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Abstra
t

We de�ne the (se
ond) Adler-Gelfand-Di
key Poisson stru
ture on di�erential

operators over an ellipti
 
urve and 
lassify symple
ti
 leaves of this stru
ture.

This problem leads to the problem of 
lassi�
ation of 
oadjoint orbits for double

loop algebras, 
onjuga
y 
lasses in loop groups, and holomorphi
 ve
tor bundles

over the ellipti
 
urve. We show that symple
ti
 leaves have a �nite but (unlike

the traditional 
ase of operators on the 
ir
le) arbitrarily large 
odimension, and


ompute it expli
itly.

Introdu
tion

In the seventies M.Adler[A℄, I.M.Gelfand and L.A.Di
key [GD℄ dis
overed a nat-

ural Poisson stru
ture on the spa
e of n-th order di�erential operators on the 
ir
le

with highest 
oeÆ
ient 1 whi
h is now 
alled the (se
ond) Gelfand-Di
key bra
ket.

This bra
ket arises in the theory of nonlinear integrable equations under various

names (nKdV-stru
ture, 
lassi
al W

n

-algebra). B.L.Feigin proposed to 
onsider

and study symple
ti
 leaves for the Gelfand-Di
key bra
ket { a problem motivated

by the fa
t that for n = 2 these symple
ti
 leaves are orbits of 
oadjoint rep-

resentation of the Virasoro algebra. A 
lassi�
ation of symple
ti
 leaves for the

Gelfand-Di
key bra
ket and a des
ription of their adja
en
y were given in [OK℄. It

turned out that lo
ally symple
ti
 leaves are labeled by one of the following:

1) 
onjuga
y 
lasses in the group GL

n

;

2) orbits of the 
oadjoint representation of the aÆne Lie algebra




gl

n

;

3) equivalen
e 
lasses of 
at ve
tor bundles on the 
ir
le of rank n (these three

things are in one-to-one 
orresponden
e).

Furthemore, the 
odimension of a symple
ti
 leaf is equal to any of the following:

1) the dimension of the 
entralizer of the 
orresponding 
onjuga
y 
lass;
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2) the 
odimension of the 
orresponding 
oadjoint orbit;

3) the dimension of the spa
e of 
at global se
tions of the bundle of endomor-

phisms of the 
orresponding 
at ve
tor bundle.

In Se
tion 1 of this paper we de�ne an \aÆne" analogue of the Gelfand-Di
key

bra
ket. It is realized on the spa
e of n-th order di�erential operators on an ellipti



urve whi
h are polynomials in � with smooth 
oeÆ
ients and highest 
oeÆ
ient

1. The main goal of the paper is to 
lassify and study the symple
ti
 leaves of the

aÆne Gelfand-Di
key bra
ket.

In Se
tion 2 we show that lo
ally symple
ti
 leaves of this bra
ket are labeled by

1) Conjuga
y 
lasses for the a
tion of the loop group LGL

n

(C ) on the semidire
t

produ
t C

�

n LGL

n

(C )

0

(where LGL

n

(C )

0

denotes the 
onne
ted 
omponent of

the identity in the group LGL

n

(C ));

2) orbits of the 
oadjoint representation of the \double"' aÆne Lie algebra { a


entral extension of the Lie algebra of gl

n

-valued smooth fun
tions on the ellipti



urve [EF℄;

3) equivalen
e 
lasses of holomorphi
 ve
tor bundles of rank n and degree zero on

the ellipti
 
urve (as before, these three things are in one-to-one 
orresponden
e).

Sin
e holomorphi
 ve
tor bundles over an ellipti
 
urve are 
ompletely 
lassi�ed

[At℄, this result gives a good des
ription of symple
ti
 leaves.

In Se
tion 3 we show that the 
odimension of a symple
ti
 leaf is equal to

1) the dimension of the 
entralizer of the 
orresponding 
onjuga
y 
lass;

2) the 
odimesion of the 
orresponding 
oadjoint orbit;

3) the dimension of the spa
e of holomorphi
 se
tions of the bundle of endomor-

phisms of the 
orresponding holomorphi
 ve
tor bundle.

In parti
ular, this implies that in the aÆne 
ase the 
odimension of a symple
ti


leaf, though always �nite, 
an be arbitrarily large, even for n = 2 (See Theorem

5B and Proposition 8B), unlike the �nite dimensional 
ase, in whi
h it is bounded

from above by dimGL

n

= n

2

.

These results 
onstitute a two dimensional (or aÆne) 
ounterpart of the results

of [OK℄ for Gelfand-Di
key bra
kets. Similarly to the non-aÆne 
ase, they 
an be

generalized to other 
lassi
al Lie groups { SL

n

, Sp

2n

, SO

2n+1

(see [OK℄).

In Se
tion 4 of the paper we dis
uss the question whether the map assigning an

equivalen
e 
lass of ve
tor bundles to a symple
ti
 leaf is surje
tive. This question

is equivalent to the question whether any monodromy (=ve
tor bundle) 
an be

realized by an n-th order di�erential operator. For the usual Gelfand-Di
key bra
ket

the answer to this question is positive (it follows, for example, from the results of

M.Shapiro [S℄). We prove that the answer is positive in the aÆne 
ase as well.

In Se
tion 5, we des
ribe an expli
it realization of all possible monodromies for

n = 2, using Atiyah's 
lassi�
ation of ve
tor bundles over an ellipti
 
urve.

In the Appendix we dis
uss the interesting problem of des
ribing the global

stru
ture of the �bration of the spa
e of di�erential operators by symple
ti
 leaves.
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It turns out that two distin
t symple
ti
 leaves may 
orrespond to the same mon-

odromy. In the �nite-dimensional 
ase, the problem of 
ounting symple
ti
 leaves

with a given monodromy is de�ned geometri
ally by homotopy 
lassi�
ation of

quasiperiodi
 non
attening 
urves on a real proje
tive spa
e [O,OK,KS℄. The prob-

lem of 
ounting symple
ti
 leaves of the aÆne GL

2

-Gelfand-Di
key bra
ket 
orre-

sponding to the trivial rank 2 ve
tor bundle redu
es to the topologi
al problem of


lassi�
ation of nowhere holomorphi
 maps from an ellipti
 
urve to the 
omplex

proje
tive line (i.e. maps f with nonvanishing �f) up to homotopy. In the aÆne

GL

n


ase we en
ounter the problem of homotopy 
lassi�
ation of maps f from an

ellipti
 
urve to C P

n�1

su
h that the ve
tors �f; :::; �

n�1

f are everywhere linear-

ly independent. (These maps are the aÆne 
ounterparts of non
attening 
urves in

RP

n�1

). At the moment a 
omplete solution of this problem (even in the GL

2

-
ase)

is unknown to the authors.

Remarks. 1. The reason to 
onsider aÆne Gelfand-Di
key bra
kets is a

sear
h for an appropriate two-dimensional 
ounterpart of the theory of aÆne Lie

algebras. One 
an show that the \aÆne" analogue of the Drinfeld-Sokolov redu
tion

[DS℄ sends the linear Poisson bra
ket on the double loop algebra (
f.[EF℄) into

the quadrati
 Gelfand-Di
key bra
ket on the spa
e of di�erential operators on the

ellipti
 
urve.

2. In the 
ase n = 2, the problem of 
lassi�
ation of symple
ti
 leaves 
oin
ides

with the problem of 
lassi�
ation of orbits of the 
oadjoint representation of the


omplex Virasoro algebra de�ned in [EF℄ { the Lie algebra of pairs (f; a) where f

is a smooth fun
tion on an ellipti
 
urve M and a is a 
omplex number, with the


ommutation law [(f; a)(g; b)℄ =

�

f�g � g�f;

R

M

f�

3

g

�

.

