkξ(F) =
∫

M

lkξ(x, F)µ.

Definition 4.3. The cross-helicity of a vector field ξ and a codimension 2 foliation
F with transverse holonomy-invariant measure β is

H(ξ, F) :=
∫

M

β ∧ d−1(iξµ),

cf. the 3D case (2).

Theorem 4.4 [16], [17]. Let ξ be a divergence-free vector field on M with a volume
form µ, and F a foliation of codimension 2 with a transverse holonomy-invariant
measure β. Then the average linking number of the vector field ξ with the foliation
F is equal to the cross-helicity of ξ and F :

lkξ(F) = H(ξ, F).

Proof.

lkξ(F) =
∫

M

lkξ(x, F) µ =
∫

M

[
lim

T→∞

1
T

lk(ΓT (x), F)
]

µ

=
∫

M

[
lim

T→∞

1
T

lk(g[0,T ]
x , F)

]
µ =

∫
M

[
lim

T→∞

1
T

(∫
g
[0,T ]
x

d−1β

)]
µ

=
∫

M

[
lim

T→∞

1
T

∫ T

0

iξ(d−1β)dt

]
µ.

The latter integrand is the time average of the function iξ(d−1β). By the Birkhoff
ergodic theorem applied to the µ-preserving flow of the field ξ, the time average is
equal to the space average of the same function:∫

M

iξ(d−1β) µ =
∫

M

d−1β ∧ iξµ =
∫

M

β ∧ d−1(iξµ) = H(ξ, F).

On the way, we replaced the integral over a closed curve ΓT (x) by the integral over
a non-closed piece of trajectory g

[0,T ]
x . Indeed, the difference of the two integrals is

the integral of an L1 1-form d−1β over the short path (a shortest geodesic) from
x to the other endpoint of g

[0,T ]
x . It is uniformly bounded by the product of the

diameter of M and the norm of d−1β (note that d−1 is a compact operator). Hence
it can be neglected after division by T and considering the limit T →∞. �
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Remark 4.5. Note that the proof of Arnold’s theorem 2.5 is achieved similarly
by applying the Birkhoff ergodic theorem to the field ξ × ξ on M ×M , and using
the short path properties (Section 3.4). For more details on the case of a general
transverse holonomy-invariant measure we refer to [17].

4.3. Linking of several measured foliations. In the next section we discuss
the problem of generalizing the ergodic linking to foliations. However, there is one
case where such a generalization follows immediately from the definitions above.

Consider an n-dimensional closed manifold M with a volume form µ, and several
foliations of arbitrary dimensions with holonomy invariant measures on M . We
assume that (at least) one of the foliations is of codimension 2, and that the sum
of all codimensions of these foliations is n + 1. Finally, assume that the foliations
are null-homologous, i. e., so are the corresponding Ruelle–Sullivan cycles.

For simplicity we suppose that these foliations are given by smooth exact forms
β1, . . . , βk as above (though the statement below can be understood in the more
general context). For instance, one can take k exact 2-forms of rank 2 on an odd-
dimensional manifold M2k−1. Suppose that β1 is a 2-form and defines a foliation
of codimension 2.

Define the vector field ξ as the intersection of all the foliations but the first one,
“normalized by” the volume form µ: iξµ = β2 ∧ · · · ∧ βk.

Theorem 4.6. The cross-helicity type integral
∫

M
d−1β1 ∧ β2 ∧ · · · ∧ βk is equal to

the average linking of the foliation F1, defined by β1, and the vector field ξ, defined
by the intersection of the others.

In other words, the Hopf type integral above is equal to the average linking
of the first foliation with the intersection of the rest, provided that the whole set
has linking dimensions. The same holds for the foliations with holonomy invariant
transversal measures: the intersection foliation (with singularities) has a holonomy
invariant product measure. (The latter automatically vanishes at the points of
non-transversality of the foliations.)

