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SYMPLECTIC GEOMETRY ON MODULI SPACES OFHOLOMORPHIC BUNDLES OVER COMPLEX SURFACESBoris Khesin and Alexei RoslyOtober 1998Abstrat.We give a omparative desription of the Poisson strutures on the moduli spaesof at onnetions on real surfaes and holomorphi Poisson strutures on the modulispaes of holomorphi bundles on omplex surfaes. The sympleti leaves of thelatter are lassi�ed by restritions of the bundles to ertain divisors. This an beregarded as �xing a \omplex analogue of the holonomy" of a onnetion along a\omplex analogue of the boundary" in analogy with the real ase.

IntrodutionIn this note we disuss the geometry of the momentum map for gauge groups inthe following two ases with the aim of emphasizing the analogy between them. Westart by realling a desription of the Poisson struture on the moduli spae of atonnetions over a two-dimensional real surfae. Our main interest is related to adesription of analogous strutures on moduli of holomorphi bundles over a two-dimensional omplex surfae. In the �rst ase we deal with smooth objets while inthe seond one { with omplex analyti objets. Our interest in this subjet omesmainly from a desire to understand the origin of a sympleti struture (refs. [Mu,Ko℄) and of a Poisson struture (refs. [Bon, Bot℄) on moduli of holomorphi bundlesover omplex surfaes in a way whih would be parallel to the onsideration of atonnetions over real surfaes. It is worth mentioning that the both ases aboveare also of interest from the mathematial physis point of view. Other relatedimportant results on the geometry of moduli spaes of holomorphi bundles onTypeset by AMS-TEX1



2ertain omplex surfaes deal with the study of the sympleti struture related toa K�ahler form, or a hyperk�ahler struture (f., e.g., refs. [Do, KN, LMNS℄).We adopt the viewpoint of onsidering the ase of holomorphi bundles on om-plex surfaes as a ertain omplexi�ation of the ase of at onnetions on real sur-faes. This approah is parallel to the geometri omplexi�ation method suggestedby V. Arnold in ref. [Ar℄. To be more preise, rather than formally omplexifying,we replae loally onstant sheaves (orresponding to at onnetions) by sheavesof holomorphi setions (or, one ould say, d=dx is replaed by �=��z). Being rathersimple by itself this leads however to ertain urious ideas some of whih we willsketh below (f., also refs.[Wi, EF, FK, Kh, DT, Th, FKT, KR℄).The onsideration of at onnetions rests on the notions of holonomy and ur-vature. One needs to equate the urvature to zero, whih leads to the \atness"ondition, while the holonomy is ruial as the \only remaining" part of whatan haraterize a at onnetion modulo gauge transformations. Thus, to passto \omplexi�ed" objets, i.e., to holomorphi bundles over omplex surfaes, weneed to know what the omplex analogues of holonomy and urvature are. It issomewhat easier with urvature. For a (0,1)-onnetion (i.e., ��-onnetion) one ande�ne its urvature (0,2)-form. However, as we shall see below (f., x3), a betteranalogue of the urvature (in the ontext of sympleti geometry on the spae of��-onnetions) will be a ertain (2,2)-form. This form is the wedge produt of theabove (0,2)-form with a meromorphi (or holomorphi) (2,0)-form on the surfae.The meromorphi (2,0)-form will play the role of orientation of the surfae in theomplex analyti situation. We spei�ally onentrate on the ase of a meromor-phi (2,0)-form with logarithmi singularities. This gives rise to a omplex analogueof the notion of a real surfae with boundary, namely, a omplex surfae with thepolar set of a (2,0)-form.The problem of �nding a proper omplex analogue of the notion of holonomy of aat onnetion (or, better to say, monodromy) is more intriate. Let us �rst onsiderthe ase of a real surfae with boundary. Then, for a at onnetion on it, we haveertain group elements, the monodromies, assoiated with every losed loop in thesurfae. In the ase when the loop is homotopi to a boundary omponent we saythat we deal with a monodromy around a hole in the surfae. The monodromiesaround the holes play a distintive role in the study of Poisson geometry of themoduli spae of at onnetions. The latter spae is, in fat, a Poisson manifoldwhose Poisson struture is degenerate in the ase when the surfae has holes (i.e.,non-empty boundary). The sympleti leaves of that Poisson manifold an bede�ned by �xing the onjugay lasses of the monodromies around the holes. Thusone an �nd out a proper \omplexi�ed" notion of the monodromy around a holeprovided one is able to single out the sympleti leaves in the Poisson manifold of