3. The key tool in the study of Gelfand-Di
key bra
kets is the notion of mon-

odromy of a di�erential operator. For the 
ase of the 
ir
le, monodromy is a


onjuga
y 
lass in the group GL

n

. For the 
ase of an ellipti
 
urve, monodromy is

a 
onjuga
y 
lass in the aÆne GL

n

(more pre
isely, a 
onjuga
y 
lass of the a
tion

of LGL

n

(C ) in the one-dimensional extension C

�

nLGL

n

(C )

0

of the loop group of

GL

n

). This justi�es the name \aÆne Gelfand-Di
key bra
ket".

4. One 
an de�ne versal deformations of symple
ti
 leaves following [LP℄,[OK℄.

They are equivalent to the deformations of the 
orresponding monodromies. This

implies that adja
en
y of symple
ti
 leaves is the same as that of orbits, 
onjuga
y


lasses, and ve
tor bundles.

1

5. It would be interesting to �nd the 
ounterpart of the aÆne GD bra
ket for

surfa
es of higher genus. A good de�nition of this obje
t should lead to symple
ti


1

A symple
ti
 leaf, 
oadjoint orbit, 
onjuga
y 
lass, ve
tor bundle O

1

is 
alled adja
ent to O

2

if the 
losure of O

2


ontains O

1

; for symple
ti
 leaves, orbits, and 
onjuga
y 
lasses, the 
losure

is in the C

1

-sense, and for ve
tor bundles it is in the sense of Zariski topology on the moduli

spa
e of bundles
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leaves of �nite 
odimension, like in the 
ase of an ellipti
 
urve. These symple
ti


leaves should be labeled by 
oadjoint orbits of the 
entral extension of the Lie alge-

bra of matrix-valued fun
tions on the surfa
e des
ribed in [EF℄, or by equivalen
e


lasses of holomorphi
 ve
tor bundles over the surfa
e (it is shown in [EF℄ that

these two things are in one-to-one 
orresponden
e).
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1. Gelfand-Di
key bra
kets.

We start by re
alling the de�nition of the Gelfand-Di
key stru
tures (see [A,GD,DS℄).

Let M be a 
ompa
t smooth orientable 
losed manifold, k = R or C , C

1

(M;k)

be the algebra of smooth k-valued fun
tions on M , ! be a volume form on M . Let

D be a di�erential operator on C

1

(M;k) su
h that

R

M

(Df)! = 0 and D(fg) =

(Df)g + f(Dg) for any f; g 2 C

1

(M;k).

De�ne the ve
tor spa
e

~

L as follows:

(1.1)

~

L = fP =

n�1

X

m=0

u

m+1

D

m

ju

m

2 C

1

(M;k)g:

To realize the dual spa
e to

~

L, we need to introdu
e pseudodi�erential symbols.

They are formal expressions of the form

P

1

m=m

0

a

m

D

�m

, m

0

2 Z, a

m

2 C

1

(M;k).

It is known that su
h symbols form an asso
iative algebra: two symbols A;B


an be multiplied with the help of the rules D Æ f = f Æ D + Df , D

�1

Æ f =

f ÆD

�1

� f

0

ÆD

�2

+ f

00

ÆD

�3

� :::, for any f 2 C

1

(M;k).

We realize (the regular part of) the dual spa
e to

~

L as follows:

(1.2) A = fA =

n

X

m=1

a

m

D

�m

ja

m

2 C

1

(M;k)g;

and the pairing

~

L 
A ! k is given by the formula

(1.3) < P;A >=

Z

M

Res(PA)!;

where Res(X) is the 
oeÆ
ient to D

�1

in a pseudodi�erential operator X. It is


lear that any regular linear fun
tional on

~

L has this form.

Note that Res(PA�AP ) = Df , where f is some fun
tion on M , whi
h implies

that

R

M

Res(PA)! =

R

M

Res(AP )!.
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Let L be the aÆne spa
e of all operators of the form L = D

n

+ P , P 2

~

L.

Clearly, the tangent spa
e to L at any point is naturally identi�ed with

~

L.

Following Adler, Gelfand and Di
key, let us assign a ve
tor �eld V

A

on L to

every regular linear fun
tional A on

~

L. Its value at a point L 2 L is:

(1.4) V

A

(L) = L(AL)

+

� (LA)

+

L;

where X

+

denotes the di�erential part of X.

Let C denote the algebra of smooth fun
tions on L for k = R , and the algebra of

holomorphi
 fun
tions on L for k = C . Then assignment (1.4) allows one to de�ne

a Poisson bra
ket on C:

(1.5) ff; gg(L) =< dg j

L

; V

df j

L

(L) > :

Let us 
all this bra
ket the Gelfand-Di
key (GD) bra
ket. It equips L with a stru
-

ture of a Poisson manifold.

Let us now de�ne symple
ti
 leaves of the GD bra
ket and their 
odimensions

(
f. [K2℄,[We℄).

Let L 2 L. A ve
tor v 2 T

L

L =

~

L is 
alled a Hamiltonian ve
tor if there exists

A 2 A su
h that v = V

A

(L).

De�ne the symple
ti
 leaf O

L

to be the set of all points L

0

2 L su
h that there

exists a smooth 
urve 
 : [0; 1℄ ! L su
h that 
(0) = L, 
(1) = L

0

, and

d


dt

is

a Hamiltonian ve
tor for any t. It is 
lear that two symple
ti
 leaves are either

disjoint or identi
al. Therefore, the spa
e L be
omes a disjoint union of symple
ti


leaves.

The tangent spa
e T

L

O

L

�

~

L to the symple
ti
 leaf O

L

at L is obviously the

spa
e of all Hamiltonian ve
tors at L. De�ne the 
odimension of O

L

to be the


odimension of this tangent spa
e in

~

L. This de�nition makes sense be
ause the


odimension is the same at all points of O

L

.

We will be 
on
erned with the following two spe
ial 
ases of GD bra
kets.

Main de�nition.

Case 1. M = S

1

, k = R or C , D =

d

dx

, ! = dx. The GD bra
ket 
orresponding

to this situation is 
alled the GL

n

(k)-GD bra
ket [GD℄.

Case 2. M is a nondegenerate ellipti
 
urve over C : M = C =�, where � is a

latti
e generated by 1 and � , where Im � > 0, k = C , D = � =

�

��z

=

1

2

(

�

�x

+ i

�

�y

),

where z = x+iy is the standard 
omplex 
oordinate on C , ! =

i

2

dz^d�z. The spa
e L


onsists of di�erential operators �

n

+

P

n�1

j=0

u

j+1

(z; �z)�

j

, where u

i

2 C

1

(C =�; C ).

We 
all the GD bra
ket 
orresponding to this 
ase the aÆne GL

n

-GD bra
ket.

Symple
ti
 leaves of the GL

n

-GD bra
ket are des
ribed in [OK℄. In this paper,

a similar des
ription is given for symple
ti
 leaves of the aÆne GL

n

-GD bra
ket.
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To emphasize the parallel between the non-aÆne and aÆne theories, we give an

exposition of both of them, marking de�nitions and statements from the non-aÆne

theory by the letter A and from the aÆne theory by the letter B.

2. Lo
al 
lassi�
ation of symple
ti
 leaves

De�nition 1AB. Let f = (f

1

; :::; f

n

) be a smooth k

n

-valued fun
tion on some


overing of M (k = R or C ). The matrix-valued fun
tion W (f) = (w

ij

), w

ij

=

D

i�1

f

j

is 
alled the Wronski matrix of f .

We start by re
alling a standard statement from the theory of ordinary di�eren-

tial equations.

