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Abstract

We prove an analogue of the de Rham theorem for polar homology; that the polar homology HPq(X )
of a smooth projective variety X is isomorphic to its H n;n−q Dolbeault cohomology group. This analogue
can be regarded as a geometric complexi,cation where arbitrary (sub)manifolds are replaced by complex
(sub)manifolds and de Rham’s operator d is replaced by Dolbeault’s .@.
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1. Introduction

The idea of polar homology can be explained as follows. In a complex manifold 1 X , consider
a (q + 1)-dimensional submanifold Y and such a meromorphic (q + 1)-form 
 on Y that has only
,rst-order poles on a smooth q-dimensional submanifold Z = div∞ 
 ⊂ Y ⊂ X . Under these circum-
stances, the residue of 
 can be understood as a holomorphic q-form � = 2
i res 
 on Z (we include
a factor of 2
i for future convenience). In other words, to the pair (Y; 
) we can associate another
pair (Z; �) = (div∞ 
; 2
i res 
) in one dimension less. We are going to extend this correspondence,
(Y; 
) �→ (div∞ 
; 2
i res 
), to the boundary map @ in a certain homological chain complex. Note
that if we apply @ to the pair (Z; �) above, we get zero because � is holomorphic. This gives rise
to the basic identity @2 = 0. The formal de,nition of the polar chain complex given in the next
section is somewhat lengthier, but its meaning should be already clear. In particular, the pairs (Z; �)
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correspond to q-cycles if � is a holomorphic q-form on a q-dimensional submanifold Z ⊂ X and
such a cycle is, in fact, a boundary if � is someone’s residue.

In the above discussion, we considered the situation when only smooth submanifolds occur. In
general, the de,nition of the polar chain complex will have contributions from arbitrary subvarieties
Z ⊂ X . Such a de,nition, which gives us a chain complex with homology groups to be denoted as
HPq(X ), was suggested in Refs. [6,7]. In many aspects, it is analogous to the de,nition of topological
homology (say, singular homology). In the present paper, we are going to prove a theorem analogous
to de Rham’s theorem in the topological context. Namely, we shall prove that the groups HPq(X )
for smooth projective X are dual to H q(X;OX ), as was conjectured in Ref. [6]. In other words, we
shall see that the Dolbeault .@-complex on (0; q)-forms interacts with the polar chain complex in the
same way as the de Rham d-complex does with ordinary topological chains. The reader interested
only in reading the main results should, after having a look at De,nition 2.9, proceed directly to
Theorem 3.1 and its proof in 3.13. The rest of the paper consists of technical preliminaries needed
to deal with singularities.

One should note that there exists a more general polar complex, where the chains are complex
subvarieties of dimension q with logarithmic p-forms on them. The corresponding polar homology
groups, enumerated by two indices, are, in general, not isomorphic to any Dolbeault homology as
simple examples show. From this point of view, the isomorphism for p = q discussed in this paper
is rather an exception than a rule.

The motivation for considering polar homology comes from mathematical physics. It appears
naturally in “holomorphization” of various topological objects; cf. [2,7].

2. De�nitions

2.1. Poincar�e residue. Let X be a smooth complex projective n-dimensional manifold and V ⊂ X a
smooth hypersurface in X . Consider a meromorphic n-form ! on X with ,rst-order poles on V . If
{z = 0} is a local equation for V , the form ! can be written as

! =
dz
z

∧ � + �

where the locally de,ned holomorphic forms � and � can be chosen in various ways. However, the
restriction of � to V is de,ned uniquely and, therefore, becomes a global holomorphic (n − 1)-form
on V . It is denoted by res !=�|V and is called the Poincar;e residue of !. This can be also described
by the following exact sequence of sheaves:

0 → KX → KX (V ) → KV → 0; (1)

where KX is the canonical sheaf on X , i.e., the sheaf of holomorphic n-forms, while KX (V ) stands
for n-forms with ,rst-order poles on V whose residues give us regular (n − 1)-forms on V . The
restriction map KX (V ) → KV represents here the PoincarLe residue for locally de,ned n-forms. The
corresponding residue map for the globally de,ned forms, res : H 0(X; KX (V )) → H 0(V; KV ), shows
up in the cohomological long exact sequence implied by (1):

0 → H 0(X; KX ) → H 0(X; KX (V ))res→ H 0(V; KV ) →
H 1(X; KX ) → H 1(X; KX (V )) → · · · (2)
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In this sequence, we encounter elements of polar homology. Namely, the meromorphic n-forms
! ∈ H 0(X; KX (V )) will correspond (via De,nition 2.9 below) to n-chains, the holomorphic (n −
1)-forms � ∈ H 0(V; KV ) will correspond to (n − 1)-cycles, while the boundary map will be given by
the map res in (2). We shall see that the contribution to the (n−1)-dimensional polar homology com-
ing from a given (smooth) hypersurface V will correspond to the quotient
H 0(V; KV )=res(H 0(X; KX (V ))). It remains to understand the contributions from arbitrary subvarieties
in X .

2.2. Normal crossings. Since we are going to use the map res : H 0(X; KX (V )) → H 0(V; KV ) in the
de,nition of a boundary map on a vector space of chains we cannot restrict to the case of only
smooth divisors of poles. As a matter of fact, it is suMcient to generalize to the case of normal
crossings. We shall consider normal crossing divisors, as well as subvarieties with normal crossings
in arbitrary codimension. We shall give a very restrictive de,nition of these which will suMce for
our purposes. Let us explain our conventions in more detail. First of all, a (sub)variety will be
always reduced, but not necessary irreducible. Thus, a subvariety 2 in X is just a Zariski closed
subset of X . On the other hand, a smooth variety (= smooth manifold = manifold) will be always
assumed irreducible (which is equivalent to connected for smooth varieties).

