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CLASSIFICATION OF CASIMIRS IN 2D HYDRODYNAMICS

ANTON IZOSIMOV AND BORIS KHESIN

To the memory of Vladimir Igorevich Arnold

Abstract. We describe a complete list of Casimirs for 2D Euler hydro-
dynamics on a surface without boundary: we define generalized enstro-
phies which, along with circulations, form a complete set of invariants
for coadjoint orbits of area-preserving diffeomorphisms on a surface. We
also outline a possible extension of main notions to the boundary case
and formulate several open questions in that setting.
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1. Introduction

The famous V. Arnold stability criterion gives a sufficient condition for stability
of a steady two-dimensional flow: the flow is stable provided that the second vari-
ation of the energy restricted to the set of isovorticed fields is sign-definite. This
criterion was generalized in many ways: to magnetohydrodynamics, to stratified
fluids, to systems with additional symmetries, furthermore, such variations were
studied in higher dimensions, perturbation methods were applied to show when
instabilities arise, etc.

The knowledge of invariants of isovorticed fields becomes of utmost importance
for applying this criterion or for developing its generalizations. The reason is that
the criterion is based on defining a new functional as a combination of the fluid
energy and those invariants. The latter are often called Casimirs of 2D flows, or
enstrophies, or invariants of coadjoint orbits in two-dimensional hydrodynamics.
More than once Arnold posed the problem of classification of isovorticed fields, as
well as related problem of minimization of Dirichlet functional in 2D for initial
functions of different topology.

While it has been known for a long time that enstrophies are first integrals of 2D
incompressible fluid flows, a complete classification of generic Casimirs in 2D was
obtained only recently in [6], [5]. Here we revisit and develop that classification by
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Figure 1. Reeb graph for a height function with two maxima on a torus.

comparing it to other known classification of coadjoint orbits for diffeomorphism
groups in one dimension. To describe the orbit classification we first present an
axillary problem of classification of simple Morse functions with respect to area-
preserving diffeomorphisms of a surface. It is convenient first to formulate the
invariants as structures related to so-called Reeb graphs of functions.

Recall that the motion of an inviscid incompressible fluid filling an n-dimensional
Riemannian manifold M is governed by the hydrodynamical Euler equation

∂tu+∇uu = −∇p (1)

on the divergence-free velocity field u of a fluid flow in M . Here ∇uu stands for
the Riemannian covariant derivative of the field u along itself, while the function p
is determined by the divergence-free condition up to an additive constant.

In this paper we consider the case of a surface, n = 2. In this setting, the
vorticity of the fluid can be regarded as the function F = du[/ω, where u[ is the
1-form metric-related to the vector field u on the surface, and ω is the Riemannian
area form. (For Euclidean metric and u = u1∂/∂x1+u2∂/∂x2 the vorticity function
is F = ∂u2/∂x1 − ∂u1/∂x2.) According to Kelvin’s law, the vorticity function is
“frozen into” the incompressible flow. This fact allows one to define Casimirs, i.e.,
first integrals of the Euler equation valid for any Riemannian metric. Namely, it is
well known that enstrophies, i.e., all moments

mi(F ) :=

∫
M

F i ω, i = 0, 1, 2, . . . ,

of the vorticity function F , are Casimirs. These quantities are invariants of the
natural action of the group of area-preserving diffeomorphisms of the surface M .

In the case of a flow in a two-sphere whose Morse vorticity function has one
maximum and one minimum such enstrophy invariants form a complete set of
Casimirs, see [5], cf. [4], while for more complicated functions and domains it is
not so. Indeed, the set of all enstrophies is known to be incomplete for flows with
generic vorticities: there are non-diffeomorphic vorticities with the same values of
enstrophies, see Section 4.

In this paper we give a complete description of Casimir invariants for flows of
an ideal 2D fluid with simple Morse vorticity functions. We define generalized
enstrophies in terms of measured Reeb graphs and prove that they together with
the set of circulations form a complete list of Casimirs in 2D hydrodynamics.
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Example 1.1. The following example gives a glimpse of the basic constructions.
The graph ΓF , called the Reeb graph (also called Kronrod graph), is the set of
connected components of the levels of a height function F on a surface M , see
Figure 1. Critical points of F correspond to the vertices of the graph ΓF . This
graph comes with a natural parametrization by the values of F . For a symplectic
surface M its area form ω induces a measure µ on the graph, which satisfies certain
properties. This measured Reeb graph of the function F is a complete invariant of
the function F with respect to the action of area-preserving diffeomorphisms of the
surface:

Theorem A (= Theorem 3.8). The mapping assigning the measured Reeb graph
ΓF to a simple Morse function F provides a one-to-one correspondence between
simple Morse functions on M up to symplectomorphisms and measured Reeb graphs
compatible with M .

To obtain numerical invariants from this measured graph ΓF one can consider
for each edge e ∈ ΓF the preimage Me ⊂M bounded by the corresponding critical
levels of F . Then infinitely many moments

Ii,e(F ) :=

∫
Me

F i ω, i = 0, 1, 2, . . . ,

of the function F over each Me (or, equivalently, the moments of the induced
function on each edge the graph) are invariants of the SDiff(M)-action, i.e., the
action on the function F by symplectomorphisms of M .

The problem of classification of hydrodynamical Casimirs (i.e., invariants of coad-
joint action) for Morse coadjoint orbits includes the above problem for invariant
classification of a function, since all invariants of vorticity are Casimirs. These two
problems coincide for a sphere, as the Reeb graph in that case is a tree and the
vorticity function fully determines the coadjoint orbit. For surfaces of higher genus
the Reeb graph has nontrivial first homology group, dimH1(ΓF ) = genus(M) = κ
and to describe the orbit one needs also specify the circulations of the field around
κ cycles on the surface.