3moduli of holomorphi bundles on a omplex surfae with \boundary" (in the sensementioned above). This will be disussed in x3. In the ase of a loop whih is nothomotopi to the boundary we do not know yet a proper omplex analogue of themonodromy. It would be interesting to see what should replae \a loop," a oneptfrom homotopy theory, in the omplex analyti setting.It turns out, however, that at least the orresponding homology theory an beonstruted. The above approah leads one to ertain omplex analyti analoguesof the notions of hains, boundary, and yles. This is mentioned in x2.x1. Real ase: Poisson strutures on moduli spaes of at onnetions.First we reall several results on Poisson strutures on the spae of at onne-tions on real surfaes with boundary. Our onsideration of holomorphi bundles onomplex surfaes below, in x3, will be parallel to the ase of real surfaes. We followthe papers [AB, FR℄ in the exposition of the real ase.In the real ase G stands for a simple simply onneted ompat Lie group,and g = LieG is its Lie algebra with a hosen nondegenerate invariant quadratiform, whih we denote by tr. Let � be an oriented ompat surfae whih mayhave boundary � = �� onsisting of several omponents, � = [k1�j . Denote byE a (trivial) priniple G-bundle over �. Let A� be the aÆne spae of all smoothonnetions in E. It is onvenient to �x any trivialization of E and identify A�with the vetor spae 
1(�; g) of smooth g-valued 1-forms on the surfae:A� = fd+ A j A 2 
1(�; g)g :De�nition 1.1. The spae A� is in a natural way a sympleti manifold with thesympleti struture(1) W := Z� tr(ÆA ^ ÆA) ;where Æ is the exterior di�erential on A�, and ^ stands to denote the wedge produtboth on A� and �.Proposition 1.2. The sympleti struture W is invariant with respet to thegauge transformations A 7! g�1Ag + g�1dg ;where g is an element of the group of gauge transformations, G�, i.e., it is a smoothG-valued funtion on the surfae �.The in�nitesimal gauge transformations forming a Lie algebra g� are generatedon the sympleti manifold A� by ertain Hamiltonian funtions.



4Proposition 1.3. An in�nitesimal gauge transformation � is generated by theHamiltonian funtionH� = Z� tr(�(dA+A ^ A))� Z�� tr(�A) :Proof. Hamiltonian vetor �eld X orresponding to any Hamiltonian H is de�nedby its ation on funtions f(A) :LXf = fH; fg = Z� tr�ÆHÆA ^ ÆfÆA� ;where the latter expression is the Poisson braket orresponding to eq.(1). It suÆesto onsider the oordinate funtion f(A) = A :LXA = fH;Ag = ÆHÆA :Then for the above Hamiltonian H� we haveLX�A = ÆH�ÆA = rA �;where rA � = d� + [A; �℄ is an in�nitesimal gauge transformation. Indeed, forF (A) := dA+ A ^A we have ÆF = rA ÆA, and thenÆH� = Z� tr (� ÆF )� Z�� tr(� ÆA)= Z� tr (�rA ÆA)� Z�� tr(� ÆA) = Z� tr (ÆA ^ rA �) :In the last equality we used the Stokes formula. �The Hamiltonian funtion generating a given gauge transformation is de�nedonly up to an additive onstant. Hene, generally speaking, the Poisson braketbetween two suh Hamiltonians reprodues the ommutation relation in the gaugealgebra g� only up to a oyle:fH�1 ; H�2g = H[�1;�2℄ + (�1; �2) :Proposition 1.4. For the above hoie of Hamiltonians the oyle is(2) (�1; �2) = Z�� tr(�1d�2) :



