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SYMPLECTIC GEOMETRY ON MODULI SPACES OFHOLOMORPHIC BUNDLES OVER COMPLEX SURFACESBoris Khesin and Alexei RoslyO
tober 1998Abstra
t.We give a 
omparative des
ription of the Poisson stru
tures on the moduli spa
esof 
at 
onne
tions on real surfa
es and holomorphi
 Poisson stru
tures on the modulispa
es of holomorphi
 bundles on 
omplex surfa
es. The symple
ti
 leaves of thelatter are 
lassi�ed by restri
tions of the bundles to 
ertain divisors. This 
an beregarded as �xing a \
omplex analogue of the holonomy" of a 
onne
tion along a\
omplex analogue of the boundary" in analogy with the real 
ase.

Introdu
tionIn this note we dis
uss the geometry of the momentum map for gauge groups inthe following two 
ases with the aim of emphasizing the analogy between them. Westart by re
alling a des
ription of the Poisson stru
ture on the moduli spa
e of 
at
onne
tions over a two-dimensional real surfa
e. Our main interest is related to ades
ription of analogous stru
tures on moduli of holomorphi
 bundles over a two-dimensional 
omplex surfa
e. In the �rst 
ase we deal with smooth obje
ts while inthe se
ond one { with 
omplex analyti
 obje
ts. Our interest in this subje
t 
omesmainly from a desire to understand the origin of a symple
ti
 stru
ture (refs. [Mu,Ko℄) and of a Poisson stru
ture (refs. [Bon, Bot℄) on moduli of holomorphi
 bundlesover 
omplex surfa
es in a way whi
h would be parallel to the 
onsideration of 
at
onne
tions over real surfa
es. It is worth mentioning that the both 
ases aboveare also of interest from the mathemati
al physi
s point of view. Other relatedimportant results on the geometry of moduli spa
es of holomorphi
 bundles onTypeset by AMS-TEX1



2
ertain 
omplex surfa
es deal with the study of the symple
ti
 stru
ture related toa K�ahler form, or a hyperk�ahler stru
ture (
f., e.g., refs. [Do, KN, LMNS℄).We adopt the viewpoint of 
onsidering the 
ase of holomorphi
 bundles on 
om-plex surfa
es as a 
ertain 
omplexi�
ation of the 
ase of 
at 
onne
tions on real sur-fa
es. This approa
h is parallel to the geometri
 
omplexi�
ation method suggestedby V. Arnold in ref. [Ar℄. To be more pre
ise, rather than formally 
omplexifying,we repla
e lo
ally 
onstant sheaves (
orresponding to 
at 
onne
tions) by sheavesof holomorphi
 se
tions (or, one 
ould say, d=dx is repla
ed by �=��z). Being rathersimple by itself this leads however to 
ertain 
urious ideas some of whi
h we willsket
h below (
f., also refs.[Wi, EF, FK, Kh, DT, Th, FKT, KR℄).The 
onsideration of 
at 
onne
tions rests on the notions of holonomy and 
ur-vature. One needs to equate the 
urvature to zero, whi
h leads to the \
atness"
ondition, while the holonomy is 
ru
ial as the \only remaining" part of what
an 
hara
terize a 
at 
onne
tion modulo gauge transformations. Thus, to passto \
omplexi�ed" obje
ts, i.e., to holomorphi
 bundles over 
omplex surfa
es, weneed to know what the 
omplex analogues of holonomy and 
urvature are. It issomewhat easier with 
urvature. For a (0,1)-
onne
tion (i.e., ��-
onne
tion) one 
ande�ne its 
urvature (0,2)-form. However, as we shall see below (
f., x3), a betteranalogue of the 
urvature (in the 
ontext of symple
ti
 geometry on the spa
e of��-
onne
tions) will be a 
ertain (2,2)-form. This form is the wedge produ
t of theabove (0,2)-form with a meromorphi
 (or holomorphi
) (2,0)-form on the surfa
e.The meromorphi
 (2,0)-form will play the role of orientation of the surfa
e in the
omplex analyti
 situation. We spe
i�
ally 
on
entrate on the 
ase of a meromor-phi
 (2,0)-form with logarithmi
 singularities. This gives rise to a 
omplex analogueof the notion of a real surfa
e with boundary, namely, a 
omplex surfa
e with thepolar set of a (2,0)-form.The problem of �nding a proper 
omplex analogue of the notion of holonomy of a
at 
onne
tion (or, better to say, monodromy) is more intri
ate. Let us �rst 
onsiderthe 
ase of a real surfa
e with boundary. Then, for a 
at 
onne
tion on it, we have
ertain group elements, the monodromies, asso
iated with every 
losed loop in thesurfa
e. In the 
ase when the loop is homotopi
 to a boundary 
omponent we saythat we deal with a monodromy around a hole in the surfa
e. The monodromiesaround the holes play a distin
tive role in the study of Poisson geometry of themoduli spa
e of 
at 
onne
tions. The latter spa
e is, in fa
t, a Poisson manifoldwhose Poisson stru
ture is degenerate in the 
ase when the surfa
e has holes (i.e.,non-empty boundary). The symple
ti
 leaves of that Poisson manifold 
an bede�ned by �xing the 
onjuga
y 
lasses of the monodromies around the holes. Thusone 
an �nd out a proper \
omplexi�ed" notion of the monodromy around a holeprovided one is able to single out the symple
ti
 leaves in the Poisson manifold of



