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We prove that any regular Casimir in 3D magnetohydrodynamics (MHD) is a function

of the magnetic helicity and cross-helicity. In other words, these two helicities are the

only independent regular integral invariants of the coadjoint action of the MHD group

SDiff(M) � X∗(M), which is the semidirect product of the group of volume-preserving

diffeomorphisms and the dual space of its Lie algebra.

1 Introduction

The motion of an inviscid incompressible fluid on a closed Riemannian manifold M is

governed by the classical Euler equation

∂tv = −(v, ∇)v − ∇p , (1)

supplemented by the divergence-free condition div v = 0 on the velocity field v of a fluid

flow in M. Here the term (v, ∇)v stands for the Riemannian covariant derivative ∇vv of

the field v along itself, and p is the pressure function, which is uniquely defined up to

an additive constant. This equation implies that the vorticity field ω = curl v is frozen

into the fluid, a phenomenon that is known as Helmholtz’s transport of vorticity. On a
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three-dimensional manifold M (endowed with the Riemannian volume form dμ) this, in

turn, implies the conservation of helicity, a quantity that was discovered by Moreau [7]

and Moffatt [8] in the 1960s:

H(ω, ω) :=
∫

M
ω · curl−1ω dμ =

∫
M

ω · v dμ .

In [3] it was proved that the helicity is the only C1-Casimir of the 3D Euler equa-

tion; more precisely, any C1-regular functional of the vorticity that is invariant under the

coadjoint action of the corresponding group of volume-preserving diffeomorphisms of

M must be a function of helicity. An analogous result in the context of three-manifolds

with boundary, and divergence-free vector fields admitting a global cross section, was

proved in [5, 6].

In this paper we describe a complete list of functionally independent Casimirs in

self-consistent magnetohydrodynamics (MHD). In MHD on a closed three-dimensional

Riemannian manifold M one considers an ideal incompressible fluid of infinite conduc-

tivity that carries a magnetic field B. The field B is transported by the fluid flow, that

is it is frozen in it, and in turn reciprocally acts (via the Lorenz force) on the conducting

fluid. The corresponding equations of self-consistent MHD described in Section 2.1 have

two well-known 1st integrals discovered by Woltjer [11]: the magnetic helicity of the

field B, which is analogous to the hydrodynamic helicity defined above, and the cross-

helicity, which is a measure of entanglement of the fields B and ω = curl v. Our main

theorem states that these two invariants are the only functionally independent MHD

Casimirs, that is invariants of the corresponding coadjoint action. More precisely, we

show that any C1-functional that is invariant under the coadjoint action of the MHD

group must be a function of magnetic helicity and cross-helicity. This extends (and

actually recovers it as a particular case) the uniqueness of hydrodynamics helicity

proved in [3] to the context of MHD. The problem of finding a basis of Casimirs for

the coadjoint orbits of the diffeomorphism group (or, more generally, the MHD group) is

natural and was explicitly stated in [1, Section I.9].

The paper is organized as follows. In Section 2 we present a few facts about

the MHD equations, including the invariance of cross-helicity and magnetic helicity

under the coadjoint action of the MHD group (Sections 2.1 and 2.2) and we state the

main theorem of this paper (Section 2.3). We divide the proof of the main result in four

steps, which are presented in Section 3. Finally, in Appendix A we recall the Hamiltonian

formulations of the Euler and MHD equations, as well as the explicit form of the

corresponding coadjoint action in terms of the vorticity and magnetic fields.
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2 Geometric Settings

2.1 Equations of self-consistent MHD

The evolution of an infinitely conducting ideal fluid carrying a magnetic field on a

closed three-dimensional smooth (C∞) Riemannian manifold M is described by the

following system of MHD equations on the fluid velocity v and the magnetic field B:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tv = −(v, ∇)v + (curl B) × B − ∇p ,

∂tB = −[v, B] ,

div B = div v = 0;

(2)

see [1, 10] for a derivation of these equations. Here [v, B] stands for the Lie bracket of

two vector fields, v and B, and × denotes the cross product on the 3-manifold.