Proposition 1A. Let L be a di�erential operator of the form L =

d

n

dx

n

+

P

n�1

j=0

u

j+1

d

j

dx

j

,

u

j

2 C

1

(S

1

; k). Then:

(i) there exists a set of n solutions f = (f

1

; :::; f

n

) of the equation L� = 0

belonging to C

1

(R ; k) whose Wronski matrix is everywhere nondegenerate (here R

is regarded as a 
over of S

1

);

(ii) if

~

f = (

~

f

1

; :::;

~

f

n

) is another set of solutions satisfying (i) then there exists a

unique matrix R 2 GL

n

(k) su
h that

~

f = fR;

(iii) if f = (f

1

; :::; f

n

) is any set of smooth k-valued fun
tions on the real line

su
h that its Wronski matrix is everywhere nondegenerate, and if f(x+1) = f(x)R

for some R 2 GL

n

(k), then there exists a unique di�erential operator L =

d

n

dx

n

+

P

n�1

j=0

u

j+1

d

j

dx

j

with periodi
 
oeÆ
ients su
h that Lf

i

= 0 for all i.

Let � = C =Z be a 
ylinder. It has a natural stru
ture of an abelian group,

is equivalent to C

�

as a 
omplex manifold, and naturally 
overs the ellipti
 
urve

M = C =(Z � �Z). From now on we do not make a distin
tion between � and C

�

.

Before we formulate the aÆne analogue of Proposition 1A, we need to de�ne

loop groups. We will need three versions of a loop group for GL

n

(C ):

Notation. LGL

n

(C ) is the group of holomorphi
 GL

n

(C )-valued fun
tions on �.

LGL

n

(C )

0

is the 
onne
ted 
omponent of identity in LGL

n

(C ). GL

n

(C ) is the

semidire
t produ
t � n LGL

n

(C )

0

, where � a
ts on LGL

n

(C )

0

by (z Æ g)(w) =

g(w + z).

The group GL

n

(C ) should be regarded as the group of pairs (g(�); �), g 2

LGL

n

(C )

0

, � 2 �, with the multipli
ation law (g(z); �)(h(z); �) = (g(z)h(z+�); �+

�). It is 
lear that LGL

n

(C )

0

is embedded into GL

n

(C ) by the map g(�)! (g(�); 0).

Consider the a
tion of LGL

n

(C ) on GL

n

(C ) by 
onjuga
y. We will 
all the orbits

of this a
tion restri
ted 
onjuga
y 
lasses.

Proposition 1B. Let L be a di�erential operator of the form L = �

n

+

P

n�1

j=0

u

j+1

�

j

,

u

j

2 C

1

(M; C ), where M is an ellipti
 
urve. Then:
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(i) there exists a set of n solutions f = (f

1

; :::; f

n

) of the equation L� = 0

belonging to C

1

(�; C ) whose Wronski matrix is everywhere nondegenerate (here �

is regarded as a 
over of M);

(ii) if

~

f = (

~

f

1

; :::;

~

f

n

) is another set of solutions satisfying (i) then there exists a

unique matrix R(z) 2 LGL

n

(C ) su
h that

~

f = fR.

(iii) if f = (f

1

; :::; f

n

) is any set of smooth 
omplex-valued fun
tions on � su
h

that its Wronski matrix is everywhere nondegenerate, and if f(z + �) = f(z)R(z)

for some R(z) 2 LGL

n

(C ), then there exists a unique di�erential operator L =

�

n

+

P

n�1

j=0

u

j+1

�

j

su
h that Lf

i

= 0 for all i.

Proof. First of all, statements (i) and (ii) are true in a small enough neighborhood

U

p

of every point p 2 � [AB℄. Let g

p

= (g

p

1

; ::::; g

p

n

) be the 
orresponding sets of

solutions. By the lo
al version of statement (ii), whenever U

p

and U

q

interse
t, g

p

j

=

P

n

i=1

g

q

i

Q

pq

ij

, where Q

pq

(z) are holomorphi
 GL

n

(C )-valued fun
tions on U

p

\ U

q

.

These fun
tions satisfy the 
onditions: Q

pq

Q

qp

= 1, Q

pq

Q

qr

Q

rp

= 1, whi
h imply

that they are 
lut
hing transformations of some holomorphi
 ve
tor bundle E

L

of

rank n on �.

Sin
e � is equivalent to C

�

as a 
omplex manifold, any holomorphi
 ve
tor bundle

over � has to be trivial. This, of 
ourse, applies to E

L

, whi
h implies that E

L

has

n global holomorphi
 se
tions s

1

; :::; s

n

whi
h are everywhere linearly independent.

That is to say, for every p 2 � there exists a holomorphi
 fun
tion S

p

(z) on U

p

with values in GL

n

(C ) su
h that S

p

= Q

pq

S

q

on U

p

\U

q

for any p; q 2 � (s

i

are the


olumns of S). Therefore, the fun
tions f

p

j

=

P

i

g

p

i

S

p

ij

satisfy the 
ondition f

p

j

= f

q

j

on U

p

\U

q

. This means, we have a globally de�ned ve
tor-fun
tion f = (f

1

; :::; f

n

),

su
h that f

j

j

U

p

= f

p

j

. Sin
e the fun
tions S

p

ij

(z) are holomorphi
, the fun
tions f

j

satisfy the equation Lf

j

= 0. Also, W (f) = W (g

p

)S

p

in every U

p

, whi
h implies

W (f) is everywhere nondegenerate. This settles (i).

Now let � be any smooth 
omplex fun
tion on �. Consider the 
olumn ve
tor

� = (�; ��; :::; �

n�1

�)

t

. It is obvious that � is a solution of L� = 0 if and only

if � satis�es the �rst order n � n-matrix equation �� = A

L

�, where A

L

is the

Frobenius matrix 
orresponding to L:

(2.1) A

L

=

0

B

B

B

�

0 1 . . . . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . . . . 1

�u

1

�u

2

. . . . . . �u

n

1

C

C

C

A

; i.e. (A

L

)

ij

=

8

>

<

>

:

1 j � i = 1

�u

j

i = n

0 otherwise

This implies that if f = (f

1

; :::; f

n

) is a set of solutions to L� = 0 then the Wronski

matrix W (f) satis�es the equation

(2.2) �W = A

L

W:
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To prove (ii), de�ne the matrix fun
tion R on � byW (

~

f) =W (f)R. This matrix

is obviously always in GL

n

(C ), and it is holomorphi
 on � be
ause both W (

~

f) and

W (f) satisfy the equation �W = A

L

W . Thus, R 2 LGL

n

(C ).

To establish (iii), for any f satisfying the 
onditions of (iii) de�ne the ve
tor-

fun
tion u = (u

1

; :::; u

n

) on � by the formula

(2.3) u = (�

n

f)W (f)

�1

:

This ve
tor fun
tion exists and is unique be
ause of the nondegenera
y ofW . More-

over, it is � -periodi
 sin
e both �

n

f and W (f) multiply by R from the right when

z is repla
ed by z + � . Now set L = �

n

+

P

n�1

j=0

u

j+1

�

j

. It is obvious that (2.3) is

equivalent to the 
ondition that Lf

i

= 0 for all i, whi
h implies (iii). �

Propositions 1A and 1B have a simple geometri
 reformulation:

Proposition 1AB. For every ve
tor-fun
tion f with a nondegenerate Wronski

matrix there exists a unique di�erential operator L

f

2 L su
h that L

f

f

i

= 0, and

the assignment f ! L

f

is a prin
ipal �bration over L whose �ber is GL

n

(k) in Case

1 and LGL

n

(C ) in Case 2.

Corollary 2AB. Let L(t) be any smooth 
urve in L. Then there exists a s-

mooth family of ve
tor-fun
tions f

t

with a nondegenerate Wronski matrix su
h that

L(t)f

t

i

= 0 for all i and for all t.

Proof. This is just the statement that any path on the base of a �ber bundle 
an

be 
overed by a path on the total spa
e. �

Let us now de�ne the notion of monodromy of a di�erential operator.

