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Abstract
The binormal (or vortex filament) equation provides the localized induction
approximation of the 3D incompressible Euler equation. We present explicit
solutions of the binormal equation in higher-dimensions that collapse in finite
time. The local nature of this phenomenon suggests a possibility of the singular-
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higher. Furthermore, the Hasimoto transform takes the binormal equation to the
NLS and barotropic fluid equations. We show that in higher dimensions the exis-
tence of such a transform would imply the conservation of the Willmore energy
in skew-mean-curvature flows and present counterexamples for vortex mem-
branes based on products of spheres. These (counter)examples imply that there
is no straightforward generalization to higher dimensions of the 1D Hasimoto
transform. We derive its replacement, the evolution equations for the mean cur-
vature and torsion form for membranes, thus generalizing the barotropic fluid
and Da Rios equations.
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1. Introduction

The vortex filament equation describes the motion of a curve in R3 under the binormal flow:
each point on the curve is moving in the binormal direction with a speed equal to the curvature
at that point. This equation is a ‘local’ approximation of the 3D Euler equation for vorticity
supported on a curve. The membrane binormal (or skew-mean-curvature) flow is a natural
higher-dimensional generalization of the 1D binormal flow [9, 11, 20]: instead of curves in
R3, one traces the evolution of codimension 2 submanifolds in Rd (called vortex membranes),
where the velocity of each point on the membrane is given by the skew-mean-curvature vector.
The latter is the mean curvature vector to the membrane rotated in the normal plane by π/2.
The binormal equations are Hamiltonian in all dimensions with respect to the so-called Mars-
den–Weinstein symplectic structure and the Hamiltonian functional given by the length of the
vortex filament or, more generally, the volume of the membrane [7, 11].

These equations in any dimension arise as an approximation of the incompressible Euler
equation in which the vorticity is supported on a membrane and the evolution is governed by
local interaction only (‘LIA’—localized induction approximation). Below we present explicit
solutions of the LIA for the Euler equation based on sphere products and prove that some of
them exist for a finite time only and then collapse, see theorem 2.6. The simplest such case is
the motion of a three-dimensional vortex membrane S1 × S2 in R5, and the local nature of this
collapse hints to the singularity in the higher-dimensional Euler equations. While the singular-
ity problem for the 3D Euler (and Navier–Stokes) equations is well known and wide open, it is
equally open in dimensions n > 3. Note that the incompressibility condition is seemingly less
restrictive in higher dimensions, and hence the incompressible Euler equation should behave
somewhat similar to the Burgers or compressible Euler equations, where the emergence of
shock waves, and hence no long-time existence, is well known. In spite of this similarity, to
the best of our knowledge, there are yet no explicit results about emergence of singularity in
higher-dimensional incompressible Euler equations. Hopefully, the sphere product example of
the binormal motion of S1 × S

2 ⊂ R
5 could shed some light on the finite-time existence of a

smooth solution of the Euler equation tracing this motion.
The second goal of this paper is to give a counterexample to the existence of an analogue

of the Hasimoto transform in higher dimensions. More precisely, we argue that there is no
natural analogue of this transform with the mean curvature of a membrane in Rd replacing the
curvature of a curve in R3: the evolution equations of the mean curvature in the binormal flow
become necessarily much more complicated than their counterparts for curves.

Namely, Da Rios in 1906 brought in the idea of LIA of the Euler equation to study the
vortex dynamics and derived the evolution equations for the curvature κ and torsion τ of
a curve moving according to the binormal flow. His work is known today mostly thanks
to his advisor Levi-Civita, who promoted and extended it (see [18] for the historical sur-
vey). The LIA method and Da Rios equations were reconsidered in the 1960s, see [2]. These
equations appear in several other contexts, e.g., in the study of one-dimensional classical spin
systems [1, 3]. More importantly, in 1972 Hasimoto discovered a transformation yielding a
complex-valued wave function ψ = κ exp(i

∫
τ ) from the pair of real functions (κ, τ ) such

that this wave function ψ satisfies the nonlinear Schrödinger (NLS) equation. Furthermore,
by considering the evolution of the density ρ = κ2 and the velocity v = 2τ one obtains the
equations of barotropic-type (quantum) 1D fluids, see figure 1 for the relations between these
equations.

A natural question is whether the higher-dimensional binormal flow possesses similar rela-
tions to Schrödinger- and barotropic-type equations, as well as what are its implications for
the Euler hydrodynamics. Finding a higher-dimensional version of the Hasimoto transform

1526



Nonlinearity 34 (2021) 1525 B Khesin and C Yang

Figure 1. Diagram of relations between equations in 1D and in higher dimensions.

was a folklore problem for quite a while, see e.g. [9, 11, 19, 20, 23]. It is shown in [21] that
the Gauss map of the SMCF satisfies a Schrödinger flow equation. It was observed in [12] that
to construct a higher dimensional generalization of the Hasimoto transformation one needs to
prove a conservation law for the Willmore energy. Namely, the conjectural invariance of the
Willmore energy would imply the simpler of the two barotropic fluid equations, the continuity
equation, which is a necessary condition for the existence of a Hasimoto transformation.

In the present paper, we give a counterexample to the energy invariance conjecture by
describing explicitly the motion of Clifford tori under the skew-mean-curvature flow and show
that their Willmore energy is not conserved, see proposition 3.6. Essentially, these counterex-
amples imply that there is no straightforward generalization of the Hasimoto transform to relate
the binormal and barotropic (and hence Schrödinger) equations in higher dimensions, and if it
exists, it must be necessarily complicated.

Finally, we introduce a natural generalization of the torsion for codimension 2 membranes
(section 4) and derive the evolution equations for the mean curvature and the torsion form, thus
replacing equations of a barotropic-type fluid in the Hasimoto transform and generalizing the
Da Rios equations, theorems 3.9 and A.11. These counterexamples emphasize the difference
between the 1D and higher-dimensional skew-mean-curvature flows and might be particularly
useful to prove the vortex filament conjecture for membranes, cf [9].

2. Skew-mean-curvature flows

2.1. The vortex filament equation

Consider the space of (nonparametrized) knotsK in R3, which is the set of images of all smooth
embeddings γ : S1 → R3.

Definition 2.1. The vortex filament equation is ∂tγ = γ ′ × γ ′′, where γ ′ := ∂γ/∂s with
respect to the arc-length parameter s of the curve γ. Alternatively, the filament equation can be
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rewritten in the binormal form as

∂tγ = κb, (1)

where, respectively, κ is the curvature and b = t × n is the binormal vector, the cross-product
of the tangent and normal unit vectors, at the corresponding point of the curve γ.