Let us consider a smooth n-dimensional manifold X . A hypersurface V ⊂ X will be called a
normal crossing divisor if V consists of smooth components that meet transversely, in the sense
that V =

⋃
i Vi, where each Vi is smooth and intersects transversely Vj, Vj ∩ Vk , and so on, for all

i; j; k; : : :. 3 In order to introduce the notion of a normal crossing subvariety of an arbitrary codimen-
sion, consider ,rst a codimension two subvariety W ⊂ V ⊂ X (where X and V are as above). Let
us require that the part of W which resides in a smooth component of V is a normal crossing divisor
there and that W intersects the normal crossing singularities of V transversely. More precisely, if
W + Vi ∩ Vj; ∀i; j, and (W ∩ Vi) ∪ (Vi ∩ (

⋃
k �=i Vk)) is a normal crossing divisor in the smooth

manifold Vi for all i, we shall say that W is a normal crossing divisor in V and a normal crossing
subvariety in X . In such a way, we obtain the notion of a normal crossing divisor in a variety,
which is itself a normal crossing divisor in a bigger variety. Proceeding deeper in codimension we
shall say that a subvariety Y of codimension m in X is a normal crossing subvariety if there exists
a nested sequence

Y = V m ⊂ V m−1 ⊂ · · · ⊂ V 1 ⊂ V 0 = X; (3)

such that V i+1 is a normal crossing divisor in V i. We shall also say that two normal crossing
divisors V and V ′ intersect transversely if V +V ′ is a normal crossing divisor again. (This means in
particular that V and V ′ have no common components and that V ∩ V ′ is a normal crossing divisor
both in V and in V ′.)

In fact, we shall need mainly the notion of an ample subvariety with normal crossings in a
projective manifold X .

2 In this paper the varieties are always projective or quasi-projective; the subvarieties are always closed.
3 Near each point x ∈ V , one can choose local coordinates z1; : : : ; zn in X in such a way that z1 · : : : · zp = 0 is a local

equation of V (where p6 n is the number of components of V passing through x). The latter local formulation could be
used as a de,nition of a normal crossing divisor. We prefer, however, a stronger version, when the self-intersections of
components are excluded.
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2.3. De�nition. A normal crossing subvariety Y ⊂ X in a projective manifold X is called ample if
one can choose a Oag (3) in such a way that V i+1 is an ample normal crossing divisor in V i.

2.4. Canonical line bundle. The canonical sheaf KV is de,ned for a smooth variety V as the sheaf
of holomorphic forms of the top degree on V and, if V is a hypersurface in some X , i : V ,→ X ,
the local properties are described by sequence (1). In this case, one has to show that i∗KX (V ) �
KV , while the PoincarLe residue gives us a canonical choice of this isomorphism. In the case of
a normal crossing divisor i : V ,→ X we may take sequence (1) as the de<nition of KV . In other
words, KV is de,ned as i∗KX (V ). By induction in codimension we obtain a de,nition that can
be applied to any normal crossing subvariety Y ; the result is a line bundle on Y which does not
depend on the choice of Oag (3): invariantly, KY = Extm(OY ; KX ), where m = codim Y . With such
a de,nition, the global sections of KV are regarded as “holomorphic” forms on V and the PoincarLe
residue, res : H 0(X; KX (V )) → H 0(V; KV ), still maps meromorphic forms to holomorphic ones. This
is precisely what we need to de,ne a chain complex.

As a last preparation, it remains to check only the properties of the repeated residue map, as it has
to support the identity @2 = 0. Let V be a normal crossing divisor and suppose for simplicity that it
consists of only two components, V =V1∪V2, so that V1; V2 are smooth and intersect transversely over
a smooth variety V12 = V1 ∩ V2. Then, a section � ∈ KV can be described via its restrictions �i = �|Vi .
Since KV |Vi � KX (V1 +V2)|Vi � KX (Vi)|Vi (V1 ∩V2) � KVi (V12), the �i are in fact meromorphic forms,
�i ∈ H 0(KVi (V12)). Moreover, it follows from a local coordinate calculation with the de,nition that
resV12 �1 + resV12 �2 = 0, which is summarized in the short exact sequence of sheaves

0 → KV → KV1(V12) ⊕ KV2(V12) → KV12 → 0;

where the third arrow is taking the sum of residues. In other words, a holomorphic form
� ∈ H 0(V; KV ) on a normal crossing variety V can be described as a collection of meromorphic
forms �i on Vi satisfying the pairwise cancellation of their residues at the intersections. (We shall
say that the polar cycle (V; �) is the sum of two polar chains (V1; �1) and (V2; �2), whose boundaries
cancel each other.)

2.5. Resolution of singularities. In the next section, our main tool will be the Hironaka theorem on
resolution of singularities [5]. This theorem asserts that every algebraic variety Z admits a desin-
gularization, that is there exists a smooth variety Z̃ and a regular projective birational morphism

 : Z̃ → Z , which is biregular over Z − Zsing. Moreover, 
 can be obtained as a sequence of blowing
up with smooth centers. If D is a subvariety in Z we can additionally require that 
−1(D) is a
normal crossing divisor in Z̃ .

We shall also need the following important result, the (weak) factorization theorem for birational
morphisms, proved recently by Abramovich et al. [1] and W lodarczyk [8]. Below we cite only a part
of their statement from Ref. [1] relevant to our needs (the complete proposition is much stronger).