In order to classify coadjoint orbits of the symplectomorphism group we intro-
duce a notion of an anti-derivative, or circulation function, for a Reeb graph. It
turns out that such anti-derivatives form a finite-dimensional space of dimension
equal to the first Betti number of the graph. Therefore the space of coadjoint or-
bits of the symplectomorphism group of a surface is a bundle over the space of fluid
vorticities, where fiber coordinates can be thought of as circulations, see details in
Section 3.3.

Theorem B (= Corollary 4.3). A complete set of Casimirs for the 2D Euler
equation in a neighborhood of a Morse-type coadjoint orbit is given by the moments
Ii,e for each edge e ∈ Γ, i = 0, 1, 2, . . . , and all circulations of the velocity v over
cycles in the singular levels of the vorticity function F on M .

Remark 1.2. It is interesting to compare the description of SDiff(M)-orbits for
a surface M with the classification of coadjoint orbits of the group Diff(S1) of
circle diffeomorphisms [7]. Its Lie algebra is vect(S1) and the (smooth) dual space
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vect∗(S1) is identified with the space of quadratic differentials on the circle,
QD(S1) := {F (x)(dx)2 : F ∈ C∞(S1, R)}. For a generic function F changing
sign on the circle, a complete set of invariants is given by the “weights”

Iak(F ) :=

∫ ak+1

ak

√
|F (x)| dx

of the quadratic differential between every two consecutive zeros ak < ak+1 of
F (x) on the circle S1. These orbits are of finite codimension equal to the number
of zeros. In a family of functions, where two new zeros, say a′k and a′′k , appear
between original zeros ak and ak+1: ak < a′k < a′′k < ak+1, one gains two extra
Casimir functions, Ia′k and Ia′′k , and hence the codimension of the orbit jumps up
by 2.

Similarly, for functions or coadjoint orbits of symplectomorphisms on a 2D sur-
face, the appearance of a new pair of critical points, say, a saddle and a local
maximum for a function, leads to splitting of one edge in two and, in addition to
that, to the appearance of a new edge in the corresponding Reeb graph, and hence
to two new families of Casimirs related to those extra edges, as in Example 1.1.

Note that for the action of the subgroup consisting of symplectomorphisms in the
connected component of the identity, one encounters additional discrete invariants
related to pants decompositions and possible projections of the surface to the graph.
For the group of Hamiltonian diffeomorphisms the above set of orbit invariants is
supplemented by fluxes of diffeomorphisms across certain cycles on the surface M ,
see details in [6].

Motivation for this type of classification problems is coming from fluid dynamics.
For instance, steady fluid flows are conditional extrema of the energy functional
on the sets of isovorticed fields, so Casimirs allow one to single out such sets in
order to introduce appropriate Lagrange multipliers. Furthermore, Casimirs in
fluid dynamics are a cornerstone of the energy-Casimir method for the study of
hydrodynamical stability, see for example [2].

In addition to hydrodynamics, the results can be also used for the extension of the
orbit method to infinite-dimensional groups of 2D diffeomorphisms. According to
this method, adjacency of coadjoint orbits of a group or its central extension mimics
families of appropriate representations of the corresponding group. This methods
turned out to be effective for affine groups and the Virasoro–Bott group, so one
may hope to apply it to 2D diffeomorphisms and current groups as well. Finally,
note that all objects in the present paper are infinitely smooth (see the case of
finite smoothness in [6]). To the best of our knowledge, a complete description of
Casimirs in 2D fluid dynamics has not previously appeared in the literature in a self-
contained form, while various partial results could be found in [3], [9], [10], [11], [5].
In the last section we present a few examples, show how the main notions can be
extended to the case of surfaces with boundary, emphasize the main difficulties and
formulate open questions in the latter setting.

Acknowledgements: A part of this work was completed while B.K. held a Weston
Visiting Professorship at the Weizmann Institute of Science. B.K. is grateful to the
Weizmann Institute for its kind hospitality and support.
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2. The Hydrodynamical Euler Equation

2.1. Geodesic and Hamiltonian frameworks of the Euler equation. Con-
sider an inviscid incompressible fluid filling a closed (i.e., compact and without
boundary) n-dimensional Riemannian manifold M with the Riemannian volume
form µ. Arnold [2] showed that the Euler equation can be regarded as an equa-
tion of the geodesic flow on the group SDiff(M) := {φ ∈ Diff(M) : φ∗µ = µ} of
volume-preserving diffeomorphisms of M with respect to a right-invariant metric
on the group given at the identity by the L2-norm of the fluid’s velocity field.
This geodesic description implies the following Hamiltonian framework for the Eu-
ler equation. Consider the (smooth) dual space g∗ = svect∗(M) to the space g =
svect(M) = {u ∈ vect(M) : Luµ = 0} of divergence-free vector fields on M . This
dual space has a natural description as the space of cosets g∗ = Ω1(M)/dΩ0(M),
where Ωk(M) is the space of smooth k-forms on M . For a 1-form α on M its coset
of 1-forms is

[α] = {α+ df : for all f ∈ C∞(M)} ∈ Ω1(M)/dΩ0(M).