It is known that the binormal equation is Hamiltonian with respect to the so-called Mars-
den–Weinstein symplectic structure on the space of knots K, the corresponding Hamiltonian
function is the length functional L(γ) =

∫
γ
|γ ′(s)|ds of the curve (see e.g. [1, 3] and the

discussion below).

Definition 2.2. Let γ ∈ K be an oriented space curve in R3, then the Marsden–Weinstein
symplectic structure ωMV on the space K is given by

ωMV(γ)(u, v) =
∫
γ

iuivμ =

∫
γ

μ(u, v, γ ′) ds, (2)

where u and v are two vector fields attached to γ, and μ is the volume form in R
3.

The vortex filament equation also serves as an approximation for the 3D incompressible
Euler equation for the vorticity confined to the curve γ (hence, the name), where only local
interaction is taken into account [1, 3], cf section 2.4.

2.2. Higher-dimensional binormal flows

The higher-dimensional generalization of the 1D binormal flow is also called the skew-mean-
curvature flow, and it is defined as follows:

Definition 2.3. Let Σn ⊂ Rn+2 be a codimension 2 membrane (i.e., a compact oriented
submanifold of codimension 2 in the Euclidean space Rn+2), the skew-mean-curvature (or,
binormal) flow is described by the equation:

∂t p = −J(H(p)), (3)

where p ∈ Σ, H(p) is the mean curvature vector to Σ at the point p, J is the operator of positive
π/2 rotation in the two-dimensional normal space NpΣ to Σ at p.

The skew-mean-curvature flow (3) is a natural generalization of the binormal equation [9]:
in dimension n = 1 the mean curvature vector of a curve γ at a point is H = κn, where κ is the
curvature of the curve γ at that point, hence the skew-mean-curvature flow becomes the binor-
mal equation (1): ∂tγ = −J(κn) = κb. It was studied for codimension 2 vortex membranes in
R4 in [20] and in any dimension in [11].

It turns out that on the infinite-dimensional space M of codimension 2 membranes, one can
also define the Marsden–Weinstein symplectic structure in a similar way:

Definition 2.4. The Marsden–Weinstein symplectic structure ωMV on the space M of
codimension 2 membranes is

ωMV(Σ)(u, v) =
∫
Σ

iuivμ, (4)

where u and v are two vector fields attached to the membrane Σ ∈ M, and μ is the volume
form in Rn+2.
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Define the Hamiltonian functional vol(Σ) on the space M which associates the n-
dimensional volume to a compact n-dimensional membrane Σn ⊂ Rn+2.

Proposition 2.5. The skew-mean-curvature flow (3) is the Hamiltonian flow on the mem-
brane space M equipped with the Marsden–Weinstein structure and with the Hamiltonian
given by the volume functional vol.

Proof. In a nutshell, the Marsden–Weinstein symplectic structure is the averaging of the
symplectic structures in all two-dimensional normal planes NpΣ to Σ, hence the skew-gradient
for any functional on the submanifold Σ is obtained from its gradient field attached at
Σ ⊂ R

n+2 by applying the fiberwise π/2-rotation operator J in NpΣ. On the other hand, the
fact that minus the mean curvature vector field −H is the gradient (in the L2-type metric) for
the volume functional vol(Σ) on M is well-known, see e.g. [11, 14]. Hence the Hamiltonian
field on the space M of membranes for the Hamiltonian functional vol(Σ) is given by −JH(p)
at any point p ∈ Σ. �

2.3. Collapse in binormal flows of sphere products

Binormal flows are localized approximations of the Euler equation for an incompressible fluid
fillingRn+2 whose vorticity is supported on the membraneΣn, see [11, 20] and the next section.
This is why their short/long-time existence results could shed some light on the motion of fluid
flows themselves. It turns out that the following family of membrane motions is of particular
interest.

Theorem 2.6. Let F : Σ = Sm(a) × Sl(b) ↪→ Rm+1 × Rl+1 = Rm+l+2 be the product of two
spheres of radiuses a and b. Then the evolution Ft of this surface Σ in the binormal flow is the
product of spheres Ft(Σ) = Sm(a(t)) × Sl(b(t)) at any t with radiuses changing monotonically
according to the ODE system:{

ȧ = −l/b,

ḃ = +m/a.
(5)

Explicitly, for initial conditions a(0) = a0, b(0) = b0 the radiuses of Ft(Σ) change as follows:

• For m = l one has a(t) = a0 e−lt/(a0b0) and b(t) = b0 emt/(a0b0);
• For m �= l one has

a(t) = a0

(
1 +

m − l
a0b0

t

)l/(l−m)

and b(t) = b0

(
1 +

m − l
a0b0

t

)m/(m−l)

.

In particular, for 0 < m < l the corresponding solution Ft exists only for finite time and
collapses at t = a0b0/(l − m).

Below we often omit the index 0 in the initial conditions if it does not cause a confusion.

Remark 2.7. The collapse means that the one of the radiuses becomes zero, while the other
becomes infinite, in finite time. The simplest case satisfying the collapse condition 0 < m < l
is m = 1, l = 2 for S1(a) × S

2(b) ⊂ R
5. Since the skew-mean-curvature flow is the localized

induction approximation of the Euler equation, this explicit solution might be useful to study
the Euler singularity problem in higher dimensions. Note also that the odd-dimensional Euler
equation has fewer invariants (generalized helicities) than the even-dimensional one (gener-
alized enstrophies), see [1]. The existence of many invariants helps control solutions, so it is
indicative that the first example with a finite life-span occurs in the odd 5D.
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Proof. For a point q = (q1, q2) ∈ Sm(a) × Sl(b) ↪→ Rm+1 × Rl+1, let n1 and n2 be the outer
unit normal vectors to the corresponding spheres at the points q1 and q2 respectively. Then
the mean curvature vectors of Sm(a) and Sl(b) as hypersurfaces in Rm+1 and Rl+1 are − 1

a n1

and − 1
b n2 respectively. Therefore the total mean curvature vector H of F : Sm(a) × Sl(b) →

Rm+l+2 is a (normalized) contribution of m vectors − 1
a n1 coming from Sm(a) and l vectors

− 1
b n2 coming from S

l(b). Thus the mean curvature of the sphere product is the vector H =

−m
a n1 − l

b n2 (divided by the total dimension m + l of the product, which we omit), and the
skew-mean-curvature vector is −JH = − l

b n1 +
m
a n2.

This implies that for the skew-mean-curvature flow ∂tq = −JH(q) given by the above lin-
ear combination of the normals on the product of spheres, Σt remains the product of two
spheres Sm(a(t)) × Sl(b(t)) for all times, where one of the spheres is shrinking, while the other
is expanding.