This theorem is just a specification of the one discussed in the preceding section.
Note that at the points where the foliations F2, . . . , Fk are not transversal, the
field ξ automatically vanishes, since so does the wedge product β2 ∧ · · · ∧ βk. The
latter theorem is related to a notion of mutual linking of several submanifolds.

Definition 4.7. Let P1, . . . , Pk be oriented closed submanifolds in Rn or Sn satis-
fying the following two conditions: a) their total mutual intersection is empty and
b) the sum of their codimensions is equal to n+1. Then their mutual linking num-
ber is the signed number of the intersection points of a manifold ∂−1Pi spanning
one of these submanifolds Pi with the intersection of all the other submanifolds.

If these submanifolds are equipped with some transversal orientations, then so
are all the manifolds bounded by them and all their intersections. Hence the signs
of the intersection points are well-defined. For example, it is possible to link three
circles in the plane or two spheres and one circle in 3D, see [2]. These higher linking
numbers naturally arise in the consideration of higher-dimensional analogs of the
Chern–Simons functional [7].
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Remark 4.8. The linking number of two submanifolds is symmetric or anti-
symmetric according to whether the product of their codimensions is even or odd.
The mutual linking number has a similar symmetry property.

The theorem above gives an ergodic interpretation of the Hopf-type integrals
appearing in higher-dimensional ideal fluid dynamics: I(β1, . . . , βk) =

∫
M

d−1β1 ∧
β2 ∧ · · · ∧ βk for k closed 2-forms βi on an odd-dimensional manifold M2k−1. Note
that this integral is symmetric under the permutations of βi and does not depend
on the choice of the primitive d−1β1.

5. Linking of Foliations and Brownian Motion

An attempt to generalize the ergodic view on helicity to higher dimensions en-
counters the following difficulty. Consider, for instance, the Hopf invariant for a
map ρ : S2k−1 → Sk. Just like in the S3 → S2-case, it is defined as the linking
number of the preimages in S2k−1 of two generic points in the target sphere Sk.
Alternatively, one can define it as the integral∫

S2k−1
β ∧ d−1β, (4)

where a k-form β is the pullback to S2k−1 of any volume form on Sk, normalized by
the condition that the total volume of Sk equals 1. The analytic definition above
(generalized helicity) extends easily to the case of any exact k-form β on S2k−1, or
to generalized cross-helicity ∫

M

β ∧ d−1γ (5)

for a pair of two exact forms β and γ on an n-dimensional M , where deg β +
deg γ = n + 1. The problem is to give an ergodic interpretation of these integrals
in terms of certain foliations associated to these forms. It is probably more natural
to formulate the problem in the following converse way. Given two foliations F1

and F2 of linking dimensions in M with transverse holonomy invariant measures
β1 and β2, describe the average linking of their fibers in terms of these measures.
The following definition makes the problem nearly tautological (though it becomes
more interesting when we later fix a volume form on M .)

Definition 5.1. Let F1 and F2 be two foliations of linking dimensions k and l with
transverse holonomy-invariant measures β1 and β2 in a compact manifold M . The
cross-helicity of these foliations is

H(F1, F2) :=
∫∫

Mx×My

LF (x, y) ∧ (β1(x)⊗ β2(y)) =
∫∫

Cx(F1)×Cy(F2)

LF (x, y),

where C(Fi) is the Ruelle–Sullivan cycle of the foliation Fi, and LF is a linking
form on M ×M .

Remark 5.2. In the case of smooth βi the cross-helicity can be also defined as
follows:

H(F1, F2) :=
∫

M

β1 ∧ d−1β2 =
∫

C(F1)

d−1β2.
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The equivalence of these definitions follows from the main property of the linking
form: it defines an operator L̃F : Ω∗(M) → Ω∗(M), such that for an exact k-form u
the image is one of possible primitives: LF (u) = d−1u modulo an exact (k−1)-form.

Actually, this very property (or the equivalence of the above definitions) is a
higher-dimensional (somewhat tautological) analog of the helicity ergodic interpre-
tation in 3D: the linking characteristic of the foliations is expressed in the analytic
form. To give a more precise meaning to the linking of two foliations we will fix
a volume form on M . The latter allows one to identify differential forms (or, in-
variant measures for the foliations) with polyvector fields (respectively, generalized
polyvector fields spanning these foliations).