5One an show that this well-known oyle is nontrivial. Therefore one ande�ne the momentum mapping not for the algebra of gauge transformations, butonly for its entral extension by the 2-oyle (2).To de�ne this mapping we need some notations. Let ĝ� denote the Lie algebraof gauge transformations entrally extended by the oyle (2), and Ĝ� be theorresponding group. The in�nite-dimensional spae ĝ� is the spae of pairs (�; z),where � is a g-valued funtion on the surfae � and z is a real number.We de�ne the spae (ĝ�)�, dual to ĝ�, as onsisting of triples (F;C; x), where Fis a g-valued 2-form on �, C is a g-valued 1-form on the boundary of �, and x is areal number. The nondegenerate pairing < ;> between the spaes ĝ� and (ĝ�)� isthe following: < (F;C; x); (�; z) >= Z� tr(�F )� Z�� tr(�C) + zx :Let us onsider the ation of Ĝ� on A� generated by the ation of G�. That isto say, the enter of Ĝ� ats trivially.Proposition 1.5. The entrally extended group Ĝ� of gauge transformations atson A� in a Hamiltonian way. The momentum map for the ation of the orre-sponding gauge algebra ĝ� is the mapping A� ! (ĝ�)� given by the urvature andby the restrition of the onnetion form to the boundary:A 7! (dA+A ^ A; Aj��; 1) :Let us introdue the following notation. For a manifold � and its submanifold� � � denote by G�� the group of gauge transformations on � \based on �":G�� = fg 2 C1(�; G) j gj� = idg, and by g�� the orresponding Lie algebra.Modifying slightly the last proposition one gets the followingCorollary 1.6. The group G�� ats on A� in a Hamiltonian way. The momentummap for the ation of the orresponding Lie algebra g�� is the mapping A� ! (g�� )�given by the urvature: A 7! dA+ A ^ A :Remark. Note that the group G�� is not entrally extended, but still G�� � Ĝ�.Now onsider the Hamiltonian redution A�==G�� of the spae of onnetionsA� with respet to the group G�� of gauge transformations equal to the identity onthe boundary � = ��. This yields the spae of at onnetions on � modulo gaugetransformations from G�� ,M�;� = fd+A 2 A� j dA+A ^ A = 0g=G�� :



6 By de�nition of Hamiltonian redution, the spae M�;� is sympleti (though,ertainly, in�nite-dimensional and, generally speaking, with singularities). It an bemapped to ertain familiar Poisson manifolds. It is well known that the spae of G-onnetions on a irle an be identi�ed with the spae of oadjoint representation ofthe aÆne Ka{Moody algebra equipped with the standard Kirillov{Kostant Poissonstruture. The relation with the Poisson (in fat, sympleti) struture on M�;�is given by the following proposition.Proposition 1.7. The mapping from the spae M�;� to the Ka{Moody oadjointrepresentation spae sending a at onnetion on the surfae � to its restrition toa boundary omponent is a Poisson mapping.Proof. This mapping is essentially the momentum mapping for the ation of gaugetransformations on the boundary. �Remarks. i) Here and below we always mean the nonsingular parts of the modulispaes when desribing the sympleti (or Poisson) strutures on them.ii) We are going to desribe now the quotient of our sympleti manifold by theHamiltonian ation of a group. The result is always a Poisson manifold, while themomentum map helps to determine the sympleti leaves in it (see, ref. [We℄).Consider the quotient of the spae M�;� by the whole group Ĝ� of entrallyextended gauge transformations. The latter group ats onM�;� sine gauge trans-formations equal to the identity on the boundary form a normal subgroup G�� inĜ� . The quotient spaeM� = fd+A 2 A� j dA+A ^ A = 0g=Ĝ�is a �nite-dimensional Poisson manifold (with singularities).Proposition 1.8. The spae M� of at G-onnetions modulo gauge transforma-tions on a surfae � with holes inherits a Poisson struture from the spae of all(smooth) G-onnetions. The sympleti leaves of this struture are parameterizedby the onjugay lasses of holonomies around the holes (that is, a sympleti leafis singled out by �xing the onjugay lass of the holonomy around eah hole).Proof. The sympleti leaves of M� are in one-to-one orrespondene with theoadjoint orbits of the (entrally extended) aÆne Lie algebra on a irle (or thediret sum of several opies of the aÆne algebras if the boundary of the surfae �onsists of several omponents). These oadjoint orbits, in turn, are parameterizedby the onjugay lasses of holonomies around the irle. �Remark. The above proposition should not be understood as that the onjugaylasses of holonomies around the holes an be taken arbitrary, sine the holonomies