2.6. Proposition. Let # : X X ′ be a birational map between smooth projective varieties X and
X ′. Then # can be factored into a sequence of blowings up and blowings down with smooth
irreducible centers, namely, there exists a sequence of birational maps between smooth projective
varieties

X = X̃ 0
’1

X̃ 1
’2 · · · ’i

X̃ i
’

X̃ i+1
’i+2 · · · ’l−1

X̃ l−1
’l

X̃ l = X ′;
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where:

1. # = ’l ◦ ’l−1 ◦ · · · ◦ ’2 ◦ ’1, and
2. either ’i : X̃ i−1 X̃ i, or ’−1

i : X̃ i X̃ i−1 is a morphism obtained by blowing up a smooth
irreducible center.

For the sake of brevity in what follows, under a ‘blow-up’ we shall understand ‘a sequence of
blowings up with smooth centers’. The following corollary of the Hironaka and Bertini theorems
will also be useful in the sequel.

2.7. Proposition. Let Z ⊂ X be an arbitrary irreducible subvariety of codimension m in a smooth
projective manifold X . Then, there exists a blow-up 
 : X̃ → X and a @ag of subvarieties

Z̃ ⊂ V m−1 ⊂ V m−2 ⊂ · · · ⊂ V 1 ⊂ V 0 = X̃ (4)

such that V i+1 is a smooth hypersurface in V i and Z̃ is smooth and mapped birationally by 

onto Z .

Proof. Firstly, by Hironaka, we can blow up X in such a way that the proper preimage of Z becomes
smooth. If the codimension of Z is one, m = 1, the proposition is proved. We can thus proceed for
m ¿ 1 and assume that Z is already smooth. In this case, let us take a very ample divisor class H
in X and consider hypersurfaces in this class containing Z . Such hypersurfaces are described as zero
sets of global sections of the sheaf IZ(H), where IZ ⊂ OX is the ideal sheaf of the subvariety
Z in X . By Bertini, the generic section s ∈ H 0(X;IZ(H)) de,nes a hypersurface V = {s = 0} ⊂ X
which is regular outside Z . As to the points of V which lie on Z , the singularities correspond to
the zeros of the section .s = ds ∈ H 0(Z;IZ=I2

Z(H)) induced by s. Let us choose H � 0 in such a
way that H 0(Z;IZ=I2

Z(H)) �= 0, while H 1(Z;I2
Z(H)) = 0. Then we have a nontrivial section .s in

H 0(Z;IZ=I2
Z(H)) whose zeros form a proper closed subset Z0 ⊂−= Z . Moreover, H 1(Z;I2

Z(H)) = 0

guarantees that the mapping H 0(X;IZ(H)) → H 0(Z;IZ=I2
Z(H)), s �→ .s, is surjective. Hence, taking

a generic s we can ensure that the resulting hypersurface V ={s=0} is regular outside Z0={ .s=0} ⊂−= Z .

Applying the Hironaka theorem, we can now resolve the singularities of V by blowing up X in
centers belonging to Z0 ⊂ X . Then, for the proper preimage Z̃ of Z , we have that Z̃ ⊂ V 1 ⊂ X̃ ,
where Z̃ and V 1 are smooth. We can then proceed in the same manner inside V 1 until the whole
Oag (4) obeying the required conditions is constructed.

2.8. Polar chains. The space of polar q-chains for a (not necessarily smooth) complex projective
variety X , dim X = n, will be de,ned as a C-vector space with certain generators and relations.

2.9. De�nition. The space of polar q-chains Cq(X ) is a vector space over C de,ned as the quotient
Cq(X )=Ĉq(X )=Rq, where the vector space Ĉq(X ) is freely generated by the triples (A; f; �) described
in (i), (ii), (iii) and Rq is de,ned as relations (R1), (R2), (R3) imposed on the triples:

(i) A is a smooth complex projective variety, dim A = q;
(ii) f : A → X is a holomorphic map of projective varieties;

(iii) � is a meromorphic q-form on A with ,rst-order poles on V ⊂ A, i.e., � ∈ H 0(A; KA(V )), where
V is a normal crossing divisor in A.
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The relations are generated by:

(R1) )(A; f; �) = (A; f; )�),
(R2)

∑
k(Ak; fk ; �k) = 0 provided that

∑
k fk∗�k ≡ 0 on a Zariski open dense subset of Â, 4 where

fk(Ak) = fl(Al)= : Â; ∀ k; l and dim Â = dim fk(Ak) = q; ∀k;
(R3) (A; f; �) = 0 if dim f(A) ¡ q.

2.10. De�nition. The boundary operator @ :Cq(X ) → Cq−1(X ) is de,ned by

@(A; f; �) = 2
i
∑

k

(Vk; fk ; resVk �);

where Vk are the components of the polar divisor of �, div∞ � = ∪k Vk , and the maps fk = f|Vk are
restrictions of the map f to each component of the divisor.

2.11. Proposition. The boundary operator @ is well de<ned, i.e., it is compatible with the relations
(R1)–(R3).

For the proof see [6]. Now, by using the cancellation of repeated residues for forms � with normal
crossing divisors of poles, one proves the following [6]:

2.12. Proposition. @2 = 0.

This allows one to de,ne a homology theory.

2.13. De�nition. For a complex projective variety X; dim X = n, the chain complex

0 → Cn(X ) @→Cn−1(X ) @→ · · · @→C0(X ) → 0

is called the polar chain complex of X . Its homology groups, HPq(X ); q = 0; : : : ; n, are called the
polar homology groups of X .

