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1. Asymptotic directions on diffeomorphism groups

The group of volume-preserving diffeomorphisms of a Riemannian manifold plays a
fundamental role in the geometrical study of the Euler equation of hydrodynamics
on the manifold [Ar]. In this paper we consider another equation, the Monge–
Ampère equation, and discuss its universality in the context of diffeomorphism
groups. This equation occurs in two main contexts: as the equation of asymptotic
directions in 2D hydrodynamics and in the optimal transport problem in any
dimension.

1.1. Characterization of asymptotic directions on subgroups

Let M be a compact n-dimensional manifold without boundary and equipped with
a Riemannian metric g. Let D(M) be (the connected component of the identity
in) the group of all diffeomorphisms of M . Its tangent space at the identity
diffeomorphism consists of smooth vector fields on M . The tangent space at a point
η consists of vector fields “reparametrized by η,” i.e. of the maps Xη : M → TM
with Xη(x) ∈ Tη(x)M . Define the “flat” L2-metric on D(M) by assigning to each
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tangent space the inner product

gη(Xη, Yη) :=

∫

M

gη(x)

(

Xη(x), Yη(x)
)

dV (x), (1.1)

where dV denotes the Riemannian volume form on M .
Let SD(M) be the subgroup of volume-preserving diffeomorphisms. The re-

striction of the L2-metric to this subgroup is right-invariant and of particular
importance in hydrodynamics. In [Ar] Arnold showed that geodesics in SD(M)
correspond to motions of an ideal fluid in M described by the Euler equations

∂tX + ∇XX = −∇p, div X = 0

for the fluid velocity field X.
As shown by Ebin and Marsden in [EM] the group Ds(M) of all diffeomor-

phisms of Sobolev class Hs (as well as its various subgroups) can be viewed for
s > n/2 + 1 as an infinite dimensional Hilbert manifold. All of the arguments in
this paper can be rigorously developed in the Sobolev framework. However, to
present the geometric ideas we will keep things formal and drop the index s in
what follows.

While the Euler equation depends only on the intrinsic Riemannian geometry
of SD(M), it is also of interest to study its exterior geometry as a Riemannian
submanifold in D(M). In particular, one can consider asymptotic directions in
SD(M). A vector tangent to a Riemannian submanifold is asymptotic if the
geodesics issued in the direction of this vector, one in the submanifold and the
other in the ambient manifold, have a second order of tangency. (Note that in
general two geodesics with a common tangent will have only a simple, i.e. first
order, tangency.) More formally, asymptotic vectors are singled out by the con-
dition that the second fundamental form evaluated on these vectors is zero. A
curve whose tangent is asymptotic at each point is called an asymptotic line. An
asymptotic line is a geodesic in the submanifold if and only if it is also a geodesic
in the ambient manifold.

A description of asymptotic vectors in the group of volume-preserving diffeo-
morphisms was given by Bao and Ratiu in [BR], while asymptotic geodesics in
SD(M) were studied in [M1] (as pressure-constant flows). We begin with the
following convenient characterization of these vectors.

Theorem 1 ([BR]). A vector field X on a manifold M is an asymptotic direction
for SD(M) at the identity diffeomorphism if and only if

div∇XX = div X = 0. (1.2)

Similarly, a vector Xη is asymptotic to SD(M) at the diffeomorphism η if and
only if its right translation X := Xη ◦η−1 is asymptotic to SD(M) at the identity.
If M is two-dimensional then more can be said:

Corollary 2 ([BR]).The stream function ψ of an asymptotic vector field X in 2D
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satisfies a Monge–Ampère equation

det[D2ψ] =
g · K

2
|∇ψ|2, (1.3)

where g = det(gij), K is the Gaussian curvature function of M and det[D2ψ]
is the Hessian of ψ. Here the field X = J∇ψ has the stream (or, Hamiltonian)
function ψ with respect to the symplectic area form ω = dV on M .

Below we give a characterization of asymptotic vectors in a general setting. Let
B be a subgroup of D(M) and let b denote its Lie algebra. We assume that b is
a closed subspace, and therefore it has an orthogonal complement with respect to
the L2 inner product (1.1).