7of a at onnetion on the surfae obey ertain relations oming from the funda-mental group �1(�). For example, if � is a sphere with n holes then the produtof all n holonomies has to be id 2 G (provided one has hosen the same base pointand a onvenient orientation for all n loops enirling the holes).x2. The Stokes{Leray formula.In order to develop the sympleti geometry related with holomorphi bundleson omplex surfaes in a way analogous to what have been onsidered in the lastsetion we will need a omplex analogue of the Stokes formula. This will be nothingbut a simple multidimensional generalization of the Cauhy formula.Higher-dimensional residue. Let  be a meromorphi n-form on a ompatomplex n-dimensional manifold M with poles on a smooth omplex hypersurfaeN �M . Here and below we onsider the forms with logarithmi singularities only(i.e., with the �rst order poles).1 Let f be a funtion de�ning N in a neighborhoodof some point p 2 N . Then loally, in a ertain neighborhood U(p), the n-form an be deomposed into the sum = dff ^ �+ � ;where � and � are holomorphi in U(p). One an show, that the restrition �jN isa well-de�ned (i.e. independent of f) holomorphi (n� 1)-form on N .De�nition 2.1. The holomorphi (n� 1)-form �jN on N is alled the residue ofthe meromorphi form  and is denoted by resN .Proposition 2.2. Let M;N and  be as above, and let u be a smooth (n�1)-formon M . Then the form  ^ du is integrable on M , and(3) ZM  ^ du = 2�i ZN resN  ^ u :Remarks. i) The formula (3) is proved by applying the Stokes formula to reduethe integral to the tubular neighborhood of N , and then by using the standardCauhy formula in the transversal diretion to N (see, e.g., ref. [GS℄).ii) This relation an be, of ourse, generalized to the ase when N is a normalrossing divisor in M by modifying the above de�nition of a residue. Then, in1In this paper we restrit ourselves to the ase of top-degree meromorphi forms having singu-larities on smooth divisors. In this ase a logarithmi singularity is the same as a �rst order pole.It is the formulation \ with logarithmi singularities" whih should be kept if one would like toonsider the situation of a non-smooth divisor of poles.