De�nition 2A. Let L be a di�erential operator of the form L =

d

n

dx

n

+

P

n�1

j=0

u

j+1

d

j

dx

j

,

u

j

2 C

1

(R =Z ; k). Let f = (f

1

; :::; f

n

) be a set of solutions of the equation L� = 0

belonging to C

1

(R ; k) whose Wronski matrix is everywhere nondegenerate. Let

R 2 GL

n

(k) be the matrix su
h that f(x + 1) = f(x)R (it exists be
ause of Prop.

1A (ii)). Then the 
onjuga
y 
lass of R in GL

n

(k) is 
alled the monodromy of L.

Note that the matrix R itself (unlike the 
onjuga
y 
lass of R, 
f. Proposition

1A (ii)) is not well de�ned sin
e it relies on the 
hoi
e of the set of solutions f .

De�nition 2B. Let L be a di�erential operator of the form L = �

n

+

P

n�1

j=0

u

j+1

�

j

,

u

j

2 C

1

(M; C ) (M is an ellipti
 
urve). Let f = (f

1

; :::; f

n

) be a set of solutions

of the equation L� = 0 belonging to C

1

(�; C ) whose Wronski matrix is everywhere

nondegenerate. Let R 2 LGL

n

(C ) be the matrix su
h that f(z + �) = f(z)R(z) (it

exists be
ause of Prop. 1B (ii)). Then the restri
ted 
onjuga
y 
lass of the element

(R; �) in GL

n

(C ) is 
alled the monodromy of L.

Remarks. 1. The reason for De�nition 2B is the following: if g(z) = f(z)Q(z)

is another set of solutions (i.e. Q(z) 2 LGL

n

(C )), then g(z+ �) = g(z)

~

R(z), where
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~

R(z) = Q

�1

(z)R(z)Q(z + �), whi
h 
orresponds to 
onjugation of the element

(R; �) 2 GL

n

(C ) by (Q

�1

; 0). Sin
e any set of solutions has the form f(z)Q(z),

where Q is a holomorphi
 matrix (Proposition 1B, part (ii)), monodromy is well

de�ned, i.e. does not depend on the 
hoi
e of f .

2. Note that for di�erential equations on the line there is a 
anoni
al 
hoi
e

of a set of solutions f { the set whose Wronski matrix is the identity matrix at

a �xed point x

0

of the line (the fundamental system of solutions). The notion

of a fundamental system of solutions does not have a natural analogue in two

dimensions.

3. Observe that in Case 2 the monodromy matrix R(z) is always in LGL

n

(C )

0

.

Indeed, detR(z) =

detW (f)(z+�)

detW (f)(z)

, whi
h means that the map z ! detR(z) is ho-

motopi
 to the identity: the homotopy is �

s

(z) =

detW (f)(z+s�)

detW (f)(z)

, s 2 [0; 1℄. For a

similar reason, in Case 1 if k = R then the determinant of R is always positive.

Now we are ready to formulate the main theorem about the lo
al stru
ture of

the �bration of L into symple
ti
 leaves.

Theorem 3AB. Let L(t); a < t < b be a smooth 
urve in L. Then L(t) lies inside

a single symple
ti
 leaf if and only if the monodromy of L(t) is the same for all t.

The proof of this theorem for Case 1 was given in [OK℄. Before proving Case

2, let us give a reformulation of the isomonodromi
 
ondition in terms of ve
tor

bundles and in terms of 
oadjoint orbits of double loop algebras.

De�ne the rank n ve
tor bundle E

L

onM 
orresponding to a di�erential operator

L 2 L. It will be a 
at k-bundle in Case 1 and a holomorphi
 bundle in Case 2.

For every p 2 M let U

p

be the neighborhood of p su
h that there exists a set

f = (f

p

1

; :::; f

p

n

) of n solutions of the equation L� = 0 de�ned in U

p

whose Wronski

matrix is nondegenerate in U

p

. Let the matri
es Q

pq

(belonging to GL

n

(k) in Case

1 and LGL

n

(C ) in Case 2) be de�ned by the 
ondition f

q

= f

p

Q

pq

. Then Q

pq

satisfy the 
onditions Q

pq

Q

qp

= 1, Q

pq

Q

qr

Q

rp

= 1.

De�nition 3AB. The ve
tor bundle E

L

is the bundle on M de�ned by the set of

transition fun
tions Q

pq

.

There is another, more expli
it 
onstru
tion of the ve
tor bundle E

L

. Let R be

a monodromy matrix for L. Let

^

M be the interval [0; 1℄ in Case 1 and the annulus

fx + �y 2 �j0 � y � 1g in Case 2. De�ne the ve
tor bundle E

L

on M as follows.

Take a trivial rank n bundle over

^

M and glue the two boundaries of

^

M together:

0 � 1 in Case 1, x � x+� in Case 2 (this will transform

^

M intoM), identifying the

�bers over 
orresponding points by means of the monodromy matrix R. It is easy

to 
he
k that the obtained 
at (holomorphi
) ve
tor bundle over M is isomorphi


to E

L

.
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Thus, global smooth se
tions of E

L


an be realized as quasiperiodi
 ve
tor-

fun
tions on R (respe
tively on �), i.e. as su
h fun
tions f that f(x + 1) = f(x)R

(respe
tively f(z + �) = f(z)R(z)).

Let us now de�ne aÆne and double aÆne Lie algebras. Let g(M) = C

1

(M; gl

n

(k))�

C be the one dimensional 
entral extension of C

1

(M; gl

n

(k)) by means of the 
o-


y
le 
(f; g) =

R

M

tr(fDg)!. In the one-dimensional 
ase it is the usual aÆne Lie

algebra. In the two-dimensional 
ase it is the double aÆne algebra 
onsidered in

[EF℄.

It is known that the Lie algebra g(M) integrates to a Lie group G(M). ([PS℄ for

Case 1, [EF℄ for Case 2). The 
oadjoint representation of this group 
an be realized

as the spa
e of di�erential operators �D+ f (� 2 k), where f is a smooth fun
tion

on M with values in gl

n

(k), in whi
h the a
tion of the group G(M) redu
es to the

a
tion of C

1

(M;GL

n

(k)) by 
onjugation (the so 
alled gauge a
tion): gÆ(�D+f) =

�D +Dg � g

�1

+ gfg

�1

. The 
oadjoint orbit 
ontaining the operator � = �D + f

will be denoted by O

�

.

The notion of monodromy for operators of the form �D + f (� 6= 0), where f is

matrix-valued, is analogous to that for higher order s
alar operators. For D = d=dx

this notion is standard; for D = �, monodromy is the restri
ted 
onjuga
y 
lass

in GL

n

(C ) of an element (g(z); �) su
h that there exists a nondegenerate matrix

solution B(z) of the equation ��B + fB = 0 de�ned on the 
ylinder � and su
h

that B(z + �) = B(z)g(z) [EF℄.

Consider now the aÆne linear map � : L ! g(M)

�

given by the formula L !

D�A

L

, where A

L

is de�ned by (2.1) (for both Case 1 and Case 2). This map takes

values in the hyperplane � = 1.

Proposition 4AB. The following three 
onditions on two di�erential operators

L

1

; L

2

2 L are equivalent:

(i) L

1

and L

2

have the same monodromy;

(ii) The 
at (respe
tively holomorphi
) ve
tor bundles E

L

1

and E

L

2

are isomor-

phi
.

(iii) The points �(L

1

) and �(L

2

) are in the same orbit of 
oadjoint representa-

tion of G(M).

Proof. It is 
lear that the monodromy of the operator L is the same as the mon-

odromy of �(L).

Case 1. The equivalen
e of (i) and (ii) is obvious; the equivalen
e of (ii) and

(iii) was observed in [F℄, [RS℄, [Se℄.

Case 2. The equivalen
e of (i) and (ii) is an observation of E.Loojienga (
f.