The pairing between cosets and divergence-free vector fields is given by 〈[α], u〉 :=∫
M
α(u)ω for any field u ∈ svect(M). (This pairing is well-defined on cosets be-

cause the latter integral vanishes for any exact 1-form α and any u ∈ svect(M).)
The coadjoint action of the group SDiff(M) on the dual g∗ is given by the change
of coordinates in (cosets of) 1-forms on M by means of volume-preserving diffeo-
morphisms.

The Riemannian metric ( , ) on the manifold M allows one to identify the Lie
algebra and its (smooth) dual by means of the so-called inertia operator: given a
vector field u on M one defines the 1-form α = u[ as the pointwise inner product
with the velocity field u: u[(v) := (u, v) for all v ∈ TxM . Note also that divergence-
free fields u correspond to co-closed 1-forms u[. The Euler equation (1) rewritten
on 1-forms α = u[ is ∂tα + Luα = −dP for an appropriate function P on M . In
terms of the cosets of 1-forms [α], the Euler equation on the dual space g∗ takes
the form

∂t[α] + Lu[α] = 0. (2)

The Euler equation (2) on g∗ = svect∗(M) turns out to be a Hamiltonian equation
with the Hamiltonian functional H given by the fluid’s kinetic energy, H ([α]) =
1
2

∫
M

(u, u)µ for α = u[. The corresponding Poisson structure is given by the nat-
ural linear Lie-Poisson bracket on the dual space g∗ of the Lie algebra g, see details
in [2], [3]. The corresponding Hamiltonian operator is given by the Lie algebra
coadjoint action ad∗u, which in the case of the diffeomorphism group corresponds
to the Lie derivative: ad∗u = Lu. Its symplectic leaves are coadjoint orbits of the
corresponding group SDiff(M). All invariants of the coadjoint action, also called
Casimirs, are first integrals of the Euler equation for any choice of Riemannian
metric. The main result of this paper is a complete characterization of Casimirs for
the 2D Euler equation on closed surfaces, see Section 4.

2.2. Vorticity and Casimirs of the 2D Euler equation. Recall that according
to the Euler equation (2) the coset of 1-forms [α] evolves by a volume-preserving
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change of coordinates, i.e., during the Euler evolution it remains in the same coad-
joint orbit in g∗. Introduce the vorticity 2-form ξ := du[ as the differential of the
1-form α = u[ and note that the vorticity exact 2-form is well-defined for cosets
[α]: 1-forms α in the same coset have equal vorticities ξ = dα. The corresponding
Euler equation assumes the vorticity (or Helmholtz) form

∂tξ + Luξ = 0,

which means that the vorticity form is transported by (or “frozen into”) the fluid
flow (Kelvin’s theorem). The definition of vorticity ξ as an exact 2-form ξ = du[

makes sense for a manifold M of any dimension. In the case of two-dimensional
oriented surfaces M the group SDiff(M) of volume-preserving diffeomorphisms of
M coincides with the group Symp(M) of symplectomorphisms of M with the area
form µ = ω given by the symplectic structure. In what follows, in 2D our main
object of consideration is is the vorticity function F related to the vorticity 2-form
ξ = Fω by means of the symplectic structure.

Remark 2.1. The fact that the vorticity 2-form ξ is “frozen into” the incompress-
ible flow allows one to define first integrals of the hydrodynamical Euler equation
valid for any Riemannian metric on M . In 2D the Euler equation on M is known to
possess infinitely many so-called enstrophy invariants mλ(F ) :=

∫
M
λ(F )ω, where

λ(F ) is an arbitrary function of the vorticity function F . In particular, the enstro-
phy moments mi(F ) :=

∫
M
F i ω are conserved quantities for any i ∈ Z>0. These

Casimir invariants are fundamental in the study of nonlinear stability of 2D flows,
and in particular, were the basis for Arnold’s stability criterion in ideal hydrody-
namics, see [2], [3]. In the energy-Casimir method one studies the second variation
of the energy functional with an appropriately chosen combination of Casimirs.

In the case of a flow in an annulus with a vorticity function without critical points
such invariants, along with the circulation along one of the two boundary compo-
nents, form a complete set of Casimirs [4], while for more complicated functions
and domains it is not so, see Section 4. In Section 4 we give a complete description
of Casimirs in the general setting of Morse vorticity functions on two-dimensional
surfaces.

3. Coadjoint Orbits of the Symplectomorphism Group

Before classifying coadjoint orbits of the symplectomorphism group we solve the
problem of finding a complete invariant for a function on a closed symplectic surface.
(See Section 5.2 for the case with boundary.)

3.1. Simple Morse functions and measured Reeb graphs

Definition 3.1. Let M be a closed connected surface. A Morse function F : M →
R is called simple if any F -level contains at most one critical point. (Here and
below under F -level we mean a connected component of the set F = const.)

With each simple Morse function F : M → R, one can associate a graph. This
graph ΓF is defined as the space of F -levels with the induced quotient topology.
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Each vertex of this graph corresponds to a critical level of the function F . The
function F on M descends to a function f on the graph ΓF . It is also convenient
to assume that ΓF is oriented: edges are oriented in the direction of increasing f .

Example 3.2. Figure 1 shows level curves of a simple Morse function on a torus
and the corresponding graph ΓF .

Definition 3.3. A Reeb graph (Γ, f) is an oriented connected finite graph Γ with
a continuous function f : Γ→ R which satisfy the following properties.

i) All vertices of Γ are either 1-valent or 3-valent.
ii) For each 3-valent vertex, there are either two incoming and one outgoing edge,

or vice versa.
iii) The function f is strictly monotonous on each edge of Γ, and the edges of Γ

are oriented towards the direction of increasing f .