2.14. Remark. It is useful to introduce the notion of the support of a q-chain a ∈Cq(X ). This is
de,ned as the following minimal subvariety supp a =

⋂ ∪k fk(Ak) ⊂ X where the intersection
⋂

is taken over all representatives
∑

k (Ak; fk ; �k) in the equivalence class a. (In other words, supp a
can be determined by taking Z = ∪k fk(Ak) for an arbitrary representative

∑
k (Ak; fk ; �k), removing

those components of Z which are of dimensionless than q or where the push-forwards fk∗�k sum
to zero as in (R2) in De,nition 2.9 above and taking closure.) This notion of the support of a polar
chain coincides with the support of the current in X corresponding to that chain. (The relation with
currents was discussed in Ref. [6].)

If a ∈Cq(X ) then Z = supp a is either of pure dimension q, or empty. The smooth part of Z is
provided with a meromorphic q-form � obtained by summation of fk∗�k . The meaning of relation
(R2) above is essentially that these data, (supp a; �), de,ne the equivalence class of (sums of) triples

4 For a surjective holomorphic map f : U → V of two smooth complex manifolds of the same dimensions (that is to
say, f is generically ,nite), we have a push-forward map f∗ on diTerential forms de,ned on the locus over which f
is ,nite by the summation over the preimages P ∈ f−1(Q) of a point Q. This map is also called the trace map, and the
pushforward of holomorphic (resp. meromorphic) forms extend over the image to be holomorphic (resp. meromorphic)
[4].
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a ∈Cq(X ) in a unique way. By the Hironaka theorem, the subvariety Z can in fact be arbitrary,
that is for an arbitrary q-dimensional Z ⊂ X , there exists a q-chain a such that Z = supp a, but the
meromorphic q-form � on Z − Zsing cannot in general be arbitrary.

2.15. Relative polar homology. Let Z be a closed subvariety in a projective X . Analogously to the
topological relative homology we can de,ne the polar relative homology of the pair Z ⊂ X .

2.16. De�nition. The relative polar homology groups HPq(X; Z) are the homology groups of the
following quotient complex of chains:

Cq(X; Z) = Cq(X )=Cq(Z):

Here we use the natural embedding of the chain groups Cq(Z) ,→ Cq(X ). This leads to the long
exact sequence in polar homology:

· · · → HPq(Z) → HPq(X ) → HPq(X; Z) @→ HPq−1(Z) → · · · : (5)

2.17. The functorial properties of polar homology are straightforward. A regular morphism of pro-
jective varieties h : X → Y de,nes a homomorphism h∗ : HP•(X ) → HP•(Y ). Analogously, for the
relative polar homology we have h∗ : HP•(X; V ) → HP•(Y; W ) if V ⊂ X , W ⊂ Y are closed subsets
and h(V ) ⊂ W .

2.18. Remark. In the case of a morphism of two pairs h : (X; V ) → (X ′; V ′) as above, the induced
homomorphisms h∗ give us the homomorphism of the associated long exact sequences:

· · · −−→ HPq(V ) −−→ HPq(X ) −−→ HPq(X; V ) −−→ HPq−1(V ) −−→ · · ·�
�

�
�

· · · −−→ HPq(V ′) −−→ HPq(X ′) −−→ HPq(X ′; V ′) −−→ HPq−1(V ′) −−→ · · · :

(6)

We note that if any two of the three homomorphisms HP•(V ) → HP•(V ′), HP•(X ) → HP•(X ′),
HP•(X; V ) → HP•(X ′; V ′) are isomorphisms then the third one is an isomorphism as well.

3. Polar homology and Dolbeault cohomology

We are going to show that the Dolbeault, or .@, cohomology on (0; q)-forms, H (0; q)
.@

(X ), plays
the same role with respect to polar homology HPq(X ) as does the de Rham cohomology in the
topological context. First of all, there is an obvious pairing between HPq(X ) and H (0; q)

.@
(X ). For

[(A; f; �)] ∈ HPq(X ) and [!] ∈ H (0; q)
.@

(X ), we can write
∫

A � ∧ f∗! and show that such a pairing

descends to (co)homology classes. Recalling the isomorphism H (0; q)
.@

(X ) � H q(X;OX ) and by the
Serre duality, H q(X;OX )∗ � H n−q(X; KX ), the above pairing is thus represented by the map

� : HPq(X ) → H n−q(X; KX ); (7)

where n = dim X .
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3.1. Theorem (Polar de Rham theorem): For a smooth projective n-dimensional X , the map � is
an isomorphism for any q:

HPq(X ) � H n−q(X; KX ):

In the case of polar homology of X relative to a hypersurface V ⊂ X we analogously have the
pairing of HPq(X; V ) and H q(X;OX (−V )), or, by Serre’s duality, the homomorphism

� : HPq(X; V ) → H n−q(X; KX (V )) (8)

and the corresponding relative version of the Theorem 3.1 is as follows.

3.2. Theorem. Let V be a normal crossing divisor in a smooth projective X . Then

HPq(X; V ) � H n−q(X; KX (V )):

This more general assertion follows in fact from the Theorem 3.1 by comparing the long exact
sequence in sheaf cohomology (2) with that in relative polar homology, cf. (5).

3.3. Remark. It follows from Theorem 3.1 that if two smooth projective manifolds X and X ′ are
birationally equivalent, then HPq(X ) = HPq(X ′) since we have in this case that H n−q(X; KX ) =
H n−q(X ′; KX ′). However, we in fact prove this and other similar results ,rst without reference to
sheaf cohomology, on the way to the proof of Theorem 3.1. In fact the rest of the paper is now
devoted to proving Theorem 3.1.