Remark 5.3. Note that in dimension 3 for linking of two vector fields, as well as
for linking of one field and a foliation in higher dimensions, one has a natural “time”
along the field trajectories, which allows one to apply the Birkhoff ergodic theorem,
as well a short path system. In higher dimension, where the interpretation should
be related to linking of possibly non-compact leaves of the foliations, one is lacking
both a natural expanding system of sets, comprising the linking of different leaves,
and a natural generalization of short path systems.

A way around these difficulties is an application of a Brownian version of the
Birkhoff ergodic theorem, cf. [22]. The latter allows one to consider averaging
of a function over leaves of a foliation. This averaging is made with the help of
a leaf Laplace–Beltrami operator, and can be thought of as the large time limit
of averaging over Brownian trajectories along the leaves. First we recall several
notions from foliation theory, see [13].

Definition 5.4. Let (M, F) be a compact foliated Riemannian manifold. Consider
the leaf diffusion operators D(t) for the leaf Laplacian ∆F . Then the Brownian
average of a function f on M is the following function

f̃(x) = lim
n→∞

1
n

n−1∑
t=0

(D(t)f)(x).

Here the leaf diffusion operator D(t) is defined as the limit R → ∞ of the
truncated diffusion operator:

D(t, R)f(x) =
∫

f(z)p(x, z, t, R) dz,

where p(x, z, t, R) equals the heat diffusion kernel p(x, z, t) if the leaf distance
between x and z is not greater than R and it equals zero otherwise. (The diffusion
operators D(t, R) can be thought of as averaging a given heat source after the time
R, while the operator f → f̃ as averaging f over Brownian paths corresponding to
the leaf Laplace–Beltrami operator, Fig. 2.)

Although for foliations with transverse holonomy invariant measure there are
various choices for a convenient measure in the ambient manifold, we will employ
the following general existence result due to L. Garnett.

Theorem 5.5 [13]. 1) Any compact foliated Riemannian manifold (M, F) has a
nontrivial harmonic measure ν, i. e., probability measure such that 〈∆F f, ν〉 = 0
for all f smooth in the leaf direction, where ∆F is the leaf Laplacian;
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R

x
z

Figure 2. Brownian trajectories on leaves

2) Let ν be a finite harmonic measure. Then the ergodic theorem holds, using
the leaf diffusion operators D(t) as follows: For any ν-integrable function f there
exists an ν-integrable Brownian average f̃ which is constant along the leaves and

〈f̃ , ν〉 = 〈f, ν〉.

This theorem allows one to interpret ergodically the above integrals (5) by con-
sidering a Brownian motion along the leaves of the foliations and evaluating a
certain linking form along this motion. As we will see, the corresponding number
measuring the mutual linking of the leaves of the two foliations coincides with the
Hopf-type integral.

Define a Brownian average linking of two foliation leaves as follows. Let
(M, F1, F2) be a compact Riemannian manifold with two foliations of linking di-
mensions k and l. Given a volume-form µ on M , these foliations Fj can be defined
by (generalized) polyvector fields (which we denote by the same letters), such that
iFj

µ = βj .

Definition 5.6. The Brownian linking of the leaves of foliations F1 and F2 passing
through the two points x, y in M with respect to the measure µ is the Brownian
average f̃(x, y) of the function

f(x, y) := iF(x,y)LF (x, y)

on M ×M along the leaf of the foliation F(x, y) = F1(x)×F2(y) passing through
(x, y) ∈ M ×M .

The Brownian average function f̃(x, y) is constant along the leaves of F =
F1×F2, i. e., on any given pair of leaves of F1 and F2. Note also that the function
f measures the linking of the foliations F1 and F2 just like in the case of linking
of compact submanifolds. (If the measures βi, i = 1, 2, are supported on closed
non-intersecting surfaces Ni ⊂ M , this is exactly their mutual linking number
lk(N1, N2) =

∫∫
iN1(x)×N2(y)LF (x, y), cf. Definition 3.13.)