Taking the curl on the 1st equation of (2), we can rewrite the MHD equations as

the evolution of the pair of fields (ω, B), where the field ω := curl v is the vorticity field:

∂tω = [ω, v] − [curl B, B] and ∂tB = [B, v] . (3)

Consider the subspace X(M) of exact divergence-free fields on M. Recall that a

divergence-free field w is exact if w admits a field-potential, or, equivalently, if iwdμ is

an exact 2-form. For example, on a closed three-dimensional manifold M with trivial 1st

cohomology group, H1(M) = 0, all divergence-free fields are exact. For an exact velocity

field v, its evolution can be recovered from the vorticity evolution with the help of the

curl−1-operator, since the curl operator on the space of exact divergence-free fields on

M is one-to-one.

Furthermore, the curl operator on a Riemannian manifold M allows one to

identify the space of exact divergence-free vector fields X(M) and its dual X∗(M), as

explained in Appendix A. It turns out that the MHD equations are Hamiltonian on the

space of pairs (ω, B) ∈ X(M) × X(M).

2.2 Invariance of the cross-helicity and magnetic helicity

Consider the space of pairs (ω, B) ∈ X(M) × X(M) of vorticity and magnetic fields on M.

Definition 2.1. The magnetic helicity is the following quadratic form on B:

H(B, B) :=
∫

M
B · curl−1B dμ .
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The cross-helicity is the following bilinear form on (ω, B):

H(ω, B) :=
∫

M
B · curl−1ω dμ =

∫
M

B · v dμ ,

where ω = curl v on M (in other words, v is the only field in X(M) such that curl v = ω).

These quantities turn out to be invariant under the evolution of the MHD

equations. Moreover, they are invariant under the action of a group that generalizes

the group SDiff(M) of volume-preserving diffeomorphisms of the manifold M, similarly

to the case of the hydrodynamics helicity. These properties are summarized in the

following proposition.

Proposition 2.2. Both the magnetic helicity H(B, B) and the cross-helicity H(ω, B)

are 1st integrals of the MHD equations. Furthermore, they are Casimirs of the MHD

equations, that is, they are invariants of the coadjoint action of the semidirect-product

group G = SDiff(M) � X∗(M) on its dual space g∗.

Proof. It is a direct computation using the MHD equations and the explicit form of the

coadjoint operator ãd
∗
; see Appendix A for details. �

2.3 The main theorem

As explained in Section A.2 (Remark A.2), the coadjoint action ãd
∗
(v,A) on (ω, B) ∈ X(M) ×

X(M), expressed in terms of vector fields, is

ãd
∗
(v,A)(ω, B) = ([ω, v] − [A, B], [B, v]) , (4)

where (v, A) is any pair of divergence-free vector fields. Notice that the resulting fields

[ω, v] − [A, B] and [B, v] are exact. It is interesting to compare this expression with the

MHD equations (3).

Our goal is to prove that, under appropriate regularity hypotheses, the magnetic

helicity and cross-helicity form a basis of Casimirs of the aforementioned coadjoint

action. To this end, we introduce the following definition, where we use X1(M) to denote

the space of C1 exact divergence-free fields on M. The ãd
∗

action on the space of smooth

exact fields X(M) × X(M) naturally extends to X1(M) × X1(M).

Definition 2.3. Let F : X1(M) × X1(M) → R be a C1 functional. We say that F is a

regular integral invariant if:

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/18/13645/5730336 by U
niversity of Toronto user on 10 January 2022



A Basis of Casimirs in 3D Magnetohydrodynamics 13649

(i) It is invariant under the coadjoint action of the Lie group G = SDiff(M) � X∗(M), that

is, F(ω, B) = F(Ãd
∗
�(ω, B)) for any � ∈ G, and the group action Ãd

∗
on (ω, B) is induced

from the action ãd
∗

introduced in (4).

(ii) At any point (ω, B) ∈ X1(M) × X1(M), the (Fréchet) derivative of F is an integral

operator with continuous kernel, that is,

(DF)(ω,B)(u, b) =
∫

M
K(ω, B) · (u, b) dμ =

∫
M

(K1(ω, B) · u + K2(ω, B) · b) dμ , (5)

for any (u, b) ∈ X1(M) × X1(M), where K = (K1, K2) : X1(M) × X1(M) → X1(M) × X1(M) is

a continuous map. In this expression, the dot product denotes the scalar product of two

vector fields using the Riemannian metric on M.

It is easy to check that both the magnetic helicity and the cross-helicity are

regular integral invariants in the sense of this definition. The following is the main

result of this paper.

