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Abstract—Complete integrability in a symplectic setting means the existence of a Lagrangian
foliation leaf-wise preserved by the dynamics. In the paper we describe complete integrability
in a contact set-up as a more subtle structure: a flag of two foliations, Legendrian and co-
Legendrian, and a holonomy-invariant transverse measure of the former in the latter. This
turns out to be equivalent to the existence of a canonical R � R

n−1 structure on the leaves of
the co-Legendrian foliation. Further, the above structure implies the existence of n commuting
contact fields preserving a special contact 1-form, thus providing the geometric framework and
establishing equivalence with previously known definitions of contact integrability. We also show
that contact completely integrable systems are solvable in quadratures.
We present an example of contact complete integrability: the billiard system inside an ellipsoid
in pseudo-Euclidean space, restricted to the space of oriented null geodesics. We describe a
surprising acceleration mechanism for closed light-like billiard trajectories.
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1. INTRODUCTION

Our first motivation is the following V. Arnold’s problem no. 1995–12 in [1]:

Transfer the theory of completely integrable Hamiltonian systems from symplectic
geometry to contact geometry (where, e.g., the Lagrangian invariant manifolds with
their natural affine structures determined by Lagrangian fibrations must be substituted
by Legendrian invariant manifolds with their natural projective structures determined
by Legendrian fibrations). Carry over the Liouville theorem to this context and find
applications to the infinite-dimensional case (where the equations of characteristics are
partial differential).

The classical set-up for the Arnold–Liouville theorem is a symplectic manifold (M2n, ω) (for
example, the phase space of a mechanical system) and a discrete- or continuous-time symplectic
dynamical system on it, that is, a symplectomorphism T : M → M or a symplectic vector field v
on M , respectively. (Here and elsewhere we refer to [2] for a succinct exposition of the basic facts of
symplectic and contact geometry; see also [17]). Recall that a Lagrangian manifold Fn ⊂ M2n is a
half-dimensional submanifold such that the restriction of ω to F vanishes. A symplectic dynamical
system is called completely integrable if M is endowed with a Lagrangian foliation F whose leaves
are invariant under the dynamics.

A fundamental geometrical fact, underlying the Arnold–Liouville theorem, is that the leaves
of a Lagrangian foliation carry a canonical affine structure. Choose n functionally independent
“integrals” (functions, constant on the leaves of F) and consider their symplectic gradients. One
obtains n commuting vector fields, tangent to the leaves of F and providing a field of frames along
the leaves. A different choice of integrals results in applying linear transformations, constant along
each leaf, to these frames. Thus each leaf has a flat structure.

The map T , or the vector field v, preserves the symplectic structure and the foliation leaf-wise,
and hence preserves the affine structure on the leaves. It follows that T is a parallel translation,
and v is a constant vector field, on each leaf of the Lagrangian foliation.

This has strong dynamical consequences. If a point is periodic then so are all the points on the
same leaf of F , and with the same period. This implies Poncelet-style theorems (see, e.g., [15] for
a recent application and [9] for multi-dimensional Poncelet theorems). If a leaf is compact, it must
be a torus, and the dynamics is a quasi-periodic motion on the torus. Another useful consequence:
if two symplectic maps share an invariant Lagrangian foliation then they commute (because so do
parallel translations). We refer to [27] for more detail on complete integrability in the discrete-time
case.

To summarize, the definition of a completely integrable dynamical system consists of two parts:
a certain geometrical structure on a symplectic manifold M , namely, a Lagrangian foliation F , and
a discrete- or continuous-time symplectic dynamical system, preserving this structure. It is natural
to call the first part, the pair (M,F), a completely integrable symplectic manifold.

Contact manifolds are odd-dimensional relatives of symplectic manifolds. Let (M2n−1, ξ) be
a contact manifold with a contact distribution ξ. Recall that a Legendrian submanifold Fn−1 ⊂
M2n−1 is an integral manifold of ξ of the maximal possible dimension n − 1. The leaves of a
Legendrian foliation carry a canonical projective structure: this is a contact counterpart to the
above-mentioned theorem about Lagrangian foliations (we shall dwell on this projective structure
in Section 2.2). The problem is to extend the notion of complete integrability to contact manifolds.
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Note that the simplest particular case of a contact manifold is a 1-dimensional manifold, R
1

or S1, with the trivial contact structure. A natural definition of integrability in dimension 1 (with
discrete- or continuous-time) is the existence of a non-vanishing invariant differential 1-form; for a
diffeomorphism of S1, this implies that the map is conjugated to a rotation.

Contact complete integrability was studied before: see [5–7, 14, 18] and also related papers on
Legendrian foliations [16, 22]. For example, according to [5], a completely integrable vector field
on a contact manifold M2n−1 is the Reeb field of a contact 1-form1), for which the space of first
integrals determines a fibration with n-dimensional fibers defined locally by the action of a torus
T

n of contact transformations, see Section 3.5 for a brief survey of earlier work.
The main goal in this paper is to give a definition that extends the earlier ones and that works

equally well in the continuous- and discrete-time cases. Our second motivation was to place the
recently studied examples [10, 11] into the general context of contact complete integrability.

These examples include the geodesic flow on an ellipsoid and the billiard map inside an ellipsoid
in pseudo-Euclidean space. In pseudo-Euclidean setting, one has a trichotomy for an oriented line:
it may be space-like, time-like, and light-like (or null), that is, having positive, negative, or zero
energy. The manifolds of oriented non-parameterized space- and time-like lines carry canonical
symplectic structures, just like in the Euclidean case, but the space of null lines has a canonical
contact structure; see [11] and Section 4.

Let S be a smooth closed hypersurface in a pseudo-Euclidean space. The billiard system inside S
can be considered as a map on the space of oriented lines taking the incoming billiard trajectory to
the outgoing one. The law of reflection is determined by the energy and momentum conservation,
therefore the type of a line (space-, time-, or light-like) does not change. Restricted to space- and
time-like lines, the billiard transformation is a symplectic map, but its restriction to light-like lines
is a contact map.

If S is an ellipsoid, the respective billiard transformation is integrable, in the following sense.
An ellipsoid in n + 1-dimensional pseudo-Euclidean space determines a pseudo-confocal family of
quadrics, see [8, 11] and Section 4. A space- or time-like billiard trajectory remains tangent to n
fixed pseudo-confocal quadrics. This gives n integrals of the billiard map on the 2n-dimensional
symplectic spaces of oriented space- or time-like lines. These integrals Poisson commute and hence
define an invariant Lagrangian foliation. This is just like the Euclidean case, see, e.g., [25, 26].