3moduli of holomorphi
 bundles on a 
omplex surfa
e with \boundary" (in the sensementioned above). This will be dis
ussed in x3. In the 
ase of a loop whi
h is nothomotopi
 to the boundary we do not know yet a proper 
omplex analogue of themonodromy. It would be interesting to see what should repla
e \a loop," a 
on
eptfrom homotopy theory, in the 
omplex analyti
 setting.It turns out, however, that at least the 
orresponding homology theory 
an be
onstru
ted. The above approa
h leads one to 
ertain 
omplex analyti
 analoguesof the notions of 
hains, boundary, and 
y
les. This is mentioned in x2.x1. Real 
ase: Poisson stru
tures on moduli spa
es of 
at 
onne
tions.First we re
all several results on Poisson stru
tures on the spa
e of 
at 
onne
-tions on real surfa
es with boundary. Our 
onsideration of holomorphi
 bundles on
omplex surfa
es below, in x3, will be parallel to the 
ase of real surfa
es. We followthe papers [AB, FR℄ in the exposition of the real 
ase.In the real 
ase G stands for a simple simply 
onne
ted 
ompa
t Lie group,and g = LieG is its Lie algebra with a 
hosen nondegenerate invariant quadrati
form, whi
h we denote by tr. Let � be an oriented 
ompa
t surfa
e whi
h mayhave boundary � = �� 
onsisting of several 
omponents, � = [k1�j . Denote byE a (trivial) prin
iple G-bundle over �. Let A� be the aÆne spa
e of all smooth
onne
tions in E. It is 
onvenient to �x any trivialization of E and identify A�with the ve
tor spa
e 
1(�; g) of smooth g-valued 1-forms on the surfa
e:A� = fd+ A j A 2 
1(�; g)g :De�nition 1.1. The spa
e A� is in a natural way a symple
ti
 manifold with thesymple
ti
 stru
ture(1) W := Z� tr(ÆA ^ ÆA) ;where Æ is the exterior di�erential on A�, and ^ stands to denote the wedge produ
tboth on A� and �.Proposition 1.2. The symple
ti
 stru
ture W is invariant with respe
t to thegauge transformations A 7! g�1Ag + g�1dg ;where g is an element of the group of gauge transformations, G�, i.e., it is a smoothG-valued fun
tion on the surfa
e �.The in�nitesimal gauge transformations forming a Lie algebra g� are generatedon the symple
ti
 manifold A� by 
ertain Hamiltonian fun
tions.



4Proposition 1.3. An in�nitesimal gauge transformation � is generated by theHamiltonian fun
tionH� = Z� tr(�(dA+A ^ A))� Z�� tr(�A) :Proof. Hamiltonian ve
tor �eld X 
orresponding to any Hamiltonian H is de�nedby its a
tion on fun
tions f(A) :LXf = fH; fg = Z� tr�ÆHÆA ^ ÆfÆA� ;where the latter expression is the Poisson bra
ket 
orresponding to eq.(1). It suÆ
esto 
onsider the 
oordinate fun
tion f(A) = A :LXA = fH;Ag = ÆHÆA :Then for the above Hamiltonian H� we haveLX�A = ÆH�ÆA = rA �;where rA � = d� + [A; �℄ is an in�nitesimal gauge transformation. Indeed, forF (A) := dA+ A ^A we have ÆF = rA ÆA, and thenÆH� = Z� tr (� ÆF )� Z�� tr(� ÆA)= Z� tr (�rA ÆA)� Z�� tr(� ÆA) = Z� tr (ÆA ^ rA �) :In the last equality we used the Stokes formula. �The Hamiltonian fun
tion generating a given gauge transformation is de�nedonly up to an additive 
onstant. Hen
e, generally speaking, the Poisson bra
ketbetween two su
h Hamiltonians reprodu
es the 
ommutation relation in the gaugealgebra g� only up to a 
o
y
le:fH�1 ; H�2g = H[�1;�2℄ + 
(�1; �2) :Proposition 1.4. For the above 
hoi
e of Hamiltonians the 
o
y
le is(2) 
(�1; �2) = Z�� tr(�1d�2) :