Theorem 2.4. Let F be a regular integral invariant. Then F is a function of the magnetic

helicity and cross-helicity, that is, there exists a C1 function f : R × R → R such that

F(ω, B) = f (H(B, B), H(ω, B)), where (ω, B) ∈ X1(M) × X1(M).

Corollary 2.5. Let F be a regular integral invariant that depends only on the magnetic

field B. Then F is a function of the magnetic helicity, that is, there exists a C1 function

g : R → R such that F(B) = g(H(B, B)), where B ∈ X1(M).

Remark 2.6. By considering the subgroup SDiff(M) × {0} of G, one obtains the main

theorem of [3], which states that any regular integral invariant of volume-preserving

transformations is a function of the helicity. Indeed, the G-coadjoint action on the

magnetic field B coincides with the coadjoint action of SDiff(M) on the vorticity, so

Corollary 2.5 on the magnetic helicity generalizes the corresponding result on the

uniqueness of the helicity invariant in ideal hydrodynamics.

The proof of Theorem 2.4 presented in Section 3 follows the strategy of [3], but

it is technically more involved since now we have two elements in the Casimir basis

(the magnetic helicity and the cross-helicity), while the MHD semidirect group action is

much more complicated.

Remark 2.7. The use of the space X1(M) (endowed with the C1 topology) is key in

our proof of Theorem 2.4. The reason is that a main ingredient of the proof is Lemma
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3.1 below, which is based on the existence of a residual subset of vector fields with

special dynamical properties among exact divergence-free C1 fields. Indeed, the proof

of the lemma makes use of a theorem by Mario Bessa [2] that is known to hold only for C1

divergence-free vector fields with the C1 topology and is actually false for C4 divergence-

free vector fields with the C4 topology due to the KAM theorem. However, in the Cr-

setting for r ≥ 4 (including the case of C∞) one can prove the helicity uniqueness in

ideal Cr hydrodynamics by using different tools from the theory of dynamical systems,

see [9]. This allows one to similarly adjust Lemma 3.1 and generalize Theorem 2.4 to C1

integral invariants in Cr MHD as well. We remark that a uniqueness result in the Cr-

setting (r ≥ 2) does not imply an analogous result in the C1-setting (or more generally,

in the Cm-setting, m < r).

3 Proof of the Main Theorem

Step 1: Consider a one-parameter family φt of elements on the semidirect product group

G. Let F be a functional invariant under the coadjoint action of this family on the

corresponding space of pairs (ω, B), that is,

F(Ãd
∗
φt

(ω, B)) = F(ω, B)

for all t ∈ R. We assume that dφt
dt |t=0 = (v, A) is a pair of divergence-free vector fields

and φ0 = id. Recall that X(M) denotes the space of smooth exact divergence-free vector

fields on M. For a pair of elements (ω, B) ∈ X(M) × X(M) ⊂ X1(M) × X1(M), one can take

the time derivative of the expression above and evaluate it at t = 0:

0 = d
dt

∣∣∣
t=0

F(Ãd
∗
φt

(ω, B)) = (DF)(ω,B)(ãd
∗
(v,A)(ω, B))

= ∫
M

(
K1(ω, B) · ([ω, v] − [A, B]) − K2(ω, B) · [v, B]

)
dμ

= − ∫
M(curl K1 × ω + curl K2 × B) · vdμ − ∫

M(curl K1 × B) · A dμ .

(6)

In the 2nd line of the above computation we have used the definition (cf.

Equation (5)) of the differential of a regular integral invariant and the expression (4)

of the coadjoint action ãd
∗
(v,A) on (ω, B) ∈ X(M) × X(M), expressed in terms of vector

fields. To pass to the 3rd line we have used the identities that relate the commutator of

divergence-free vector fields with the curl of the vector product, for example, [ω, v] =
curl (v × ω), and integrated by parts.
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Since v and A are arbitrary divergence-free vector fields, the above computation

shows that the vector fields curl K1 × ω + curl K2 × B and curl K1 × B are L2 orthogonal

to all divergence-free vector fields on M. Then, by the Hodge decomposition theorem,

there exist two smooth functions P and Q on M such that

⎧⎪⎨
⎪⎩

curl K1 × ω + curl K2 × B = ∇P ,

curl K1 × B = ∇Q .
(7)

This holds for all pairs (ω, B) ∈ X(M) × X(M) of smooth exact divergence-free fields.