It is a standard result from Morse theory that the graph ΓF associated with a
simple Morse function F : M → R on an orientable connected surface M is a Reeb
graph in the sense of Definition 3.3. We will call this graph the Reeb graph of the
function F . Note that Reeb graphs classify simple Morse functions on M up to
diffeomorphisms.

In what follows, we assume that the surface M is endowed with an area (i.e.,
symplectic) form ω. We are interested in the classification problem for simple Morse
functions up to area-preserving (i.e., symplectic) diffeomorphisms. It turns out that
this classification can be given in terms of so-called log-smooth measures on Reeb
graphs.

Definition 3.4. Let Γ be a Reeb graph. Assume that e0, e1, and e2 are three
edges of Γ which meet at a 3-valent vertex v. Then e0 is called the trunk of v, and
e1, e2 are called branches of v if either e0 is an outgoing edge for v, and e1, e2 are
its incoming edges, or vice versa.

Definition 3.5. A measure µ on a Reeb graph (Γ, f) is called log-smooth if it has
the following properties:

i) It has a C∞-smooth non-vanishing density dµ/df at interior points and 1-
valent vertices of Γ.

ii) At 3-valent vertices, the measure µ has logarithmic singularities. More pre-
cisely, consider a 3-valent vertex v of Γ. Without loss of generality assume
that f(v) = 0 (if not, we replace f by f̃(x) := f(x) − f(v)). Let e0 be the
trunk of v, and let e1, e2 be the branches of v. Then there exist functions
ψ, η0, η1, η2 of one variable, C∞-smooth in the neighborhood of the origin
0 ∈ R and such that for any point x ∈ ei sufficiently close to v, we have

µ([v, x]) = εiψ(f(x)) ln |f(x)|+ ηi(f(x)),

where ε0 = 2, ε1 = ε2 = −1, ψ(0) = 0, ψ′(0) 6= 0, and η0 + η1 + η2 = 0.

Definition 3.6. A Reeb graph (Γ, f) endowed with a log-smooth measure µ is
called a measured Reeb graph.

If a surface M is endowed with an area form ω, then the Reeb graph ΓF of
any simple Morse function F : M → R has a natural structure of a measured Reeb
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graph. The measure µ on ΓF is defined as the pushforward of the area form on M
under the natural projection π : M → ΓF .

It turns out that there is a one-to-one correspondence between simple Morse
functions on M , considered up to symplectomorphisms, and measured Reeb graphs
satisfying the following natural compatibility conditions:

Definition 3.7. Let M be a connected closed surface endowed with a symplectic
form ω. A measured Reeb graph (Γ, f, µ) is compatible with (M, ω) if (i) the
dimension of H1(Γ, R) is equal to the genus of M and (ii) the volume of Γ with
respect to the measure µ is equal to the volume of M :

∫
Γ

dµ =
∫
M
ω.

Theorem 3.8 [6]. The mapping assigning the measured Reeb graph ΓF to a sim-
ple Morse function F provides a one-to-one correspondence between simple Morse
functions on M up to a symplectomorphism and measured Reeb graphs compatible
with M .

3.2. Antiderivatives on graphs. In order to pass from the above classification
of simple Morse functions on symplectic surfaces to the classification of coadjoint
orbits of the group SDiff(M), we need to introduce the notion of the antiderivative
of a density on a graph. Let Γ be an oriented graph. Let also ρ be a density on Γ,
i.e., a finite signed Borel measure.

Definition 3.9. A function λ : Γ \ V → R defined and continuous on the graph Γ
outside its set of vertices V = V (Γ) is called an antiderivative of the density ρ if it
has the following properties.

i) It has at worst jump discontinuities at vertices, which means that for any
vertex v ∈ V and any edge e 3 v, there exists a finite limit lim

x
e→v λ(x),

where x
e→ v means “as x tends to v along the edge e”.

ii) Assume that x, y are two interior points of some edge e ∈ Γ, and that e is
pointing from x towards y. Then λ satisfies the Newton–Leibniz formula

λ(y)− λ(x) = ρ([x, y]).

iii) For a vertex v of Γ the function λ satisfies the Kirchhoff rule at v:∑
e→v

lim
x

e→v λ(x) =
∑
e←v

lim
x

e→v λ(x),

where the notation e→ v stands for the set of edges pointing at the vertex v,
and e← v stands for the set of edges pointing away from v.

Proposition 3.10. For an oriented graph Γ a density ρ on Γ admits an anti-
derivative if and only if ρ(Γ) = 0. Furthermore, if a density ρ on Γ admits an
antiderivative, then the set of antiderivatives of ρ is an affine space whose associ-
ated vector space is the homology group H1(Γ, R).

Example 3.11. Consider the graph Γ depicted in Figure 2. Let ρ be a density on
Γ such that ρ(ei) = ai, where the numbers ai satisfy a1 + a2 + a3 + a4 = 0 (so that
the density ρ admits an antiderivative). The numbers near vertices in the figure
stand for the limits of the antiderivative λ of ρ. The space of such antiderivatives
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has one parameter z (by the proposition above the space of antiderivatives is one-
dimensional).

3.3. Classification of coadjoint orbits. Let M be a closed connected surface
endowed with a symplectic form ω. Recall that the regular dual svect∗(M) of
the Lie algebra svect(M) of divergence-free vector fields on a surface M is iden-
tified with the space Ω1(M)/dΩ0(M) of smooth 1-forms modulo exact 1-forms
on M . The coadjoint action of a SDiff(M) on svect∗(M) is given by the change
of coordinates in (cosets of) 1-forms on M by means of a symplectic diffeomor-
phism: Ad∗Φ [α] = [Φ∗α]. To describe orbits of the coadjoint action of SDiff(M)
on svect∗(M), consider the mapping curl : Ω1(M) / dΩ0(M) → C∞(M) given by
taking the vorticity function

curl[α] :=
dα

ω
.