The explicit form of the −JH vectors implies the system of ODEs (5) on the evolution of
radiuses. Rewriting this as one first order ODE one can solve this explicitly, as in theorem
2.6. The system (5) is Hamiltonian on the (a, b)-plane with the Hamiltonian function given
by H(a, b) := ln(ambl), which is the logarithm of the volume of the product of two spheres:
vol(Σ) = C ambl. (Note that the invariance of this Hamiltonian is consistent with conservation
of the volume of Σ, as the latter is the Hamiltonian of the skew-mean-curvature flow). �

Remark 2.8. It is known that the binormal equation has a unique global solution for smooth
initial curves understood as smooth maps S1 → R3 [13], and it has a global weak solution
with a uniqueness property for integral currents as initial data [10]. Note that, thanks to the
Hasimoto transform, the binormal equation for curves is equivalent to the completely integrable
Schrödinger equation, and its solutions behave nicely in the space of immersions (due to the
local nature of the evolution, different arcs of the curve can cross through each other). The
higher-dimensional skew-mean-curvature flows are apparently non-integrable and their local
existence and uniqueness for compact oriented codimension 2 membranes in Rd was proved
recently in [22, 23].

2.4. Higher-dimensional Euler equation in the vortex form

Explicit solutions of the binormal (or LIA for the Euler) equation based on sphere products
discussed above could shed some light on the singularity problem for the higher-dimensional
Euler equation, as the skew-mean-curvature flow is an approximation of the Euler equation
for vorticity supported on a membrane, cf [10, 16]. To the best of our knowledge, it is the first
example of an explicit solution of the LIA existing for finite time, and the collapse or long-time
existence of solutions of the binormal equation is suggestive for the corresponding properties
of the hydrodynamical Euler solutions.

Recall that the classical Euler equation for an inviscid incompressible fluid in Rd describes
an evolution of a divergence-free fluid velocity field v(t, x):

∂tv + (v,∇)v = −∇p, (6)

where a pressure function p is defined uniquely modulo an additive constant by decaying
conditions at infinity and the constraint div v = 0.

The binormal equation (3) arises from the Euler equation as its localized induction approx-
imation. Namely, define the vorticity two-form ξ = dv� for the one-form v� related to the
divergence-free vector field v by means of the Euclidean metric in Rn. The vorticity form
of the Euler equation is ∂tξ = −Lvξ, which means that the vorticity two-form ξ is transported
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by the flow. The frozenness of the vorticity two-form allows one to define various invariants
of the hydrodynamical Euler equation.

Remark 2.9. For d = 2 and singular vorticity ξ, supported on a set of points in the plane,
ξ =

∑N
j=1 Γ j δz j , where z j ∈ C 	 R2 are coordinates of the jth point vortex, the evolution of

point vortices according to the Euler equation is described by the Kirchhoff system

Γ jż j = −J
∂H
∂z j

, 1 � j � N

in CN 	 R2N for the Hamiltonian function H = − 1
4π

∑N
j<k Γ jΓk ln |z j − zk|2 .

More generally, assume that the vorticity two-form ξ is a singular δ-type form supported on
a membrane Σ: ξ = δΣ. Then a (co-closed) one-form v� = d−1δΣ (and hence the divergence-
free vector field v) can be reconstructed by means of a Biot–Savart-type integral formula from
the vorticity ξ. Finally, by keeping only local terms in the expression for the field-potential v
and rescaling the time variable in the Euler equation ∂tξ = −Lvξ, one arrives at the binormal
equation (3) for the evolution of the vorticity support Σ, see details in [11].

Remark 2.10. There is yet another relation of the Euler and binormal equations in the case of
sphere product membranes. By assuming both the velocity v and the pressure p in equation (6)
to be functions of the distances (x, y) to the origin: x = |X|, y = |Y| for X ∈ R

m+1, Y ∈ R
l+1,

one arrives at a version of the 2D Euler equation (6) supplemented by the adjusted incom-
pressibility condition: div(b(x, y) · v) = 0, where b(x, y) := xmyl. This equation for a smooth
function b(x, y) in a bounded domain (also called the lake equation) was studied in [4]: the
function b(x, y) can be understood as the lake’s depth in a model of the vertically averaged
horizontal velocity.

Then the examples of motion for the products of spheres correspond to singular vorticity
ξ = δΣ for Σ = Sm(a) × Sl(b) ⊂ Rm+1 × Rl+1 = Rm+l+2 for the Euler equation in Rm+l+2.
It reduces to the motion of a point vortex δ(a,b) for (a, b) ∈ R2

+ for the corresponding lake
equation4. Hence theorem 2.6 provides explicit solutions of point-vortex type, both existing
forever or collapsing in finite time, depending on the membrane structure and dimension.

3. (Non)invariance of the Willmore energy and (non)existence of the
Hasimoto transform

3.1. Motivation: Hasimoto and Madelung

It turns out that the example of vortex sphere products also delivers a counterexample for the
existence of a natural analogue of the Hasimoto transform. (More precisely, we will prove
below that there is no Hasimoto analogue in which the curvature of a curve is replaced by its
only natural counterpart in higher dimensions, the mean curvature of a membrane.) To describe
this counterexample we start with outlining three different avatars of the skew-mean-curvature
flows and the related conjecture on the Willmore energy conservation.

Definition 3.1 [8]. Given a parametrized curve γ : R→ R3 with curvature κ and torsion τ ,
the Hasimoto transformation assigns the wave function ψ : R→ C according to the formula

(κ(s), τ (s)) 
→ ψ(s) = κ(s)ei
∫ s

s0
τ (x) dx , (7)

4 We are grateful to R Jerrard for this remark.
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where s0 is some fixed point on the curve. (The ambiguity in the choice of s0 defines the wave
function ψ up to a phase.)

This Hasimoto map takes the vortex filament equation (1) to the 1D NLS equation:

i∂tψ + ψ′′ +
1
2
|ψ|2ψ = 0 (8)

for ψ(·, t) : R→ C, see e.g. [3].

On the other hand, considering separately the curvatureκ(·, t) and torsion τ (·, t) of the curve
γ(·, t) ∈ R3 moving by the binormal flow, the evolution ofκ and τ satisfies the following system
of Da Rios’ equations [5]:⎧⎪⎨

⎪⎩
∂tκ+ 2κ′τ + κτ ′ = 0,

∂tτ + 2τ ′τ −
(
κ2

2
+

κ′′

κ

)′
= 0.

(9)

By introducing the density ρ = κ2 and the velocity v = 2τ , the Da Rios equations turn into the
following system of compressible fluid equations:⎧⎪⎨

⎪⎩
∂tρ+ div(ρv) = 0,

∂tv + vv′ +

(
−ρ− 2

√
ρ′′

√
ρ

)′
= 0.