5One 
an show that this well-known 
o
y
le is nontrivial. Therefore one 
ande�ne the momentum mapping not for the algebra of gauge transformations, butonly for its 
entral extension by the 2-
o
y
le (2).To de�ne this mapping we need some notations. Let ĝ� denote the Lie algebraof gauge transformations 
entrally extended by the 
o
y
le (2), and Ĝ� be the
orresponding group. The in�nite-dimensional spa
e ĝ� is the spa
e of pairs (�; z),where � is a g-valued fun
tion on the surfa
e � and z is a real number.We de�ne the spa
e (ĝ�)�, dual to ĝ�, as 
onsisting of triples (F;C; x), where Fis a g-valued 2-form on �, C is a g-valued 1-form on the boundary of �, and x is areal number. The nondegenerate pairing < ;> between the spa
es ĝ� and (ĝ�)� isthe following: < (F;C; x); (�; z) >= Z� tr(�F )� Z�� tr(�C) + zx :Let us 
onsider the a
tion of Ĝ� on A� generated by the a
tion of G�. That isto say, the 
enter of Ĝ� a
ts trivially.Proposition 1.5. The 
entrally extended group Ĝ� of gauge transformations a
tson A� in a Hamiltonian way. The momentum map for the a
tion of the 
orre-sponding gauge algebra ĝ� is the mapping A� ! (ĝ�)� given by the 
urvature andby the restri
tion of the 
onne
tion form to the boundary:A 7! (dA+A ^ A; Aj��; 1) :Let us introdu
e the following notation. For a manifold � and its submanifold� � � denote by G�� the group of gauge transformations on � \based on �":G�� = fg 2 C1(�; G) j gj� = idg, and by g�� the 
orresponding Lie algebra.Modifying slightly the last proposition one gets the followingCorollary 1.6. The group G�� a
ts on A� in a Hamiltonian way. The momentummap for the a
tion of the 
orresponding Lie algebra g�� is the mapping A� ! (g�� )�given by the 
urvature: A 7! dA+ A ^ A :Remark. Note that the group G�� is not 
entrally extended, but still G�� � Ĝ�.Now 
onsider the Hamiltonian redu
tion A�==G�� of the spa
e of 
onne
tionsA� with respe
t to the group G�� of gauge transformations equal to the identity onthe boundary � = ��. This yields the spa
e of 
at 
onne
tions on � modulo gaugetransformations from G�� ,M�;� = fd+A 2 A� j dA+A ^ A = 0g=G�� :



6 By de�nition of Hamiltonian redu
tion, the spa
e M�;� is symple
ti
 (though,
ertainly, in�nite-dimensional and, generally speaking, with singularities). It 
an bemapped to 
ertain familiar Poisson manifolds. It is well known that the spa
e of G-
onne
tions on a 
ir
le 
an be identi�ed with the spa
e of 
oadjoint representation ofthe aÆne Ka
{Moody algebra equipped with the standard Kirillov{Kostant Poissonstru
ture. The relation with the Poisson (in fa
t, symple
ti
) stru
ture on M�;�is given by the following proposition.Proposition 1.7. The mapping from the spa
e M�;� to the Ka
{Moody 
oadjointrepresentation spa
e sending a 
at 
onne
tion on the surfa
e � to its restri
tion toa boundary 
omponent is a Poisson mapping.Proof. This mapping is essentially the momentum mapping for the a
tion of gaugetransformations on the boundary. �Remarks. i) Here and below we always mean the nonsingular parts of the modulispa
es when des
ribing the symple
ti
 (or Poisson) stru
tures on them.ii) We are going to des
ribe now the quotient of our symple
ti
 manifold by theHamiltonian a
tion of a group. The result is always a Poisson manifold, while themomentum map helps to determine the symple
ti
 leaves in it (see, ref. [We℄).Consider the quotient of the spa
e M�;� by the whole group Ĝ� of 
entrallyextended gauge transformations. The latter group a
ts onM�;� sin
e gauge trans-formations equal to the identity on the boundary form a normal subgroup G�� inĜ� . The quotient spa
eM� = fd+A 2 A� j dA+A ^ A = 0g=Ĝ�is a �nite-dimensional Poisson manifold (with singularities).Proposition 1.8. The spa
e M� of 
at G-
onne
tions modulo gauge transforma-tions on a surfa
e � with holes inherits a Poisson stru
ture from the spa
e of all(smooth) G-
onne
tions. The symple
ti
 leaves of this stru
ture are parameterizedby the 
onjuga
y 
lasses of holonomies around the holes (that is, a symple
ti
 leafis singled out by �xing the 
onjuga
y 
lass of the holonomy around ea
h hole).Proof. The symple
ti
 leaves of M� are in one-to-one 
orresponden
e with the
oadjoint orbits of the (
entrally extended) aÆne Lie algebra on a 
ir
le (or thedire
t sum of several 
opies of the aÆne algebras if the boundary of the surfa
e �
onsists of several 
omponents). These 
oadjoint orbits, in turn, are parameterizedby the 
onjuga
y 
lasses of holonomies around the 
ir
le. �Remark. The above proposition should not be understood as that the 
onjuga
y
lasses of holonomies around the holes 
an be taken arbitrary, sin
e the holonomies



