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Abstrat

We de�ne the (seond) Adler-Gelfand-Dikey Poisson struture on di�erential

operators over an ellipti urve and lassify sympleti leaves of this struture.

This problem leads to the problem of lassi�ation of oadjoint orbits for double

loop algebras, onjugay lasses in loop groups, and holomorphi vetor bundles

over the ellipti urve. We show that sympleti leaves have a �nite but (unlike

the traditional ase of operators on the irle) arbitrarily large odimension, and

ompute it expliitly.

Introdution

In the seventies M.Adler[A℄, I.M.Gelfand and L.A.Dikey [GD℄ disovered a nat-

ural Poisson struture on the spae of n-th order di�erential operators on the irle

with highest oeÆient 1 whih is now alled the (seond) Gelfand-Dikey braket.

This braket arises in the theory of nonlinear integrable equations under various

names (nKdV-struture, lassial W

n

-algebra). B.L.Feigin proposed to onsider

and study sympleti leaves for the Gelfand-Dikey braket { a problem motivated

by the fat that for n = 2 these sympleti leaves are orbits of oadjoint rep-

resentation of the Virasoro algebra. A lassi�ation of sympleti leaves for the

Gelfand-Dikey braket and a desription of their adjaeny were given in [OK℄. It

turned out that loally sympleti leaves are labeled by one of the following:

1) onjugay lasses in the group GL

n

;

2) orbits of the oadjoint representation of the aÆne Lie algebra



gl

n

;

3) equivalene lasses of at vetor bundles on the irle of rank n (these three

things are in one-to-one orrespondene).

Furthemore, the odimension of a sympleti leaf is equal to any of the following:

1) the dimension of the entralizer of the orresponding onjugay lass;

1
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2) the odimension of the orresponding oadjoint orbit;

3) the dimension of the spae of at global setions of the bundle of endomor-

phisms of the orresponding at vetor bundle.

In Setion 1 of this paper we de�ne an \aÆne" analogue of the Gelfand-Dikey

braket. It is realized on the spae of n-th order di�erential operators on an ellipti

urve whih are polynomials in � with smooth oeÆients and highest oeÆient

1. The main goal of the paper is to lassify and study the sympleti leaves of the

aÆne Gelfand-Dikey braket.

In Setion 2 we show that loally sympleti leaves of this braket are labeled by

1) Conjugay lasses for the ation of the loop group LGL

n

(C ) on the semidiret

produt C

�

n LGL

n

(C )

0

(where LGL

n

(C )

0

denotes the onneted omponent of

the identity in the group LGL

n

(C ));

2) orbits of the oadjoint representation of the \double"' aÆne Lie algebra { a

entral extension of the Lie algebra of gl

n

-valued smooth funtions on the ellipti

urve [EF℄;

3) equivalene lasses of holomorphi vetor bundles of rank n and degree zero on

the ellipti urve (as before, these three things are in one-to-one orrespondene).

Sine holomorphi vetor bundles over an ellipti urve are ompletely lassi�ed

[At℄, this result gives a good desription of sympleti leaves.

In Setion 3 we show that the odimension of a sympleti leaf is equal to

1) the dimension of the entralizer of the orresponding onjugay lass;

2) the odimesion of the orresponding oadjoint orbit;

3) the dimension of the spae of holomorphi setions of the bundle of endomor-

phisms of the orresponding holomorphi vetor bundle.

In partiular, this implies that in the aÆne ase the odimension of a sympleti

leaf, though always �nite, an be arbitrarily large, even for n = 2 (See Theorem

5B and Proposition 8B), unlike the �nite dimensional ase, in whih it is bounded

from above by dimGL

n

= n

2

.

These results onstitute a two dimensional (or aÆne) ounterpart of the results

of [OK℄ for Gelfand-Dikey brakets. Similarly to the non-aÆne ase, they an be

generalized to other lassial Lie groups { SL

n

, Sp

2n

, SO

2n+1

(see [OK℄).

In Setion 4 of the paper we disuss the question whether the map assigning an

equivalene lass of vetor bundles to a sympleti leaf is surjetive. This question

is equivalent to the question whether any monodromy (=vetor bundle) an be

realized by an n-th order di�erential operator. For the usual Gelfand-Dikey braket

the answer to this question is positive (it follows, for example, from the results of

M.Shapiro [S℄). We prove that the answer is positive in the aÆne ase as well.