Finally, the fact that the space X(M) of smooth exact fields is an L2 dense subset of the

space X1(M) of C1 exact fields and the continuity of the functional imply that for any

pair (ω, B) ∈ X1(M) × X1(M), there exists two C1 functions P and Q on M such that the

equations (7) hold.

Step 2: Let us study the 2nd equation in (7) in more detail. Fix any field ω ∈ X1(M) and

any not identically zero field B ∈ X1(M). In what follows, we use the symbol X1
0(M) to

denote the space of exact C1 fields on M that are not identically zero. The following

lemma is the key result of this step; in its proof we will invoke Bessa’s theorem [2],

where the use of C1 divergence-free fields is essential.

Lemma 3.1. Assume that there are a C1 function J on M and a map K : X1(M) ×
X1(M) → X1(M) continuously depending on the pair of fields (ω, B) ∈ X1(M)×X1

0(M) and

satisfying the equation

curl K(ω, B) × B = ∇J . (8)

Then there is a constant function C on M, continuously depending on (ω, B), that is, there

is a continuous functional C : X1(M) × X1
0(M) → R, such that

curl K(ω, B) = C(ω, B) B (9)

on the whole manifold M.

Proof. From Equation (8), we obtain B · ∇J = 0, that is J is a 1st integral of the vector

field B. If J is a constant on M (a trivial 1st integral), then curl K(ω, B) × B = 0, which

implies that

curl K(ω, B) = j(x) B , with j(x) = B · K(ω, B)

|B|2 ,
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for any point x ∈ M\B−1(0). It is apparent that the function j ∈ C0(M\B−1(0)) depends

continuously on the pair (ω, B). Using a flow box argument as in the proof of [3, Step 2],

we conclude that the function j is a continuous 1st integral of the vector field B (in the

complement of its zero set). Accordingly, for each B ∈ X1
0(M), either J is a nontrivial C1

1st integral of B on M or j is a C0 1st integral of B in M \ B−1(0).

Furthermore, according to [2], there exists a residual (and hence dense) set R
of vector fields in X1(M) such that any B ∈ R is topologically transitive and its zero

set consists of finitely many hyperbolic points. Therefore, any continuous 1st integral

of B ∈ R must be a constant, and so for any B ∈ R and any ω ∈ X1(M), one has that

curl K(ω, B) × B = 0 on M. The assumption that the kernel K is continuous then implies

that curl K(ω, B) × B = 0 on M for any (ω, B) ∈ X1(M) × X1
0(M).

Now, we can define j(x) ∈ C0(M \ B−1(0)) as above such that curl K(ω, B) = j(x) B

on M \ B−1(0). Moreover, arguing as before, one has that curl K(ω, B) = C(ω, B) B on

M\B−1(0), where C(ω, B) is a constant, for any pair (ω, B) ∈ X1(M) × R. Actually, since

the zero set of B consists of finitely many points, this identity holds on the whole of

M. Since the map j is continuous in X1(M) × X1
0(M), and is a constant C(ω, B) depending

on (ω, B) on a dense subset of X1(M) × X1
0(M), it must also be a constant (depending on

(ω, B)) for all (ω, B) ∈ X1(M) × X1
0(M), as we wanted to prove. �

Remark 3.2. This is a parametric version of the result proved in [3, Step 3], where a

similar statement was shown for a vorticity field. Here we prove it for a magnetic field

B, regarding the vorticity ω as a parameter.

Step 3: In this step we first use Lemma 3.1 to show that curl K1 and curl K2 are linear

combinations of ω and B (with coefficients that are constants on M depending on ω and

B). After that, we complete the proof of Theorem 2.4 assuming a property to be proved

in Step 4.