Theorem 3. A vector field X on M is asymptotic for B if and only if

X ∈ b and ∇XX ∈ b . (1.4)

If B = SD(M) then the Lie algebra b consists of divergence-free vector fields
and we recover Theorem 1. Moreover, if M has a boundary then the diffeo-
morphisms from the subgroup B leave it invariant and hence the fields from the
subalgebra b are tangent to the boundary of M .

Corollary 4 ([BR]). If M has a boundary ∂M, then X is asymptotic for SD(M)
if in addition to equations (1.2) X satisfies the conditions

g(X,n) = g(∇XX,n) = 0 (1.5)

where n is the normal to ∂M .

Suppose next that M is a symplectic manifold of dimension 2n equipped with
a symplectic 2-form ω.

Corollary 5. a) Let B = Symp(M) be the subgroup of symplectic diffeomorphisms
with the corresponding Lie subalgebra b = symp(M) of vector fields preserving ω.
Then a vector field X is asymptotic if and only if

LXω = 0 and L∇XXω = 0.

b) Let B = Ham(M) be the (generally speaking, smaller) subgroup of Hamil-
tonian diffeomorphisms. Then a vector field X on M is asymptotic if and only
if

ω(X, ·) = dψ and ω(∇XX, ·) = dφ

for some smooth functions ψ and φ on M .

If dim M = 2 any divergence-free field is locally Hamiltonian and the latter
equation is rewritten in (1.3) as the Monge–Ampère equation on its Hamiltonian,
or stream function.
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Curiously, this Monge–Ampère property does not survive when passing to
Hamiltonian fields in higher dimensions, unlike what was conjectured at the end
of [AK]. Indeed, already in the flat 4-dimensional case one obtains a system of
three equations on pairwise products of second derivatives, while the correspond-
ing Monge–Ampère with det[D2ψ] would include the four-term products of second
derivatives.

Another interesting example is provided by a contact manifold M with a con-
tact structure (i.e. maximally non-integrable distribution of hyperplanes) τ .

Corollary 6. Let (M, τ) be a contact manifold, and B a subgroup consisting of
contact diffeomorphisms. Then the vector field X is asymptotic to B if and only if

both X and ∇XX are contact.

If α denotes a 1-form defining the contact structure τ then the Lie algebra b :=
{X : LXα = fα}. For a contact vector field X consider its contact Hamiltonian
function KX := α(X) with respect to the form α. By rewriting the condition
∇XX ∈ b for asymptotic vectors on B one can obtain an analog of the Monge–
Ampère equation (1.3) on the Hamiltonian in the contact 3-dimensional case.

Proof of Theorem 3. The Lie algebra of D(M) splits orthogonally into b ⊕ b
⊥

inducing the corresponding splitting at any point in B by right translations. Let
∇̄ denote the smooth Levi–Civita connection of the L2-metric (1.1) on D(M) (see
Ebin and Marsden [EM]). Let X and Y be two elements of b and extend them to
right-invariant vector fields Xη = X ◦ η and Yη = Y ◦ η on B. Decomposing into
unique tangential and normal components (Gauss equation) we obtain

∇̄Xη
Yη = Pη(∇̄Xη

Yη) + (∇̄Xη
Yη)⊥.

where Pη is the projection onto the tangent space to B at the point η. The
tangential component can be used to define a smooth right-invariant connection on
B while the normal component (∇̄Xη

Yη)⊥ is interpreted as the second fundamental
form of B in D(M). Since

∇̄Xη
Yη = (∇XY ) ◦ η

we see that at the identity the L2 covariant derivative ∇̄ is given by ∇XY . Recall
that a vector X in b is asymptotic if the second fundamental form evaluated at X
is zero. This implies that (∇XX)⊥ = 0 and Theorem 3 follows. ¤

Remark 7. One can see how the above general consideration works in the case
B = SD(M). First, recall that an arbitrary vector field X on M can be decom-
posed into L2-orthogonal divergence-free and gradient parts

X = Pid(X) + X∇

where Pid is now the projection onto the divergence-free fields, and X∇ is the
gradient part of X: explicitly X∇ = ∇∆−1div X. By right invariance this induces
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a corresponding splitting at any point in SD(M). The tangential component of
∇̄ defines a smooth right-invariant connection on SD(M). Its normal component
is the second fundamental form of the subgroup SD(M) in D(M). Thus, for any
right-invariant vector fields Xη = X ◦ η and Yη = Y ◦ η on SD(M) we again have
the Gauss equation

∇̄Xη
Yη = Pη(∇̄Xη

Yη) + s(Xη, Yη) (1.6)

where
∇̄Xη

Yη = (∇XY ) ◦ η and s(Xη, Yη) =
(

∇XY
)∇

◦ η.