In Setion 5, we desribe an expliit realization of all possible monodromies for

n = 2, using Atiyah's lassi�ation of vetor bundles over an ellipti urve.

In the Appendix we disuss the interesting problem of desribing the global

struture of the �bration of the spae of di�erential operators by sympleti leaves.
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It turns out that two distint sympleti leaves may orrespond to the same mon-

odromy. In the �nite-dimensional ase, the problem of ounting sympleti leaves

with a given monodromy is de�ned geometrially by homotopy lassi�ation of

quasiperiodi nonattening urves on a real projetive spae [O,OK,KS℄. The prob-

lem of ounting sympleti leaves of the aÆne GL

2

-Gelfand-Dikey braket orre-

sponding to the trivial rank 2 vetor bundle redues to the topologial problem of

lassi�ation of nowhere holomorphi maps from an ellipti urve to the omplex

projetive line (i.e. maps f with nonvanishing �f) up to homotopy. In the aÆne

GL

n

ase we enounter the problem of homotopy lassi�ation of maps f from an

ellipti urve to C P

n�1

suh that the vetors �f; :::; �

n�1

f are everywhere linear-

ly independent. (These maps are the aÆne ounterparts of nonattening urves in

RP

n�1

). At the moment a omplete solution of this problem (even in the GL

2

-ase)

is unknown to the authors.

Remarks. 1. The reason to onsider aÆne Gelfand-Dikey brakets is a

searh for an appropriate two-dimensional ounterpart of the theory of aÆne Lie

algebras. One an show that the \aÆne" analogue of the Drinfeld-Sokolov redution

[DS℄ sends the linear Poisson braket on the double loop algebra (f.[EF℄) into

the quadrati Gelfand-Dikey braket on the spae of di�erential operators on the

ellipti urve.

2. In the ase n = 2, the problem of lassi�ation of sympleti leaves oinides

with the problem of lassi�ation of orbits of the oadjoint representation of the

omplex Virasoro algebra de�ned in [EF℄ { the Lie algebra of pairs (f; a) where f

is a smooth funtion on an ellipti urve M and a is a omplex number, with the

ommutation law [(f; a)(g; b)℄ =

�

f�g � g�f;

R

M

f�

3

g

�

.

3. The key tool in the study of Gelfand-Dikey brakets is the notion of mon-

odromy of a di�erential operator. For the ase of the irle, monodromy is a

onjugay lass in the group GL

n

. For the ase of an ellipti urve, monodromy is

a onjugay lass in the aÆne GL

n

(more preisely, a onjugay lass of the ation

of LGL

n

(C ) in the one-dimensional extension C

�

nLGL

n

(C )

0

of the loop group of

GL

n

). This justi�es the name \aÆne Gelfand-Dikey braket".

4. One an de�ne versal deformations of sympleti leaves following [LP℄,[OK℄.

They are equivalent to the deformations of the orresponding monodromies. This

implies that adjaeny of sympleti leaves is the same as that of orbits, onjugay

lasses, and vetor bundles.

1

5. It would be interesting to �nd the ounterpart of the aÆne GD braket for

surfaes of higher genus. A good de�nition of this objet should lead to sympleti

1

A sympleti leaf, oadjoint orbit, onjugay lass, vetor bundle O

1

is alled adjaent to O

2

if the losure of O

2

ontains O

1

; for sympleti leaves, orbits, and onjugay lasses, the losure

is in the C

1

-sense, and for vetor bundles it is in the sense of Zariski topology on the moduli

spae of bundles
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leaves of �nite odimension, like in the ase of an ellipti urve. These sympleti

leaves should be labeled by oadjoint orbits of the entral extension of the Lie alge-

bra of matrix-valued funtions on the surfae desribed in [EF℄, or by equivalene

lasses of holomorphi vetor bundles over the surfae (it is shown in [EF℄ that

these two things are in one-to-one orrespondene).
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1. Gelfand-Dikey brakets.

We start by realling the de�nition of the Gelfand-Dikey strutures (see [A,GD,DS℄).

Let M be a ompat smooth orientable losed manifold, k = R or C , C

1

(M;k)

be the algebra of smooth k-valued funtions on M , ! be a volume form on M . Let

D be a di�erential operator on C

1

(M;k) suh that

R

M

(Df)! = 0 and D(fg) =

(Df)g + f(Dg) for any f; g 2 C

1

(M;k).