(10)

What part of the above can be generalized to higher dimensions? It turns out that long before
the discovery of the Hasimoto transform, Madelung [15] gave a hydrodynamical formulation
of the Schrodinger equation in 1927, which is called the Madelung transform.

Definition 3.2. Let ρ and θ be real-valued functions on an n-dimensional manifold M with
ρ > 0. The Madelung transform is the mapping Φ : (ρ, θ) 
→ ψ defined by

ψ =
√
ρ eiθ. (11)

The Madelung transform maps the system of equations for a barotropic-type fluid to the
Schrödinger equation. More specifically, let (ρ, θ) satisfy the following barotropic-type fluid
equations: ⎧⎪⎨

⎪⎩
∂tρ+ div(ρv) = 0,

∂tv + (v,∇)v +∇
(

2V − 2 f (ρ) − 2Δ
√
ρ

√
ρ

)
= 0

(12)

with potential velocity field v = ∇θ, and functions V : M → R and f : (0,∞) → R. Then
the complex-valued function ψ(·, t) :=

√
ρ eiθ : M → C obtained by the Madelung transform

satisfies the NLS equation

i∂tψ = −Δψ + Vψ − f (|ψ|2)ψ. (13)

In the 1D case for V = 0 and f(z) = z/2 this gives the equivalence of the NLS (8) and the
compressible fluid (10).

One can see that the one-dimensional Madelung transform, being interpreted in terms of
the curvature and torsion of a curve, reduces to the Hasimoto transform [12]. It is challenging,
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however, to fit the membrane geometry into this framework, and a search for a proper general-
ization of the Hasimoto map to different manifolds and to higher dimensions has been on for
some time, cf e.g. [9, 17, 19, 23].

The main question is whether there exists an analogue of the Hasimoto map which can send
the binormal equation (3) to an NLS-type equation for any dimension n [12], or, thanks to
the Madelung transform identifying the NLS and the barotropic equations, one is searching
for a relation of the binormal equation (3) and barotropic-type fluid equation (12) in arbitrary
dimension n.

In view of the binormal evolution (3) and continuity equations (9) and (10), the square of
the mean curvature vector |H|2 is regarded as a natural analogue of the density ρ (recall that
in 1D we set κ2 = ρ). Therefore an analogue of the total mass of the fluid is the Willmore
energy:

Definition 3.3. For an immersed submanifold F : Σk → R
d, its Willmore energy is defined

as

W(F) =
∫
Σ

|H(F(q))|2 dvolg =
∫

F(Σ)
|H(p)|2 dvolge , (14)

where g = F∗ge denotes the pull-back metric of the Euclidean metric ge on Rd and H is the
mean curvature vector at point p = F(q) on the submanifold F(Σ) ⊂ Rd.

Assuming the existence of a relation between the skew-mean-curvature flow and a
barotropic fluid, one arrives at the following conjecture:

Conjecture 3.4 [12]. For a codimension 2 submanifold Ft : Σn →Rn+2 moving by the
skew-mean-curvature flow ∂tq = −JH(q) for q ∈ Σ the following equivalent properties hold:

(i) Its Willmore energy W(Ft) is constant in time: ∂tW(Ft) = 0,
(ii) Its square mean curvature ρ = |H|2 evolves according to the continuity equation

∂tρ+ div(ρv) = 0

for some vector field v on Σ.

Remark 3.5. The equivalence of the two statements is a consequence of Moser’s theorem: if
the total mass on a surface is preserved, the corresponding evolution of density can be realized
as a flow of a time-dependent vector field.

3.2. Willmore energy in binormal flows

The second statement of the following proposition provides a counterexample to conjecture
3.4 on the invariance of the Willmore energy.

Proposition 3.6. i) Conjecture 3.4 is true in dimension 1, i.e. for any closed curve γt ⊂ R3

moving by the binormal flow one has

W(γt) = const.

(ii) The Willmore energy is not necessarily invariant for membranes, i.e., in dimension n �
2. Namely, for the binormal evolution of the sphere products F : Σ = Sm(a) × Sl(b) →Rm+1 ×
Rl+1 = Rm+l+2 of radiuses a and b, the corresponding Willmore energy is not preserved for
any initial values of a and b:

W(Ft) = Cm,l

(
m2

a(t)2
+

l2

b(t)2

)
· vol(Σ)
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for a constant Cm,l and vol(Σ) = vol(Ft(Σ)) := ambl.

Example 3.7. Explicitly, the Willmore energy of the Clifford torus F : T2 = S1(a) ×
S1(b) →R4 evolves in the binormal flow as follows:

W(Ft) = 4π2

(
b(t)
a(t)

+
a(t)
b(t)

)
= 4π2

(
b
a

e2t/(ab) +
a
b

e−2t/(ab)

)
,

and it is not constant in time.

Proof. For a curve γ ⊂ R3, the conservation of the Willmore energy means the time invari-
ance of the integral W(γ) =

∫
γκ

2 ds or, equivalently, in the arc-length parameterization, of

the integral
∫
γ |γ′′|2 ds. This fact is a well-known result: the elastica Lagrangian is the first

integral of the binormal flow, see e.g. [3, 8]. This also can be verified by this straightforward
computation:

∂tW(γ) = 2
∫
γ

(∂tγ
′′, γ ′′) ds = −2

∫
γ

(∂tγ
′, γ ′′′) ds = −2

∫
γ

((γ ′ × γ ′′)′, γ ′′′) ds = 0,

where the second last equality follows from the binormal equation.
In higher dimensions, the evolution of the sphere products is given by the system (5). It is

Hamiltonian on the (a, b)-plane with the Hamiltonian function given by H(a, b) := ln(ambl) =
ln(vol(Σ)) + const, the logarithm of the volume of the sphere product: vol(Σ) :=Cm,lambl. To
be invariant, the Willmore energy has to be a function of vol(Σ) as well. However, recalling
that H = −m

a n1 − l
b n2 for the sphere product, one obtains

W(Ft) =
∫
Σt

|H|2dvolg

=

(
m2

a(t)2
+

l2

b(t)2

)
· vol(Σt) = Cm,l

(
m2

a(t)2
+

l2

b(t)2

)
· ambl,

where Cm,l is a constant depending on the dimensions m, l. One observes that factor(
m2/a(t)2 + l2/b(t)2

)
in the Willmore energy cannot be a function of the area ambl (see explicit

formulas for a(t) and b(t) in theorem 2.6), hence W(Ft) is not preserved. �

Remark 3.8. Furthermore, one can give a simple parametrization to a Clifford torus
and derive explicitly its second fundamental form: A = diag(− 1

a n1,− 1
b n2). This example

might be particularly useful in order to prove the filament conjecture for membranes for the
Gross–Pitaevskii equation, cf [9, 10].