However, we lose one integral on the space of null lines: a light-like billiard trajectory remains
tangent to n− 1 fixed pseudo-confocal quadrics. This gives n− 1 integrals on the 2n− 1-dimensional
contact space of oriented light-like lines and hence a foliation Fn. It turns out that the distribution
given by the intersection of the tangent spaces to the leaves of F with the contact hyperplanes
is also integrable, and one obtains a Legendrian foliation Gn−1 whose leaves foliate the leaves
of F . Furthermore, the billiard transformation has an invariant contact form — morally, another
integral, since all contact forms for a given contact structure differ by multiplication by a non-
vanishing function z— and this additional integral commutes, in an appropriate sense, with the
other n − 1 integrals, see Section 4.

The above motivates the following general definition of contact integrability. Let (M2n−1, ξ) be a
contact manifold with contact distribution ξ. We always consider cooriented contact structures that
can be defined by a global contact 1-form. A foliation Fn is called co-Legendrian if it is transverse
to ξ and the distribution TF ∩ ξ is integrable. Let Gn−1 be the respective Legendrian foliation. We
have a flag of foliations (F ,G). In Section 2 we show that the canonical projective structure on the
leaves of G reduces to an affine structure.

If a contact dynamical system preserves a co-Legendrian foliation leaf-wise then it sends the
leaves of the respective Legendrian foliation G to each other, preserving the affine structures therein.
Thus the dynamics reduces to 1-dimensional one on the space of leaves of G within a leaf of F . For
this dynamics to be integrable, one needs an invariant 1-form on this 1-dimensional space of leaves.
Definition 1. A completely integrable contact manifold M is a co-Legendrian foliation F on M
such that, for each leaf F of F , the respective codimension one foliation G on F has a holonomy
invariant transverse smooth measure. A discrete- or continuous-time contact completely integrable
system on M is a contactomorphism, or a contact vector field, that preserves F leaf-wise and
preserves the above transverse measure of the foliation G.

1)See the beginning of Section 3.2 for a definition of the Reeb field.

REGULAR AND CHAOTIC DYNAMICS Vol. 15 Nos. 4–5 2010



CONTACT COMPLETE INTEGRABILITY 507

Recall that a holonomy invariant transverse measure of a foliation is a measure on each
transversal disc such that these measures are invariant under the local holonomy maps, that is,
the maps induced by the intersections of the transversal discs with the leaves of the foliation; see,
e.g., [23].

We show in Section 3.1 that the leaves of a co-Legendrian foliation on a completely integrable
contact manifold have a canonical R � R

n−1-structure. This has strong dynamical implications,
similarly to the flat R

n-structure on the leaves of a Lagrangian foliation of a symplectic manifold.

An example of a completely integrable contact manifold M is analyzed in Section 3.2 and 3.3: M
has a contact form whose Reeb field is tangent to the co-Legendrian foliation. We show that then
the contact form defines a holonomy invariant transverse smooth measure on the space of leaves of
the Legendrian foliation within a leaf of the co-Legendrian one. We show in Section 3.4 that the
familiar example of a completely integrable geodesic flow on a Riemannian manifold fits into this
framework.

In Section 4, we show that the billiard ball map inside an ellipsoid in pseudo-Euclidean space,
restricted to oriented light-like lines, is a completely integrable contact map. We do this by
constructing an invariant contact form on the contact space of oriented null lines whose Reeb
field is tangent to a co-Legendrian foliation.

2. GEOMETRY OF CO-LEGENDRIAN FOLIATIONS

In this section we study the geometry of co-Legendrian foliations.

2.1. Example of a Co-Legendrian Foliation

Example 2.1. Let M be a contact manifold with a Legendrian foliation G, and let φt be a 1-
parameter group of contactomorphisms preserving this foliation. Assume that the vector field
corresponding to φt is transverse to the contact distribution. Then, acting by φt on G, yields a
co-Legendrian foliation F , that is, the leaves of F are the orbits of the leaves of G under the
flow φt.

In fact, this example is universal, as the following lemma shows.

Lemma 2.2. Every co-Legendrian foliation is locally contactomorphic to the one in Example 2.1.

Proof. Recall that a contact element on a smooth manifold N is a hyperplane in a tangent space
to N . Since a contact element is the kernel of a covector, uniquely determined up to a non-zero
factor, the space of contact elements is PT ∗N , the projectivization of the cotangent bundle. The
space of contact elements has a canonical contact structure given by the “skating condition”: the
velocity of the foot point of a contact element lies in this contact element. One has the fibration
p : PT ∗N → N whose fibers are Legendrian submanifolds; these fibers consist of contact elements
with a fixed foot point. Every Legendrian foliation is locally contactomorphic to this one.

Suppose that M is a contact manifold, F is a co-Legendrian foliation and G the respective Leg-
endrian foliation. We may assume that, locally, M = PT ∗N and G is the fibration p : PT ∗N → N .
Then F projects to a 1-dimensional foliation L in N . In other words, a leaf of F consists of contact
elements whose foot points lie on a leaf of L.

Consider a 1-parameter group of diffeomorphisms of N whose trajectories are the leaves of L.
Diffeomorphisms of N naturally act on contact elements on N , so we obtain a 1-parameter group
of contactomorphisms of M preserving the foliation G. If we restrict to the open set of contact
elements on N that are not tangent to L then F is obtained from G as in Example 2.1. �
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2.2. Symplectic Interpretation of Co-Legendrian Foliations

Let (M2n−1, ξ) be a contact manifold. Recall the notion of symplectization (or the symplectic
cone). Let P 2n ⊂ T ∗M be the total space of the principle R

∗-bundle π : P → M whose fibers consist
of non-zero covectors (x, p) that vanish on the contact element ξ(x) in M at their respective foot
points x. The symplectization P has a canonical 1-form λ, the restriction of the Liouville 1-form in
T ∗M , and the 2-form ω = dλ is a symplectic structure on P . One has the multiplicative R

∗-action
on P ; let E be the respective vector field, called the Euler field. The following identities hold:

iEω = λ, λ(E) = 0, LEλ = λ. (2.1)

For example, the symplectization of the space of contact elements PT ∗N is the cotangent bundle
T ∗N with the zero section removed. The R

∗-action is the fiber-wise scaling of covectors, and the
1-form λ is the Liouville form in T ∗N .