De�ne the vetor spae

~

L as follows:

(1.1)

~

L = fP =

n�1

X

m=0

u

m+1

D

m

ju

m

2 C

1

(M;k)g:

To realize the dual spae to

~

L, we need to introdue pseudodi�erential symbols.

They are formal expressions of the form

P

1

m=m

0

a

m

D

�m

, m

0

2 Z, a

m

2 C

1

(M;k).

It is known that suh symbols form an assoiative algebra: two symbols A;B

an be multiplied with the help of the rules D Æ f = f Æ D + Df , D

�1

Æ f =

f ÆD

�1

� f

0

ÆD

�2

+ f

00

ÆD

�3

� :::, for any f 2 C

1

(M;k).

We realize (the regular part of) the dual spae to

~

L as follows:

(1.2) A = fA =

n

X

m=1

a

m

D

�m

ja

m

2 C

1

(M;k)g;

and the pairing

~

L 
A ! k is given by the formula

(1.3) < P;A >=

Z

M

Res(PA)!;

where Res(X) is the oeÆient to D

�1

in a pseudodi�erential operator X. It is

lear that any regular linear funtional on

~

L has this form.

Note that Res(PA�AP ) = Df , where f is some funtion on M , whih implies

that

R

M

Res(PA)! =

R

M

Res(AP )!.
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Let L be the aÆne spae of all operators of the form L = D

n

+ P , P 2

~

L.

Clearly, the tangent spae to L at any point is naturally identi�ed with

~

L.

Following Adler, Gelfand and Dikey, let us assign a vetor �eld V

A

on L to

every regular linear funtional A on

~

L. Its value at a point L 2 L is:

(1.4) V

A

(L) = L(AL)

+

� (LA)

+

L;

where X

+

denotes the di�erential part of X.

Let C denote the algebra of smooth funtions on L for k = R , and the algebra of

holomorphi funtions on L for k = C . Then assignment (1.4) allows one to de�ne

a Poisson braket on C:

(1.5) ff; gg(L) =< dg j

L

; V

df j

L

(L) > :

Let us all this braket the Gelfand-Dikey (GD) braket. It equips L with a stru-

ture of a Poisson manifold.

Let us now de�ne sympleti leaves of the GD braket and their odimensions

(f. [K2℄,[We℄).

Let L 2 L. A vetor v 2 T

L

L =

~

L is alled a Hamiltonian vetor if there exists

A 2 A suh that v = V

A

(L).

De�ne the sympleti leaf O

L

to be the set of all points L

0

2 L suh that there

exists a smooth urve  : [0; 1℄ ! L suh that (0) = L, (1) = L

0

, and

d

dt

is

a Hamiltonian vetor for any t. It is lear that two sympleti leaves are either

disjoint or idential. Therefore, the spae L beomes a disjoint union of sympleti

leaves.

The tangent spae T

L

O

L

�

~

L to the sympleti leaf O

L

at L is obviously the

spae of all Hamiltonian vetors at L. De�ne the odimension of O

L

to be the

odimension of this tangent spae in

~

L. This de�nition makes sense beause the

odimension is the same at all points of O

L

.

We will be onerned with the following two speial ases of GD brakets.

Main de�nition.

Case 1. M = S

1

, k = R or C , D =

d

dx

, ! = dx. The GD braket orresponding

to this situation is alled the GL

n

(k)-GD braket [GD℄.

Case 2. M is a nondegenerate ellipti urve over C : M = C =�, where � is a

lattie generated by 1 and � , where Im � > 0, k = C , D = � =

�

��z

=

1

2

(

�

�x

+ i

�

�y

),

where z = x+iy is the standard omplex oordinate on C , ! =

i

2

dz^d�z. The spae L

onsists of di�erential operators �

n

+

P

n�1

j=0

u

j+1

(z; �z)�

j

, where u

i

2 C

1

(C =�; C ).

We all the GD braket orresponding to this ase the aÆne GL

n

-GD braket.

Sympleti leaves of the GL

n

-GD braket are desribed in [OK℄. In this paper,

a similar desription is given for sympleti leaves of the aÆne GL

n

-GD braket.



6

To emphasize the parallel between the non-aÆne and aÆne theories, we give an

exposition of both of them, marking de�nitions and statements from the non-aÆne

theory by the letter A and from the aÆne theory by the letter B.