(One can view this map as taking the vorticity of a vector field u = α].) Note that
the image of the mapping curl is the space of functions with zero mean.

By definition, the mapping curl is equivariant with respect to the SDiff(M)
action: if cosets [α], [β] ∈ svect∗(M) belong to the same coadjoint orbit, then
the functions curl[α] and curl[β] are related by a symplectic diffeomorphism. In
particular, if curl[α] is a simple Morse function, then so is curl[β].

Definition 3.12. We say that a coset of 1-forms [α] ∈ svect∗(M) is Morse-type if
curl[α] is a simple Morse function. A coadjoint orbit O ⊂ svect∗(M) is Morse-type
if any coset [α] ∈ O is Morse-type (equivalently, if at least one coset [α] ∈ O is
Morse-type).

Let [α] ∈ svect∗(M) be Morse-type, and let F := curl[α]. Consider the measured
Reeb graph ΓF . Since curl is an equivariant mapping, this graph is invariant under
the coadjoint action of SDiff(M) on svect∗(M). However, this invariant is not
complete if M is not simply connected (i.e., if M is not a sphere S2). To construct a
complete invariant, we endow the graph ΓF with a circulation function constructed
as follows. Let π : M → ΓF be the natural projection. Take any point x lying in
the interior of some edge e ∈ ΓF . Then π−1(x) is a circle. It is naturally oriented as

e3e2

e4

e1

0

0

a1

a1 − zz

a2 + z a1 + a3 − z
−a4

Figure 2. The space of antiderivatives on a graph of genus one.
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the boundary of the set of smaller values of F . The integral of α over π−1(x) does
not depend on the choice of a representative α ∈ [α]. Thus, we obtain a function
c : ΓF \ V (ΓF )→ R given by

c(x) :=

∫
π−1(x)

α. (3)

Note that in the presence of a metric on M , the value c(x) is the circulation over
the level π−1(x) of the vector field α] dual to the 1-form α.

Proposition 3.13. For any Morse-type coset [α] ∈ svect∗(M), the function c given
by formula (3) is an antiderivative of the density ρ(I) :=

∫
I
f dµ in the sense of

Definition 3.9.

Remark 3.14. This density ρ is the pushforward of the vorticity 2-form d[α] from
the surface to the Reeb graph.

Proof of Proposition 3.13. The proof is straightforward and follows from the Stokes
formula and additivity of the circulation integral. �

Definition 3.15. Let (Γ, f, µ) be a measured Reeb graph. A circulation function
c on Γ is an antiderivative of the density ρ(I) :=

∫
I
f dµ. A measured Reeb graph

endowed with a circulation function is called a circulation graph.

So, with any Morse-type coset [α] ∈ svect∗(M) we associate a circulation graph
Γ[α].

Theorem 3.16 [6]. Let M be a compact connected symplectic surface. Then Morse-
type coadjoint orbits of SDiff(M) are in one-to-one correspondence with circulation
graphs (Γ, f, µ, c) compatible with M . In other words, the following statements
hold :

i) For a symplectic surface M Morse-type cosets [α], [β] ∈ svect∗(M) lie in the
same orbit of the SDiff(M) coadjoint action if and only if circulation graphs
Γ[α] and Γ[β] corresponding to these cosets are isomorphic.

ii) For each circulation graph Γ which is compatible1 with M , there exists a
Morse-type [α] ∈ svect∗(M) such that Γ[α] = (Γ, f, µ, c).

Remark 3.17. The space of circulation graphs for a given vorticity function has
dimension equal to dimH1(Γ, R) = genus(M). Given a vorticity function, in order
to define a circulation graph uniquely it suffices to consider a measured graph and
set the values of κ circulations, where κ = dimH1(Γ, R), one value on each cycle
of Γ. In other words, one can consider κ points pi, i = 1, . . . , κ, on the graph Γ
so that cuts at those points turn Γ \ {p1, . . . , pκ} into a tree, i.e., graph without
cycles. Then by prescribing values of an antiderivative at all those points pi we
determine the circulation function on the graph uniquely.

Remark 3.18. For fluid dynamics we are interested only in connected components
of coadjoint orbits, i.e., orbits with respect to the group SDiff0(M), which is the
connected component of the identity in the group SDiff(M) of all symplectomor-
phisms of M . To classify orbit invariants for the connected group SDiff0(M) one

1See Definition 3.7 for compatibility of a graph and a surface.



CLASSIFICATION OF CASIMIRS IN 2D HYDRODYNAMICS 709

needs to supplement invariants for SDiff(M) given by Theorem 3.16 by adding cer-
tain discrete invariants related to pants decompositions of the surface M and Dehn
half-twists. A complete list of the corresponding invariants is given by Theorem
4.7 in [6], which we refer to for more detail. Note that those discrete invariants do
not affect the list of Casimirs we are interested in here.

4. Casimir Invariants of the 2D Euler Equation

Above we classified coadjoint orbits of the group SDiff(M) in terms of graphs
with certain additional structures, see Theorem 3.16. However, for applications, it
is important to describe numerical invariants of the coadjoint action, i.e., Casimir
functions. We begin with the description of such invariants for functions on sym-
plectic surfaces.