Theorem 5.7. Consider a pair of foliations F1 and F2 of linking dimensions k and
l in a compact manifold M . Let ν be a harmonic measure on M×M for the foliation
F = F1×F2 for any Riemannian metric on M . Then the space average over M×M
for the Brownian ergodic average f̃ of the function f(x, y) := iF(x,y)LF (x, y) with
respect to the measure ν does not depend on the Riemannian metric on M and is
equal to the cross-helicity H(F1, F2) of the foliations.
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Proof. Fix a Riemannian metric on M and the product metric on M×M . According
to the Garnett theorem, there is a harmonic measure ν on M ×M .

Consider the Brownian average for the function f(x, y) := iF(x,y)LF (x, y) along
the leaves of the foliation F = F1×F2, where the polyvector F is defined with the
help of the harmonic measure ν: iFν(x, y) = β1(x)⊗ β2(y).

The second part of the Garnett theorem immediately gives the required equality:

〈f̃ , ν〉 =
∫∫

M×M

f̃ν =
∫∫

M×M

fν =
∫∫

M×M

(iFLF ) ν

=
∫∫

M×M

LF ∧ iFν =
∫∫

M×M

LF ∧ (β1 ⊗ β2) = H(F1, F2).

The latter expression is also equal to
∫

M
β1 ∧ d−1β2 for smooth measures β1 and

β2. Note that the measure ν is smooth in the latter case, since it can be taken to
be the product of the (smooth) transverse holonomy-invariant measure β1⊗β2 and
the Riemannian measure along the leaves of the foliation F . �

Remark 5.8. To give an ergodic interpretation of the higher Hopf invariant (4)
one should consider the linking of different leaves of the same foliation defined by
the form β. In the latter case one can guarantee that there exists a harmonic form
ν̄ on M , such that the harmonic form on M ×M is its square: ν = ν̄ ⊗ ν̄.

For arbitrary transverse holonomy-invariant measures the harmonic measure ν
is not smooth in general, cf. [17]. Note that this “Brownian interpretation” does
not involve short path systems.

6. Novikov’s Integrals

Novikov’s invariants [21] can be thought of as a generalization of the Hopf-type
invariants to a wide class of maps. In particular, he constructed an analog of
the Whitehead operations in the homotopy groups for closed differential forms on
manifolds. In [21], Novikov defined a set of invariants on manifolds of an arbitrary
dimension, and we consider the four-dimensional case for illustration.

Consider the invariants designed to distinguish various homotopy classes of the
maps S4 → R3 \ {a, b}. Their geometric realization in differential forms on S4 is
as follows. Consider a pair of closed 2-forms α and β on S4 satisfying the following
conditions:

α ∧ α = β ∧ β = α ∧ β = 0.

One can easily check

Proposition 6.1. The integrals

J(α; α, β) =
∫

S4
α ∧ d−1α ∧ d−1β

and

J(β; α, β) =
∫

S4
β ∧ d−1α ∧ d−1β

do not depend on the choices of d−1α and d−1β.
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∂−1B

A

U

C

∂−1CB

Figure 3. The linking of three surfaces A, B, and C in a four-sphere

Remark 6.2. Consider the foliations A and B in S4 defined by the kernel subspaces
of the 2-forms α and β. The conditions α∧α = β ∧β = 0 on the pair α, β give the
restrictions on the rank of the forms: rk(α), rk(β) ≤ 2, so that they define kernel
foliations of dimension 2 in S4. The third condition α ∧ β = 0 ensures that these
kernel foliations have non-transversal intersection. Namely, their leaves at generic
points form a 1-dimensional foliation. Moreover, the distribution spanned by the
sum of the kernels of α and β is integrable and defines a 3-dimensional foliation
[1]. In [16] the integrals above were given an ergodic interpretation in terms of
a generalized (non-generic) linking numbers of the corresponding foliations in the
spirit of Section 4.3 (see also [17]).