2. Loal lassi�ation of sympleti leaves

De�nition 1AB. Let f = (f

1

; :::; f

n

) be a smooth k

n

-valued funtion on some

overing of M (k = R or C ). The matrix-valued funtion W (f) = (w

ij

), w

ij

=

D

i�1

f

j

is alled the Wronski matrix of f .

We start by realling a standard statement from the theory of ordinary di�eren-

tial equations.

Proposition 1A. Let L be a di�erential operator of the form L =

d

n

dx

n

+

P

n�1

j=0

u

j+1

d

j

dx

j

,

u

j

2 C

1

(S

1

; k). Then:

(i) there exists a set of n solutions f = (f

1

; :::; f

n

) of the equation L� = 0

belonging to C

1

(R ; k) whose Wronski matrix is everywhere nondegenerate (here R

is regarded as a over of S

1

);

(ii) if

~

f = (

~

f

1

; :::;

~

f

n

) is another set of solutions satisfying (i) then there exists a

unique matrix R 2 GL

n

(k) suh that

~

f = fR;

(iii) if f = (f

1

; :::; f

n

) is any set of smooth k-valued funtions on the real line

suh that its Wronski matrix is everywhere nondegenerate, and if f(x+1) = f(x)R

for some R 2 GL

n

(k), then there exists a unique di�erential operator L =

d

n

dx

n

+

P

n�1

j=0

u

j+1

d

j

dx

j

with periodi oeÆients suh that Lf

i

= 0 for all i.

Let � = C =Z be a ylinder. It has a natural struture of an abelian group,

is equivalent to C

�

as a omplex manifold, and naturally overs the ellipti urve

M = C =(Z � �Z). From now on we do not make a distintion between � and C

�

.

Before we formulate the aÆne analogue of Proposition 1A, we need to de�ne

loop groups. We will need three versions of a loop group for GL

n

(C ):

Notation. LGL

n

(C ) is the group of holomorphi GL

n

(C )-valued funtions on �.

LGL

n

(C )

0

is the onneted omponent of identity in LGL

n

(C ). GL

n

(C ) is the

semidiret produt � n LGL

n

(C )

0

, where � ats on LGL

n

(C )

0

by (z Æ g)(w) =

g(w + z).

The group GL

n

(C ) should be regarded as the group of pairs (g(�); �), g 2

LGL

n

(C )

0

, � 2 �, with the multipliation law (g(z); �)(h(z); �) = (g(z)h(z+�); �+

�). It is lear that LGL

n

(C )

0

is embedded into GL

n

(C ) by the map g(�)! (g(�); 0).

Consider the ation of LGL

n

(C ) on GL

n

(C ) by onjugay. We will all the orbits

of this ation restrited onjugay lasses.

Proposition 1B. Let L be a di�erential operator of the form L = �

n

+

P

n�1

j=0

u

j+1

�

j

,

u

j

2 C

1

(M; C ), where M is an ellipti urve. Then:
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(i) there exists a set of n solutions f = (f

1

; :::; f

n

) of the equation L� = 0

belonging to C

1

(�; C ) whose Wronski matrix is everywhere nondegenerate (here �

is regarded as a over of M);

(ii) if

~

f = (

~

f

1

; :::;

~

f

n

) is another set of solutions satisfying (i) then there exists a

unique matrix R(z) 2 LGL

n

(C ) suh that

~

f = fR.

(iii) if f = (f

1

; :::; f

n

) is any set of smooth omplex-valued funtions on � suh

that its Wronski matrix is everywhere nondegenerate, and if f(z + �) = f(z)R(z)

for some R(z) 2 LGL

n

(C ), then there exists a unique di�erential operator L =

�

n

+

P

n�1

j=0

u

j+1

�

j

suh that Lf

i

= 0 for all i.

Proof. First of all, statements (i) and (ii) are true in a small enough neighborhood

U

p

of every point p 2 � [AB℄. Let g

p

= (g

p

1

; ::::; g

p

n

) be the orresponding sets of

solutions. By the loal version of statement (ii), whenever U

p

and U

q

interset, g

p

j

=

P

n

i=1

g

q

i

Q

pq

ij

, where Q

pq

(z) are holomorphi GL

n

(C )-valued funtions on U

p

\ U

q

.