3.4. Lemma. If two projective varieties X and X ′ are birationally equivalent and we have an
isomorphism

g : X − Z ∼→ X ′ − Z ′;

where Z (resp. Z ′) is a Zariski closed subset in X (resp. in X ′), then

HP•(X; Z) � HP•(X ′; Z ′):

Proof. We want to construct an isomorphism of complexes

g• :C•(X; Z) ∼→C•(X ′; Z ′): (9)

Let us take an arbitrary nonzero simple 5 chain a ∈Cq(X; Z) and let the triple (A; f; �) be a repre-
sentative of the equivalence class a. Since a �= 0, the image Â = f(A) of A in X has dim Â = q
and Â * Z . Let us de,ne Â

′
as the closure of g(Â − Z) in X ′. By the Hironaka theorem (take the

closure of the graph of g|A−Z in A × Â
′

and resolve), there exists a smooth q-dimensional variety A′
with regular maps f′ : A′ → X ′ and 
 : A′ → A, where 
 is a birational map of A′ onto A, such that

5 We call a chain simple if it is equivalent to a single triple rather than a sum of triples.
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they form together with f and g (on open dense subsets) a commutative square, namely,

(10)

By blowing up A′ further if necessary and setting �′ := 
∗�, we may assume that div∞ �′ is a
normal crossing divisor, along which �′ has <rst-order poles. This is because it is a top degree
form, for which having ,rst-order poles is the same as being logarithmic, and logarithmic forms
are locally generated as a ring by forms df=f = d log f which are also logarithmic on pullback.
So (A′; f′; �′) is admissible and de,nes a chain a′ ∈Cq(X ′; Z ′). We de,ne the map gq by setting
a′ = gq(a).

Note that the q-forms f∗� and f′∗�′, which are de,ned on open dense subsets in Â and Â
′
,

respectively, coincide there (in the sense of the isomorphism g : Â − Z ∼→ Â
′ − Z ′) as follows from

the commutative diagram (10). This observation shows us that gq : a �→ a′ is well de,ned, because,
in general, polar chains are uniquely de,ned in terms of the forms f∗� on the dense subsets in their
supports (cf. Remark 2.14). It is obvious that the same construction applied to g−1 : X ′ −Z ′ ∼→ X −Z
gives the inverse of g•. Compatibility with the boundary map @ is also obvious. Thus, we have
indeed constructed an isomorphism of complexes (9), which proves the lemma.

3.5. Lemma. Let M be any projective variety, then

HP•(M × CP1) � HP•(M);

where the isomorphism is induced by the projection 
 : M × CP1 → M .

Proof. Choosing a point 0 ∈CP1, we will show that any cycle in M × CP1 is homologous to one
in the zero section s = (id; 0) : M → M × CP1 by constructing a homotopy h :Cq(M × CP1) →
Cq+1(M × CP1) from s∗ ◦ 
∗ to the identity; that is

@ ◦ h + h ◦ @ = id − s∗ ◦ 
∗: (11)

Let a = (A; f; �) ∈Cq(M ×CP1) be a simple chain; that is dim A = q, � is a q-form on A whose
poles form a normal crossing divisor in A, and f = (fM ; g) with fM := 
 ◦ f : A → M a regular
map and g : A → CP1 a rational function on A. We would like to de,ne the (q + 1)-chain h(a) by

h(a) = (A × CP1; fM × idCP1 ; 
) where 
 =
1

2
i
g dz

z(z − g)
∧ �:

Here z is an inhomogeneous coordinate on CP1 vanishing at 0 ∈CP1, and z; g and � are pulled back
to the product A ×CP1. 
 has simple poles on the hypersurface div∞ 
 = A1 ∪ A0 ∪ (div∞ � ×CP1),
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where A1 = {z = g} and A0 = {z = 0} are two sections, so that, in particular, A1 � A0 � A.

The corresponding residues are as follows:

2
i resA1 
 = �;

2
i resA0 
 = −�;

2
i resdiv∞�×CP1 
 = − g dz
z(z − g)

∧ res �: (12)

The only problem is that div∞ 
 will not be a normal crossing divisor if A0 does not meet A1 or
A1 ∩ (div∞ � × CP1) transversely.

By changing z to z′ (and so moving 0 ∈CP1) we can ensure that the new A′
0 does meet A1

and A1 ∩ (div∞ � × CP1) transversely, and the resulting 
′ has normal crossing poles, but now the
de,nition of h′(a) appears to depend on the choice of A′

0. The solution is to take this new 
′ and
add to it 
 − 
′, which also has normal crossing poles (along A0 ∪ A′

0 ∪ (div∞ � × CP1)). Thus,
h(a) =
 =
′ + (
−
′) is admissible in the sense of De,nition 2.9, and h is well de,ned and linear.

From (12) we can now calculate

@h(a) = (A1; (fM × idCP1)|A1 ; �) − (A0; (fM × idCP1)|A0 ; �)

−
(

div∞ � × CP1; fM |div∞ � × idCP1 ;
g dz

z(z − g)
∧ res �

)

= (A; f; �) − (A; s ◦ 
 ◦ f; �) − h(div∞ �; f|div∞ �; 2
i res �)

= a − s∗
∗(a) − h@(a); (13)

as in (11).

3.6. Lemma. (a) Let M be a smooth projective variety and E be the total space of a projective
bundle over M , i.e., 
 : E → M is a locally trivial <bration (in the Zariski topology) with a
projective space as a <ber. Then 
 induces an isomorphism in polar homology:

HP•(E) � HP•(M):

(b) The result (a) holds also for any projective M , that is without the assumption of smoothness.
(c) Let X and X̃ be two smooth projective manifolds and 
 : X̃ → X be a sequence of blow-ups

with smooth centers. Then

HP•(X ) � HP•(X̃ ):
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(d) Let X; X̃ ; 
 be the same as in (c) and let Z ⊂ X be an arbitrary closed subset. Then

HP•(Z) � HP•(
−1(Z));

HP•(X; Z) � HP•(X̃ ; 
−1(Z)):

Proof. We shall prove propositions (a)–(d) by a simultaneous induction in dimension. For dim E =
0 and dim X = 1 everything is obvious. Suppose that (a)–(d) are proved when dim X ¡ n and
dim E ¡ n − 1. Let us prove these four propositions when dim E = n − 1 and dim X = dim X̃ = n.