8partiular, res  will de�ne meromorphi forms on smooth omponents of N , theresidues of whih (i.e. residues of residues) will sum to zero at the intersetions ofomponents.iii) We all this formula the Stokes{Leray formula for it is a part of a muhbroader, than explained here, Leray theory (f., ref. [Le℄), while, on the otherhand, we are going to exploit it as a omplex analogue of the usual Stokes formula.iv) Of ourse, it is only the (0; n � 1)-part of the form u whih is essential ineq.(3). In the same way, we an write ��u instead of du:(30) ZM  ^ ��u = 2�i ZN resN  ^ u :Digression on homology and ohomology. The last remark leads one to asimple idea of onsidering a pairing of Dolbeault ohains with ertain \geometrihains", and thus to the onstrution of the orresponding homology theory, whihwe will desribe here roughly (and in a full detail in ref. [KR℄).Let v be a smooth (0; k)-form on a omplex manifold M and let (X;�) bea pair onsisting of a smooth k-dimensional omplex submanifold X in M anda meromorphi k-form � on X possessing logarithmi singularities on a smoothhypersurfae Y in X. Now let us onsider the pairing between (0; k)-forms and theset of suh pairs given by the integral(4) ZX � ^ v :Note that the meromorphi top-degree form � on X is the data whih allow us tointegrate (0; k)-forms over submanifolds of omplex dimension k, (i.e., to integratev over X). Therefore, this meromorphi form � an be regarded as a holomorphianalogue of orientation of the submanifold X. Furthermore, if v = ��u, then, byuse of eq.(30), the integral over X is redued to the integral over its submanifold Yof one omplex dimension less:(300) ZX � ^ ��u = 2�i ZY resY � ^ u :Thus we an speak of the pair (Y; resY �) as a holomorphi analogue of the boun-dary for the pair (X;�). In this sense, eq.(300) an be viewed on as a omplexanalogue of the Stokes formula. Suppose now that the pair (X;�) is an analogue ofa losed manifold, i.e., that � is holomorphi. Then the integral (4) for a ��-losedform v depends in fat only on the Dolbeault ohomology lass of v. This line ofreasoning an be developed to a homology theory (ref. [KR℄) whih plays the samerole with respet to Dolbeault ohomology as singular homology plays with respetto De Rham ohomology.



9Remark. Thus, a pair (M;) with a holomorphi form  of degree equal to dimC Man be regarded as a holomorphi analogue of an oriented losed manifold. Some-times it is neessary to require that  has no zeros (then M has to be a Calabi{Yauor an abelian manifold) in whih ase one an speak of a holomorphi analogue ofa smooth oriented losed manifold. If  is meromorphi (rather than holomorphi)with only �rst order poles one an speak of \a manifold with boundary" (and theabove remark about the possible zeros of  applies in this ase as well).In the next setion we would like to exploit the above understanding of what arethe proper holomorphi analogues of orientation and boundary (a similar point ofview was useful in refs. [FK, DT℄ for other gauge-theoreti onstrutions).x3. Complex ase: Poisson strutures on moduli spaes of holomorphibundles.Let S be a ompat omplex surfae (dimC S = 2). We are going to desribea Poisson struture on the moduli spae of holomorphi vetor bundles2 with aomplex redutive group G as the struture group (G � GL(n; C )) on S. Let usdo this in analogy with the onsideration of at onnetions in x1. First of all,in order to de�ne an analogue of the sympleti struture in eq.(1) we have to �xa holomorphi analogue of the orientation. Aording to the heuristi argumentin x2, we have to hoose a meromorphi 2-form on the surfae S. Let � be ameromorphi 2-form on S, suh that its divisor of poles P is a smooth urve in Sand that � has there a logarithmi singularity. The urve P will play the role of theboundary of the surfae in our onsiderations. Let us assume additionally that �has no zeros (the situation analogous to a smooth oriented real surfae). Then P isan antianonial divisor on S and has to be an ellipti urve, or, may be, a numberof noninterseting ellipti urves. These are analogous to the irles onstitutingthe boundary of a real smooth surfae. In what follows we shall assume that Sis endowed with suh a 2-form �. (Example: S = CP 2 with a smooth ubi asan antianonial divisor. As a matter of fat, many Fano surfaes fall into thislass.) If it happens that � has no zeros and no poles (i.e., S is \oriented, withoutboundary") it means that we deal with either a K3 or an abelian surfae. (Notethat the further onsideration an be extended with minimal hanges to the aseof a non-smooth divisor P , in partiular, to P onsisting of several omponentsinterseting transversally. Example: S = C P 2 with � = dxdy=xy.)Let E be a smooth vetor G-bundle over S whih an be endowed with a holo-morphi struture and EndE be the orresponding bundle of endomorphisms withthe �ber g = Lie(G). Let AS denote the in�nite-dimensional aÆne spae of smooth2 By the moduli spae we shall always understand a loal universal family near a smooth point.