Here we take a somewhat different point of view, inspired by the paper [22].
We discuss below the higher linking numbers related to these integrals, while a
Brownian-type ergodic interpretation in terms of linking of the corresponding foli-
ations is achieved by applying the Brownian ergodic theorem [13] discussed in the
preceding Section.

More generally, consider the topological meaning of the integral

J(α; β, γ) =
∫

S4
α ∧ d−1β ∧ d−1γ.

for a triple of exact 2-forms α, β and γ in S4, such that α∧β = α∧γ = 0, providing
that it does not depend on the choices of the potential forms d−1β and d−1γ.

Definition 6.3. Let A, B, and C be two-dimensional surfaces in S4, such that A
is disjoint with B and C. Then there is the mutual linking number of such a triple:

lk(A; B, C) := # A ∩ ∂−1B ∩ ∂−1C,

i. e., the intersection number of A with 3-dimensional films spanning B and C, see
Fig. 3.

This definition makes sense for any homological 4-sphere M4 with H1(M) =
H2(M) = 0. In R4 there exists also a Gauss-type formula for this linking number.

Definition 6.4 [22]. Consider a 6-dimensional manifold Σ6 := A×B×C ⊂ (R4)3.
Choose points x ∈ A, y ∈ B and z ∈ C and normalize the vectors x− y and x− z
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in R4. Then we obtain a Gauss type map of 6-dimensional manifolds, from Σ6 to
S3 × S3 ⊂ R4 × R4, given by the formula:

ρ : (x, y, z) 7→
(

x− y

|x− y|
,

x− z

|x− z|

)
.

Its degree can be explicitly written as the integral:
1

4π4

∫∫∫
A×B×C

∑
i 6=k

∑
j 6=l

xi − yi

|xi − yi|4
xj − zj

|xj − zj |4
dxk ∧ dxl ⊗ dyi ∧ dyk ⊗ dzj ∧ dzl. (6)

The following result was proved jointly with S. Tabachnikov.

Theorem 6.5. (i) The mutual linking number of a triple is well-defined, i. e., it
does not depend on the choices of ∂−1B and ∂−1C.

(ii) In R4 this linking number coincides with the degree of the Gauss map:

lk(A; B, C) = deg ρ.

Proof. (i) Let A, B and C be the three surfaces in S4 such that A is disjoint with
B and C. If V = ∂−1B and W = ∂−1C are 3-dimensional films spanning B and
C, then V ∩W is a surface U with boundary. This boundary does not intersect A,
since A is disjoint with B and C, and hence #A ∩ U is well defined. When V is
changed to V ′ with the same boundary B, U is replaced by a homologous U ′, and
therefore, the intersection number lk(A; B, C) = #A ∩ U ′ = #A ∩ U is the same.

(ii) Now suppose that the three initial surfaces are in R4. Fix two unit vectors,
say v and w, and consider the cylinders, say Cv and Cw obtained from B and C
by parallel translating them along v and w, respectively. If one moves B and C
sufficiently far away in this way, then the mutual linking of A, B, C will be zero.
It changed when Cv ∩Cw intersected A. Such an intersection means that there are
points x ∈ A, y ∈ B and z ∈ C, such that the vector y−x is collinear with −v and
z − x with −w. In other words, this is the degree of the map ρ, computed as the
number of preimages of the point (−v, −w) ∈ S3 × S3, cf. [22]. �

In order to give the ergodic interpretation of these invariants we need to introduce
the corresponding mutual linking form and describe its properties. Define a multi-
linking form MLF as a (2, 2, 2)-form on S4 × S4 × S4 satisfying∫∫∫

A×B×C⊂S4×S4×S4
MLF = lk(A; B, C)

for any triple of surfaces A, B, C discussed above. Introduce the operator ˜MLF :
Ω∗(S4)× Ω∗(S4) → Ω∗(S4), acting as follows:

β(y)⊗ γ(z) 7→
∫∫

S4
y×S4

z

MLF (x, y, z) ∧ (β(y)⊗ γ(z)).