[EF℄) (he observed that 
onjuga
y 
lasses in the extended loop group 
orrespond to

holomorphi
 bundles over an ellipti
 
urve). The equivalen
e of (ii) and (iii) follows

from [EF℄. �
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Remark. In Case 2 the ve
tor bundle E

L

is always of degree zero sin
e it

is obtained from the trivial bundle on the annulus by gluing with the help of a

transition matrix R(z) 2 LGL

n

(C )

0

whi
h is homotopi
 to the identity.

Proof of Theorem 3AB for Case 2. The proof given below follows the method of

[OK℄.

Let L(t) be a smooth 
urve on L. Pi
k a smooth family of ve
tor-fun
tions

f

t

with a nondegenerate Wronski matrix su
h that L(t)f

t

i

= 0 for all t; i. This

is possible be
ause of Corollary 2AB. Let R

t

(z) 2 LGL

n

(C )

0

be the monodromy

matrix of this set of solutions: it is de�ned by the formula f

t

(z + �) = f

t

(z)R

t

(z).

If. We must show that L

0

(t) is a Hamiltonian ve
tor for any t.

We know that all elements (R

t

(z); �) are in the same restri
ted 
onjuga
y 
lass

in GL

n

(C ), i.e. are 
onjugate to the same element (R(z); �). Therefore, (R

t

(z); �)

is a smooth 
urve on the restri
ted 
onjuga
y 
lass of (R(z); �). Sin
e the group

LGL

n

(C ) is the total spa
e of a prin
ipal �bration over this restri
ted 
onjuga-


y 
lass whose �ber is the 
entralizer of (R(z); �) in LGL

n

(C ) (this is a �nite-

dimensional 
omplex Lie group), the 
urve (R

t

(z); �) 
an be lifted to a smooth


urve C

t

(z) on LGL

n

(C ). In other words, there exists a fun
tion C

t

(z) taking

values in LGL

n

(C ) whi
h is smooth in t and satis�es the relation

(2.4) R

t

(z) = C

t

(z)R(z)(C

t

)

�1

(z + �):

De�ne a new ve
tor fun
tion g

t

= f

t

C

t

. Obviously, its 
omponents are still

solutions of L(t)� = 0, and its Wronski matrix is nondegenerate. But now we

have an additional property { the monodromy matrix of g

t

does not depend on t:

g

t

(z + �) = g

t

(z)R(z).

Let t

0

2 (a; b). Let g

t

= g + (t � t

0

)g

0

+ O((t � t

0

)

2

) as t ! t

0

. Also let

L(t) = L + (t � t

0

)L

0

+ O((t � t

0

)

2

) as t ! t

0

. Let us di�erentiate the relation

L(t)g

t

= 0 by t at t = t

0

. We get

(2.5) Lg

0

+ L

0

g = 0:

In order to show that L

0

is a Hamiltonian ve
tor, we must �nd a pseudodi�er-

ential symbol A su
h that L

0

= V

A

(L) = L(AL)

+

� (LA)

+

L. This is the same as

to �nd an A su
h that

(2.6) Lg

0

+ (L(AL)

+

� (LA)

+

L)g = 0:

Indeed, the equation Lg

0

+ Fg = 0 with respe
t to an (n� 1)-th order di�erential

operator F has a unique solution: F =

P

n

j=1




j

�

j�1

, where 
 = (


1

; :::; 


n

) is equal

to �(Lg

0

)W (g)

�1

(note that to apply a di�erential operator of order n � 1 to a
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set of n fun
tions h is the same as to multiply the row ve
tor of 
oeÆ
ients of this

operator by the Wronski matrix W (h)).

Sin
e Lg = 0, equation (2.6) is equivalent to

(2.7) L(g

0

+ (AL)

+

g) = 0:

This means that it is enough to �nd an A su
h that

(2.8) g

0

+ (AL)

+

g = 0:

That is, to �nd an A su
h that

(2.9) (AL)

+

=

n

X

j=1

b

j

�

j�1

;

where b = (b

1

; :::; b

n

) is de�ned as follows:

(2.10) b = �g

0

W (g)

�1

:

Sin
e g and g

0

have the same monodromy matrix, it follows from (2.10) that b is

doubly periodi
: b

i

2 C

1

(M; C ).

In order to prove the existen
e of A satisfying (2.9), it suÆ
es to show that the

linear map � : A !

~

L given by �(A) = (AL)

+

is an isomorphism. But this is

obvious: the 
oeÆ
ients of the operator (AL)

+

, have the triangular form a

i

+ P

i

,

where P

i

is a di�erential polynomial in a

1

; :::; a

i�1

, and hen
e the 
oeÆ
ients a

i

of the solution of the equation (AL)

+

= �, � 2

~

L, 
an be uniquely determined

re
ursively starting from a

1

.

Only if. Di�erentiating the equation L(t)f

t

= 0, we get

(2.11) Lf

0

+ L

0

f = 0:

(we use the shortened notation f for f

t

). We know that L

0

= V

A

(L) for some A.

This implies:

(2.12) L(f

0

+ (AL)

+

f) = 0:

This means that

(2.13) f

0

+ (AL)

+

f = h;

where h satis�es the equation Lh = 0.
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Let us show that we 
ould have 
hosen f

t

in su
h a way that h = 0. Indeed, let

g

t

be another set of solutions of L� = 0 given by

(2.14) g

t

= f

t

(C

t

)

�1

;

where C

t

2 LGL

n

(C ). Substituting (2.14) in (2.13), we get

(2.15) g

0

C + gC

0

+ (AL)

+

gC = h

(here we used the shortened notation g for g

t

, and C for C

t

). We want to have

the relation g

0

+ (AL)

+

g = 0. This is equivalent to the relation gC

0

= h, or,

in terms of f , fC

�1

C

0

= h. This happens if and only if C

�1

C

0

= W (f)

�1

W (h),

or C

0

= CW (f)

�1

W (h). This is a �rst order di�erential equation on LGL

n

(C )

(sin
e W (f)

�1

W (h) is a holomorphi
 matrix-valued fun
tion), and it has a unique

solution with the initial 
ondition C(t

0

) = Id.

Therefore, we may assume that h in (2.13) is equal to 0.

We have

(2.16) f

0

(z) = �(AL)

+

f(z):

Changing z to z+� and using the monodromy relation f(z+�) = f(z)R(z) (R = R

t

),

we get

(2.17) f

0

(z)R(z) + f(z)

�R

�t

(z) = �(AL)

+

f(z)R(z);

whi
h, together with (2.16), implies f(z)

�R

�t

(z) = 0. Therefore, W (f)

�R

�t

= 0, whi
h

means

�R

�t

= 0, or R

t

(z) is independent of t. Thus, the monodromy of L(t) is

independent of t Q.E.D. �

3. Codimension of symple
ti
 leaves.

Theorem 5AB. Let L 2 L be a di�erential operator. Then the following four

numbers 
oin
ide:

(i) the 
odimension of the symple
ti
 leaf O

L

;

(ii) the dimension of the 
entralizer of the monodromy matrix of L;

(iii) the 
odimension of the orbit O

�(L)

in the hyperplane � = 1 in the 
oadjoint

representation of the group G(M) (see Se
tion 2);

(iv) the dimension of the spa
e of global se
tions of the ve
tor bundle End(E

L

) =

E

L


 E

�

L

(
at se
tions for Case 1, holomorphi
 se
tions for Case 2).

Remarks. 1. By the 
odimension of an orbit of the 
oadjoint representation we

mean the 
odimension (in the hyperplane � = 1) of the tangent spa
e to the orbit

at any point.
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2. We 
all the dimension of the 
entralizer of a (restri
ted) 
onjuga
y 
lass the


odimension of this 
onjuga
y 
lass.

3. For Case 1, it is easy to show that the number (i)-(iv) is �nite. In Case 2, it

follows from algebrai
 geometry that (iv) is �nite, and Theorem 5AB implies that

so are (i),(ii),(iii).