Consider a locally trivial ,bration 
 : E → M where the ,bers are all isomorphic to the projective
space CPk for some k6 n − 1. Since CPk is birational to (CP1)×k and by local triviality of 

we conclude that E is birational to the direct product E′ := M × (CP1)×k . If M is smooth as in
part (a) of our statement, both E and E′ are smooth and the AKMW theorem (see Proposition
2.6) tells us that E and E′ can be related by a sequence of blowups and blowdowns. But for
dim E = dim E′ = n − 1, part (c) of the statement is applicable by our induction hypothesis and we
conclude that HP•(E) = HP•(E′). Finally, HP•(E′) = HP•(M) according to Lemma 3.5. Thus, the
induction step is proved in part (a).

Let us now consider the ,bration 
 : E → M , dim E = n − 1, for an arbitrary projective variety
M as in part (b). If M is indeed singular (perhaps even with intersecting components) we denote
its singular locus as Msing. By the Hironaka theorem there exists a desingularization 3 : M̃ → M ,
where M̃ consists of smooth non-intersecting components and such that M − Msing � M̃ − F , where
F := 3−1(Msing). Let now 
̃ : Ẽ → M̃ be the pull-back of 
 along 3. In this smooth situation, we
have by proposition (a) that HP•(Ẽ) = HP•(M̃). Let us also consider the ,bration 
̃−1(F) → F (the
restriction of 
̃). Although its base F may be singular, its dimension (dim 
̃−1(F) ¡ dim E = n − 1)
allows us to use the induction hypothesis in part (b) to conclude that HP•(
̃−1(F)) = HP•(F).
We want now to compare the polar homology of the pair M̃ ⊃ F to that of Ẽ ⊃ 
̃−1(F). The
isomorphisms 
∗ : HP•(Ẽ) � HP•(M̃) and 
∗ : HP•(
̃−1(F)) � HP•(F) imply (as in Remark 2.18)
that

HP•(Ẽ; 
̃−1(F)) � HP•(M̃ ; F):

The varieties appearing in both sides of this equality have their birational counterparts:

M̃ − F � M − Msing;

Ẽ − 
̃−1(F) � E − 
−1(Msing):

Hence, we can use Lemma 3.4 to conclude that

HP•(E; 
−1(Msing)) � HP•(M; Msing): (14)

Since dim 
−1(Msing) ¡ dim E = n − 1, we can apply the induction hypothesis in part (b) to the
,bration 
−1(Msing) → Msing and get the isomorphism

HP•(
−1(Msing)) � HP•(Msing): (15)

Finally, isomorphisms (14) and (15) and the map of pairs 
 : (E; 
−1(Msing)) → (M; Msing) give the
third isomorphism HP•(E) = HP•(M) as in Remark 2.18, proving the induction step in part (b).

Now, we turn to part (c) with two smooth projective varieties X and X̃ , where dim X =dim X̃ =n.
It is suMcient to consider the case when 
 : X̃ → X is a single blow up with smooth center
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M ⊂ X . Let us denote by E = 
−1(M) ⊂ X̃ the exceptional divisor. Applying proposition (a)
to the ,bration 
 : E → M , we ,nd that HP•(E) = HP•(M), while, by Lemma 3.4, we ,nd that
HP•(X̃ ; E) = HP•(X; M). These two isomorphisms imply the third one, HP•(X̃ ) = HP•(X ), and we
obtain the proof for part (c).

In part (d), we again consider the case of a single blowing up. Let 
, X ⊃ M , X̃ ⊃ E be the
same as above and let Z ⊂ X be any closed subset. The subvariety 
−1(Z) in X̃ may have many
components (even their dimensions may diTer), so let us split these into two groups, 
−1(Z)=Z ′∪F ,
where

F = 
−1(Z ∩ M):

In other words, Z ′ is the union of the proper preimages of those components of Z not contained
in M . So we have an isomorphism Z − Z ∩ M � Z ′ − Z ′ ∩ F , which by Lemma 3.4 gives
HP•(Z; Z ∩ M) = HP•(Z ′; Z ′ ∩ F). Besides, for 
−1(Z) = Z ′ ∪ F , we can write tautologically that
HP•(Z ′; Z ′ ∩ F) = HP•(
−1(Z); F) and, hence,

HP•(Z; Z ∩ M) = HP•(
−1(Z); F):

Taking into account that HP•(F)=HP•(Z ∩M), which follows from (b) for the ,bration F → Z ∩M ,
we conclude that

HP•(Z) = HP•(
−1(Z)):

The remaining equality, HP•(X; Z) = HP•(X̃ ; 
−1(Z)) follows from (c), i.e., HP•(X ) = HP•(X̃ ), and
by consideration of the map of pairs (X̃ ; 
−1(Z)) → (X; Z). Thus, we have proved (d) and the whole
lemma.

3.7. If V is a closed hypersurface in X , the embedding i : V ,→ X induces the corresponding homo-
morphisms in (co)homology. Namely, the polar homology maps forward,

i∗ : HPq(V ) → HPq(X ): (16)

We have also the restriction map in sheaf cohomology, i∗ : H q(X;OX ) → H q(V;OV ). If V is smooth
(or normal crossing), then by Serre duality, i∗ produces the following covariant homomorphism:

i′ : H n−1−q(V; KV ) → H n−q(X; KX ): (17)

The proof of Theorem 3.1 will be achieved essentially by comparing homomorphisms (16) and (17)
and using (the simplest case of) Lefschetz’s hyperplane theorem. To describe this we begin with a
vanishing theorem.