10��-onnetions in E. By hoosing a referene holomorphi struture �� 0, �� 20 = 0,in E, the spae AS an be identi�ed with the vetor spae 
(0;1)(S;EndE) of(EndE)-valued (0; 1)-forms on S, i.e.AS = f�� 0 +A jA 2 
(0;1)(S;EndE)g :In what follows, instead of �� 0, we shall write simply �� keeping in mind that thisorresponds to a referene holomorphi struture in E when it applies to setionsof E or assoiated bundles.De�nition 3.1. The spae AS possesses a natural holomorphi sympleti stru-ture WC := ZS � ^ tr(ÆA1 ^ ÆA2) ;where � is the holomorphi \orientation" of S, while the other notations are essen-tially the same as in De�nition 1.1 above.After suh a de�nition we an repeat the ontents of x1 more or less word byword.Proposition 3.2. The sympleti struture WC is invariant with respet to thegauge transformations A 7! g�1Ag + g�1 ��g ;where g is an element of the group of gauge transformations, i.e., the group ofautomorphisms of the smooth bundle E. Abusing notation we denote this group byGS.The in�nitesimal gauge transformations forming the Lie algebra gS = �(S;EndE)(where � denotes the spae of C1-setions) are generated on the sympleti man-ifold AS by ertain Hamiltonian funtions.Proposition 3.3. An in�nitesimal gauge transformation � is generated by theHamiltonian funtionH� = ZS � ^ tr(� (��A+A ^ A))� 2�i ZP resP � ^ tr(�A) :Proof. It is the proof of this Proposition where the Stokes{Leray formula of x2 isused instead of the usual Stokes formula being the only modi�ation in omparisonwith the proof of Proposition 1.3 in x1. Now we haveÆH� = ZS � ^ tr (� ÆF )� ZP resP � ^ tr(� ÆA)= ZS � ^ tr (�rA ÆA)� ZP resP � ^ tr(� ÆA) = ZS � ^ tr �ÆA ^ rA �� :



11HererA � = ���+[A; �℄ is an in�nitesimal gauge transformation of a ��-onnetion. �In the same way, the ommutation relations of these Hamiltonians get entrallyextended: fH�1 ; H�2g = H[�1;�2℄ + (�1; �2) ;by the following oyle (f., eq.(2)):Proposition 3.4.(5) (�1; �2) = 2�i ZP resP � ^ tr(�1 ���2) :Let ĝ(S;�) denote the Lie algebra of gauge transformations on S entrally ex-tended by the oyle (5), and Ĝ(S;�) be the orresponding group (f., [FK℄)3. Thein�nite-dimensional spae ĝ(S;�) is the spae of pairs (�; z), where � is a g-valuedfuntion on the surfae S and z is a omplex number.We will take the following spae of triples (F;C; x) as the spae (ĝ(S;�))� dual toĝ(S;�). Here F is a (EndE)-valued (0,2)-form on S, C is a (EndE)-valued (0,1)-form on the \boundary" (i.e., polar set) P of S, and x is a omplex number. Thenondegenerate pairing < ;> between the spaes ĝ(S;�) and (ĝ(S;�))� is the following:< (F;C; x); (�; z) >= ZS � ^ tr(�F )� 2�i ZP resP � ^ tr(�C) + zx :Let us onsider the ation of Ĝ(S;�) on AS generated by the ation of GS . Thatis to say, the enter of Ĝ(S;�) ats trivially.Proposition 3.5. The entrally extended group of gauge transformations, Ĝ(S;�),ats on AS in a Hamiltonian way. The momentum map for the ation of theorresponding gauge algebra ĝ(S;�) is the mapping AS ! (ĝ(S;�))� given by the(0; 2)-urvature and by the restrition of the ��-onnetion form to the \boundary":A 7! (��A+ A ^ A; AjP ; 1) :Let us denote, as before, by GSP the group of gauge transformations on S basedon P : GSP = fg 2 GS j gjP = idg, and by gSP the orresponding Lie algebra.Modifying slightly the last proposition, one obtains the following3 It is not important whih of the possible entral extensions of the group GS will be takenhere sine it is only the Lie algebra that matters. However, if one will be able to onsider thequantum ounterpart of the Poisson geometry a di�erene may appear.