In appendix A we will quantify the measure of noninvariance of the Willmore energy in the
skew-mean-curvature flows by deriving the continuity equation with a source term governing
the density ρ = |H|2 of the mean curvature:

Theorem 3.9. The skew-mean curvature evolution of the membrane Σ yields the following
continuity equation with a source on the ‘curvature density’ρ = |H|2:

∂tρ+ div(ρχ) = −2gikg jl
(
Ai j, H

)
(Akl, JH) ,

where Aij are the second fundamental forms in local coordinates, (gij) is the inverse matrix of

the induced metric (gij), and χ(q) = 2gi j
(
∇⊥

j
H
|H| ,

JH
|H|

)
ei is the torsion vector field (discussed

in the next section).
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Here and below one assumes the sum over repeated indices. We give details of the proof
and the full system of the equations in appendix A.3.

4. Torsion forms and torsion vector fields for membranes

It turns out that there is one more important difference between the higher-dimensional and 1D
cases—now in the notion of torsion. Namely, while for curves in R3 their torsion is a function,
for membranes in higher dimensions there exists a natural torsion one-form τ described below,
which ‘governs the rotation’ of the mean curvature vector in the normal plane when traveling
along a path on a membrane Σ. However, as we show in this section, this torsion one-form is
not exact in general. This also partially explains the absence of a higher-dimensional Hasimoto
transform: one cannot introduce the ‘phase’ of the would-be wave function, i.e. the ‘angle of
rotation’ of the mean curvature vector H, as it depends not only on the endpoints on Σ, but also
on a path between them along the membrane.

Recall that for curves in R3, according to the Frenet–Serret formulas, the curvature vector
κn is described by its magnitude and the angle of rotation in the normal plane as a function of
the curve parametrization. Similarly, for codimension 2 membranes, one can define the mean
curvature vector H in the normal plane, while its ‘angle of rotation’ leads to the following
definition of the torsion connection form in the (normal) S1-bundle over the membrane.

For an immersed submanifold F : Σn → Rn+2 consider the principal S1-bundle N of unit
normal vectors over Σ; see figure 2.

Figure 2. The S1-bundle of unit normal vectors over Σ.

Let H be the field of mean curvature vectors overΣ, and we assume that |H| �= 0 everywhere
(otherwise we pass to the open part Σ∗ ⊂ Σ where H is nonvanishing, as our consideration is
local). Then the normalized vectors h := H

|H| define a smooth section of the S1-bundle N. In

particular, the S1-bundle N over Σ is topologically trivial, as it admits a global section.

Definition 4.1 (cf [6]). An embedding of Σ→ Rn+2 defines the following (normal)
reference connection A0 :=∇⊥ on the unit normal bundle N:

∇⊥
X η := (∇̄Xη)⊥ = ∇̄Xη − (∇̄Xη)�,

where X is a vector tangent to Σ at a point q, a unit normal field η is extended from Σ to its
neighbourhood inRn+2, ∇̄ stands for the Euclidean connection inRn+2, and the indices v⊥ and
v� stand for the projections to the normal and tangent planes to Σ at q. This connection does
not depend on the extension of η and is well-defined as an S1-connection on the unit normal
bundle N → Σ.

Any other S1-connection A in N can be expressed as a connection (and hence a real-valued
one-form) on the base by comparing it to the connection A0, i.e. A − A0 ∈ Ω1(Σ,R). We are
interested in a specific choice of A related to the mean curvature of Σ.

Definition 4.2. The (mean) curvature connection A on the principal S1-bundle N is defined
by declaring the section h := H

|H| of the S1-bundle N → Σ be its horizontal section. The gener-
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alized torsion form of the submanifold F : Σ→ R
n+2 is the one-form τ = A − A0 ∈ Ω1(Σ,R),

where A0 is the normal connection described above.
The torsion vector field χ := 2τ� is defined as metric dual to the torsion form, i.e., for any

vector v ∈ TqΣ one sets (χ, v) = 2τ (v) at any point q ∈ Σ.

Proposition 4.3. The two-form −dτ is equal to the curvature of the normal connection
(i.e., normal curvature) of the submanifold F : Σ→ Rn+2.

Proof. The exterior covariant derivative in N is just the exterior derivative, since S1 is abelian.
Hence the curvature of the connection A is Ω = dA = dτ + dA0. Furthermore, A is a flat con-
nection, since H

|H| is a global section of N. Indeed, the existence of a global section of the

S1-bundle N →Σ, means that any other horizontal section of N is global, differing from h = H
|H|

by a constant angle α ∈ S1, and hence the holonomy in N over any closed path in Σ is the iden-
tity. We obtain that dτ = −dA0, which means −dτ coincides with the normal curvature, since
A0 is induced by the normal connection. �

Corollary 4.4. If the normal curvature of submanifold F : Σ→ Rn+2 does not vanish, the
one-form τ is not exact, and hence the ‘angle of rotation’of the mean curvature vector H from
one point to another depends on a path between them on the membrane Σ.
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Appendix A. Generalized Da Rios equations

The evolution of the codimension 2 membranes according to the binormal flow satisfies a
system of equations on its mean curvature vector H and generalized torsion form τ . Here we
derive those generalized Da Rios-type equations. Due to their analogy with the compressible
fluid equations, we will call the equation on the mean curvature H the continuity equation,
while the evolution of the torsion form τ is the momentum equation. Some computations in
this section can be found, e.g., in [14, 23], and are included here to make the derivation of the
Da Rios-type equations (20) and (21) self-contained.

A.1. Gradient of the Willmore energy

We start by deriving the gradient of the Willmore energy in any dimension, which could be of
independent interest. For this we generalize the derivation of the Willmore gradient done in
[14] for two-dimensional compact immersed surfaces in Rd to the case of compact immersed
submanifolds of any dimension. All the gradients here and below are considered with respect
to the corresponding L2-metrics.

More specifically, consider an immersed submanifold F : Σn → Rn+k. Recall that the
Willmore energy is defined as

W(F) =
∫
Σ

|H|2 dvolg, (15)
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where g = F∗ge denotes the pull back metric of the Euclidean metric ge on Rn+k and H is the
corresponding mean curvature vector field.

In local coordinates (x1, . . . , xn) on the manifold Σ the pull-back metric g on Σ is

gi j =
(
∂iF, ∂ jF

)
,

and the corresponding volume element is the n-form dvol =
√

det gi j dx1 ∧ · · · ∧ dxn.
We have the following splitting of the pull-back bundle F∗TRn+k =

⋃
q∈ΣTF(q)R

n+k:

TF(q)R
n+k = DF|q(TqΣ) ⊕ NpΣ,

where DF is the tangent map of F. The second fundamental form Ai j = (∂i∂ jF)⊥ is the projec-
tion of the second derivatives of F to the normal bundle NpΣ. Then the mean curvature vector
at any point is H = gijAij, where (gij) is the inverse matrix of the induced metric (gij).