Since a vector X tangent at the identity η = id is asymptotic if s(X,X) = 0 we
immediately obtain the characterization in Theorem 1.

Remark 8. Asymptotic geodesics (or pressure-constant flows) are of interest in
the Lagrangian approach to hydrodynamic stability theory. Typical examples are
plane-parallel flows on the flat torus T

2. These flows can be considered unstable
in the following sense. For any such flow it can be shown that sectional curvatures
of SD(T2) along the corresponding geodesic are always non-positive. Therefore,
by a suitable variant of the Rauch comparison argument, all linear perturbations
in Lagrangian coordinates (Jacobi fields along the geodesic) must grow at least
linearly in time. On the other hand, there are flows with non-positive curvatures
for which one can show that the growth must be at most polynomial (see Preston
[Pr] for details).

1.2. Non-existence of asymptotic directions

Asymptotic directions are not always in good supply. In [BR] it is shown that
if M is a two-dimensional compact surface of revolution without boundary then
any axially symmetric smooth solution of the Monge–Ampère equation is constant
away from the cylindrical (i.e. fixed radius) bands of the surface. The strongest
result in this direction so far states that for a compact closed surface M of positive
curvature there are no asymptotic directions on SD(M), see [Pa]. A similar result
holds for surfaces with boundary. (Palmer also showed that there is no direct
analog of this result in higher dimensions: e.g. every left-invariant vector field on a
compact Lie group equipped with a bi-invariant metric solves the equations (1.2),
i.e. is asymptotic. This had been observed previously for the three sphere S3 in
[M1].)

Here we prove the following generalization of Palmer’s result.

Theorem 9. If M is a compact closed surface of nowhere zero curvature K, then
the Monge–Ampère equation (1.3) admits no non-constant solutions. In particular,
in this case SD(M) has no asymptotic directions.

Note that the surface can be of any non-zero Euler characteristic (the case of



S370 B. Khesin and G. MisioÃlek JMFM

the torus is ruled out by the Gauss–Bonnet theorem).

Proof. Recall that for any vector field X on M we have the identity

div∇XX = r(X,X) + tr(DX)2 + LX(div X) (1.7)

where r denotes the Ricci curvature of the metric g and LX is the Lie derivative
along X (see for example [Ta]). If X is divergence-free then the last term on the
right side of (1.7) drops out.

Consider the length function f := g(X,X). Since M is compact f must attain
a maximum at some point x0. Choosing normal coordinates at that point with
gij(x0) = δij and ∂gij/∂xk(x0) = 0, we obtain

0 = df(x0) = 2
∑

jk

Xj(x0)
∂Xj

∂xk
(x0) dxk .

Since at the point where f has a maximum we must also have X(x0) 6= 0, this
implies that the Jacobi matrix DX is degenerate at x0. Therefore, rearranging
the terms of the trace and using the fact that the divergence of X is zero, we get

tr(DX)2(x0) =
∑

ij

∂Xj

∂xi
(x0)

∂Xi

∂xj
(x0) = −2 det [DX(x0)] = 0.

Substituting into the relation (1.7) we find that

div∇XX(x0) = K(x0) g(X,X)(x0) ,

because in two dimensions the Ricci and Gaussian curvatures coincide. However,
if X is asymptotic this implies that

0 = K(x0) g(X,X)(x0)

contradicting the assumption K 6= 0 on M , and in particular at the point x0. ¤

Remark 10. Note that the proof above works for a C1 field X, thus improving
on the C2 assumption used in [Pa].