The operation of symplectization relates the contact geometry of M to the homogeneous
symplectic geometry of P . Specifically, contactomorphisms of M are the symplectomorphisms of
P that commute with the R

∗-action; the preimage of a Legendrian submanifold in M is an R
∗-

invariant (conical) Lagrangian submanifold in P ; the preimage of a Legendrian foliation in M is an
R
∗-invariant Lagrangian foliation in P , etc.
Let F be a co-Legendrian foliation on M and G the respective Legendrian foliation. Set:

F = π−1(F), G = π−1(G). In the next lemma, we interpret co-Legendrian foliations in symplectic
terms.

E

P

M G

G

F

F

H
_

_

_

Fig. 1. A leaf F̄ of the foliation F in P , foliated by G and by H projects to a leaf F of the foliation F in M,
foliated by G

Lemma 2.3. Fn+1 is a co-isotropic foliation in P . Its symplectic orthogonal complement Hn−1 is
an isotropic foliation transverse to E, and Gn is spanned by E and Hn−1 (see figure 1). Conversely,
given a co-isotropic foliation Fn+1 in P , tangent to the Euler field E and transverse to ker λ, the
projection of F to M is a co-Legendrian foliation therein.

Proof. Let fi : M → R, i = 1, . . . , n − 1, be locally defined functions whose common level surfaces
are the leaves of F , and let f̄i = π∗(fi). Then the homogeneous functions f̄i : P → R of degree zero
define the foliation F .

First, we show that the symplectic orthogonal complement to the tangent space TF is spanned
by the Hamiltonian vector fields sgrad f̄i. Indeed, consider a vector v ∈ TF . Then ω(sgradf̄i, v) =
df̄i(v) = 0, since f̄i is constant on the leaves of F .
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Next, we show that the distribution spanned by the Hamiltonian vector fields sgrad f̄i is
integrable. Indeed, this distribution is isotropic, hence ω(sgradf̄i, sgradf̄j) = 0 = {f̄i, f̄j}. It follows
that [sgradf̄i, sgradf̄j] = 0, so H is a foliation.

Also, since the symplectic orthogonal complement to the tangent space TF is isotropic, it follows
that the foliation F is co-isotropic.

One has: G = F ∩ ker λ. We claim that G is spanned by E and sgradf̄i. Indeed, E and sgradf̄i

are tangent to F . One has: λ(E) = 0 and

λ(sgradf̄i) = ω(E, sgradf̄i) = −df̄i(E) = 0,

since f̄i is homogeneous of degree zero with respect to the Euler field. Thus E and all sgradf̄i are
tangent to G.

Let us check that E is transverse to H. If not, then, at some point, E = sgradf̄ for a function
f : M → R that is constant on the leaves of F . Then at that point λ = iEω = isgradf̄ω = df̄ . This
is a contradiction since the foliation F is transverse to the contact structure, and hence λ does not
vanish on the tangent spaces to its leaves.

Finally, we claim that if Fn+1 is a co-isotropic foliation in P , tangent to the Euler field E and
transverse to ker λ, then the projection π : P → M takes F to a co-Legendrian foliation. Indeed,
the foliation F is invariant under the Euler field since E is tangent to it. Thus F is conical. Then
the distribution TF ∩ ker λ is a conical Lagrangian foliation that projects to a Legendrian foliation
in M . �

Thus a co-Legendrian foliation on a contact manifold M2n−1 is the same as a co-isotropic n + 1-
dimensional foliation on its symplectization P 2n given by n − 1 Poisson commuting homogeneous
functions of degree zero.

2.3. Flat Structure on the Leaves of G
As we mentioned in Introduction, the leaves of a Legendrian foliation carry a canonical projective

structure. Let us recall this construction.
Let (M, ξ) be a contact manifold and G a Legendrian foliation. As before, we may assume that

M = PT ∗N and G is the fibration p : PT ∗N → N . Let x ∈ N and Gx = p−1(x). Then dp takes the
contact hyperplanes along the leaf Gx to hyperplanes in the tangent space V := TxN . The set of all
such hyperplanes is P (V ) = RP

n−1, and we obtain a mapping ϕ : Gx → RP
n−1. Due to complete

non-integrability of the contact structure, ϕ is a local diffeomorphism. Thus Gx has a projective
structure.

A comment is in order here. There are different but equivalent ways to define a projective
structure on a manifold: by an equivalence class of atlases with transition functions in the projective
group, and by a projective equivalence class of local developing maps. The above described
construction uses the latter approach. See [12, 21] for various definitions of projective and, more
generally, G-structures, and [16, 22] for the projective structure on the leaves of a Legendrian
foliation.

Now let (M, ξ) be a contact manifold, and F and G be co-Legendrian and the respective
Legendrian foliations.

Lemma 2.4. The projective structure on the leaves of G has a reduction to an affine structure.

Proof. In the notation of the preceding paragraphs, the tangent spaces to a leaf of F are taken
by dp to a line � ⊂ V . The set of hyperplanes in V passing through � is a projective hyperplane
RP

n−2 ⊂ P (V ) = RP
n−1, and the image of ϕ does not intersect this projective hyperplane. The

complement RP
n−1 −RP

n−2 is an affine space. Thus we have a local diffeomorphism ϕ : Gx → A
n−1,

whence an affine structure on the leaves of G defined as an affine equivalence class of local developing
maps ϕ. �
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As usual, the existence of an affine structure imposes restrictions on the topology of the leaves.
For example, a compact leaf of G is a torus.

Remark 2.5. Alternatively, one can define an affine structure on the leaves of G as follows. Recall
that the isotropic foliation H is generated by the vector fields sgradf̄i, where the functions f̄i are
homogeneous of degree zero. The commuting vector fields sgradf̄i define an affine structure on the
leaves of H.

Since the functions f̄i are homogeneous of degree zero, [E, sgradf̄i] = −sgradf̄i. Therefore the
R
∗-action preserves the foliation H, sending leaves to leaves, and these maps preserve the affine

structure on the leaves. The projection π : P → M diffeomorphically maps the leaves of H to the
leaves of the Legendrian foliation G endowing the latter with an affine structure.

2.4. Weakly Integrable Contact Systems

Definition 2. A discrete- or continuos-time contact weakly integrable system is a contact dynam-
ical system on a contact manifold that has a leaf-wise invariant co-Legendrian foliation.