Now we give the formula of the normal gradient of the Willmore energy.

Theorem A.1. The normal part of the gradient of the Willmore energy is

1
2
∇⊥W = Δ⊥H + gikg jl

(
Ai j, H

)
Akl −

1
2
|H|2H, (16)

where Δ⊥ = gi j∇⊥
i ∇⊥

j denotes the Laplacian in the normal bundle, and ∇⊥
i = ∇⊥

∂
∂xi

is the

normal connection.

To prove this theorem, we need the following two lemmas, which we include for a self-
contained proof.

Lemma A.2 (cf [14, 23]). For a smooth family of immersions Ft : Σn → Rn+k with a
normal variation ∂tFt|t=0 = V along Ft, the time derivative of the volume element is

∂t dvolg = − (H, V) dvolg. (17)

Proof. One has ∂t det(gml) = (gi j∂tgi j)det(gml), and

∂tgi j =
(
∂t∂iF, ∂ jF

)
+
(
∂iF, ∂t∂ jF

)
= −

(
∂tF, ∂i∂ jF

)
−
(
∂i∂ jF, ∂tF

)
= −2

(
Ai j, V

)
.

From this we obtain

∂t det(gml) = −2gi j
(
Ai j, V

)
det(gml) = −2 (H, V) det(gml).

Therefore,

∂t

√
det(gml) =

1
2
√

det(gml)
∂t det(gml) = − (H, V)

√
det(gml),

i.e., ∂t dvolg = − (H, V) dvolg. �
Define the normal derivative ∂⊥

t H of the mean curvature vector H as the projection of the
time derivative ∂tH to the normal bundle to Σ.

Lemma A.3 (cf [14]). For a smooth family of immersions Ft : Σn → Rn+k with a normal
field ∂tFt|t=0 = V along Ft, the normal time derivative ∂⊥

t H of H is

∂⊥
t H = Δ⊥V + gimg jl

(
Ai j, V

)
Aml.
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Proof. Since Ai j = (∂i∂ jF)⊥ = ∂i∂ jF − Γk
i j∂kF = ∇i∇ jF, one has

∂⊥
t Ai j = (∂i∂ jV − Γk

i j∂kV)⊥ = (∇i∇ jV)⊥

= ∇⊥
i ∇⊥

j V +∇⊥
i (
(
∂ jV , ∂mF

)
gml∂lF)

= ∇⊥
i ∇⊥

j V −
(
A jm, V

)
gml∇⊥

i ∂lF

= ∇⊥
i ∇⊥

j V −
(
A jm, V

)
gmlAil.

For H = gi jAi j we obtain

∂⊥
t H = gi j(∂⊥

t Ai j) + (∂⊥
t gi j)Ai j

= gi j(∇⊥
i ∇⊥

j V −
(
A jm, V

)
gmlAil) + 2gimg jl (Aml, V) Ai j

= Δ⊥V + gimg jl
(
Ai j, V

)
Aml.

�
Now we can complete the proof of the theorem.

Proof of theorem A.1. Consider a smooth family of immersions Ft : Σn → Rn+k with the
field ∂tFt|t=0 = V normal along Ft. Then the time derivative of the Willmore energy is

∂tW(Ft) =
∫
Σ

∂t(|H|2 dvolg) = 2
∫
Σ

(
∂⊥

t H, H
)

dvolg +
∫
Σ

|H|2∂t dvolg

= 2
∫
Σ

(
Δ⊥V , H

)
+ gimg jl

(
Ai j, V

)
(Aml, H) − 1

2
|H|2 (H, V) dvolg

= 2
∫
Σ

(
Δ⊥H + gimg jl

(
Ai j, H

)
Aml −

1
2
|H|2H, V

)
dvolg.

Therefore, the normal gradient of the Willmore energy is

1
2
∇⊥W = Δ⊥H + gimg jl

(
Ai j, H

)
Aml −

1
2
|H|2H.

�

A.2. Evolution of the Willmore energy in the skew-mean-curvature flows

Consider now a smooth family of immersions Ft : Σn → Rn+2 evolved by the skew-mean-
curvature flow: ∂tFt|t=0 = −JH, where J is the operator of rotation by π/2 in the positive
direction in every normal space to Σ.

Proposition A.4. The Willmore energy of Σ changes in time in the skew-mean-curvature
flow as follows:

∂tW(Ft) = −2
∫
Σ

(
Al

i, H
) (

Ai
l, JH

)
dvolg.

Proof. Employing the gradient formula for the Willmore energy we obtain

∂tW(Ft) = −2
∫
Σ

(∇W , JH) dvolg
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= −2
∫
Σ

(
∇⊥W , JH

)
dvolg

= −2
∫
Σ

(
Δ⊥H + gimg jl

(
Ai j, H

)
Aml −

1
2
|H|2H, JH

)
dvolg.

The third term
(

1
2 |H|2H, JH

)
is pointwise zero on Σ, since H ⊥ JH.

For the first term we need the following lemma.

Lemma A.5 (see [23]). ∇⊥J = J∇⊥.

Proof. Let us prove that ∇⊥JV = J∇⊥V for an arbitrary unit normal vector field V . Note
that {V , U = JV} form a local orthonormal frame. Hence for any tangent vector field X, we
have

J∇⊥
X V = J(∂XV)⊥ = J((∂XV , V) V + (∂XV , U) U) = J (∂XV , U) U,

and

∇⊥
X (JV) = ∇⊥

X (U) = (∂XU)⊥ = (∂XU, V) V + (∂XU, U) U

= (∂XU, V) V = J (∂XV , U) U.

Therefore J∇⊥
X V = ∇⊥

X (JV). �

To complete the proof of the proposition, we integrate by parts the first term of ∂tW(Ft):

−
∫
Σ

(
Δ⊥H, JH

)
dvolg =

∫
Σ

(
∇⊥H, ∇⊥JH

)
dvolg,

and by lemma A.5,
(
∇⊥H, ∇⊥JH

)
=

(
∇⊥H, J∇⊥H

)
= 0 pointwise on Σ, i.e., −

∫
Σ

(
Δ⊥H,

JH) dvolg vanishes on Σ. Thus we conclude that

∂tW(Ft) = −2
∫
Σ

gimg jl
(
Ai j, H

)
(Aml, JH) dvolg

= −2
∫
Σ

(
Al

i, H
) (

Ai
l, JH

)
dvolg.

�

Corollary A.6. The Willmore energy of a closed submanifold Σ is invariant under the skew-
mean-curvature flow, if and only if∫

Σ

(
Al

i, H
) (

Ai
l, JH

)
dvolg = 0

for all times t.