The following is a similar result for the case of a manifold with boundary:

Theorem 11. Let M be a compact surface of nowhere zero curvature K with
smooth boundary. Assume that the geodesic curvature kg of ∂M vanishes, at
most, at finitely many points. Then the Monge–Ampère equation (1.3) along with
the boundary condition (1.5) admits no non-constant solutions.

Proof. The beginning of the proof follows [Pa]. Assuming that such an X exists
we show that X has to vanish on the boundary. Indeed, for any point x ∈ ∂M
where X(x) 6= 0 we have that X is tangent to ∂M and

0 = (∇XX,n)(x) = kg(x) · g(X,X)(x) .



Vol. 7 (2005) Asymptotic Directions, Monge–Ampère and Diffeomorphism Groups S371

The latter shows that the geodesic curvature kg must vanish at x. By the as-
sumption, this implies that X can be non-zero only at finitely many points of the
boundary. Hence it is identically zero on ∂M by continuity.

The proof of the boundary-free case is now applicable: the function f :=
g(X,X) is also zero on the boundary ∂M and must therefore attain a maximum
in the interior of M . ¤

2. Mass transport and fibrations on diffeomorphism groups

2.1. Monge–Ampère equation in optimal mass transport

A somewhat different Monge–Ampère equation arises in the theory of mass trans-
port. Namely, let dµ(x) = m(x)dV (x) and dν(y) = n(y)dV (y) be two smooth
measures on a manifold M of any dimension. The Jacobian of a map η which
sends the measure µ to the other ν = η∗µ satisfies the relation

n(η(x)) det[Dη(x)] = m(x). (2.1)

The property of optimality means that the 1-parameter family of maps ηt(x) de-
scribes a geodesic curve on the space of densities with respect to the Kantorovich
(or, Wasserstein) L2-metric. The latter is the ‘transport’ L2 metric on the space
of densities: the distance between two densities on M is the cost of transporting
one of them to the other with the L2-cost function.

If M is a domain in R
k one can see that an optimal map η : M → M has to

be the gradient η = ∇φ of a convex function φ, i.e. the equation on the potential
φ assumes the Monge–Ampère form (see, e.g., [Br]):

det[D2φ] =
m(x)

n(∇φ(x))
. (2.2)

In the case of an arbitrary manifold M the optimality condition is expressed in
terms of convexity of the function φ with respect to the metric on M , see [Mc].
The corresponding Monge–Ampère equation has a similar form.

2.2. Universality of the (pre-) Monge–Ampère equation

Although the two Monge–Ampère equations discussed above look rather different
(equation (1.3) is for asymptotic vector fields, while equation (2.2) is for potentials
of optimal diffeomorphisms), both have a common origin. It turns out that they
can be viewed as projections of the dispersionless Burgers equation:

∂tX + ∇XX = 0 , (2.3)

which can be thought of as a pre-Monge–Ampère equation. This equation de-
scribes geodesics with respect to the “flat” L2-metric (1.1) on the group of all
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diffeomorphisms D(M) for M of any dimension. According to this equation each
fluid particle moves along a geodesic in M .

Note that there is a natural fibration on D(M) given by the projection π onto
densities P(M). Two diffeomorphisms belong to the same fiber if they move a
fixed density (say, the constant density O for a compact M) to one and the same
density. In particular, for a compact M one considers densities with the same total
mass, and SD(M) = π−1(O) is one of the fibres. This projection is a Riemannian
submersion onto P(M) equipped with the Wasserstein metric (see [Ot]).

Consider the “horizontal” geodesics in D(M), which project to geodesics in
P(M), see Fig. 1. This projection means that instead of solutions of the Burgers
equation (2.3) we are interested only in the divergence of the corresponding fields,
i.e. in how they act on densities. The latter is described by the infinitesimal
version of the Monge–Ampère equation (2.2). The flow of this infinitesimal version
delivers a solution to the Monge–Ampère equation for the potential of a gradient
diffeomorphism, see [Br].

Fig. 1. γ1 is a geodesic in the space of densities P(M), γ2 is a horizontal lift of γ1 to D(M),
γ3 is an asymptotic (or ‘vertical’) geodesic in SD(M), γ4 is an ‘almost vertical’ geodesic for

SD(M) ⊂ D(M) with the asymptotic direction X.