These funtions satisfy the onditions: Q

pq

Q

qp

= 1, Q

pq

Q

qr

Q

rp

= 1, whih imply

that they are luthing transformations of some holomorphi vetor bundle E

L

of

rank n on �.

Sine � is equivalent to C

�

as a omplex manifold, any holomorphi vetor bundle

over � has to be trivial. This, of ourse, applies to E

L

, whih implies that E

L

has

n global holomorphi setions s

1

; :::; s

n

whih are everywhere linearly independent.

That is to say, for every p 2 � there exists a holomorphi funtion S

p

(z) on U

p

with values in GL

n

(C ) suh that S

p

= Q

pq

S

q

on U

p

\U

q

for any p; q 2 � (s

i

are the

olumns of S). Therefore, the funtions f

p

j

=

P

i

g

p

i

S

p

ij

satisfy the ondition f

p

j

= f

q

j

on U

p

\U

q

. This means, we have a globally de�ned vetor-funtion f = (f

1

; :::; f

n

),

suh that f

j

j

U

p

= f

p

j

. Sine the funtions S

p

ij

(z) are holomorphi, the funtions f

j

satisfy the equation Lf

j

= 0. Also, W (f) = W (g

p

)S

p

in every U

p

, whih implies

W (f) is everywhere nondegenerate. This settles (i).

Now let � be any smooth omplex funtion on �. Consider the olumn vetor

� = (�; ��; :::; �

n�1

�)

t

. It is obvious that � is a solution of L� = 0 if and only

if � satis�es the �rst order n � n-matrix equation �� = A

L

�, where A

L

is the

Frobenius matrix orresponding to L:

(2.1) A

L

=

0

B

B

B

�

0 1 . . . . . . 0

0 0 1 . . . 0

. . . . . . . . . . . . . . .

0 0 . . . . . . 1

�u

1

�u

2

. . . . . . �u

n

1

C

C

C

A

; i.e. (A

L

)

ij

=

8

>

<

>

:

1 j � i = 1

�u

j

i = n

0 otherwise

This implies that if f = (f

1

; :::; f

n

) is a set of solutions to L� = 0 then the Wronski

matrix W (f) satis�es the equation

(2.2) �W = A

L

W:
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To prove (ii), de�ne the matrix funtion R on � byW (

~

f) =W (f)R. This matrix

is obviously always in GL

n

(C ), and it is holomorphi on � beause both W (

~

f) and

W (f) satisfy the equation �W = A

L

W . Thus, R 2 LGL

n

(C ).

To establish (iii), for any f satisfying the onditions of (iii) de�ne the vetor-

funtion u = (u

1

; :::; u

n

) on � by the formula

(2.3) u = (�

n

f)W (f)

�1

:

This vetor funtion exists and is unique beause of the nondegeneray ofW . More-

over, it is � -periodi sine both �

n

f and W (f) multiply by R from the right when

z is replaed by z + � . Now set L = �

n

+

P

n�1

j=0

u

j+1

�

j

. It is obvious that (2.3) is

equivalent to the ondition that Lf

i

= 0 for all i, whih implies (iii). �

Propositions 1A and 1B have a simple geometri reformulation:

Proposition 1AB. For every vetor-funtion f with a nondegenerate Wronski

matrix there exists a unique di�erential operator L

f

2 L suh that L

f

f

i

= 0, and

the assignment f ! L

f

is a prinipal �bration over L whose �ber is GL

n

(k) in Case

1 and LGL

n

(C ) in Case 2.

Corollary 2AB. Let L(t) be any smooth urve in L. Then there exists a s-

mooth family of vetor-funtions f

t

with a nondegenerate Wronski matrix suh that

L(t)f

t

i

= 0 for all i and for all t.

Proof. This is just the statement that any path on the base of a �ber bundle an

be overed by a path on the total spae. �

Let us now de�ne the notion of monodromy of a di�erential operator.

De�nition 2A. Let L be a di�erential operator of the form L =

d

n

dx

n

+

P

n�1

j=0

u

j+1

d

j

dx

j

,

u

j

2 C

1

(R =Z ; k). Let f = (f

1

; :::; f

n

) be a set of solutions of the equation L� = 0

belonging to C

1

(R ; k) whose Wronski matrix is everywhere nondegenerate. Let

R 2 GL

n

(k) be the matrix suh that f(x + 1) = f(x)R (it exists beause of Prop.

1A (ii)). Then the onjugay lass of R in GL

n

(k) is alled the monodromy of L.