12Corollary 3.6. The group GSP ats on AS in a Hamiltonian way. The momentummap for the ation of the orresponding Lie algebra gSP is the mapping AS ! (gSP )�given by the urvature: A 7! ��A+ A ^A :Remark. Note that the group G�� is not entrally extended, but still GSP � ĜS;�.Consider now the (holomorphi) Hamiltonian redution AS==GSP of the spae of��-onnetions AS with respet to the group GSP . The result will be the spae ofintegrable ��-onnetions in the bundle E on S modulo gauge transformations fromGSP . Suh onnetions, with vanishing (0; 2)-form of the urvature tensor, are inone-to-one orrespondene with holomorphi strutures in the omplex bundle E.Thus the holomorphi Hamiltonian redution leads us to the onsideration of thespae of all holomorphi strutures in the bundle E modulo gauge equivalene trivialon P . The orresponding quotient spaeMS;P , whih we onsider only loally, nearsome of its smooth points, is, by onstrution, an (in�nite-dimensional) sympletimanifold.On the other hand, let us onsider now the spae of holomorphi strutures ina smooth bundle on a omplex one-dimensional manifold by taking P as suh amanifold and EjP as the bundle on P :C := f�� 0 + C jC 2 
(0;1)(P;EndEjP )g :Here �� 0 is also understood as the restrition to P of our referene holomorphistruture. The spae C of holomorphi strutures in a bundle on an ellipti urve(or a sum of suh spaes if P onsists of several disjoint omponents) is in fat anaÆne subspae in a vetor spae dual to the Lie algebra ĝP;�. The latter is de�nedas the entral extension of gP = �(P;EndEjP ) by the oyle�(�1; �2) = 2�i ZP � ^ tr(�1 ���2) :This, of ourse, should be ompared with eq.(5). In what follows we set � = resP �in whih ase ĝP;� = ĝS;�=gSP . The Lie algebra ĝP;� (the two-dimensional urrentalgebra, in terminology of refs. [EF, FK℄, or \double loop algebra") plays the roleof the loop algebra, whih appeared in x1, while C plays the role of the spae ofonnetions on a irle. This point of view was suggested in refs. [EF, FK℄, wheremore details an be found. We mention only the pairing whih de�nes C as an aÆnesubspae of the dual spae to ĝP;�:<(�; z) ; (C; x) >= 2�i ZP � ^ tr(�C) + zx ; where(�; z) 2 ĝP;� ; (�� 0 + C) 2 C; and x; z 2 C :