4. We have seen that symple
ti
 leaves of the 
lassi
al (respe
tively, aÆne) GD

bra
ket are labeled by 
onjuga
y 
lasses in GL

n

(k) (respe
tively, GL

n

(C )). It turns

out, however, that in the aÆne 
ase 
onjuga
y 
lasses 
lose enough to the \identity"

(Id; �) in GL

n

(C ) 
an be labeled by 
onguga
y 
lasses of the �nite-dimensional

group GL

n

(C ). Indeed, near the \identity" the group GL

n

(C ) is identi�ed with

a region in its Lie algebra by the exponential map. The Lie algebra of GL

n

(C )


an be thought of as the 
oadjoint representation of the aÆne Lie algebra




gl

n

(i.e.

the spa
e of di�erential operators �

d

dz

� A(z)). Therefore, the 
onjuga
y 
lasses

be
ome 
oadjoint orbits for the aÆne Lie algebra




gl

n

, and those are enumerated by

� and the monodromy of the 
orresponding operators �

d

dz

� A(z) (see [F℄,[RS℄).

Proof of Theorem 5AB.

(i)=(ii). Let L 2 L.

Let f be a set of solutions of L� = 0 with a nondegenerate Wronski matrix.

Let R be the monodromy matrix of f : f(x + 1) = f(x)R, R 2 GL

n

(k) (Case 1),

f(z + �) = f(z)R(z), R 2 LGL

n

(C )

0

(Case 2).

We will des
ribe the tangent spa
e T

L

O

L

as the image of a 
ertain operator.

Consider the linear operator

^

L(g) = (Lg)W (f)

�1

sending the spa
e of ve
tor-

fun
tions g = (g

1

; :::; g

n

) su
h that

(3.1) g(z + �) = g(z)R(z):

to the spa
e of doubly periodi
 ve
tor-fun
tions.

Lemma. The tangent spa
e T

L

O

L

is the set of all di�erential operators of the

form

P

n�1

i=0

p

i+1

D

i

, su
h that the ve
tor p = (p

1

; :::; p

n

) belongs to the image of

^

L.

Proof of the Lemma Applying equation (1.4) to f , we get

(3.2) V

A

(L)f = L(AL)

+

f :

Let V

A

(L) =

P

n�1

i=0

p

i+1

D

i

, and let p = (p

1

; :::; p

n

). Then (3.2) 
an be rewritten in

the form

(3.3) pW (f) = L(AL)

+

f :

We know that (AL)

+


an be any di�erential operator of the form

P

n�1

i=0

b

i+1

D

i

,

b

i

2 C

1

(M;k). Therefore, the set of possible values of the expression (AL)

+

f is the
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set of all ve
tor-fun
tions g on the 
ylinder satisfying (3.1). Indeed, (3.1) 
learly

must be satis�ed, and whenever g does satisfy (3.1), one 
an set b = gW (f)

�1

and

get a doubly periodi
 ve
tor-fun
tion.

This 
onsideration implies that the set of possible values of p is the image of the

operator

^

L, Q.E.D. �

The Lemma shows that the set of possible values of pW (f) is the image of the

operator L regarded as an operator on the spa
e of ve
tor-fun
tions g satisfying

(3.1), i.e. on the spa
e of smooth se
tions of the ve
tor bundle E

L

. The 
odimension

of T

L

O

L

is therefore equal to the 
odimension of this image, sin
e W (f) is just an

automorphism of

~

L.

The operator L : �(E

L

) ! �(E

L

) is an ellipti
 operator on the 
ir
le (torus), so

its index is equal to zero. Therefore, the dimension of its kernel is equal to the


odimension of its image. Thus, it remains to 
ompute the dimension of the kernel

of L.

An element that undoubtedly belongs to KerL is f . Furthermore, any other

element g of this kernel, a

ording to Proposition 1AB, 
an be represented in the

form g = fC, where C is an n�n-matrix in Case 1 and a holomorphi
 n�n-matrix

valued fun
tion on � in Case 2. The matrix C has to satisfy the relation

C = R

�1

CR (Case 1)

C(z + �) = R

�1

(z)C(z)R(z) (Case 2);(3.4)

whi
h is equivalent to C being in the Lie algebra of the 
entralizer of the monodromy

of L. This shows that KerL is isomorphi
 to the Lie algebra of the 
entralizer, i.e.

their dimensions are the same.

(ii)=(iv) The solutions of (3.4) are exa
tly the 
at (respe
tively holomorphi
)

se
tions of the ve
tor bundle End(E

L

) = E

L


 E

�

L

, and vi
e versa.

(iii)=(iv) Let � = D�A 2 g(M)

�

. Then the tangent spa
e to the 
oadjoint orbit

at �, T

�

O

�

, 
onsists of ve
tors of the form DX � [A;X℄, where X is an arbitrary

matrix-valued fun
tion on M . Therefore, the 
odimension of the orbit is equal to

the 
odimension of the image of the operator D � adA in C

1

(M; gl

n

(k)). Sin
e

this operator is ellipti
, its index is zero, so the 
odimension of its image equals the

dimension of its kernel. But the kernel of this operator 
onsists of 
at (respe
tively

holomorphi
) se
tions of the bundle E

L


 E

�

L

and only of them. Therefore, the

dimensions of the kernel and the spa
e of se
tions 
oin
ide. �

Proposition 6AB. The 
odimension of every symple
ti
 leaf (
oadjoint orbit, 
on-

juga
y 
lass) is 
ongruent to n modulo 2.

Motivation. Thanks to Theorem 5AB, it is enough to 
onsider 
oadjoint orbits.

Coadjoint orbits have a natural symple
ti
 (or holomorphi
 symple
ti
) stru
ture

{ the Kirillov-Kostant stru
ture. Therefore, they must all be \even-dimensional",
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i.e. their 
odimensions must have the same parity. Also, the orbit 
orresponding

to � = � has 
odimension n

2

, whi
h is 
ongruent to n modulo 2. Therefore, all


odimensions must be 
ongruent to n modulo 2. �

It is not obvious how to make this argument into a rigorous proof, so we give a

di�erent (algebrai
) proof.

Proof. Case 1. Be
ause of Theorem 5AB, it is enough to show that 
odimensions

of all 
onjuga
y 
lasses in GL

n

(k) have the same parity. This follows from the fa
t

that all 
onjuga
y 
lasses in GL

n

(k) are even-dimensional { a standard fa
t from

linear algebra.

Case 2. Be
ause of Theorem 5AB, Proposition 6AB is equivalent to the asser-

tion that for any rank n holomorphi
 ve
tor bundle E of degree zero over an ellipti



urve M the dimension of the spa
e H

0

(M;E
E

�

) of global holomorphi
 se
tions

of the bundle E 
 E

�

is 
ongruent to n modulo 2. This assertion is a 
orollary of

the following Lemma.

Lemma. Let E be a holomorphi
 ve
tor bundle over an ellipti
 
urve M of

rank r and degree d. Then dimH

0

(M;E 
E

�

) � rd+ r + d mod 2.

Proof of the Lemma. Let V be a holomorphi
 ve
tor bundle over M of degree

d. Then by the Riemann-Ro
h theorem dimH

0

(M;V ) � dimH

1

(M;V ) = d. Also,

Serre's duality tells us that H

0

(M;V

�

) = H

1

(M;V )

�

. Combining these two fa
ts,

we get:

(3.5) dimH

0

(M;V � V

�

) � d mod 2:

The proof of the Lemma is by indu
tion. For line bundles the statement is

obvious. We assume that we know the Lemma is true for bundles of rank l < m.

Let E be a bundle of rank m. We 
onsider two possibilities.

1)E is inde
omposable. Then a theorem of Atiyah's [At℄ tells us that dimH

0

(M;E


E

�

) equals the greatest 
ommon divisor (r; d) of the rank r and the degree d of E.

But (r; d) � rd+ r + d mod 2, Q.E.D.