Lemma 3.3. The kernel K = (K1, K2) corresponding to the functional F has the

following property: there are constant functions C1 and C2 on M continuously depending

on the fields ω ∈ X1(M) and B ∈ X1
0(M), such that

curl K1(ω, B) = C1(ω, B) B

and

curl K2(ω, B) = C1(ω, B) ω + C2(ω, B) B

for all x ∈ M.
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Proof. First, applying Lemma 3.1 to the 2nd equation in (7), we obtain that there exists

a continuous functional C1 : X1(M) × X1
0(M) → R such that

curl K1(ω, B) = C1(ω, B) B

for all x ∈ M. Then, plugging this expression into the 1st equation of (9), we get

curl (K2 − C1(ω, B)curl−1ω) × B = ∇P ,

so using Lemma 3.1 again, we obtain that there exists another continuous functional

C2 : X1(M) × X1
0(M) → R such that

curl (K2 − C1(ω, B)curl−1ω) = C2(ω, B) B ,

and therefore,

curl K2(ω, B) = C1(ω, B) ω + C2(ω, B) B

for all x ∈ M, as required. �

Finally, the main theorem follows from the formula for the Fréchet derivative

of F at the pair (ω, B) and the connectedness of common level sets of the helicity and

cross-helicity, which is proved in the next step. Indeed, using Lemma 3.3 we compute

the Fréchet derivative of F at (ω, B) ∈ X1(M) × X1
0(M) as follows:

DF(ω,B)(u, b) = ∫
M(K1(ω, B) · u + K2(ω, B) · b) dμ

= ∫
M C1(ω, B)(curl−1u · B + curl−1ω · b)dμ + ∫

M C2(ω, B)curl−1B · b dμ

= C1(ω, B)(DH)(ω,B)(u, b) + 1
2C2(ω, B)(DH)(B,B)(b) .

(10)

To pass to the 2nd line we have used Lemma 3.3 and integrated by parts. In the 3rd

line, we have substituted the expressions of the derivative for the cross-helicity and

magnetic helicity:

(DH)(ω,B)(u, b) =
∫

M
(curl−1u · B + curl−1ω · b)dμ ,

(DH)(B,B)(b) = 2
∫

M
curl−1B · b dμ .
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Now the proof of the main theorem can be completed assuming the aforementioned

connectedness of level sets of mixed helicity. Namely, take any two pairs of vector fields

at the same common level of the magnetic helicity and cross-helicity and connect them

by a path (ωt, Bt) ∈ X1(M)×X1
0(M). The differential of the functional F along this path is

given by

(DF)(ω,B)(ω̇t, Ḃt) = C1(DH)(ω,B)(ω̇t, Ḃt) + C3(DH)(B,B)(Ḃt) ,

where (ω̇t, Ḃt) are the tangent vectors along the path, and C3 := C2/2. By choosing the

path in such a way that the values H(ωt, Bt) and H(Bt, Bt) remain constant, the previous

computation implies that F is also constant on any common level set. Accordingly, there

exists a function f : R × R → R that assigns a value of F to each value of the mixed

helicity, that is, F(ω, B) = f (H(ω, B), H(B, B)) for all (ω, B) ∈ X1(M) × X1
0(M). To include

the case of identically zero B, we can take any pair (ω0, B0) ∈ X1(M) × X1
0(M) such that

H(ω0, B0) = H(B0, B0) = 0; since H(ω0, (1 − s)B0) = H((1 − s)B0, (1 − s)B0) = 0 for s ∈ [0, 1],

the continuity of the functional F on X1(M) × X1(M) implies that F(ω, 0) = f (0, 0), and

hence the property F(ω, B) = f (H(ω, B), H(B, B)) holds for all (ω, B) ∈ X1(M) × X1(M).

Additionally, f is of class C1 since F itself is a C1 functional. The main theorem then

follows once we prove Proposition 3.4 below on the connectedness of the level sets of

the mixed helicity.

Step 4: Define the mixed helicity as the R
2-valued quadratic form on X1(M):

H : X1(M) × X1(M) → R × R

(ω, B) 	→ (H(B, B), H(ω, B)) .
(11)

Our goal in this step is to prove that the (infinite-dimensional) level sets of the

mixed helicity are path connected.

Proposition 3.4. The level sets of the mixed helicity H are path-connected subsets of

X1(M) × X1
0(M) (and hence of X1(M) × X1(M)).

Proof. Let (ω0, B0) and (ω1, B1) be two pairs of vector fields in X1(M)×X1
0(M) ⊂ X1(M)×

X1(M) with the same mixed helicity, that is,

H(ω0, B0) = H(ω1, B1) = (a, b) .