Let (M, ω) be a closed connected symplectic surface, and let F be a simple Morse
function on M . With each edge e of the measured Reeb graph ΓF = (Γ, f, µ), one
can associate an infinite sequence of moments

mi,e(F ) =

∫
e

f i dµ =

∫
Me

F i ω,

where i = 0, 1, 2, . . . , and Me = π−1(e) for the natural projection π : M → Γ.
Obviously, the moments mi,e(F ) are invariant under the action of SDiff(M) on
simple Morse functions. Moreover, they form a complete set of invariants in the
following sense:

Theorem 4.1. Let (M, ω) be a closed connected symplectic surface, and let F and
G be simple Morse functions on M . Assume that φ : ΓF → ΓG is an isomorphism
of abstract directed graphs which preserves moments on all edges. Then ΓF and
ΓG are isomorphic as measured Reeb graphs, and there exists a symplectomorphism
Φ: M →M such that Φ∗F = G.

Proof. Consider an edge e = [v, w] ∈ ΓF . Pushing forward the measure µ on e by
means of the homeomorphism f : e → [f(v), f(w)] ⊂ R, we obtain a measure µf
on the interval If = [f(v), f(w)], whose moments coincide with the moments of µ
at e. Repeating the same construction for the measure on ΓG, we obtain another
measure µg, which is defined on the interval Ig = [g(φ(v)), g(φ(w))] and has the
same moments as µf .

Now, consider any closed interval I ⊂ R which contains both If and Ig. Then
the measures µf , µg may be viewed as measures on the interval I supported at If
and Ig respectively. The moments of the measures µf , µg on I coincide, so, by the
uniqueness theorem for the Hausdorff moment problem (see Remark 4.2), we have
µf = µg, which implies the proposition. �

Remark 4.2. The Hausdorff moment problem gives the following necessary and
sufficient condition: a sequence of numbers mk can be the set of moments mk(λ) =∫ 1

0
λk dµ(λ) of some Borel measure µ supported on the interval [0, 1] if and only if it

satisfies the so-called monotonicity conditions. The latter are linear inequalities on

mk, which can be derived from the relations
∫ 1

0
λk(1−λ)n dµ(λ) > 0 for all integer

k, n > 0, where the left-hand side is expressed in terms of mk. (For instance,
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m3−2m4+m5 =
∫ 1

0
λ3(1−λ)2 dµ(λ) > 0.) In our case, replacing λ by the parameter

f we only employ the statement that the measure µ(f) is fully determined by the
set {mk, k = 0, 1, 2, . . . }.

In fact, it turns out that under certain regularity conditions the measure µ can be
found in a constructive way from the moment sequence {mk}. Assume for example
that µ(λ) is supported on a segment [−L, L] and is given by a smooth positive
density function dµ(λ) = w(λ) dλ. Then consider the function Φ of a complex
variable λ defined by

Φ(λ) =

∫
[−L,L]

dµ(z)

λ− z
=

∑
k>0

mk

λk+1
.

The integral expression shows that Φ is defined and holomorphic in the complement
of the real segment [−L, L] ⊂ R. (One can also show that |mk| 6 CLk and hence
the series converges for |λ| > L.) Now the measure density w(λ) can be recovered
from Φ as its normalized jump across the cut [−L, L] in the real axis (see [1], [8]):

w(λ) =
1

2πi
lim
ε→0

(Φ(λ− iε)− Φ(λ+ iε)).

The above Theorem 4.1 allows one to describe Casimirs of the 2D Euler equation
on M , i.e., invariants of the coadjoint action of the symplectomorphism group
SDiff(M). Let F be a Morse vorticity function of an ideal flow with velocity v
on a closed surface M , and let Γ be its Reeb graph. The corresponding moments
mi,e(F ) for this vorticity are natural to call generalized enstrophies. Then group
coadjoint orbits in the vicinity of an orbit with the vorticity function F are singled
out as follows.

Corollary 4.3. A complete set of Casimirs of a 2D Euler equation in a neighbor-
hood of a Morse-type coadjoint orbit is given by the moments mi,e for each edge
e ∈ Γ, i = 0, 1, 2, . . . , and all circulations of the velocity v over cycles in the
singular levels of F on M .

Note that the (finite) set of required circulations can be sharpened by considering
fewer quantities needed to describe the circulation function, as in Section 3.3.

Remark 4.4. As invariants of the coadjoint action of SDiff(M), one usually con-
siders total moments

mi(F ) =

∫
M

F i ω =

∫
Γ

f i dµ,

where F = curl[α] is the vorticity function, and (Γ, f, µ) is the measured Reeb
graph of F . However, the latter moments do not form a complete set of invariants
even in the case of a sphere or a disk.

Consider, for example, the measured Reeb graph (Γ, f, µ) depicted in Figure 3.
Let µ′ be any smooth measure on R supported in [a, b]. Define a new measure µ̃
on Γ by “moving some density from one branch to another”, i.e., by setting

µ̃ :=

{
µ+ f∗(µ′) in I1,

µ− f∗(µ′) in I2,
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Γ

f

a

b
I1 I2

Figure 3. Modifying the measure on the edges.

and µ̃ := µ elsewhere. Then (Γ, f, µ̃) is a again a measured Reeb graph. Moreover,
for all total moments we have ∫

Γ

fk dµ =

∫
Γ

fk dµ̃.

However, the measured graphs (Γ, f, µ) and (Γ, f, µ̃) are not isomorphic and thus
correspond to two different coadjoint orbits of SDiff(S2).

5. Examples and Open Questions

In this section we consider several examples and open questions related to the
description of Casimirs for the case of a surface with boundary.