2) E = E

1

�E

2

. Then

(3.6)

H

0

(M;E
E

�

) = H

0

(M;E

1


E

�

1

)�H

0

(M;E

2


E

�

2

)�H

0

(M;E

1


E

�

2

�E

2


E

�

1

):

Using the assumption of indu
tion, 
ongruen
e (3.5), and the fa
ts that (E

1




E

�

2

)

�

= E

2


E

�

1

and deg(E

1


E

�

2

) = r

1

d

2

+ r

2

d

1

, we get the 
ongruen
e

(3.7) dimH

0

(M;E
E

�

) � (r

1

d

1

+r

1

+d

1

)+(r

2

d

2

+r

2

+d

2

)+(r

1

d

2

+r

2

d

1

) mod 2;

where r

i

are the ranks and d

i

are the degrees of E

i

. But the right hand side of (3.7)

equals to (r

1

+ r

2

)(d

1

+ d

2

) + (r

1

+ r

2

) + (d

1

+ d

2

) = rd+ r + d, Q.E.D. �
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4. Existen
e of di�erential operators with a pres
ribed monodromy

A natural question in the theory of di�erential equations is: given a 
onjuga
y


lass in GL

n

(k) (GL

n

(C )), does there exist a di�erential operator L 2 L whose

monodromy is this 
onjuga
y 
lass? In other words, is the map assigning 
onjuga-


y 
lasses to symple
ti
 leaves of the GL

n

- (aÆne GL

n

-) Gelfand-Di
key bra
ket

surje
tive? The answer to this question is positive:

Proposition 7AB. (i) Any matrix in GL

n

(k) (with positive determinant if k = R )

is a monodromy matrix of an n-th order di�erential operator on the 
ir
le with the

highest 
oeÆ
ient 1.

(ii) Every holomorphi
 ve
tor bundle over an ellipti
 
urve M arises as mon-

odromy of an n-th order operator L = �

n

+

P

n�1

j=0

u

j+1

�

j

, u

j

2 C

1

(M; C ).

Proof. (i) The proof is analogous to that of (ii) given below. For k = R , a proof of

this proposition has been given in [S℄.

(ii) Thanks to Proposition 1B, it suÆ
es to prove the following statement: for

any monodromy matrix R(z) 2 LGL

n

(C )

0

there exists a smooth ve
tor fun
tion

f : � ! C

n

, f = (f

1

; :::; f

n

), su
h that f(z + �) = f(z)R(z), and the Wronskian of

f does not vanish on �.

First of all, the ve
tor bundle on M pres
ribed by the gluing fun
tion R(z) is

topologi
ally trivial sin
e R(z) is homotopi
 to the identity. Therefore, it admits a

smooth trivialization { a smooth fun
tion X : �! GL

n

(C ) su
h that X(z + �) =

X(z)R(z). Let us look for the ve
tor fun
tion f in the form f = gX, g = (g

1

; :::; g

n

).

Then the monodromy 
ondition on f is equivalent to the 
ondition that g is � -

periodi
, i.e. that g 2 C

1

(M; C

n

).

Let Y (z) = �X(z) � X(z)

�1

. This is a smooth matrix-valued fun
tion periodi


with periods 1 and � , i.e. a fun
tion onM . Consider the operator D on C

1

(M; C

n

)

de�ned by Dg = �g + gY .

It is easy to 
he
k that the Wronski matrix of f 
an be written in the form

W (f) = W

D

(g)X, where W

D

(g)

ij

= (D

i�1

g)

j

(i.e. the lines of W

D

(g) are g,

Dg, D

2

g,...). Therefore, our problem redu
es to �nding g su
h that W

D

(g) is

everywhere nondegenerate. This 
an be done as follows.

Let z = x + �y, x; y 2 R . Set g

m

(z) = e

2�imkx

, 1 � m � n, where k is an

integer. If we regard k as an independent variable, then the expression W

D

(g) is

a polynomial in k and e

2�ikx

(with 
oeÆ
ients dependent of z). The highest term

in k is the usual Wronskian W (g), whi
h equals (�ik)

n(n�1)=2

V

n

e

�ikn(n+1)x

, where

V

n

is the Vandermonde determinant of 1; 2; :::; n. The absolute value of this term

equals jV

n

j(�k)

n(n�1)=2

, whi
h grows as k

n(n�1)=2

as k !1. The rate of growth of

the terms with lower degrees of k is lower, so for k big enough (uniformly in x; y)

the highest term will dominate. Therefore, W

D

(g) does not vanish if k 
hosen to

be big enough, Q.E.D. �
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5. Examples

Let us des
ribe an expli
it realization of ve
tor bundles by di�erential operators

for n = 2. Before we do so, let us formulate Atiyah's 
lassi�
ation theorem for

ve
tor bundles of rank 2.

Atiyah's theorem. (for rank 2 bundles)[At℄ Any rank 2 holomorphi
 ve
tor bun-

dle of degree zero over an ellipti
 
urve M = C =(Z � �Z), � 2 C

+

, is isomorphi


to one of the following:

1) E(a; b;m) (a; b 2 C

�

, m 2 Z, m � 0) { the ve
tor bundle 
orresponding to

the 
onjuga
y 
lass of the element

(5.1)

��

ae

2�imz

0

0 be

�2�imz

�

; �

�

of GL

n

(C ). The bundles E(a

1

; b

1

;m

1

) and E(a

2

; b

2

;m

2

) are isomorphi
 i� m

1

=

m

2

, a

1

=a

2

= q

k

a

, b

1

=b

2

= q

k

b

, where k

a

; k

b

2 Z, and q = e

2�i�

.

2) F (a), a 2 C

�

{ the ve
tor bundle 
orresponding to the 
onjuga
y 
lass of the

element

(5.2)

��

a 1

0 a

�

; �

�

of GL

n

(C ); the bundles F (a) and F (b) are isomorphi
 i� a=b = q

k

, k 2 Z.

A bundle E(a; b;m) is never isomorphi
 to F (~a).

Let us now realize ea
h bundle from 
lasses 1) and 2) by a di�erential operator

L = �

2

+ u

1

� + u

2

.

Observe that if a bundle E is realized by a di�erential operator then it is easy

to realize X 
 E, where X is an arbitrary degree zero line bundle. Indeed, let X


orrespond to the 
onjuga
y 
lass of the element (a; �) 2 GL

1

(C ), a 2 C

�

. Let E

be realized by a di�erential operator L. Then it is easy to see that X
E is realized

by the di�erential operator

~

L = e

�(z��z)

Æ L Æ e

��(z��z)

, where

(5.3) � =

log a

� � ��

(any bran
h of log 
an be taken).

This observation implies that it is enough for us to realize expli
itly the bundles

E(a; a

�1

;m) and F (1) by di�erential operators, sin
e all the other bundles 
an be

obtained by tensoring them with line bundles.

It is easy to see that the bundle F (1) is realized by the operator L = �

2

; the 
orre-

sponding ve
tor f of solutions is (1; y), where z = x+�y. The bundle E(a; a

�1

; 0) is
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realized by the operator L = �

2

��

2

, where � is de�ned by (5.3) (any nonzero value

of log 
an be taken); the 
orresponding ve
tor f of solutions is (e

�(z��z)

; e

��(z��z)

).

It remains to realize the bundles E(a; a

�1

;m) for m > 0.

Let z

1

; :::; z

m

2 M be pairwise distin
t points, and let  : M ! C be a smooth

fun
tion on the ellipti
 
urve whi
h has the following properties:

(i)  vanishes at z

1

; :::; z

m

and nowhere else;

(ii) in the neighborhood of z

i

the fun
tion  has the form

(5.4)  (z) = jz � z

i

j

2

:

Su
h a fun
tion is very easy to 
onstru
t: set

(5.5)  (z) =  

0

(z) +

m

X

i=1

 

i

(z)jz � z

i

j

2

;

where  

0

(z) = 1 everywhere ex
ept the disks B(z

i

; r) 
entered at z

i

of a small

radius r, and  

0

(z) = 0 in B(z

i

; r=2); for i > 0,  

i

is a nonnegative fun
tion equal

to 1 in B(z

i

; r=2) and to 0 outside B(z

i

; r) ( all  

i

have to be smooth everywhere

and positive in the annuli r=2 < jz � z

i

j < r).