Note that the matrix R itself (unlike the onjugay lass of R, f. Proposition

1A (ii)) is not well de�ned sine it relies on the hoie of the set of solutions f .

De�nition 2B. Let L be a di�erential operator of the form L = �

n

+

P

n�1

j=0

u

j+1

�

j

,

u

j

2 C

1

(M; C ) (M is an ellipti urve). Let f = (f

1

; :::; f

n

) be a set of solutions

of the equation L� = 0 belonging to C

1

(�; C ) whose Wronski matrix is everywhere

nondegenerate. Let R 2 LGL

n

(C ) be the matrix suh that f(z + �) = f(z)R(z) (it

exists beause of Prop. 1B (ii)). Then the restrited onjugay lass of the element

(R; �) in GL

n

(C ) is alled the monodromy of L.

Remarks. 1. The reason for De�nition 2B is the following: if g(z) = f(z)Q(z)

is another set of solutions (i.e. Q(z) 2 LGL

n

(C )), then g(z+ �) = g(z)

~

R(z), where
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~

R(z) = Q

�1

(z)R(z)Q(z + �), whih orresponds to onjugation of the element

(R; �) 2 GL

n

(C ) by (Q

�1

; 0). Sine any set of solutions has the form f(z)Q(z),

where Q is a holomorphi matrix (Proposition 1B, part (ii)), monodromy is well

de�ned, i.e. does not depend on the hoie of f .

2. Note that for di�erential equations on the line there is a anonial hoie

of a set of solutions f { the set whose Wronski matrix is the identity matrix at

a �xed point x

0

of the line (the fundamental system of solutions). The notion

of a fundamental system of solutions does not have a natural analogue in two

dimensions.

3. Observe that in Case 2 the monodromy matrix R(z) is always in LGL

n

(C )

0

.

Indeed, detR(z) =

detW (f)(z+�)

detW (f)(z)

, whih means that the map z ! detR(z) is ho-

motopi to the identity: the homotopy is �

s

(z) =

detW (f)(z+s�)

detW (f)(z)

, s 2 [0; 1℄. For a

similar reason, in Case 1 if k = R then the determinant of R is always positive.

Now we are ready to formulate the main theorem about the loal struture of

the �bration of L into sympleti leaves.

Theorem 3AB. Let L(t); a < t < b be a smooth urve in L. Then L(t) lies inside

a single sympleti leaf if and only if the monodromy of L(t) is the same for all t.

The proof of this theorem for Case 1 was given in [OK℄. Before proving Case

2, let us give a reformulation of the isomonodromi ondition in terms of vetor

bundles and in terms of oadjoint orbits of double loop algebras.

De�ne the rank n vetor bundle E

L

onM orresponding to a di�erential operator

L 2 L. It will be a at k-bundle in Case 1 and a holomorphi bundle in Case 2.

For every p 2 M let U

p

be the neighborhood of p suh that there exists a set

f = (f

p

1

; :::; f

p

n

) of n solutions of the equation L� = 0 de�ned in U

p

whose Wronski

matrix is nondegenerate in U

p

. Let the matries Q

pq

(belonging to GL

n

(k) in Case

1 and LGL

n

(C ) in Case 2) be de�ned by the ondition f

q

= f

p

Q

pq

. Then Q

pq

satisfy the onditions Q

pq

Q

qp

= 1, Q

pq

Q

qr

Q

rp

= 1.

De�nition 3AB. The vetor bundle E

L

is the bundle on M de�ned by the set of

transition funtions Q

pq

.

There is another, more expliit onstrution of the vetor bundle E

L

. Let R be

a monodromy matrix for L. Let

^

M be the interval [0; 1℄ in Case 1 and the annulus

fx + �y 2 �j0 � y � 1g in Case 2. De�ne the vetor bundle E

L

on M as follows.

Take a trivial rank n bundle over

^

M and glue the two boundaries of

^

M together:

0 � 1 in Case 1, x � x+� in Case 2 (this will transform

^

M intoM), identifying the

�bers over orresponding points by means of the monodromy matrix R. It is easy

to hek that the obtained at (holomorphi) vetor bundle over M is isomorphi

to E

L

.
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Thus, global smooth setions of E

L

an be realized as quasiperiodi vetor-

funtions on R (respetively on �), i.e. as suh funtions f that f(x + 1) = f(x)R

(respetively f(z + �) = f(z)R(z)).