5.1. Generalized enstrophies and circulations. In the next example we look
at a genus one surface M with an area form ω and a Morse height function F on
it as in Figure 1. Consider the domain Me ⊂M associated with each edge e of the
Reeb graph ΓF . This domain Me = π−1(e) is the preimage of the edge bounded
by the corresponding critical levels of F . In this example there are 6 edges in the
graph ΓF . Consider the infinite set of all generalized enstrophies, i.e., all moments∫
Me
F k ω of the vorticity function in these regions. All generalized enstrophies are

Casimirs of the coadjoint action of the group SDiff(M).
They do not exhaust all Casimirs, but in general must be supplemented by several

circulations. In this example of a torus one needs to fix the value of one circulation
(and, more generally, one value for each handle of the surface). For instance, one
can fix a value of the circulation function at the lower boundary of domain Me,
corresponding to the bottom of edge e in Figure 1. (In Corollary 4.3 we mentioned
circulations over all critical levels of F , which contains the one above, and several
other circulations which are dependent on it.) Note that the set of all generalized
enstrophies and circulations described in the corollary is not a “minimal set” of
Casimirs, as the Hausdorff moment problem does not claim the minimality.

Remark 5.1. Recall that the dual g∗ = svect∗(M) to the Lie algebra g = svect(M)
of divergence-free vector fields on M consists of cosets of 1-forms [α] = {α + df :
f ∈ C∞(M)}, elements of the quotient Ω1(M)/dΩ0(M) = svect∗(M). The function
F = dα̃/ω, as well as values c(x) :=

∫
`x
α̃, are defined for any [α̃] ∈ g∗ = svect∗(M)

in a neighborhood of the coadjoint orbit of [α]. Their invariant definition, i.e., the
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definition relying only on the choice of an area form, but not a metric on M , in
a sense, explains the Casimir property of those quantities. On the other hand,
the interpretation of those values as the set of vector fields with given vorticity and
circulations (rather than the set of 1-forms), which are metric-related to the 1-forms,
requires the presence of metric, and hence such a set is not SDiff(M)-invariant.

5.2. The boundary case: Morse functions. Here we briefly describe the nec-
essary changes in the classification theorems in the case of a surface M with bound-
ary ∂M and main difficulties which arise in this setting. Now the group of area-
preserving diffeomorphisms of a connected surface M has the Lie algebra consisting
of divergence-free vector fields on M tangent to ∂M . As before, we first try to clas-
sify generic functions on M with respect to this group action, and then move to
coadjoint orbirs.

Definition 5.2. Let M be a compact connected surface with a possibly non-empty
boundary ∂M . A Morse function F : M → R is called simple if it satisfies the
following conditions:

i) F does not have critical points at the boundary;
ii) the restriction of F to the boundary ∂M is a Morse function;
iii) all critical values of F and its restriction F |∂M are distinct2.

Associate the following Reeb graph ΓF defined as the space of F -levels to such a
simple Morse function F : M → R. Each vertex of this graph corresponds either to
a critical level of the function F or to a critical point of its restriction F |∂M to the
boundary. As before, the function F on M descends to a function f on the graph
ΓF , which allows us to orient the edges of ΓF by increasing f .

Note that now noncritical levels of F are either circles or segments. We denote
the corresponding edges of the Reeb graph by solid lines if they correspond to circle
levels and by dashed lines if they correspond to segment levels. In the boundary
case, in addition to two types of vertices for solid lines, max/min corresponding to
1-valent vertices, and saddles corresponding to Y -type 3-valent vertices, we have 5
more types of vertices involving dashed lines.

Namely, as depicted on Figure 4 by employing this correspondence of solid and
dashed edges of a Reeb graph to circular levels and segments respectively, one can
have

i) a min/max on the boundary, corresponding to a 1-valent vertex with a dashed
line in the Reeb graph,

ii) a min/max on the boundary, corresponding to a 2-valent vertex with one solid
and one dashed line in the Reeb graph,

iii) a min/max on the boundary, corresponding to a Y -type 3-valent vertex with
three dashed lines in the Reeb graph,

iv) a saddle point on M , corresponding to a Y -type 3-valent vertex with two
dashed lines and a solid line coming together in the Reeb graph,

2Slightly more generally, in agreement with Definition 3.1, one can assume that any F -level
contains either at most one critical point or at most one critical point of the restriction (but

not both).
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Type Level Sets Reeb Graph Type Level Sets Reeb Graph

I II

III IV

V

Figure 4. Five types of critical points on surfaces with bound-
ary and type of vertices of the corresponding Reeb graphs. Solid
lines correspond to pieces of the boundary, while dotted lines are
connected components of level sets of the function.

v) a saddle point on M , see Figure 4, corresponding a 4-valent vertex of X-type
between dashed edges in ΓF .

Definition 5.3. A Reeb graph (Γ, f) is an oriented connected graph Γ with dashed
and solid edges and a continuous function f : Γ → R which satisfy the properties
following from the above description of vertices.

As before, a simple Morse function F : M → R on an orientable connected surface
M with boundary can be associated with a Reeb graph ΓF in the sense of Definition
3.3.