3.8. Proposition. Let V be an ample divisor and D be a normal crossing divisor in a smooth
projective manifold X . Then

H p(X; KX (V + D)) = 0; p ¿ 0:

This mild generalization (i.e., to D �= ∅) of the Kodaira vanishing theorem can be found in Ref. [3].
Now suppose also that V is a normal crossing divisor. Then the long exact sequence in cohomology
of

0 → KX (D) → KX (V + D) → KV (D) → 0 (18)

gives the following.
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3.9. Proposition. If V and D are normal crossing divisors in a smooth projective X , with V ample,
then

i′ : H p(V; KV (D)) ∼→ H p+1(X; KX (D)) for p ¿ 0;

i′ : H 0(V; KV (D)) � H 1(X; KX (D)):

3.10. Proposition. If V is an ample normal crossing subvariety in a smooth projective X and
m = codim V , then

i′ : H p(V; KV ) ∼→ H p+m(X; KX ) for p ¿ 0;

i′ : H 0(V; KV ) � H m(X; KX ):

This follows trivially from the Lefschetz theorem (Proposition 3.9) by considering a Oag V = V m ⊂
V m−1 ⊂ · · · ⊂ V 1 ⊂ V 0 = X with V i+1 being an ample normal crossing divisor in V i (such a Oag
exists by de,nition).

3.11. Proposition. Let V = V m ⊂ V m−1 ⊂ · · · ⊂ V 1 ⊂ V 0 = X be as above and let D ⊂ X be
a normal crossing divisor which intersects each V i transversely (so that D ∩ V i is also a normal
crossing divisor in V i). Then

i′ : H p(V; KV (D)) ∼→ H p+m(X; KX (D)) for p ¿ 0;

i′ : H 0(V; KV (D)) � H m(X; KX (D)):

3.12. Remark. Suppose Theorem 3.2 is proven. Then Proposition 3.9 has also a similar implication
in polar homology (with D = ∅), namely,

i∗ : HPk(V ) ∼→ HPk(X ) for k ¡ n − 1;

i∗ : HPn−1(V ) � HPn−1(X ):

It may be interesting to note that this has the following topological analogue. For an n-dimensional
CW -complex X and its (n − 1)-skeleton i : V ,→ X , the map i∗ : Hq(V ) → Hq(X ) is an isomorphism
of cellular homology for 06 q ¡ n − 1 and is surjective for q = n − 1.

Thus, by Lefschetz’s theorem in the form of Proposition 3.9 one can view an ample divisor in
the context of polar homology as an analogue of the (n − 1)-skeleton in topology. Of course, the
Morse theory proof of the Lefschetz theorem shows that the topological (n − 1)-skeleton can indeed
be taken to lie in the hyperplane.

3.13. Proof of Theorem 3.1. Let us show ,rst that the map � in Eq. (7) is surjective. Take an
arbitrary ample smooth subvariety i : V ,→ X , dim V = q. Then i′ : H 0(V; KV ) � H n−q(X; KX ) is
surjective by the Lefschetz Theorem 3.10. But each element � ∈ H 0(V; KV ) corresponds, by de,nition,
to a cycle a = (V; i; �) in HPq(X ) and �([a]) = i′(�). Thus � is onto.

To prove injectivity we must show that for a q-cycle a the vanishing �([a]) = 0 ∈ H n−q(X; KX )
implies that a = @b for some polar (q + 1)-chain b. Let a =

∑
k (Ak; fk ; �k) ∈Cq(X ); @a = 0, be an
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arbitrary q-cycle. Its support, supp a = Z = ∪kZk , may be a singular reducible subvariety 6 in X . Let
Zsing be the subset of singular points of Z (including, of course, possible points of intersection of its
components). By the Hironaka theorem we can ,nd a blowup 
 : X̃ → X such that the following
conditions are satis,ed:

(a) There is a q-dimensional subvariety Z̃ ⊂ X̃ which consists of smooth nonintersecting components
and such that 
(Z̃) = Z and 
 gives us a birational map of Z̃ onto Z .

(b) Z̃ is included into a nested sequence of subvarieties:

Z̃ ⊂ Ỹ = V n−q−1 ⊂ V n−q−2 ⊂ · · · ⊂ V 1 ⊂ V 0 = X̃ ; (19)

where codim V i = i (in particular, dim Ỹ = q + 1) and each V i+1 is an ample normal crossing
divisor in V i, so that Ỹ , in particular, is an ample normal crossing subvariety in X̃ . (If q = n
our proposition is obvious: HPn(X ) = H 0(X; KX ), while for q = n − 1 we set simply Ỹ = X̃ .)

(c) The preimage D := 
−1(Zsing) of the singular locus of Z is a normal crossing divisor in X̃
which also intersects transversely Z̃ , Ỹ as well as all other elements V i of Oag (19).

We can ensure this by applying the Proposition 2.7 to each component of Z . The possibility to
satisfy condition (c) is also guaranteed by the Hironaka theorem. After that we can achieve the
ampleness of V 1; V 2; : : : ; Ỹ by adding suMciently ample components to them, which can be done
preserving normal crossings.