Remark A.7. For a one-dimensional Σ, i.e., for a vortex filament γ, the second fundamen-
tal form reduces to the mean curvature of the curve: A = H = κ. Hence (A, H) (A, JH) = 0 at
every point on Σ. However, in higher dimensions the pointwise identity

(
Al

i, H
) (

Ai
l, JH

)
= 0

does not necessarily hold on the membrane Σ, and hence the Willmore energy might not
conserve.
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Remark A.8. For a Clifford torus the computation of
∫
T2

(
Ai j, H

) (
Ai j, JH

)
dvolg is straight-

forward: since

(
Ai j, H

) (
Ai j, JH

)
= − 1

a2

1
ab

+
1
b2

1
ab

= − 1
a3b

+
1

ab3
,

we obtain

∫
T2

(
Ai j, H

) (
Ai j, JH

)
dvolg =

∫ 2π

0

∫ 2π

0

(
− 1

a3b
+

1
ab3

)
ab dθdφ

= 4π2

(
1
b2

− 1
a2

)
.

So if a �= b at time t, we have
∫
Σ

(
Ai j, H

) (
Ai j, JH

)
dvolg �= 0. Furthermore, the tori with

equal radiuses a = b do not form an invariant set, since under the skew-mean-curvature flow
one radius of the Clifford torus is increasing, while the other is decreasing. Thus the Willmore
energy is not invariant under the skew-mean-curvature flow for any initial values a and b.

A.3. The continuity equation and generalized Da Rios equations

Let Ft : Σn → R
n+2 be a codimension 2 vortex membrane moving by the skew-mean-curvature

flow. Let (x1, x2, . . . , xn) be local coordinates on Σn, and {e1, e2, . . . , en} be the corresponding
local frame in the tangent space.

According to lemma A.3, the time derivative of the square of the mean curvature is

∂t|H|2 = −2
(
Δ⊥H + gikg jl

(
Ai j, H

)
Akl, JH

)
. (18)

It turns out that the first term in the right-hand side can be expressed as the divergence of a
certain vector field.

Lemma A.9. For a vector field σ :=
(
gik∇⊥

k H, JH
)

ei on the submanifold Σ, its divergence
is

divΣ σ =
(
Δ⊥H, JH

)
.

Proof. Recall that for an arbitrary vector field X = Xiei on Σ its divergence is as follows:

divΣ X = tr(∇X) = gi j∇iX j = ∇iX
i. (19)

Furthermore, define Ti = gik∇⊥
k H. Then we have ∇⊥

i Ti = ∇⊥
i gi j∇⊥

j H = Δ⊥H. This implies
that

divΣ σ = ∇i

(
Ti, JH

)
=

(
∇iT

i, JH
)
+
(
Ti, ∇iJH

)
=

(
Δ⊥H, JH

)
+
(
gi j∇⊥

j H,∇iJH
)
=

(
Δ⊥H, JH

)
.

�
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Recall that the torsion form τ = τ i dxi has components τi =
(
∇⊥

i
H
|H| ,

JH
|H|

)
for the mean

curvature vectors H on a membrane Σ with the second fundamental form Ai j. We can now
describe explicitly the torsion vector field introduced in definition 4.2.

Proposition A.10. Given a local frame {e1, e2, . . . , en} in the tangent space ofΣ the torsion
vector field in the corresponding local coordinates is

χ = 2gi j

(
∇⊥

j
H
|H| ,

JH
|H|

)
ei,

where (gij) is the inverse matrix of the metric (gij) induced on Σ from Rn+2.

Proof. For a vector v ∈ TqΣ and the section h := H
|H| , the tangent map Dh : TqΣ→ Th(q)N

maps v to the vector Dh(v) in the tangent space of the section h. Then the normal component
of Dh(v) is equal to τ (v) = (A − A0)(v).

Denote by ∇ih the vector Dh(ei) in the tangent space of the smooth section h over Σ at any
point, then (∇ih, Jh) Jh is its normal component. For v = viei the normal component of Dh(v)
is vi (∇ih, Jh) Jh, hence the torsion form is

τ (v) = vi (∇ih, Jh) =
1
2

(χ, v),

where χ = 2gi j
(
∇⊥

j h, Jh
)

ei is the torsion vector field. �
Recall that for the normalized mean curvature h :=H/|H| the orthonormal frame {h, Jh}

is a basis of the normal bundle NΣ to the membrane Σ. The torsion form τ = τ i dxi for τi =(
∇⊥

i h, Jh
)

measures how much this frame rotates when one moves along the tangent vector ei

on the surface Σ. Finally, the equations for torsion and curvature (or, rather, curvature density)
form the following pair of equations, generalizing the Da Rios system (9).

Theorem A.11 (=(3.9)′). The skew-mean-curvature evolution of the membrane Σ implies
the following continuity equation with a source for the curvature density ρ = |H|2

∂tρ+ div(ρχ) = −2gikg jl
(
Ai j, H

)
(Akl, JH) (20)

and the momentum equation for the torsion τ = τ i dxi

∂tτi +∇i|τ |2 −∇i
Δ|H|
|H| = −∇i

gmkg jl(Am j, JH)(Akl, JH)
|H|2 +

gkl

|H|2 ((Aik, H) (∇lJH, JH)

− (Ail, JH) (∇kJH, H)) . (21)

Corollary A.12. The continuity equation (20) can be rewritten in the form

∂⊥
t H + 2gi jτi∇⊥

j H + (∇iτi)H = −gikg jl (Akl, JH) Ai j. (22)

Proof. Equation (20) follows from (18), lemma A.9, and proposition A.10, since χ = 2gi j(
∇⊥

j
H
|H| ,

JH
|H|

)
ei = 2gi j

(
∇⊥

j H,JH
)

|H|2 ei. Plugging ρ = |H|2 into (20), we get

2(H, ∂tH) + |H|2 divχ+ 2(H, ∇χH) = −2gikg jl
(
Ai j, H

)
(Akl, JH) .

Then plugging in χ = 2gi jτ jei we obtain

2(H, ∂tH) + 4(H, gi jτi∇ jH) + 2|H|2∇iτi = −2gikg jl
(
Ai j, H

)
(Akl, JH) ,
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i.e.

∂⊥
t H + 2gi jτi∇⊥

j H + (∇iτi)H = −gikg jl (Akl, JH) Ai j.