7of a 
at 
onne
tion on the surfa
e obey 
ertain relations 
oming from the funda-mental group �1(�). For example, if � is a sphere with n holes then the produ
tof all n holonomies has to be id 2 G (provided one has 
hosen the same base pointand a 
onvenient orientation for all n loops en
ir
ling the holes).x2. The Stokes{Leray formula.In order to develop the symple
ti
 geometry related with holomorphi
 bundleson 
omplex surfa
es in a way analogous to what have been 
onsidered in the lastse
tion we will need a 
omplex analogue of the Stokes formula. This will be nothingbut a simple multidimensional generalization of the Cau
hy formula.Higher-dimensional residue. Let 
 be a meromorphi
 n-form on a 
ompa
t
omplex n-dimensional manifold M with poles on a smooth 
omplex hypersurfa
eN �M . Here and below we 
onsider the forms with logarithmi
 singularities only(i.e., with the �rst order poles).1 Let f be a fun
tion de�ning N in a neighborhoodof some point p 2 N . Then lo
ally, in a 
ertain neighborhood U(p), the n-form 

an be de
omposed into the sum
 = dff ^ �+ � ;where � and � are holomorphi
 in U(p). One 
an show, that the restri
tion �jN isa well-de�ned (i.e. independent of f) holomorphi
 (n� 1)-form on N .De�nition 2.1. The holomorphi
 (n� 1)-form �jN on N is 
alled the residue ofthe meromorphi
 form 
 and is denoted by resN 
.Proposition 2.2. Let M;N and 
 be as above, and let u be a smooth (n�1)-formon M . Then the form 
 ^ du is integrable on M , and(3) ZM 
 ^ du = 2�i ZN resN 
 ^ u :Remarks. i) The formula (3) is proved by applying the Stokes formula to redu
ethe integral to the tubular neighborhood of N , and then by using the standardCau
hy formula in the transversal dire
tion to N (see, e.g., ref. [GS℄).ii) This relation 
an be, of 
ourse, generalized to the 
ase when N is a normal
rossing divisor in M by modifying the above de�nition of a residue. Then, in1In this paper we restri
t ourselves to the 
ase of top-degree meromorphi
 forms having singu-larities on smooth divisors. In this 
ase a logarithmi
 singularity is the same as a �rst order pole.It is the formulation \
 with logarithmi
 singularities" whi
h should be kept if one would like to
onsider the situation of a non-smooth divisor of poles.



8parti
ular, res 
 will de�ne meromorphi
 forms on smooth 
omponents of N , theresidues of whi
h (i.e. residues of residues) will sum to zero at the interse
tions of
omponents.iii) We 
all this formula the Stokes{Leray formula for it is a part of a mu
hbroader, than explained here, Leray theory (
f., ref. [Le℄), while, on the otherhand, we are going to exploit it as a 
omplex analogue of the usual Stokes formula.iv) Of 
ourse, it is only the (0; n � 1)-part of the form u whi
h is essential ineq.(3). In the same way, we 
an write ��u instead of du:(30) ZM 
 ^ ��u = 2�i ZN resN 
 ^ u :Digression on homology and 
ohomology. The last remark leads one to asimple idea of 
onsidering a pairing of Dolbeault 
o
hains with 
ertain \geometri