In order to prove the connectedness of the (a, b)-level set we introduce two auxiliary

vector fields ξ ∈ X1(M) and β ∈ X1
0(M) with the same value of mixed helicity, that is
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H(ξ , β) = (a, b), which can be connected with each pair (ωi, Bi) by a path in X1(M)×X1
0(M)

of constant mixed helicity. The only ingredient we need in the proof is the property that

the curl operator acting on the space X1(M) of exact fields has infinitely many positive

and negative eigenvalues, which implies that the positive and negative subspaces of the

helicity quadratic form H(u, u) on X1(M) are infinite dimensional.

To fix ideas, assume that both a and b are positive (other signs and the cases of

vanishing a or b are treated similarly). Consider the subspace S ⊂ X1(M) of vector fields

orthogonal to the four vector fields ω0, ω1, B0, B1 with respect to the helicity quadratic

form H, that is

S :=
{

u ∈ X1(M)|
∫

M
u · curl−1ωkdμ =

∫
M

u · curl−1Bkdμ = 0 for k = 0, 1
}

.

This space has codimension ≤ 4 and hence the restriction of the helicity H to this

subspace is still sign indefinite. Hence, one can choose a field β ∈ S such that

H(β, β) = 1 (for other signs of a and b one needs to choose H(β, β) = −1 or H(β, β) = 0

for some nonzero field β).

Now define a family of vector fields Bt := (1−t)B0+f (t)β for t ∈ [0, 1], and choose

an appropriate function f (t) so that the condition H(Bt, Bt) = a holds for all t. Namely,

H(Bt, Bt) = H
(
(1 − t)B0 + f (t)β, (1 − t)B0 + f (t)β

)

= (1 − t)2H(B0, B0) + f (t)2H(β, β) = (1 − t)2a + f (t)2 ,

where we have used that H(B0, B0) = a, H(B0, β) = H(β, B0) = 0 and H(β, β) = 1. Then,

taking f (t) := √
(2t − t2)a for t ∈ [0, 1] we obtain a continuous family Bt of fields in X1

0(M)

that have constant helicity a and connect B0 and
√

aβ. In the same way one can connect√
aβ and B1 for t ∈ [1, 2].

Now define a family of fields ωt := (1 − t)ω0 + g(t)β for a function g(t) with

t ∈ [0, 1], starting at ω0 and ending at ξ := g(1)β. The function g(t) is to be chosen such

that H(ωt, Bt) = b for all t ∈ [0, 1]. The condition we obtain is

H(ωt, Bt) = H
(
(1 − t)ω0 + g(t)β, (1 − t)B0 + f (t)β

)

= (1 − t)2H(ω0, B0) + f (t)g(t)H(β, β) = (1 − t)2b + f (t)g(t),

where we have used that H(ω0, B0) = b, H(β, β) = 1 and H(ω0, β) = H(β, B0) = 0. Then,

taking g(t) := √
(2t − t2)b2/a, we obtain a continuous family of fields ωt ∈ X1(M) that
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have the cross-helicity with Bt independent of t and equal to b, and connect ω0 with

ξ = b/
√

aβ. Similarly, we can connect ξ with ω1 for t ∈ [1, 2]. We have hence shown that

the level set H−1(a, b) of mixed helicity is path connected. The connecting path can be

smoothened out by adjusting this construction.

The cases of one or both a and b vanishing are analogous, but one may need to

take vector fields β and ξ in S that are not proportional to each other. For example, for

a = b = 0, one can take linearly independent β and ξ such that H(β, β) = H(β, ξ) = 0,

and the following families of vector fields: Bt = (1 − t)B0 + tβ and ωt = (1 − t)ω0 + tξ ,

for t ∈ [0, 1] (and analogously for (ω1, B1)). Such fields β, ξ exist because both positive

and negative subspaces of the helicity quadratic form are of dimension greater than 4

(in fact, infinite dimensional). The constructed path (Bt, ωt) for a = b = 0 proves the

connectedness of the level sets in X1(M) ×X1
0(M) (since H(ω, 0) = 0 for all ω ∈ X1(M)), as

required. �

Appendix A: Hamiltonian Formulation of the MHD Equations

A.1 Hamiltonian setting of ideal hydrodynamics

The Euler equation ∂tv = −(v, ∇)v − ∇p of ideal hydrodynamics can be regarded

as an equation of the geodesic flow on the group SDiff(M) of volume-preserving

diffeomorphisms of M with respect to the right-invariant metric on the group given

by the L2-energy of the velocity field. In these terms, the Euler equation describes an

evolution in the Lie algebra X(M) of divergence-free vector fields on M, tracing the

geodesics in the group SDiff(M).