On the other hand, asymptotic directions on SD(M) correspond to “almost
vertical” geodesics in the space D(M) with respect to the same flat L2 metric.
More precisely, an asymptotic geodesic (given by the Burgers equation) is “verti-
cal” since it joins diffeomorphisms belonging to the same fiber SD(M), i.e. it joins
different pre-images of the point O on the quotient. Asymptotic directions are ver-
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tical initial vectors which correspond to geodesics having second order of tangency
with the fiber. In other words, the projections of these geodesics to the base leave
the initial point O very slowly. Indeed, recalling that taking the projection is the
same as taking the gradient part, we identify here both of equations (1.2): along
with the Burgers equation they imply that divX = divXt = 0. These relations
mean that the projection of the corresponding geodesic to the base P(M) is a curve
which starts at the point O with zero velocity and zero acceleration, respectively.
(For non-asymptotic directions only the velocity is zero, while the acceleration is
not, since typical geodesics have the first order of tangency to SD(M).)

The above discussion can be summarized in the following statement:

Theorem 12. The Monge–Ampère equation (1.3) in 2D fluid dynamics and (the
infinitesimal form of) the Monge–Ampère equation in mass transport (2.2) are
projections of the same dispersionless Burgers equation.

Remark 13. Yet another appearance of the Monge–Ampère equation is related to
the discrete version of the 2D Euler equation for a special energy functional, due to
Moser and Veselov [MV]. A solution of the discretized Euler equation for an ideal
fluid is a recursive sequence of diffeomorphisms. The Monge–Ampère equation
provides the constraint on the initial condition ensuring that all diffeomorphisms
of the discrete geodesics are area-preserving. This restriction is similar to the
Monge–Ampère condition singling out asymptotic directions among 2D divergence-
free vector fields.

2.3. Relations of diffeomorphism groups

One of the most interesting problems in the context of diffeomorphism groups is
the existence of a shortest path or a geodesic between any two diffeomorphisms.
This question is interesting already in dimension n = 1, for the group D(S1)
equipped with either L2 or H1 metric. Locally such a geodesic always exists (see
[M2]).

In finite-dimensional geometry such questions are answered using the Hopf–
Rinow theorem, but in infinite dimensions things become complicated. Gross-
man and Atkin constructed examples which show that even complete infinite-
dimensional Hilbert Riemannian manifolds have points that cannot be joined by
any geodesic. For instance, for the groups SD(Mn) with n ≥ 3 Shnirelman [Sh]
constructed examples of pairs of diffeomorphisms for which a shortest path does
not exist.

In the study of this problem the following relation of the groups of diffeomor-
phisms of one- and two-dimensional manifolds can be useful. Consider the fibration
of all diffeomorphisms of a surface M over the space of densities on M , which is
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exactly the context of optimal mass transport:

SD(M) →֒ D(M) −→ C∞(M) .

Here the left arrow is an isometric embedding with respect to the corresponding
L2-metrics discussed above, and the right arrow is a Riemannian submersion into
the space of densities C∞(M) equipped with the Wasserstein L2-metric.

Now, consider a surface M2 whose boundary is the circle S1. Similarly to the
above, we have the following fibration

SDo(M
2) →֒ SD(M2) −→ D(S1)

where SDo(M
2) denotes the subgroup of smooth area-preserving diffeomorphisms

of the surface that are pointwise fixed on the boundary S1.
It would be interesting to study the Riemannian properties of this fibration. In

this context the shortest path problem in the group D(S1) looks like the problem
for an optimal path in the group SD(M2) or D(M2), assuming that the projection
to D(S1) is a Riemannian submersion. The latter is a problem of optimal trans-
port with a prescribed boundary map: we are connecting in an optimal way two
disk diffeomorphisms which are liftings of the given diffeomorphisms of the circle.
Here one could hope to employ the following reasoning. While the optimal map
exists and is unique between any two convex domains, it automatically determines
how the boundary is mapped. Hence one can almost never solve the same prob-
lem of finding the optimal map and simultaneously satisfy a particular boundary
condition. This would allow one to conclude that the shortest path does not exist
for almost all pairs of circle diffeomorphisms.
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