Such a system reduces to a 1-dimensional one. The leaves of the Legendrian foliation G within
a leaf F of the co-Legendrian foliation F are mapped to each other by affine transformations in
their respective affine coordinates, but the motion on the 1-dimensional space of leaves F/G may be
arbitrary. As Lemma 2.2 shows, any diffeomorphism of N , preserving the one-dimensional foliation
L leaf-wise, lifts to a weakly integrable contactomorphism of (an open subspace of) the space of
contact elements of N .

If M is 1-dimensional, the co-Legendrian foliation consists of one leaf, M itself, and the definition
imposes no constraints on the dynamics.

3. COMPLETELY INTEGRABLE CONTACT MANIFOLDS
In this section we study the geometry of completely integrable contact manifolds and completely

integrable contact dynamical systems.

3.1. Semi-Direct Product Structure

Let G be a subgroup of the group of diffeomorphisms of R
n. A G-structure on an n-dimensional

manifold is (an equivalent class of) an atlas whose transition functions belong to G. In these
terms, the leaves of a Lagrangian foliation have an R

n-structure, where R
n is the group of parallel

translations of n-dimensional affine space.
Let M2n−1 be a completely integrable contact manifold with the flag of co-Legendrian and

Legendrian foliations (Fn,Gn−1). Let R � R
n−1 be a semi-direct product of R and R

n−1:

0 → R
n−1 → R � R

n−1 → R → 0.

Example 3.1. Given a number λ ∈ R and a vector b ∈ R
n−1 consider affine maps v �→ eλv + b

of the space R
n−1 � v. Then the set of such pairs (λ, b) forms a Lie group with respect to

natural composition of the affine maps. Similarly, one can define the Lie group by composing
affine transformations v �→ eλPv + b for a projector P : R

n−1 → R
n−1 (with P 2 = P ). These Lie

groups give examples of semi-direct products R � R
n−1. The first example corresponds to the case

of P = id, while the direct product group R
n = R × R

n−1 corresponds to P = 0.

Lemma 3.2. The leaves of the co-Legendrian foliation F of a completely-integrable contact
manifold have a canonical R � R

n−1-structure.

Proof. Let F be a leaf of F . One has an exact sequence of vector bundles:

0 → TG → TF → NG = TF/TG → 0

(NG is the normal bundle of the foliation G). By Lemma 2.4, the leaves of G have an R
n−1-

structure. The transverse invariant measure of the foliation G in F fixes a trivialization of NG. The
two combined yield a R � R

n−1-structure on F . �
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Recall that a completely integrable system on a symplectic manifold M2n can be defined by a
local R

n-action which preserves the symplectic structure and is generically free.
Similarly, a completely integrable system on a contact manifold can be defined by a R � R

n−1-
action, where the abelian subgroup R

n−1 acts locally free along the contact planes. Namely, consider
a contact manifold M2n−1 with a contact distribution ξ. One can see that Lemma 3.2 is equivalent
to the following

Lemma 3.3. The existence of a co-Legendrian foliation with an invariant measure on a contact
manifold (M, ξ) is equivalent to the existence of a local R � R

n−1-action on M such that the R
n−1-

orbits of the abelian subgroup are tangent to the distribution ξ.

By construction, the R � R
n−1-orbits define leaves of the co-Legendrian foliation F , while the

orbits of the abelian subgroup provide the Legendrian foliation G. The R-action in the semi-direct
product gives the holonomy-invariant transverse measure. Conversely, the existence of the R � R

n−1-
structure for F implies the existence of a local R � R

n−1-action in each leaf of F , whose R
n−1-orbits

are leaves of the Legendrian foliation G.

3.2. A Special Contact Form

It turns out that the existence of a local R � R
n−1-action on a contact manifold M implies the

existence of a special contact form whose Reeb field is tangent to the group orbits. Recall that the
Reeb vector field v of a contact form λ spans the kernel of dλ and is normalized by the condition
λ(v) = 1.

Lemma 3.4. There is a contact form λ on M whose Reeb field is tangent to the R � R
n−1-orbits.

Proof. Let V ∈ (R � R
n−1) be a generic element of the Lie algebra and U ∈ R

n−1 an element of
the abelian subalgebra. Let v and u be the corresponding vector fields on M . Note that in the
semi-direct product R � R

n−1 the elements U and V (and hence the fields u and v) satisfy the
relation [v, u] = au for some a ∈ R. Also note that by the definition of the action, u is tangent to
the distribution ξ, while v is transversal to ξ everywhere (since ξ is tangent to R

n−1-orbits).
Now let λ0 be a contact 1-form defining the contact structure ξ. Define the 1-form λ by

normalizing λ0 as follows: λ = λ0/λ0(v), so that λ(v) = 1.2)

We see that, on the one hand,

i[v,u]λ = iauλ = 0 .

On the other hand,

i[v,u]λ = ivLuλ − Luivλ = iviudλ + ivdiuλ − Luivλ = iviudλ ,

where we used that ivλ = 1 and iuλ = 0. The equality iviudλ = 0 implies that the kernel of the
2-form dλ is tangent to the orbits of the R � R

n−1-action. Indeed, this equality shows that the
projection of v to planes of ξ along this kernel must be tangent to the Legendrian R

n−1-orbits.
Thus the Reeb field for the 1-form λ belongs to the R � R

n−1-orbits. �

The following lemma shows that the converse statement also holds: the existence of such a special
contact 1-form is equivalent to the existence of co-Legendrian foliation with a transverse measure.

Let (M, ξ) be a contact manifold with a contact form λ, and let F and G be a co-Legendrian
and the respective Legendrian foliations. Does a contact form λ determine a holonomy invariant
transverse smooth measure of the foliation G within the leaves of F? The next lemma also gives a
sufficient condition.

Lemma 3.5. Assume that the Reeb field of λ is tangent to the co-Legendrian foliation F . Let F
be a leaf of F . Then the 1-form λ determines a holonomy invariant transverse smooth measure of
the foliation G on the manifold F .

2)This construction of the invariant 1-form is similar to the one for the action of an abelian group discussed in [6].
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Proof. We need to check that the restriction of λ to F is a basic differential form with respect to
the foliation G; this means that for every vector field u, tangent to G, one has: iuλ = Luλ = 0. If λ
is basic then it descends on the (locally defined) space of leaves and defines a 1-form on this space.