From the de�nition of  it follows that the fun
tion u = �

2

 = de�ned a priori

in M n fz

1

; :::; z

n

g, 
an be 
ontinued to the points z

1

; :::; z

n

(sin
e it is simply

equal to zero in their neighborhoods). This implies that  is a solution of the

equation L = 0, where L = �

2

� u. Pi
k a ve
tor f = (f

1

; f

2

) of solutions of this

di�erential equation with a nondegenerate Wronski matrix. Then there exist unique

holomorphi
 fun
tions 


1

(z), 


2

(z) on the 
ylinder � su
h that  = 


1

f

1

+


2

f

2

, and

the ve
tor-fun
tion 
 = (


1

; 


2

) is a global holomorphi
 se
tion of the holomorphi


ve
tor bundle E

L

.

Let us show that this se
tion vanishes at the points z

1

; :::; z

m

and only at them,

and these zeroes are simple. Indeed, the ve
tor F =

�

 

� 

�

equals W (f)


t

, thus


 = 0 i� F vanishes, and the vanishing points of F are exa
tly z

1

; :::; z

m

. Also, in

the neighborhood of z

i

one has F = (z � z

i

)

�

�z � �z

i

1

�

, whi
h shows that z

i

is a

simple zero of 
.

It follows from the theory of holomorphi
 bundles that the presen
e of a se
tion


 with the above properties guarantees that E

L

has a line subbundle X of degree m

de�ned by the monodromy fun
tion e

2�im(z�z

0

)

. The bundle �

2

E

L

is trivial sin
e

the operator L does not 
ontain a �rst order term, and hen
e the Wronskian (whi
h

is a se
tion of �

2

E

L

) is 
onstant. This fa
t together with Atiyah's 
lassi�
ation

theorem implies that E

L

is isomorphi
 to X�X

�

, whi
h is the same as E(a; a

�1

;m),
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where a = e

�2�imz

0

=

Q

j

e

2�iz

j

. Sin
e the points z

i


ould be 
hosen arbitrarily,

one 
an get any value of a.

Let us now des
ribe the 
odimensions of symple
ti
 leaves for n = 2 (Case 2). It

follows Theorem 5AB that it is enough to do it for ve
tor bundles.

Proposition 8B. (i) If E

L

= E(a; b;m) then 
odim(O

L

) equals 2m+ 2 if m > 0,

2 if m = 0 and a=b is not an integral power of q, and 4 if m = 0 and a=b = q

k

,

k 2 Z.

(ii) If E

L

= F (a) then 
odim(O

L

) equals 2.

Proof. (i) E(a; b;m) = X

a;m

� X

b;�m

, where X

a;m

, is the line bundle des
ribed

by the monodromy fun
tion ae

2�imz

. Therefore, E(a; b;m) 
E(a; b;m)

�

= X

1;0

�

X

1;0

�X

a=b;2m

�X

b=a;�2m

. The number of linearly independent holomorphi
 se
-

tions of this bundle is 2 if m = 0 and a=b 6= q

k

, 4 if m = 0 and a=b = q

k

, and

2m+ 2 if m 6= 0, whi
h proves (i).

It is also easy to see that F (a) 
 F (a)

�

= X

1;0

� F

3

(1), where F

3

(1) is the

ve
tor bundle of rank 3 whose monodromy matrix is the 3 � 3 Jordan 
ell with

eigenvalue 1. Therefore, the number of linearly independent holomorphi
 se
tions

of F (a)
 F (a)

�

is 2. This settles (ii).

Remark. Thus, in Case 2, unlike Case 1, the 
odimensions of symple
ti
 leaves


an be arbitrarily large, even for n = 2. However, the 
onjuga
y 
lasses labeling

all symple
ti
 leaves of 
odimension > n

2

stay away from the (Id; �) 2 GL

n

(C ), by

virtue of Remark 4 at the end of Se
tion 3.

Appendix: Classi�
ation of symple
ti
 leaves with a given monodromy.

In 
on
lusion, let us dis
uss the problem of �nding dis
rete invariants of sym-

ple
ti
 leaves.

In Case 1 (for k = R ), this problem was studied in [OK℄, and it was shown

that it is equivalent to the problem of homotopy 
lassi�
ation of quasiperiodi


nondegenerate 
urves, i.e. 
urves in R

n

with pres
ribed monodromy and nonvan-

ishing Wronskian. This problem, in turn, is equivalent to homotopy 
lassi�
ation

of quasiperiodi
 non
attening 
urves { smooth 
urves x(t) in RP

n�1

with pre-

s
ribed monodromy su
h that the ve
tors x

0

; x

00

; :::; x

(n�1)

are linearly independent

at ea
h t (the equivalen
e is established by repla
ing the original 
urve in R

n

by its

proje
tion to RP

n�1

).

For general n, this topologi
al problem turns out to be diÆ
ult. It is solved only

for n = 2 (where this problem is equivalent to 
lassi�
ation of proje
tive stru
tures

on the 
ir
le [Ku℄, of Hill's operators [LP℄, or 
oadjoint orbits of the Virasoro algebra

[K1℄,[Se℄), for n = 3 [KS℄,and for any n in 
ase R = Id [S℄.
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In the 
ase of ellipti
 
urve the geometri
 notion 
orresponding to the problem

of �nding dis
rete invariants of symple
ti
 leaves is the notion of a quasiperiodi


nondegenerate tube { a fun
tion 
 : � ! C

n

with pres
ribed monodromy R(z)

(
(z + �) = 
(z)R(z)) and nonvanishing �-Wronskian. Then we have

Proposition. Symple
ti
 leaves of the aÆne GL

n

-GD bra
ket whose monodromy

is the 
onjuga
y 
lass of R(z) are in one-to one 
orresponden
e with homotopy


lasses of quasiperiodi
 nondegenerate tubes with monodromy R(z).

Let us 
onsider the 
ase of trivial monodromy (R(z) = Id). Then a quasiperiodi


nondegenerate tube is just a smooth map 
 : M ! C

n

with nonvanishing Wron-

skian. An obvious homotopy invariant of su
h a map is the winding invariant { the

homotopy 
lass of the mapM ! C

�

realized by the Wronski determinant detW (
).

This invariant takes values in Z

2

, and 
an take any pres
ribed value.

Therefore, 
lassi�
ation of symple
ti
 leaves with trivial monodromy depends on

the answer to

Question 1. Is it true that two quasiperiodi
 nondegenerate tubes are homotopi


in the 
lass of su
h tubes if and only if their winding invariants are the same?

In the 
ase n = 2, by proje
ting C

2

to C P

1

, we 
an redu
e this question to

the problem of homotopy 
lassi�
ation of nowhere holomorphi
 maps. A nowhere

holomorphi
 map is a map f : M ! C P

1

su
h that �f is not equal to zero at any

point of M . An obvious homotopy invariant of nowhere holomorphi
 maps is the

winding invariant { the homotopy 
lass of the map �

f

: M ! T

u

C P

1

from M to

the spa
e of unit tangent ve
tors to C P

1

(this spa
e is di�eomorphi
 to RP

3

) given

by the formula �

f

(z) = �f(z)=j�f(z)j. It takes value in Z=2Z � Z=2Z . Translating

Question 1 into the language of nowhere holomorphi
 maps, we 
ome to

Question 2. Is it true that two nowhere holomorphi
 maps are homotopi
 in the


lass of su
h maps if and only if their winding invariants are the same?
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