hains", and thus to the 
onstru
tion of the 
orresponding homology theory, whi
hwe will des
ribe here roughly (and in a full detail in ref. [KR℄).Let v be a smooth (0; k)-form on a 
omplex manifold M and let (X;�) bea pair 
onsisting of a smooth k-dimensional 
omplex submanifold X in M anda meromorphi
 k-form � on X possessing logarithmi
 singularities on a smoothhypersurfa
e Y in X. Now let us 
onsider the pairing between (0; k)-forms and theset of su
h pairs given by the integral(4) ZX � ^ v :Note that the meromorphi
 top-degree form � on X is the data whi
h allow us tointegrate (0; k)-forms over submanifolds of 
omplex dimension k, (i.e., to integratev over X). Therefore, this meromorphi
 form � 
an be regarded as a holomorphi
analogue of orientation of the submanifold X. Furthermore, if v = ��u, then, byuse of eq.(30), the integral over X is redu
ed to the integral over its submanifold Yof one 
omplex dimension less:(300) ZX � ^ ��u = 2�i ZY resY � ^ u :Thus we 
an speak of the pair (Y; resY �) as a holomorphi
 analogue of the boun-dary for the pair (X;�). In this sense, eq.(300) 
an be viewed on as a 
omplexanalogue of the Stokes formula. Suppose now that the pair (X;�) is an analogue ofa 
losed manifold, i.e., that � is holomorphi
. Then the integral (4) for a ��-
losedform v depends in fa
t only on the Dolbeault 
ohomology 
lass of v. This line ofreasoning 
an be developed to a homology theory (ref. [KR℄) whi
h plays the samerole with respe
t to Dolbeault 
ohomology as singular homology plays with respe
tto De Rham 
ohomology.



9Remark. Thus, a pair (M;
) with a holomorphi
 form 
 of degree equal to dimC M
an be regarded as a holomorphi
 analogue of an oriented 
losed manifold. Some-times it is ne
essary to require that 
 has no zeros (then M has to be a Calabi{Yauor an abelian manifold) in whi
h 
ase one 
an speak of a holomorphi
 analogue ofa smooth oriented 
losed manifold. If 
 is meromorphi
 (rather than holomorphi
)with only �rst order poles one 
an speak of \a manifold with boundary" (and theabove remark about the possible zeros of 
 applies in this 
ase as well).In the next se
tion we would like to exploit the above understanding of what arethe proper holomorphi
 analogues of orientation and boundary (a similar point ofview was useful in refs. [FK, DT℄ for other gauge-theoreti
 
onstru
tions).x3. Complex 
ase: Poisson stru
tures on moduli spa
es of holomorphi
bundles.Let S be a 
ompa
t 
omplex surfa
e (dimC S = 2). We are going to des
ribea Poisson stru
ture on the moduli spa
e of holomorphi
 ve
tor bundles2 with a
omplex redu
tive group G as the stru
ture group (G � GL(n; C )) on S. Let usdo this in analogy with the 
onsideration of 
at 
onne
tions in x1. First of all,in order to de�ne an analogue of the symple
ti
 stru
ture in eq.(1) we have to �xa holomorphi
 analogue of the orientation. A

ording to the heuristi
 argumentin x2, we have to 
hoose a meromorphi
 2-form on the surfa
e S. Let � be ameromorphi
 2-form on S, su
h that its divisor of poles P is a smooth 
urve in Sand that � has there a logarithmi
 singularity. The 
urve P will play the role of theboundary of the surfa
e in our 
onsiderations. Let us assume additionally that �has no zeros (the situation analogous to a smooth oriented real surfa
e). Then P isan anti
anoni
al divisor on S and has to be an ellipti
 
urve, or, may be, a numberof noninterse
ting ellipti
 
urves. These are analogous to the 
ir
les 
onstitutingthe boundary of a real smooth surfa
e. In what follows we shall assume that Sis endowed with su
h a 2-form �. (Example: S = CP 2 with a smooth 
ubi
 asan anti
anoni
al divisor. As a matter of fa
t, many Fano surfa
es fall into this
lass.) If it happens that � has no zeros and no poles (i.e., S is \oriented, withoutboundary") it means that we deal with either a K3 or an abelian surfa
e. (Notethat the further 
onsideration 
an be extended with minimal 
hanges to the 
aseof a non-smooth divisor P , in parti
ular, to P 
onsisting of several 
omponentsinterse
ting transversally. Example: S = C P 2 with � = dxdy=xy.)Let E be a smooth ve
tor G-bundle over S whi
h 
an be endowed with a holo-morphi
 stru
ture and EndE be the 
orresponding bundle of endomorphisms withthe �ber g = Lie(G). Let AS denote the in�nite-dimensional aÆne spa
e of smooth2 By the moduli spa
e we shall always understand a lo
al universal family near a smooth point.