We have λ(u) = 0, since G is Legendrian. Then, by Cartan’s formula, Luλ = iudλ, and we want
to show that iudλ = 0. The tangent space TF is spanned by TG and v, the Reeb field. If w ∈ TG
then dλ(u,w) = 0 since TG is a Lagrangian subspace of the symplectic space ξ = ker λ with the
symplectic structure dλ. On the other hand, dλ(u, v) = 0 since v ∈ ker λ. Thus iudλ = 0, and we
are done. �

The above two lemmas give a necessary and sufficient condition of contact integrability in terms
of a special 1-form.

Theorem 3.6. The existence of a co-Legendrian foliation F with an invariant transverse smooth
measure is equivalent to the existence of a co-Legendrian foliation with a special contact 1-form
whose Reeb field is tangent to the foliation.

3.3. Commuting Fields and Invariant Contact Forms

The existence of a local R � R
n−1-action also implies the existence of an appropriate local R

n-
action (with the same orbits), preserving this form: one can define n commuting vector fields which
leave the contact form λ invariant and span the same foliation F . Note however, that although the
R � R

n−1- and R
n-orbits coincide, the orbits of the R

n−1-subgroups in these two groups are different:
any nonzero vector field preserving a contact form cannot be tangent to a contact distribution.

Recall that if a contact form λ is chosen on a contact manifold (M, ξ) then one can assign
a contact vector field Xf to a smooth function f : a contact form determines a section of the
symplectization P , and this makes it possible to extend f to P as a homogeneous degree one
function; the Hamiltonian vector field of this extended function projects to a contact vector field
Xf on M . The correspondence between the functions and contact vector fields is described by the
formula λ(Xf ) = f . In particular, for f ≡ 1 one has X1 = v, the Reeb field. Note also the formula:
LXf

λ = df(v)λ.
Further, one defines the Jacobi bracket on smooth functions: [f, g] = λ([Xf ,Xg]). This operation

satisfies the Jacobi identity, but not the Leibniz one. The correspondence f �→ Xf is a Lie algebra
homomorphism. One has the identity:

[f, g] = dλ(Xf ,Xg) + f dg(v) − g df(v). (3.1)

One also has a projection TM → ξ along the direction of the Reeb field v. Denote by û the
“horizontal” part of u ∈ TM , that is, its projection to the contact hyperplane. Then one has:
Xf = fv + X̂f .

As in Lemma 3.5, assume that the Reeb field v is tangent to a co-Legendrian foliation F on
a contact manifold M2n−1 with a contact form λ. Let fi : U → R, i = 1, . . . , n − 1, be functions
defined on an open set U ⊂ M whose common level surfaces are the leaves of F restricted to U ,
and let ui = Xfi

, i = 1, . . . , n − 1.

Lemma 3.7. The vector fields v, u1, . . . , un−1 pairwise commute and span the foliation F .

Proof. Let f be an “integral” of the foliation F , that is, a function constant on the leaves. The
formulas λ(Xf ) = f and LXf

λ = df(v)λ, along with the Cartan formula, imply that iXf
dλ =

df(v)λ − df . It follows that, for every test vector w ∈ TG, one has dλ(Xf , w) = 0: indeed, λ(w) = 0
since w ∈ ξ, and df(w) = 0 since w ∈ TF . It follows that X̂f lies in the symplectic orthogonal
complement to TG in ξ. Since G is Legendrian, X̂f is tangent to G. Therefore Xf is tangent to F .

Next, we claim that [fi, fj ] = 0. Indeed, since v is tangent to F , one has dfi(v) = 0 for all i. It
follows from (3.1) that [fi, fj ] = dλ(ui, uj). Since v ∈ ker dλ, the latter is equal to dλ(ûi, ûj), and
this is zero since all ûi lie in the Legendrian space TG ⊂ ξ.

Likewise, [1, fi] = dλ(v, ui) = 0 since v ∈ ker dλ. It follows that the vector fields v, u1, . . . , un−1

pairwise commute, as claimed. �
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Suppose that a system of differential equations is given. To solve the system in quadratures
means to obtain its solution by a finite number of “algebraic” operations (including inversion of
functions) and “quadratures”, integration of known functions, see, e.g., [3].

Theorem 3.8. A continuous-time completely integrable contact system ẋ = X(x) is solvable in
quadratures of functions {fi} defining the corresponding foliation F and a contact form λ0.

Proof. Given the contact structure and n − 1 first integrals {fi}, one can find the special contact
1-form as λ = λ0/λ0(X) where λ0 is a contact form and X is our contact vector field. (Note that
λ0(X) 	= 0 everywhere thanks to integrability: the vector field X preserves an invariant measure
on the quotient F/G and hence is everywhere transversal to Legendrian leaves of G.) Then one
can explicitly compute the commuting vector fields u1, . . . , un−1, un = v by means of Lemma 3.7.
The contact vector field ẋ = X(x) defining the dynamical system is a linear combination of these
commuting fields with constant coefficients. It remains to refer to a theorem of S. Lie that if
u1, . . . , un are commuting and linearly independent vector fields in a domain in R

n then the
differential equations ẋ = uk(x), k = 1, ..., n are solvable in quadratures, see [3]. Hence so is their
linear combination X =

∑
ckuk, as required. �

Remark 3.9. The above theorem is a manifestation of a general phenomenon that the existence of
an (explicit) R

n-action (and even the semi-direct product action) on a manifold implies solvability
in quadratures, see [3, 13] and references therein.

Note that the semi-direct product action, defined via the foliation (F ,G), does not depend on a
contact form, while the definition of the R

n-action requires the knowledge of the special 1-form.

3.4. Example: Integrable Geodesic Flow on a Riemannian Manifold

The following is a familiar example from Riemannian geometry.
Let N be a Riemannian manifold of dimension n, T ∗N its cotangent bundle, H : T ∗N → R the

energy function: H(q, p) = |p|2/2, where p is the momentum and the norm is the Riemannian one.
The geodesic flow on T ∗N is the Hamiltonian vector field of the function H with respect to the
canonical symplectic structure of the cotangent bundle.

Note that T ∗N with the zero section deleted is the symplectization of the space M = ST ∗N
of oriented contact elements in N . The homogeneous degree one Hamiltonian

√
2H = |p| defines a

contact vector field in the contact manifold M ; this is the geodesic flow on the space of contact
elements. The Riemannian metric provides a section of the symplectization P = T ∗N − N →
ST ∗N = M and hence a contact form on M ; namely, M is identified with the hypersurface H = 1.
The geodesic flow on T ∗N being restricted to M becomes the Reeb vector field of this contact form.