Remark 6.6. A similar operator L̃F : Ω∗(M) → Ω∗(M) corresponding to a linking
form LF ∈ Ω∗(M ×M) on a manifold M sends

β(y) 7→
∫

My

LF (x, y) ∧ β(y).
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The key property of this operator is that it sends an exact form to its potential:
L̃F (β) = d−1β. (A linking form is not unique, and so is not a potential.) This
property is related to the fact that the differential of the linking form gives the
δ-form δ(x, y) supported on the diagonal ∆ ⊂ M ×M : LF (x, y) = d−1

y δ(x, y), see
details in [2].

Proposition 6.7. (i) The operator ˜MLF corresponding to a multi-linking form
MLF sends the product of two exact forms into the product of their potentials:˜MLF : β(y)⊗ γ(z) 7→ d−1β(x) ∧ d−1γ(x).

In other words, the form MLF (x, y, z) satisfies the property dy dzMLF (x, y, z) =
δ(x, y)δ(x, z) (modulo addition of an exact in x term).

(ii) The multi-linking form MLF (x, y, z) can be chosen to be L1-integrable on
(S4)3.

Proof. (i) By the Stokes formula∫∫∫
A×B×C

MLF =
∫∫∫

A×∂−1B×∂−1C

dy dzMLF,

while by the definition of the multilinking,∫∫∫
A×B×C

MLF = lk(A; B, C) =
∫∫∫

A×∂−1B×∂−1C

δ(x, y)δ(x, z).

Then for the image ˜MLF (β(y)⊗ γ(z)) we have∫∫
S4

y×S4
z

MLF (x, y, z) ∧ (β(y)⊗ γ(z))

=
∫∫

S4
y×S4

z

dy dzMLF (x, y, z) ∧ (d−1
y β(y)⊗ d−1

z γ(z))

=
∫∫

S4
y×S4

z

δ(x, y)δ(x, z) ∧ (d−1
y β(y)⊗ d−1

z γ(z)) = d−1β(x) ∧ d−1γ(x).

(ii) The singularities of the mutual linking form are near the diagonals x = y
and x = z. Since it is a “local problem,” we can use the Gauss-type formula for R4.
In the latter case integrability is evident from the explicit expression above. �

The integrability of the linking form allows one to substitute the foliations to this
form and apply the Brownian ergodic theorem to give the ergodic interpretation of
the invariants. Namely, consider the triple of 2-foliations A, B and C related to a
triple of 2-forms α, β and γ of rank 2 on S4, satisfying the conditions α∧β = α∧γ.

Theorem 6.8. Let ν be a harmonic measure on (S4)3 for the foliation F = A×B×
C for any Riemannian metric. Then the space average over (S4)3 for the Brownian
ergodic average g̃ of the function g := iFMLF with respect to the measure ν does
not depend on the Riemannian metric on (S4)3 and is equal to the Novikov invariant
J(α; β, γ).



1010 B. KHESIN

The proof mimics the consideration of the preceding section and uses the above
two properties of the form MLF :

〈g̃, ν〉 =
∫∫∫

(S4)3
(iA×B×CMLF )ν

=
∫∫∫

S4
x×S4

y×S4
z

MLF (x, y, z) ∧ (α(x)⊗ β(y)⊗ γ(z))

=
∫

S4
x

α(x) ∧ d−1β(x) ∧ d−1γ(x) = J(α; β, γ).

Remark 6.9. This theorem was inspired in part by the work [22], where a similar
statement was proved under an additional restrictive assumption on the proper be-
havior of the foliation leaves at infinity (one assumes that the foliation is amenable).
In the latter case there is a reformulation of such averaging in terms of closures of the
leaves by means of “small caps,” similar to the short path approach for trajectories
in three dimensions. By lifting this assumption, we have to stick to the Brownian
averaging along the leaves of a foliation, without possibility of closing them up,
but now such averaging is applicable to a variety of cases, and in particular, to all
higher-dimensional versions of the invariants discussed above.
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