13Thus, the pairs (C; 1) de�ne an aÆne subspae in (ĝP;�)�. We shall onsider thestandard Kirillov{Kostant Poisson struture on (ĝP;�)�. Its sympleti leaves are,as always, the oadjoint orbits, whih in our ase orrespond to isomorphism lassesof holomorphi bundles on P .Proposition 3.7. The mapping from the spae MS;P to the oadjoint represen-tation spae, (ĝP;�)�, sending an integrable ��-onnetion on the surfae S to itsrestrition to P is a Poisson mapping.Proof. This mapping is essentially the momentum mapping for the ation of gaugetransformations on the boundary. �Now we onsider the quotient of the spae MS;P by the whole group ĜS;� ofentrally extended gauge transformations. The latter group ats on MS;P sinegauge transformations equal to the identity on P form a normal subgroup GSP inĜS;�.The quotient spaef�� +A 2 AS j ��A+ A ^A = 0g=Ĝ(S;�)represents the set of isomorphism lasses of holomorphi bundles on S (orrespond-ing to a given underlying topologial bundle E). Then, by onstrution, the loalsmooth moduli spaeMS of holomorphi bundles on S is a �nite-dimensional Pois-son manifold. The sympleti leaves in it are desribed in terms of oadjoint orbitsin �ĝP;��� as follows (ref. [FKR℄).Proposition 3.8. The loal moduli spae MS of holomorphi bundles possesses a(holomorphi) Poisson struture. The sympleti leaves of this struture are param-eterized by the moduli of their restritions to the antianonial divisor P � S (thatis a sympleti leaf is singled out by �xing the isomorphism lass of the restritionto the ellipti urve P , or the isomorphism lasses of restritions to eah urve ifP onsists of several suh urves).Remarks. i) With minor modi�ations the above proposition holds for P onsist-ing of several omponents interseting transversally. In the latter ase the orre-sponding gauge group ĜP;� is the urrent group on a puntured Riemann surfae,desribed in ref. [FK℄.ii) The above proposition should not be understood as that the isomorphismlasses of bundles on P an be taken arbitrary; rather they have to satisfy theondition that they arise as restritions of bundles de�ned over S.Another desription of sympleti struture. Here we give an alterna-tive desription of the sympleti struture on the sympleti leaves mentioned inProposition 3.8.



14 Let F be a holomorphi bundle on S orresponding to a smooth point in MS,e.g., H2(S;EndF ) = 0 (we assume here that the struture group is now G =GL(n; C )). Let KS denote the anonial line bundle of S, so that by assumptionK �1S possesses a holomorphi setion, say, � and P is the divisor of zeros of �.Denote the sheaves of holomorphi setions of the bundles under onsideration bythe same symbols as the bundles themselves. We an write down the followingexat sequene of sheaves:0! EndF 
KS ! EndF ! EndF 
OP ! 0 ;where the seond map is given by the multipliation by �, while OP is the struturesheaf of the submanifold P . The assoiated long exat sequene reads as follows:0!H0(S;EndF )! H0(P;EndF jP )!H1(S;EndF 
KS)! H1(S;EndF )! H1(P;EndF jP )!H2(S;EndF 
KS)! 0 ;(6)where we have used Serre duality to set H0(S;EndF 
KS) = (H2(S;EndF ))� =0. 4The ohomology group H1(S;EndF ) represents the spae of in�nitesimal de-formations of F . It desribes the tangent spae to MS at the point F 5, whilethe spae tangent to the sympleti leaf SF at F should orrespond (aording toProposition 3.8) to suh deformations of F whih leave F jP unhanged. Thus, thattangent spae orresponds to the kernel of the restrition mapTF SF = ker �H1(S;EndF )! H1(P;EndF jP ) � ;or, by the exatness of (6), to the quotientTF SF = H1(S;EndF 
KS)=I ;where I = im �H0(P;EndF jP )! H1(S;EndF 
KS) � :Now onsider the pairingH1(S;EndF )
H1(S;EndF 
KS)! H2(S;KS) �= C ;4 The ohomology groups H0(S;EndF ) and H2(S;EndF 
KS) appearing also in eq.(6) areof equal dimension by Serre duality and are isomorphi to C if we further require F to be a simplebundle. The groups H1(S;EndF ) and H1(S;EndF 
KS) are also related by Serre duality.5 A desription of the Poisson bivetor on MS in these terms was given in refs. [Mu, Bon,Bot℄.



15indued by the multipliation in ohomology and taking trae in EndF . This mapan be restrited in the �rst fator to the subspae TF SF � H1(S;EndF ), whihgives us TF SF 
H1(S;EndF 
KS)! C :By onsidering the seond fator, one observes that this pairing vanishes on thesubspae TF SF 
 I, thus, desending to a map of TF SF 
 �H1(S;EndF 
KS)=I�or, �nally,(7) TF SF 
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