We are now prepared to replace the original polar cycle a ∈Cq(X ), which has a singular support
Z ⊂ X , with a cycle supported on Z̃ in X̃ . Recall that Z̃ may have several components, Z̃ =∪k Z̃k , but
these do not intersect. Each q-dimensional smooth subvariety ik : Z̃k ,→ X̃ acquires a meromorphic
q-form �̃k de,ned on Z̃k . This can be seen by noticing that there exists a smooth manifold Ãk

birational to Ak with a commutative square

Ãk −−→ Z̃k� 


�
Ak

fk−−→ Zk

which allows us to pull back �k from Ak to Ãk and then to push it forward to Z̃k . We claim that each
triple (Z̃k ; ĩk ; �̃k) is admissible. Since a was a closed chain, the polar locus of �k was mapped by fk

to Zsing. Therefore, we have that div∞ �̃k ⊂ Z̃k ∩ D, where D = 
−1(Zsing). By virtue of (c) above,
this guarantees that the polar divisor is normal crossings. Thus, we need now only show that �̃k has
at most ,rst-order poles. The form �̃k is obtained from �k by means of pushforwards and pullbacks,
which we claim both preserve the property of having only ,rst-order poles. The ,rst follows from a
local calculation with the cover z �→ zn about the smooth locus of a branch divisor. For the second
we use the observation that for top degree forms, having ,rst-order poles is the same as being
logarithmic, where logarithmic forms are locally generated as a ring by forms df=f = d log f and
so are also logarithmic on pullback.

6 We may suppose without loss of generality that Z has the same number of components as the number of terms in
a =

∑
k (Ak ; fk ; �k).
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So each (Z̃k ; ĩk ; �̃k) de,nes a q-chain in X̃ . However, the sum of these triples, ã =
∑

k (Z̃k ; ĩk ; �̃k),
does not necessarily form a cycle. 7 Nevertheless, ã has no boundary modulo D in X̃ , so we consider
ã as a q-cycle in Cq(X̃ ; D).

Now we suppose that �([a])=0 ∈ H n−q(X; KX ) and try to prove that [a]=0 in HPq(X ). Let us note
,rst that by (5) it is enough to prove the vanishing of [a] modulo Zsing ⊂ X , that is in HPq(X; Zsing),
because dim Zsing ¡ dim Z =q and so HPq(Zsing)=0. Secondly, since 
∗ : HPq(X̃ ; D) ∼→ HPq(X; Zsing)
by Lemma 3.6(d) and since, obviously, 
∗[ã] = [a] it is suMcient to prove that [ã] = 0 ∈ HPq(X̃ ; D).
To prove this latter vanishing we have to show ,rst that �̃([ã]) = 0, where

�̃ : HPq(X̃ ; D) → H n−q(X̃ ; KX̃ (D))

is the relative analogue of the map �, which is the subject of the proposition under consideration
(cf. Eqs. (7) and (8)). For this aim, let us collect the relevant maps in polar homology recalling the
isomorphisms in Lemma 3.6 as well as the isomorphism H n−q(X̃ ; KX̃ ) ∼→ H n−q(X; KX ), which holds
for smooth birationally equivalent X and X̃ , in the following commutative diagram:

Then, from �([a]) = 0, it follows that �̃([ã]) = 0 ∈ H n−q(X̃ ; KX̃ (D)).
We are ready now to ,nish the proof. To simplify the notations let us write ã = (Z̃ ; ĩ; �̃) for the

sum
∑

k(Z̃k ; ĩk ; �̃k), where �̃ ∈ H 0(Z̃ ; KZ̃(D)), while ĩ : Z̃ ,→ X̃ is the embedding of the union of
smooth nonintersecting components Z̃ = ∪k Z̃k into X̃ . The map �̃ applied to ã corresponds to the
map ĩ′ : H 0(Z̃ ; KZ̃(D)) → H n−q(X̃ ; KX̃ (D)), that is to say, �̃([ã])= ĩ′(�̃). Thus, we have that ĩ′(�̃)=0.
Since the embedding ĩ : Z̃ ,→ X̃ can be described as a composition of two embeddings, ĩỸ : Z̃ ,→ Ỹ
and j̃ : Ỹ ,→ X̃ the above map ĩ′ factors in this case through H 1(Ỹ ; KỸ (D)):

H 0(Z̃ ; KZ̃(D))
ĩ′
Ỹ→ H 1(Ỹ ; KỸ (D))

j̃′

→∼ H n−k(X̃ ; KX̃ (D)); (20)

where j̃′ ◦ ĩ′
Ỹ

= ĩ′ and j̃′ is an isomorphism by the ampleness of Ỹ (see Proposition 3.11). It follows
that ĩ′

Ỹ
(�̃) = 0 and the problem reduces to a codimension one situation: Z̃ ⊂ Ỹ . We can consider

now the following exact sequence:

0 → KỸ (D) → KỸ (D ∩ Ỹ + Z̃)
resZ̃−−→ KZ̃(D) → 0 (21)

7 For example, a 1-cycle in X can be supported on a self-intersecting rational curve Z . Then the resolved smooth curve
Z̃ ⊂ X̃ will be equipped with a meromorphic 1-form which has simple poles at the resolution of the double point of Z
and, hence, the resolved curve is no longer a cycle in X̃ .
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and the corresponding long sequence in cohomology. The latter allows us to conclude that the
vanishing ĩ′

Ỹ
(�̃)=0; �̃ ∈ H 0(Z̃ ; KZ̃(D)), implies that �̃=resZ̃ 
̃ for some 
̃ ∈ H 0(Ỹ ; KỸ (D∩ Ỹ + Z̃)). In

terms of polar chains in X̃ (modulo D), this means that ã=(Z̃ ; ĩ; �̃)=@(Ỹ ; j̃; 
̃), or [ã]=0 ∈ HPq(X̃ ; D).
As we explained above, this implies that [a] = 0 ∈ HPq(X ), which proves the injectivity of �.
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