10��-
onne
tions in E. By 
hoosing a referen
e holomorphi
 stru
ture �� 0, �� 20 = 0,in E, the spa
e AS 
an be identi�ed with the ve
tor spa
e 
(0;1)(S;EndE) of(EndE)-valued (0; 1)-forms on S, i.e.AS = f�� 0 +A jA 2 
(0;1)(S;EndE)g :In what follows, instead of �� 0, we shall write simply �� keeping in mind that this
orresponds to a referen
e holomorphi
 stru
ture in E when it applies to se
tionsof E or asso
iated bundles.De�nition 3.1. The spa
e AS possesses a natural holomorphi
 symple
ti
 stru
-ture WC := ZS � ^ tr(ÆA1 ^ ÆA2) ;where � is the holomorphi
 \orientation" of S, while the other notations are essen-tially the same as in De�nition 1.1 above.After su
h a de�nition we 
an repeat the 
ontents of x1 more or less word byword.Proposition 3.2. The symple
ti
 stru
ture WC is invariant with respe
t to thegauge transformations A 7! g�1Ag + g�1 ��g ;where g is an element of the group of gauge transformations, i.e., the group ofautomorphisms of the smooth bundle E. Abusing notation we denote this group byGS.The in�nitesimal gauge transformations forming the Lie algebra gS = �(S;EndE)(where � denotes the spa
e of C1-se
tions) are generated on the symple
ti
 man-ifold AS by 
ertain Hamiltonian fun
tions.Proposition 3.3. An in�nitesimal gauge transformation � is generated by theHamiltonian fun
tionH� = ZS � ^ tr(� (��A+A ^ A))� 2�i ZP resP � ^ tr(�A) :Proof. It is the proof of this Proposition where the Stokes{Leray formula of x2 isused instead of the usual Stokes formula being the only modi�
ation in 
omparisonwith the proof of Proposition 1.3 in x1. Now we haveÆH� = ZS � ^ tr (� ÆF )� ZP resP � ^ tr(� ÆA)= ZS � ^ tr (�rA ÆA)� ZP resP � ^ tr(� ÆA) = ZS � ^ tr �ÆA ^ rA �� :



11HererA � = ���+[A; �℄ is an in�nitesimal gauge transformation of a ��-
onne
tion. �In the same way, the 
ommutation relations of these Hamiltonians get 
entrallyextended: fH�1 ; H�2g = H[�1;�2℄ + 
(�1; �2) ;by the following 
o
y
le (
f., eq.(2)):Proposition 3.4.(5) 
(�1; �2) = 2�i ZP resP � ^ tr(�1 ���2) :Let ĝ(S;�) denote the Lie algebra of gauge transformations on S 
entrally ex-tended by the 
o
y
le (5), and Ĝ(S;�) be the 
orresponding group (
f., [FK℄)3. Thein�nite-dimensional spa
e ĝ(S;�) is the spa
e of pairs (�; z), where � is a g-valuedfun
tion on the surfa
e S and z is a 
omplex number.We will take the following spa
e of triples (F;C; x) as the spa
e (ĝ(S;�))� dual toĝ(S;�). Here F is a (EndE)-valued (0,2)-form on S, C is a (EndE)-valued (0,1)-form on the \boundary" (i.e., polar set) P of S, and x is a 
omplex number. Thenondegenerate pairing < ;> between the spa
es ĝ(S;�) and (ĝ(S;�))� is the following:< (F;C; x); (�; z) >= ZS � ^ tr(�F )� 2�i ZP resP � ^ tr(�C) + zx :Let us 
onsider the a
tion of Ĝ(S;�) on AS generated by the a
tion of GS . Thatis to say, the 
enter of Ĝ(S;�) a
ts trivially.Proposition 3.5. The 
entrally extended group of gauge transformations, Ĝ(S;�),a
ts on AS in a Hamiltonian way. The momentum map for the a
tion of the
orresponding gauge algebra ĝ(S;�) is the mapping AS ! (ĝ(S;�))� given by the(0; 2)-
urvature and by the restri
tion of the ��-
onne
tion form to the \boundary":A 7! (��A+ A ^ A; AjP ; 1) :Let us denote, as before, by GSP the group of gauge transformations on S basedon P : GSP = fg 2 GS j gjP = idg, and by gSP the 
orresponding Lie algebra.Modifying slightly the last proposition, one obtains the following3 It is not important whi
h of the possible 
entral extensions of the group GS will be takenhere sin
e it is only the Lie algebra that matters. However, if one will be able to 
onsider thequantum 
ounterpart of the Poisson geometry a di�eren
e may appear.