Assume that the geodesic flow on T ∗N is completely integrable: there exist almost everywhere
independent and Poisson commuting homogeneous functions f1, . . . , fn−1 : T ∗N → R, invariant
under the flow of sgrad H. Restricting to the hypersurface M = {H = 1}, one has a co-Legendrian
foliation F , defined by the integrals fi, and the respective Legendrian foliation G, spanned by the
Hamiltonian vector fields sgrad fi. The Reeb field is tangent to F , which takes us to the situation of
Section 3.2. Thus this geodesic flow is a completely integrable continuous time contact dynamical
system.

The example of this section can be generalized as follows. Let M be a contact manifold, F
and G a co-Legendrian and the Legendrian foliations. In the notation of Section 2.2, assume that
H : P → R is a homogeneous function of degree one (replacing energy by the norm), which Poisson
commutes with the functions f̄i. Then the level hypersurface {H = 1} is a section of the bundle
π : P → M , and we identify M with this section.

Recall that P has the Euler field E, the symplectic structure ω and the 1-form λ satisfying
relations (2.1). Let v = sgrad H. The following lemma is well known, see, e.g., [17].
Lemma 3.10. The vector field v is the Reeb field of the form λ.

Proof. One has:
ivω = −dH = 0, λ(v) = ω(v,E) = dH(E) = H = 1,

the first equality due to the fact that H is 1 on the section, and the second to the fact that H is
homogeneous of degree one. �
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3.5. Previous Work on Contact Complete Integrability

As we already mentioned, contact complete integrability was studied earlier by a number of
authors. Here we very briefly survey these works.

P. Liberman [16] studied Legendrian foliations of contact manifolds endowed with a contact
form λ. Such a foliation, G, is called λ-complete if the Jacobi bracket of two integrals of G is again
an integral (this does not exclude constants). This assumption implies that there exists a flag of
foliations (F ,G) where F is co-Legendrian and tangent to the Reeb field of the form λ. It is also
proved in [16] that, in this case, the leaves of F and the leaves of G have affine structures.

In our terms, an affine structure on the leaves of F is a consequence of the local R
n-action by

contactomorphisms described in Lemma 3.7, and that on the leaves of G is a particular case of
Lemma 2.4. Independently, Pang obtained similar results in [22].

A. Banyaga and P. Molino [5–7] studied completely integrable contact forms of toric type, i.e.,
contact forms on M2n−1 for which the space of first integrals of the Reeb vector field determines a
fibration M2n−1 → W n−1 defined locally by a contact action of an n-dimensional torus. In terms of
the present paper, A. Banyaga and P. Molino defined a completely integrable contact manifold as a
co-Legendrian foliation whose leaves are the orbits of an abelian Lie algebra g of contact vector fields.
(This point of view was also taken in [18].) It is proved in [6] that there exists a g-invariant contact
form (note that no assumption on compactness of the respective group of contactomorphisms is
made here), and that the Reeb field of this contact form belongs to g. Thus one has the situation
of Section 3.2.

E. Lerman [14] developed a theory of contact toric manifolds, that is, contact manifolds M2n−1

with an action of a torus T
n by contactomorphisms. This is analogous to the much better studied

theory of symplectic toric manifolds, see, e.g., [4].

The paper [24] concerns a generalization of the Arnold-Liouville theorem to systems of second
order ordinary differential equations, not necessarily Lagrangian systems. It is shown that such
an equation on a manifold Mn is the Reeb field of a contact form λ on R × TM . Using dλ, one
associates a vector field to an integral of the equation, and two integrals are said to be in involution
if the respective vector fields commute. The system is called completely integrable if it possesses n
almost everywhere independent commuting integrals; the main result is that the Arnold-Liouville
theorem applies to such equations.

Let us emphasize that this very brief review does not do justice to the papers [5–7, 14, 16, 18,
22, 24] that contain numerous interesting results; we have touched upon what is relevant to the
present work.

Remark 3.11. It is natural to ask about the relation of contact completely integrable systems and
Hamiltonian integrable systems in the corresponding symplectization. It turns out that natural
(homogeneous) Hamiltonian completely integrable systems project only to degenerate contact
systems in the above description.

Indeed, consider the symplectization P 2n → M2n−1 corresponding to a contact manifold (M, ξ),
see Section 2.2. This allows us to lift the flag (Fn,Gn−1) of co-Legendrian and Legendrian foliations
in M to the flag (Fn+1

,Gn) of co-isotropic and Lagrangian foliations in P . However, a contact
integrable system T on M can shuffle the leaves of the Legendrian foliation G. Hence any dynamical
system T in the symplectization P which projects to the dynamics T in M would shuffle the leaves
of the Lagrangian foliation Gn.

On the other hand, by definition, a Hamiltonian completly integrable system has to preserve
leaves of the natural Lagrangian foliation, given by the first integrals. Those Hamiltonian systems
which preserve Gn project to very special contact systems in M , which, preserve the Legendrian
foliation G leafwise. But contact fields tangent to the contact distribution everywhere must be zero!
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4. NULL LINES AND THE BILLIARD BALL MAP

4.1. Contact Space of Oriented Light-like Lines

The space of oriented lines M2n in R
n+1 has a canonical symplectic structure, which can be

defined as follows (see, e.g., [2]). Start with the cotangent bundle T ∗
R

n+1, and consider the unit
energy hypersurvace |p|2 = 2. The restriction of the canonical symplectic structure on T ∗

R
n+1 to

this hypersurface has a one-dimensional kernel. The integral curves of this field of kernels are called
the characteristics. A characteristic consists of unit covectors whose foot points belongs to a fixed
line and whose kernels are orthogonal to this line and agree with its orientation. The space of
characteristics is again symplectic, and it is identified with the space M of oriented lines in R

n+1.
This construction is called symplectic reduction. Symplectic reduction also applies to the space

of oriented non-parameterized geodesics of a Riemannian or Finsler manifold (assuming this space
is a smooth manifold, which is always the case locally).

Consider now pseudo-Euclidean space R
p,q with p + q = n + 1. There are three types of lines:

space-like, time-like, and light-like, depending on whether the energy |p|2/2 is positive, negative
or null. Denote these spaces by M2n

+ ,M2n
− and M2n−1

0 , respectively. Symplectic reduction on the
energy levels ±1 yields symplectic structures on spaces M±, but the symplectic reduction on zero
energy level yields a space P 2n which is different from M0: the condition |p|2 = 0 still allows to
multiply p by a non-zero real. P is the space of scaled null geodesics which fibers over M0 with fiber
R
∗. Thus M0 is a contact manifold whose symplectization is P , the symplectic reduction of T ∗

R
p,q

on zero energy level, see [11] for details.
The space of oriented light-like geodesics was studied about 30 years ago by Yu. Manin in

his work on application of twistors to the Yang–Mills equation. Manin called this space paradise
(because it consists of celestial spheres, the world lines of photons emanating from point sources in
the Minkowski space R

1,3).