Example 5.4. It turns out one cannot reconstruct topology of the surface with
boundary from its Reeb graph alone. For example, consider a dashed graph Γ with
dim H1(Γ) = 2, see Figure 5. This graph corresponds to a disk with two holes, with
the corresponding function given by the vertical coordinate y. Cutting the disk
along the dashed level sets of y and then restoring the three gluings with opposite
orientations, one obtains a torus with one hole. (Indeed, after the new gluings
one obtains an oriented surface with the same Euler characteristic −1, but with
only one boundary component, hence a torus with a hole.) Since we cut the surface
along level sets, the torus is naturally equipped with a simple Morse function whose
graph coincides with the initial one.
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Figure 5. Dashed Reeb graph with dim H1(Γ) = 2 corresponding
to both a disc with two holes and torus with one hole. Cutting the
disk drawn here along the three dashed levels and then restoring
the gluings with opposite orientations, one obtains a torus with
one hole.

Problem 5.5. Describe the full information required from an abstract Reeb graph
to reconstruct the corresponding surface with boundary.

Further, we are interested in functions on surfaces equipped with an area form.
As before, the Reeb graph ΓF of any simple Morse function F : M → R on a
surface with boundary has a natural structure of a measured Reeb graph, where
the measure µ on ΓF is the pushforward of the area form on M . In the presence of
an area form ω on M the Reeb graph gets endowed with an appropriately defined
log-smooth measure.

Problem 5.6. Describe the properties of the log-smooth measure µ on a Reeb graph
(Γ, f) with solid and dashed edges. Namely, describe the asymptotics similar to
Definition 3.5 at vertices of types (i)–(v).

Solution of this problem will allow one to define an abstract measured Reeb
graph as a Reeb graph (Γ, f) with solid and dashed edges and endowed with a log-
smooth measure µ. The correspondence between abstract measured Reeb graphs
and those corresponding to functions on surfaces with boundary now should include
compatibility conditions for the surface and the Reeb graph beyond equality of total
volumes

∫
Γ

dµ =
∫
M
ω and of the corresponding homology, as it should account for

certain discrete information discussed above.

Problem 5.7. Describe the compatibility conditions for surfaces with boundary and
area form and augmented measured Reeb graphs with solid and dashed edges.

Note that the would-be compatibility condition should be consistent with that
for the case of Morse functions constant on boundary components and considered
in [5] as a limiting case. (Formally speaking, for simple Morse functions constants
on the boundary have to be ruled out and can be considered only in the limit, since
the restriction of functions to the boundary is to be Morse.)

The goal here is to establish a classification theorem similar to Theorem 3.8:
For a surface M , possibly with boundary, the mapping assigning the augmented
measured Reeb graph ΓF to a simple Morse function F should provide a one-to-one
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correspondence between simple Morse functions on M up to a symplectomorphism
and augmented measured Reeb graphs compatible with M .

5.3. The boundary case: coadjoint orbits. To classify coadjoint orbits for
the symplectomorphism group of a compact connected surface M with bound-
ary one can employ a classification of Morse functions on such surfaces. Recall
that regardless of the boundary, the regular dual svect∗(M) of the Lie algebra
svect(M) of divergence-free vector fields on a surface M is identified with the
space Ω1(M)/dΩ0(M). Similarly to the no-boundary case, for a coset of 1-forms
α ∈ Ω1(M)/dΩ0(M) consider the vorticity function curl[α] := dα/ω. Again confine
ourselves to cosets of 1-forms [α] ∈ svect∗(M) of Morse type, i.e., to cosets with a
simple Morse function curl[α] on the surface with boundary.

Let [α] ∈ svect∗(M) be Morse-type, and let F = curl[α]. Now one can define a
circulation function only on solid edges of the measured Reeb graph ΓF . Indeed,
let π : M → ΓF be the natural projection. Take any point x lying in the interior
of a solid edge e ∈ ΓF . Then π−1(x) is an oriented circle `x. The integral of α
over `x does not depend on the choice of a representative α ∈ [α]. (Note that
preimages of points x in dashed edges e are segments, and integrals of α over them
do depend on a representative α ∈ [α], i.e., they are not well-defined objects on
svect∗(M).) Thus, we obtain a real-valued function c defined on solid edges, which
is an antiderivative of the density fdµ wherever it is defined and which satisfies the
properties of Definition 3.9 at the vertices involving only solid edges. It is suggestive
to define a circulation graph as an augmented measured Reeb graph equipped with
a circulation function. It turns out however that the circulation function has to be
further supplemented by additional information.

Example 5.8. Circulations, being integrals of 1-forms α, over boundary compo-
nents are invariants of coadjoint action, i.e., Casimirs. (Since diffeomorphisms may
interchange boundary components, the corresponding circulations over boundary
components are to be considered up to permutation.) However, they do not enter
the definition of circulation function on solid edges defined above. In particular,
different surfaces corresponding to the same Reeb graph in Example 5.4, see Fig-
ure 5, have different number of boundary components, and hence different number
of Casimirs from boundary conditions. On the other hand, since the Reeb graph
consists of only dashed edges, one does not relate a circulation function to it, and
hence one needs new options for “storing” the information about the coadjoint
orbits.

Problem 5.9. How to supplement the circulation function on solid edges by ex-
tending it to dashed ones to fully describe coadjoint orbits by means of “circulation
augmented measured Reeb graphs”?

One possibility would be to define circulation functions as integrals of cosets over
level segments (rather than circle levels) by closing up the segments using boundary
arcs. We expect that the latter approach works at least in the case of one boundary
component.
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Remark 5.10. Note that a partial list of Casimirs in the 2D case with boundary
can be described exactly in the same way as in the no-boundary case: one has
to consider all moments for the measure on each edge, either solid or dashed, of
the measured Reeb graph for the vorticity function. The discrete information on
the Reeb graph does not affect the definition of families of continuous Casimirs.
However, the list of additional circulations yet needs to be detailed.
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