This point of view implies the following Hamiltonian reformulation of the Euler

equation. Consider the (regular) dual space X∗(M) to the Lie algebra X(M). This dual

space X∗(M) has a natural description as the space of cosets X∗(M) = �1(M)/d�0(M) of

1-forms modulo exact 1-forms on M, where the coadjoint action of the group SDiff(M)

on the dual X∗(M) is given by the change of coordinates in (cosets of) 1-forms on M by

means of volume-preserving diffeomorphisms, see [1].

Recall that the manifold M is equipped with a Riemannian metric (·, ·), and it

allows one to identify the Lie algebra and its dual by means of the so-called inertia

operator I : X(M) → X∗(M). Namely, given a vector field v on M one defines the 1-form

u = v	 as the pointwise inner product with vectors of the velocity field v: v	(W) :=
(v, W) for all W ∈ TxM; see details in [1]. The Euler equation (1) rewritten on 1-forms is

∂tu = −Lvu − dP for the 1-form u = v	 and an appropriate function P on M. In terms
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of the cosets of 1-forms [u] = {u + df | f ∈ C∞(M)} ∈ �1(M)/d�0(M), the Euler equation

looks as follows:

∂t[u] = −Lv[u] (A.1)

on the dual space X∗(M), where Lv is the Lie derivative along the field v. The Euler

equation is the Hamiltonian equation on the dual space X∗(M) with respect to the Lie

Poisson structure and with the Hamiltonian functional

E([u]) := 1

2
〈[u], I−1[u]〉 = 1

2

∫
M

u(v) dμ = 1

2

∫
M

v · v dμ

for u = v	, given by the kinetic energy of the fluid; see details in [1]. The corresponding

Hamiltonian operator is given by the Lie algebra coadjoint action ad∗
v, which coincides

with the Lie derivative in the case of the diffeomorphisms group:

ad∗
v[u] = Lv[u] .

Its symplectic leaves are coadjoint orbits of the corresponding group SDiff(M).

Furthermore, one can introduce the vorticity 2-form ζ := du as the differential

of the 1-form u = v	. The vorticity exact 2-form is well defined for cosets [u]: 1-forms

u in the same coset have equal vorticities ζ = du. The corresponding Euler equation

assumes the vorticity (or Helmholtz) form

∂tζ = −Lvζ , (A.2)

which means that the vorticity form is transported by (or “frozen into”) the fluid flow.

In 3D the vorticity 2-form ζ can be identified with the (divergence-free and exact)

vorticity vector field ω = curl v by means of the volume form dμ on M: iωdμ = ζ .

The corresponding Euler evolution of the vorticity field is given by the same transport

equation: ∂tω = −Lvω. The helicity

H(ω, ω) =
∫

M
ω · curl−1ω dμ =

∫
M

ω · v dμ

of the field ω is a Casimir (i.e., an invariant of the coadjoint action) on the dual space

X∗(M), and hence a 1st integral of the Euler equation.

A.2 Hamiltonian setting of ideal MHD

It turns out that the MHD equations (2) can be studied in the same manner [10].

These equations are related to the semidirect-product group G = SDiff(M) � X∗(M)

of the volume-preserving diffeomorphisms group SDiff(M) and the dual space
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X∗(M) = �1(M)/d�0(M) of the Lie algebra X(M) of divergence-free vector fields. Its

Lie algebra is g = X(M) � X∗(M) and the corresponding dual space is

g∗ = X∗(M) ⊕ X(M) = �1(M)/d�0(M) ⊕ X(M) .

The coadjoint Lie-algebra g-action on its dual g∗ is given by

ad∗
(v,[α])([u], B) = (Lv[u] − LB[α], −[v, B]) , (A.3)

where ([u], B) ∈ g∗ = �1(M)/d�0(M) ⊕ X(M) and (v, [α]) ∈ g = X(M) � �1(M)/d�0(M).

Similarly to ideal hydrodynamics, one can regard the MHD equations as the

equations of the geodesic flow on the semidirect product group G = SDiff(M) � X∗(M).