4.2. Billiard Ball Map and Accelerating Orbits

The billiard dynamical system in a Riemannian manifold with a smooth boundary describes
the motion of a free mass-point (“billiard ball”). The point moves along a geodesic with constant
energy until it hits the boundary where the elastic reflection occurs: the normal component of the
velocity instantaneously changes sign whereas the tangential component remains the same. This is
the billiard flow, a continuous-time system. The billiard ball map T acts on oriented geodesics and
takes the incoming trajectory of the billiard ball to the outgoing one. T preserves the symplectic
structure on the space of oriented geodesics. We refer to [25, 26] for information about billiards in
general and to [11] for billiards in pseudo-Riemannian spaces.

This description applies equally well to billiards in pseudo-Riemannian manifolds, in particular,
pseudo-Euclidean spaces: for the incoming velocity vin = t + n, decomposed into the components
tangent and normal to the boundary, the outgoing velocity, after the elastic reflection, is vout =
t − n.3) A new feature is that now the normal vector to the boundary of the billiard table may be
tangent to the boundary; the billiard reflection is not defined at such points. T preserves the type
of a billiard trajectory, space-, time-, or light-like. On the spaces M±, the billiard ball map is still
symplectic, but on the space M0, it is a contact transformation, see [11].

In fact, we also have a billiard transformation T : P → P on the space of scaled light-like
lines described by the reflection law in the opening paragraph of this section. For the projection
π : P → M0, one has a commutative diagram: π ◦ T = T ◦ π.

Example 4.1. The simplest example is the billiard inside a convex smooth closed curve γ in the
Lorentz plane R

1,1. There are two null directions, say, horizontal and vertical, and the billiard
system, restricted to the null directions, is the following self-map of γ: choose a point x ∈ γ, draw
the vertical line through x until its second intersections with γ at point y, draw the horizontal line
through y until its second intersection with γ at point z, etc., see figure 2. This map was studied
in various contexts, see [10] for references.

3)In the two-dimensional case the directions (t, n, vin, vout) form a harmonic quadruple, cf. [28].
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x

y z

Fig. 2. A map of an oval

Let us describe an interesting feature of this billiard system, absent in the Euclidean case.
Suppose we have a closed light-like billiard trajectory. Is it possible that, traversing this trajectory,
the billiard ball returned to the original position with a different velocity vector, say, greater than
the original one? Let us call such a conjectural light-like periodic orbit accelerating.

An explanation is in order here. One cannot define the magnitude (“speed”) of a tangent null
vector, but if two null vectors are proportional: v1 = tv2, |v1|2 = |v2|2 = 0, then one can compare
them: if t > 1 one says that v1 is greater than v2.

Assume that the metric is dxdy, so the null directions are vertical and horizontal. Let
P1, . . . , P2n ∈ γ be the consecutive reflection points of a periodic light-like billiard trajectory, and
let ti be the slope of the curve γ at point Pi. Consider the billiard ball starting at P1 with, say,
unit horizontal velocity, (1, 0). Then it will return to point P1 with the outgoing velocity (v, 0).

Lemma 4.2. One has:

v =
t2t4 . . . t2n

t1t3 . . . t2n−1
.

Further, v = 1 if and only if the periodic light-like trajectory, considered as a periodic point of the
billiard ball map, is neutral, that is, the derivative of the first return map equals 1.

Proof. Consider an instance of reflection, see figure 3. If the slope of γ at the reflection point is t
then the tangent vector to γ is (1, t), and the normal vector is (1,−t). Then the reflection is as
follows:

(1, 0) =
1
2
(1, t) +

1
2
(1,−t) �→ 1

2
(1, t) − 1

2
(1,−t) = (0, t).

Likewise, the vertical-to-horizontal reflection scales the speed down by the slope. This implies the
first claim of the lemma.

For the second claim, consider an infinitesimal horizontal beam reflecting in γ, see figure 3 again.
Let w1 and w2 be the widths of the incoming and the outgoing beams. Then, from elementary
geometry, w1/w2 = t. It follows that the condition for the width of the beam to remain the same
after all 2n reflections is v = 1. But the former is the condition that the respective periodic point
of the billiard ball map is neutral. �

Since the slopes of γ at points Pi can be deformed at will (which does not affect the reflection,
since the orbit is formed by the same null segments), one can easily construct a billiard table
with an accelerating light-like periodic orbit. For such a billiard, there exists no section of the
symplectization π : P → M0, invariant under the map T : P → P .

Remark 4.3. A similar acceleration phenomenon is possible for closed light-like geodesics on
pseudo-Riemannian manifolds.
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Fig. 3. Reflection at a point

4.3. Billiard Inside an Ellipsoid

In this section, we turn to our main example, the billiard system inside an ellipsoid in pseudo-
Euclidean space. This system was studied in detail in [11]; below we summarize the relevant results.

Consider pseudo-Euclidean space V n+1 = R
p,q with p + q = n + 1, and let E : V → V ∗ be the

self-adjoint operator such that the metric is given by E(x) · x where dot denotes the pairing
between vectors and covectors. Let A : V → V ∗ be a positive-definite self-adjoint operator defining
an ellipsoid A(x) · x = 1. Since A is positive-definite, both forms can be simultaneously reduced to
principle axes, and we assume that A = diag(a−2

1 , . . . , a−2
n ) and E = diag(1, . . . , 1,−1, . . . ,−1). We

also assume that eia
2
k 	= eka

2
i for i 	= k. Consider the pseudo-confocal family of quadrics4)

x2
1

a2
1 + λ

+
x2

2

a2
2 + λ

+ · · · +
x2

p

a2
p + λ

+
x2

p+1

a2
p+1 − λ

+ · · · +
x2

p+q

a2
p+q − λ

= 1 (4.1)

where λ is a real parameter (see figure 4 for a two-dimensional example). Let M2n−1
0 be the contact

space of oriented null lines in V n+1, and let P 2n be its symplectization, the space of scaled null
lines.

The following theorem is proved in [11].