12Corollary 3.6. The group GSP a
ts on AS in a Hamiltonian way. The momentummap for the a
tion of the 
orresponding Lie algebra gSP is the mapping AS ! (gSP )�given by the 
urvature: A 7! ��A+ A ^A :Remark. Note that the group G�� is not 
entrally extended, but still GSP � ĜS;�.Consider now the (holomorphi
) Hamiltonian redu
tion AS==GSP of the spa
e of��-
onne
tions AS with respe
t to the group GSP . The result will be the spa
e ofintegrable ��-
onne
tions in the bundle E on S modulo gauge transformations fromGSP . Su
h 
onne
tions, with vanishing (0; 2)-form of the 
urvature tensor, are inone-to-one 
orresponden
e with holomorphi
 stru
tures in the 
omplex bundle E.Thus the holomorphi
 Hamiltonian redu
tion leads us to the 
onsideration of thespa
e of all holomorphi
 stru
tures in the bundle E modulo gauge equivalen
e trivialon P . The 
orresponding quotient spa
eMS;P , whi
h we 
onsider only lo
ally, nearsome of its smooth points, is, by 
onstru
tion, an (in�nite-dimensional) symple
ti
manifold.On the other hand, let us 
onsider now the spa
e of holomorphi
 stru
tures ina smooth bundle on a 
omplex one-dimensional manifold by taking P as su
h amanifold and EjP as the bundle on P :C := f�� 0 + C jC 2 
(0;1)(P;EndEjP )g :Here �� 0 is also understood as the restri
tion to P of our referen
e holomorphi
stru
ture. The spa
e C of holomorphi
 stru
tures in a bundle on an ellipti
 
urve(or a sum of su
h spa
es if P 
onsists of several disjoint 
omponents) is in fa
t anaÆne subspa
e in a ve
tor spa
e dual to the Lie algebra ĝP;�. The latter is de�nedas the 
entral extension of gP = �(P;EndEjP ) by the 
o
y
le
�(�1; �2) = 2�i ZP � ^ tr(�1 ���2) :This, of 
ourse, should be 
ompared with eq.(5). In what follows we set � = resP �in whi
h 
ase ĝP;� = ĝS;�=gSP . The Lie algebra ĝP;� (the two-dimensional 
urrentalgebra, in terminology of refs. [EF, FK℄, or \double loop algebra") plays the roleof the loop algebra, whi
h appeared in x1, while C plays the role of the spa
e of
onne
tions on a 
ir
le. This point of view was suggested in refs. [EF, FK℄, wheremore details 
an be found. We mention only the pairing whi
h de�nes C as an aÆnesubspa
e of the dual spa
e to ĝP;�:<(�; z) ; (C; x) >= 2�i ZP � ^ tr(�C) + zx ; where(�; z) 2 ĝP;� ; (�� 0 + C) 2 C; and x; z 2 C :



13Thus, the pairs (C; 1) de�ne an aÆne subspa
e in (ĝP;�)�. We shall 
onsider thestandard Kirillov{Kostant Poisson stru
ture on (ĝP;�)�. Its symple
ti
 leaves are,as always, the 
oadjoint orbits, whi
h in our 
ase 
orrespond to isomorphism 
lassesof holomorphi
 bundles on P .Proposition 3.7. The mapping from the spa
e MS;P to the 
oadjoint represen-tation spa
e, (ĝP;�)�, sending an integrable ��-
onne
tion on the surfa
e S to itsrestri
tion to P is a Poisson mapping.Proof. This mapping is essentially the momentum mapping for the a
tion of gaugetransformations on the boundary. �Now we 
onsider the quotient of the spa
e MS;P by the whole group ĜS;� of
entrally extended gauge transformations. The latter group a
ts on MS;P sin
egauge transformations equal to the identity on P form a normal subgroup GSP inĜS;�.The quotient spa
ef�� +A 2 AS j ��A+ A ^A = 0g=Ĝ(S;�)represents the set of isomorphism 
lasses of holomorphi
 bundles on S (
orrespond-ing to a given underlying topologi
al bundle E). Then, by 
onstru
tion, the lo
alsmooth moduli spa
eMS of holomorphi
 bundles on S is a �nite-dimensional Pois-son manifold. The symple
ti
 leaves in it are des
ribed in terms of 
oadjoint orbitsin �ĝP;��� as follows (ref. [FKR℄).Proposition 3.8. The lo
al moduli spa
e MS of holomorphi
 bundles possesses a(holomorphi
) Poisson stru
ture. The symple
ti
 leaves of this stru
ture are param-eterized by the moduli of their restri
tions to the anti
anoni
al divisor P � S (thatis a symple
ti
 leaf is singled out by �xing the isomorphism 
lass of the restri
tionto the ellipti
 