It has the following Hamiltonian form on the dual space g∗. The Hamiltonian function

is the following quadratic energy

E([u], B) = 1

2
〈[u], I−1[u]〉 + 1

2
〈B, IB〉

on the dual space g∗ with the Lie–Poisson structure. Here the map I : X(M) → X∗(M) =
�1(M)/d�0(M) is the inertia operator from the (non-extended) Lie algebra X(M) of

divergence-free vector fields to its dual. The MHD equations can be written on the dual

space g∗ as follows: ⎧⎪⎨
⎪⎩

∂t[u] = −Lv[u] + LB[b],

∂tB = −[v, B],
(A.4)

where v = I
−1[u] ∈ X(M) and [b] = IB ∈ X∗(M). We refer to [1] and [4] for more details.

Remark A.1. By taking the differential of the 1st equation in (A.4) and recalling the

definition of the vorticity two-form ζ = d[u], we obtain the equation ∂tζ = −Lvζ +LB d[b],

that is, this equation manifests that the vorticity ζ , as well as the vorticity field ω =
curl v defined by ζ = iωdμ, is not frozen into the flow, but differs from the would-

be-transported one by a term depending on B. Nevertheless, the cross-helicity H(ω, B)

of exact fields ω and B is conserved, as well as the helicity H(B, B) of the transported

magnetic field B.

Remark A.2. Now we compute the coadjoint action in terms of the vector fields

(ω, B), rather than the pairs ([u], B), involving cosets of 1-forms. For simplicity in the

exposition, we assume that the closed three-dimensional Riemannian manifold M has

trivial cohomology H1(M) = 0. To pass between the vorticity fields ω = curl v and the

corresponding cosets [u] of 1-forms u = v	 we introduce the operator σ : ω 	→ [u] defined

by u := (curl−1ω)	, that is, σ = I◦curl−1. Note that although both I and curl−1 are metric
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dependent, the operator σ depends on the volume form dμ only, since ω is the kernel of

d[u], that is, iωdμ = d[u] = d σ(ω).

Using this operator σ , which is an isomorphism between X(M) and X∗(M), we

have the following space identification,

g = X(M) � X∗(M) � X(M) � σ−1(X∗(M)) = X(M) × X(M),

and

g∗ = X∗(M) ⊕ X(M) � σ−1(X∗(M)) ⊕ X(M) = X(M) × X(M).

The natural pairing 〈·, ·〉 between X(M) and X∗(M) becomes

〈w, v〉 = 〈[u], v〉 =
∫

M
curl−1w · v dμ ,

where w ∈ X(M), v ∈ X(M) and [u] = σ(w) ∈ X∗(M).

Now the action of the coadjoint operator ãd
∗
(V,A) on the pair of fields (ω, B) can

be described as follows: for any pair of Lie algebra elements (V, A), (W, C) ∈ g = X(M) ×
X(M), we have

〈(W, C), ãd
∗
(V,A)(ω, B)〉 = 〈(W, C), ad∗

(V,σ(A))(σ (ω), B)〉

= 〈(W, C), (LVσ(ω) − LBσ(A), −[V, B])〉 = 〈(W, C), (σ (LVω − LBA), −[V, B])〉

= 〈(W, C), (σ ([ω, V] − [A, B]), −[V, B])〉 = 〈(W, C), ([ω, V] − [A, B], −[V, B])〉 .

(A.5)

The equality in the 2nd line is due to the fact that the operator σ commutes with

the volume-preserving change of coordinates. In these computations we have used σ to

identify X(M) and X∗(M).

We conclude that the coadjoint action ãd
∗
(V,A) on the vector fields (ω, B) is

ãd
∗
(V,A)(ω, B) = ([ω, V] − [A, B], −[V, B]) .

Remark A.3. For a general Riemannian closed three-manifold M, the space of

divergence-free fields is the direct sum of the space of exact fields and the space of

harmonic fields (whose dimension is equal to the 1st Betti number of the manifold). As

explained in Section 2, the magnetic helicity and the cross-helicity are defined on pairs

(ω, B) of exact fields. Denoting the space of divergence-free exact fields on M by X(M),

all the discussion in this section can be applied in that context with minor variations.

For example, the dual space X∗(M) of the Lie algebra X(M) of exact fields is given by

the space of coexact 1-forms identified with �1/ker(d : �1 → �2). In this case, the
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natural pairing and the operator σ defined in Remark A.2 are well defined on exact

fields because curl−1 : X(M) → X(M) is one-to-one.
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