Fig. 4. A family of pseudo-confocal conics; null directions have slopes ±1

4)Also considered in [8].
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Theorem 4.4. 1) The tangent lines to a fixed light-like geodesic on an ellipsoid in pseudo-
Euclidean space V n+1 are tangent to n − 2 other fixed quadrics from the pseudo-confocal family
(4.1).
2) A light-like billiard trajectory inside an ellipsoid in pseudo-Euclidean space V n+1 remains tangent
to n − 1 fixed pseudo-confocal quadrics.
3) The set N of oriented light-like lines, tangent to fixed n − 1 pseudo-confocal quadrics, is a
codimension n − 1 submanifold in M0, foliated by Legendrian in M0 submanifolds, which are of
codimension one in N .

(For space- and time-like lines, the number of pseudo-confocal quadrics in statements 1 and 2 is
one greater.)

In terms of the present paper, the null lines, tangent to n − 1 fixed pseudo-confocal quadrics,
constitute the leaves of a co-Legendrian foliation F in M0. Let f1, . . . , fn−1 : M0 → R be smooth
functions defining the foliation F (these functions index the pseudo-confocal quadrics tangent to a
given line), and let f̄i be their lifts to P , the space of scaled light-like lines. Then the functions f̄i
Poisson commute.

Let us also describe the leaves of the Legendrian foliation G. A leaf of F consists of null lines �
tangent to fixed n − 1 pseudo-confocal quadrics, say, Q1, . . . , Qn−1. Let vi be the geodesic vector
field on TQi. Considering the oriented tangent lines to a geodesic curve, we view vi as a vector field
on the space of lines tangent to Qi. Then these vector fields commute, and the leaf of the foliation
G through point � is generated by the fields v1, . . . , vn−1.

Note that the foliations F and G are only defined almost everywhere on M0, the space of oriented
null lines.

Explicit formulas for integrals are as follows, cf. [19, 20] in the Euclidean case. Identify the
tangent TV and cotangent T ∗V spaces via the pseudo-Euclidean metric. Then one has the following
integrals of the billiard flow on TV :

Fk =
v2
k

ek
+

∑

i�=k

(xivk − xkvi)2

eia2
k − eka

2
i

, k = 1, . . . , n + 1, (4.2)

where xi are the coordinates of the position and vi of the velocity vectors, and where
e1 = · · · = ep = 1, ep+1 = · · · = ep+q = −1. These integrals Poisson commute and satisfy the
relation

∑
Fk = 〈v, v〉. The same formulas give integrals of the geodesic flow on a quadric in

pseudo-Euclidean space V . Note that the integrals (4.2) are quadratic in velocities.
In the Euclidean case, when all ei = 1, the functions Fk/〈v, v〉 descend to the space of oriented

lines and are integrals of the billiard ball map. In the pseudo-Euclidean case, 〈v, v〉 = 0 for the null
directions, and one cannot divide by 〈v, v〉.

Following [26], let us describe another integral of the billiard ball map, homogeneous of degree
one in the velocity. Let x be a point of the ellipsoid and v an inward vector with foot point x. As
before, one has the billiard ball transformation T on such tangent vectors. If v is null then the set
of the inward tangent vectors with foot point on the ellipsoid is identified with the space of scaled
oriented lines P .

Proposition 4.5. 1) The function H(x, v) := Ax · v is negative.
2) H(x, v) is invariant under the billiard ball transformation T .
3) H(x, v) Poisson commutes with the functions f̄i, i = 1, . . . , n − 1.

Proof. For the first claim, note that Ax is the outward normal covector (that is, the covector Ax
annihilates the tangent space to the ellipsoid at point x and takes positive values on the outward
vectors at this point), and v has the inward direction, hence H(x, v) < 0.

For the second claim, the billiard ball map is the composition of two maps: (x, v) �→ (y, v) �→
(y, u), where the second is the billiard reflection, see figure 5. We claim that Ax · v = −Ay · v =
Ay · u.

To prove the first equality, note that (Ax + Ay) · (y − x) = 0 since A∗ = A and Ax · x =
Ay · y = 1. On the other hand, v is collinear with y − x, hence Ax · v = −Ay · v.
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x

u
v

v

y

Fig. 5. Billiard ball map as the composition of two involutions

To prove the second equality, note that, due to the reflection law, v + u is a tangent vector to
the ellipsoid at point y. On the other hand, Ay is the normal covector to the ellipsoid Ay · y = 1.
Hence Ay · v = −Ay · u, as claimed.

Now we prove the third claim. Extend the function H to the tangent bundle TV in such a way
that it is invariant along straight lines: H(x + tv, v) = H(x, v) for all t ∈ R. Then this extended
function is an integral of the billiard flow inside the ellipsoid since it is also invariant under the
reflection, see above. Since Fk is a complete system of first integrals, H is functionally dependent on
integrals Fk in (4.2). Note that each Fk is also invariant along straight lines: Fk(x + tv, v) = Fk(x, v).
Hence the functional relation descends, in particular, to the space of scaled null lines P .

Therefore, it suffices to show that the functions f̄i and Fk Poisson commute in the space P
of scaled light-like lines. Indeed, the Hamiltonian vector field sgradf̄i is the null geodesic flow on
the pseudo-confocal quadric Qi, and the functions Fk are integrals of the geodesic flow on these
quadrics, hence {f̄i, Fk} = 0. �

This proposition implies the contact complete integrability in our main example:

Theorem 4.6. The billiard ball map on the light-like oriented lines inside an ellipsoid in pseudo-
Euclidean space is a completely integrable contact transformation.

Proof. The foliations F and G are defined almost everywhere on the space M0 of oriented null lines,
see Theorem 4.4. On the other hand, Proposition 4.5 places us in the situation of Section 3.4, and
therefore, of Section 3.3: one has an invariant contact form on the space of null geodesics whose
Reeb field is tangent to the co-Legendrian foliation. More specifically, the integral H(x, v) provides
a section of the symplectization bundle P → M0, and hence a special contact form on M0. The
billiard ball map respects these structures, which completes the proof. �

Remark 4.7. One can view the contact integrable system on null geodesics on an ellipsoid as a
limit of the Hamiltonian completely integrable system of space-like geodesics. While only n − 1
independent integrals of the Hamiltonian system (out of the n) survive in the limit, when passing
to the contact manifold, the corresponding R

n-action on the symplectic manifold of space-like
geodesics does extend to the space of null geodesics on the ellipsoid.
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