urve P , or the isomorphism 
lasses of restri
tions to ea
h 
urve ifP 
onsists of several su
h 
urves).Remarks. i) With minor modi�
ations the above proposition holds for P 
onsist-ing of several 
omponents interse
ting transversally. In the latter 
ase the 
orre-sponding gauge group ĜP;� is the 
urrent group on a pun
tured Riemann surfa
e,des
ribed in ref. [FK℄.ii) The above proposition should not be understood as that the isomorphism
lasses of bundles on P 
an be taken arbitrary; rather they have to satisfy the
ondition that they arise as restri
tions of bundles de�ned over S.Another des
ription of symple
ti
 stru
ture. Here we give an alterna-tive des
ription of the symple
ti
 stru
ture on the symple
ti
 leaves mentioned inProposition 3.8.



14 Let F be a holomorphi
 bundle on S 
orresponding to a smooth point in MS,e.g., H2(S;EndF ) = 0 (we assume here that the stru
ture group is now G =GL(n; C )). Let KS denote the 
anoni
al line bundle of S, so that by assumptionK �1S possesses a holomorphi
 se
tion, say, � and P is the divisor of zeros of �.Denote the sheaves of holomorphi
 se
tions of the bundles under 
onsideration bythe same symbols as the bundles themselves. We 
an write down the followingexa
t sequen
e of sheaves:0! EndF 
KS ! EndF ! EndF 
OP ! 0 ;where the se
ond map is given by the multipli
ation by �, while OP is the stru
turesheaf of the submanifold P . The asso
iated long exa
t sequen
e reads as follows:0!H0(S;EndF )! H0(P;EndF jP )!H1(S;EndF 
KS)! H1(S;EndF )! H1(P;EndF jP )!H2(S;EndF 
KS)! 0 ;(6)where we have used Serre duality to set H0(S;EndF 
KS) = (H2(S;EndF ))� =0. 4The 
ohomology group H1(S;EndF ) represents the spa
e of in�nitesimal de-formations of F . It des
ribes the tangent spa
e to MS at the point F 5, whilethe spa
e tangent to the symple
ti
 leaf SF at F should 
orrespond (a

ording toProposition 3.8) to su
h deformations of F whi
h leave F jP un
hanged. Thus, thattangent spa
e 
orresponds to the kernel of the restri
tion mapTF SF = ker �H1(S;EndF )! H1(P;EndF jP ) � ;or, by the exa
tness of (6), to the quotientTF SF = H1(S;EndF 
KS)=I ;where I = im �H0(P;EndF jP )! H1(S;EndF 
KS) � :Now 
onsider the pairingH1(S;EndF )
H1(S;EndF 
KS)! H2(S;KS) �= C ;4 The 
ohomology groups H0(S;EndF ) and H2(S;EndF 
KS) appearing also in eq.(6) areof equal dimension by Serre duality and are isomorphi
 to C if we further require F to be a simplebundle. The groups H1(S;EndF ) and H1(S;EndF 
KS) are also related by Serre duality.5 A des
ription of the Poisson bive
tor on MS in these terms was given in refs. [Mu, Bon,Bot℄.



15indu
ed by the multipli
ation in 
ohomology and taking tra
e in EndF . This map
an be restri
ted in the �rst fa
tor to the subspa
e TF SF � H1(S;EndF ), whi
hgives us TF SF 
H1(S;EndF 
KS)! C :By 
onsidering the se
ond fa
tor, one observes that this pairing vanishes on thesubspa
e TF SF 
 I, thus, des
ending to a map of TF SF 
 �H1(S;EndF 
KS)=I�or, �nally,(7) TF SF 
 TF SF ! C :One 
an 
he
k now that this pairing is skew-symmetri
 and de�nes a 2-form on SFwhi
h 
oin
ides with the symple
ti
 stru
ture dis
ussed in Proposition 3.8.It is more diÆ
ult to prove the 
losedness of the 2-form (7) in the latter de-s
ription than by means of the Hamiltonian redu
tion dis
ussed above. Note alsothat the alternative 
onstru
tion also has an analogue for the moduli spa
e of 
at
onne
tions, whi
h is re
overed by substituting lo
ally 
onstant sheaves instead ofsheaves of holomorphi
 se
tions.A
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