The momentum equation is obtained by using ∂t

(
∇i

H
|H|

)
= ∇i

(
∂t

H
|H|

)
via a direct but

tedious computation comparing the corresponding coefficients. �

Remark A.13. The equations (20) and (21) are analogues of the equations of barotropic-type
fluids (12) related to vortex membranes in higher dimensions, as well as the natural extensions
of the Da Rios system (9). Their more complicated form in higher dimensions is related to the
fact that the metric induced on a membrane changes during the binormal evolution, while in
the 1D case the induced metric on a vortex filament (e.g. arc-length parametrization) remains
intact due to inextensibility of the curve.
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[7] Haller S and Vizman C 2004 Nonlinear Grassmannians as coadjoint orbits Math. Ann. 329 771–85
[8] Hasimoto H 1972 A soliton on a vortex filament J. Fluid Mech. 51 477–85
[9] Jerrard R L 2002 Vortex filament dynamics for Gross–Pitaevsky type equations Ann. della Scuola

Norm. Super. Pisa - Cl. Sci. 1 733–68
[10] Jerrard R and Smets D 2015 On the motion of a curve by its binormal curvature J. Eur. Math. Soc.

17 1487–515
[11] Khesin B 2012 Symplectic structures and dynamics on vortex membranes Moscow Math. J. 12

413–34
[12] Khesin B, Misiołek G and Modin K 2019 Geometry of the Madelung transform Arch. Ration. Mech.

Anal. 234 549–73
[13] Koiso N 1997 The vortex filament equation and a semilinear Schrödinger equation in a Hermitian

symmetric space Osaka J. Math. 34 199–214
[14] Kuwert E and Schätzle R 2002 Gradient flow for the Willmore functional Commun. Anal. Geom.

10 307–39
[15] Madelung E 1927 Quantentheorie in hydrodynamischer form Z. Phys. 40 322–6
[16] Marchioro C and Pulvirenti M 1993 Mathematical Theory of Incompressible Nonviscous Fluids

(Berlin: Springer)
[17] Molitor M 2009 Generalization of Hasimoto’s transformation Int. J. Geomet. Methods Mod. Phys.

6 625–30
[18] Ricca R L 1991 Rediscovery of Da Rios equations Nature 352 561–2
[19] Sanders J and Wang J 2003 Integrable systems in n-dimensional Riemannian geometry Moscow

Math. J. 3 1369–93
[20] Shashikanth B N 2012 Vortex dynamics in R4 J. Math. Phys. 53 013103
[21] Song C 2017 Gauss map of the skew mean curvature flow Proc. Am. Math. Soc. 145 4963–70
[22] Song C 2019 Local existence and uniqueness of skew mean curvature flow (arXiv:1904.03822)
[23] Song C and Sun J 2017 Skew mean curvature flow Commun. Contemp. Math. 21 1750090

1542

https://doi.org/10.1017/s0022112065000915
https://doi.org/10.1017/s0022112065000915
https://doi.org/10.1017/s0022112065000915
https://doi.org/10.1017/s0022112065000915
https://doi.org/10.1007/s00220-020-03742-z
https://doi.org/10.1007/s00220-020-03742-z
https://doi.org/10.1007/s00220-020-03742-z
https://doi.org/10.1007/s00220-020-03742-z
https://doi.org/10.1007/bf03018608
https://doi.org/10.1007/bf03018608
https://doi.org/10.1007/bf03018608
https://doi.org/10.1007/bf03018608
https://doi.org/10.1007/s00208-004-0536-z
https://doi.org/10.1007/s00208-004-0536-z
https://doi.org/10.1007/s00208-004-0536-z
https://doi.org/10.1007/s00208-004-0536-z
https://doi.org/10.1017/s0022112072002307
https://doi.org/10.1017/s0022112072002307
https://doi.org/10.1017/s0022112072002307
https://doi.org/10.1017/s0022112072002307
https://doi.org/10.4171/jems/536
https://doi.org/10.4171/jems/536
https://doi.org/10.4171/jems/536
https://doi.org/10.4171/jems/536
https://doi.org/10.17323/1609-4514-2012-12-2-413-434
https://doi.org/10.17323/1609-4514-2012-12-2-413-434
https://doi.org/10.17323/1609-4514-2012-12-2-413-434
https://doi.org/10.17323/1609-4514-2012-12-2-413-434
https://doi.org/10.1007/s00205-019-01397-2
https://doi.org/10.1007/s00205-019-01397-2
https://doi.org/10.1007/s00205-019-01397-2
https://doi.org/10.1007/s00205-019-01397-2
https://doi.org/10.18910/9985
https://doi.org/10.18910/9985
https://doi.org/10.18910/9985
https://doi.org/10.18910/9985
https://doi.org/10.4310/cag.2002.v10.n2.a4
https://doi.org/10.4310/cag.2002.v10.n2.a4
https://doi.org/10.4310/cag.2002.v10.n2.a4
https://doi.org/10.4310/cag.2002.v10.n2.a4
https://doi.org/10.1007/bf01400372
https://doi.org/10.1007/bf01400372
https://doi.org/10.1007/bf01400372
https://doi.org/10.1007/bf01400372
https://doi.org/10.1142/s0219887809003722
https://doi.org/10.1142/s0219887809003722
https://doi.org/10.1142/s0219887809003722
https://doi.org/10.1142/s0219887809003722
https://doi.org/10.1038/352561a0
https://doi.org/10.1038/352561a0
https://doi.org/10.1038/352561a0
https://doi.org/10.1038/352561a0
https://doi.org/10.17323/1609-4514-2003-3-4-1369-1393
https://doi.org/10.17323/1609-4514-2003-3-4-1369-1393
https://doi.org/10.17323/1609-4514-2003-3-4-1369-1393
https://doi.org/10.17323/1609-4514-2003-3-4-1369-1393
https://doi.org/10.1063/1.3673800
https://doi.org/10.1063/1.3673800
https://doi.org/10.1090/proc/13615
https://doi.org/10.1090/proc/13615
https://doi.org/10.1090/proc/13615
https://doi.org/10.1090/proc/13615
https://arxiv.org/abs/1904.03822
https://doi.org/10.1142/s0219199717500900
https://doi.org/10.1142/s0219199717500900

	Higher-dimensional Euler fluids and Hasimoto transform: counterexamples and generalizations
	1.  Introduction
	2.  Skew-mean-curvature flows
	2.1.  The vortex filament equation
	2.2.  Higher-dimensional binormal flows
	2.3.  Collapse in binormal flows of sphere products
	2.4.  Higher-dimensional Euler equation in the vortex form

	3.  (Non)invariance of the Willmore energy and (non)existence of the Hasimoto transform
	3.1.  Motivation: Hasimoto and Madelung
	3.2.  Willmore energy in binormal flows

	4.  Torsion forms and torsion vector fields for membranes
	Acknowledgments
	Appendix A.  Generalized Da Rios equations
	A.1.  Gradient of the Willmore energy
	A.2.  Evolution of the Willmore energy in the skew-mean-curvature flows
	A.3.  The continuity equation and generalized Da Rios equations

	References