Let us now de�ne aÆne and double aÆne Lie algebras. Let g(M) = C

1

(M; gl

n

(k))�

C be the one dimensional entral extension of C

1

(M; gl

n

(k)) by means of the o-

yle 
(f; g) =

R

M

tr(fDg)!. In the one-dimensional ase it is the usual aÆne Lie

algebra. In the two-dimensional ase it is the double aÆne algebra onsidered in

[EF℄.

It is known that the Lie algebra g(M) integrates to a Lie group G(M). ([PS℄ for

Case 1, [EF℄ for Case 2). The oadjoint representation of this group an be realized

as the spae of di�erential operators �D+ f (� 2 k), where f is a smooth funtion

on M with values in gl

n

(k), in whih the ation of the group G(M) redues to the

ation of C

1

(M;GL

n

(k)) by onjugation (the so alled gauge ation): gÆ(�D+f) =

�D +Dg � g

�1

+ gfg

�1

. The oadjoint orbit ontaining the operator � = �D + f

will be denoted by O

�

.

The notion of monodromy for operators of the form �D + f (� 6= 0), where f is

matrix-valued, is analogous to that for higher order salar operators. For D = d=dx

this notion is standard; for D = �, monodromy is the restrited onjugay lass

in GL

n

(C ) of an element (g(z); �) suh that there exists a nondegenerate matrix

solution B(z) of the equation ��B + fB = 0 de�ned on the ylinder � and suh

that B(z + �) = B(z)g(z) [EF℄.

Consider now the aÆne linear map � : L ! g(M)

�

given by the formula L !

D�A

L

, where A

L

is de�ned by (2.1) (for both Case 1 and Case 2). This map takes

values in the hyperplane � = 1.

Proposition 4AB. The following three onditions on two di�erential operators

L

1

; L

2

2 L are equivalent:

(i) L

1

and L

2

have the same monodromy;

(ii) The at (respetively holomorphi) vetor bundles E

L

1

and E

L

2

are isomor-

phi.

(iii) The points �(L

1

) and �(L

2

) are in the same orbit of oadjoint representa-

tion of G(M).

Proof. It is lear that the monodromy of the operator L is the same as the mon-

odromy of �(L).

Case 1. The equivalene of (i) and (ii) is obvious; the equivalene of (ii) and

(iii) was observed in [F℄, [RS℄, [Se℄.

Case 2. The equivalene of (i) and (ii) is an observation of E.Loojienga (f.

[EF℄) (he observed that onjugay lasses in the extended loop group orrespond to

holomorphi bundles over an ellipti urve). The equivalene of (ii) and (iii) follows

from [EF℄. �
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Remark. In Case 2 the vetor bundle E

L

is always of degree zero sine it

is obtained from the trivial bundle on the annulus by gluing with the help of a

transition matrix R(z) 2 LGL

n

(C )

0

whih is homotopi to the identity.

Proof of Theorem 3AB for Case 2. The proof given below follows the method of

[OK℄.

Let L(t) be a smooth urve on L. Pik a smooth family of vetor-funtions

f

t

with a nondegenerate Wronski matrix suh that L(t)f

t

i

= 0 for all t; i. This

is possible beause of Corollary 2AB. Let R

t

(z) 2 LGL

n

(C )

0

be the monodromy

matrix of this set of solutions: it is de�ned by the formula f

t

(z + �) = f

t

(z)R

t

(z).

If. We must show that L

0

(t) is a Hamiltonian vetor for any t.

We know that all elements (R

t

(z); �) are in the same restrited onjugay lass

in GL

n

(C ), i.e. are onjugate to the same element (R(z); �). Therefore, (R

t

(z); �)

is a smooth urve on the restrited onjugay lass of (R(z); �). Sine the group

LGL

n

(C ) is the total spae of a prinipal �bration over this restrited onjuga-

y lass whose �ber is the entralizer of (R(z); �) in LGL

n

(C ) (this is a �nite-

dimensional omplex Lie group), the urve (R

t

(z); �) an be lifted to a smooth

urve C

t

(z) on LGL

n

(C ). In other words, there exists a funtion C

t

(z) taking

values in LGL

n

(C ) whih is smooth in t and satis�es the relation

(2.4) R

t

(z) = C

t

(z)R(z)(C

t

)

�1

(z + �):

De�ne a new vetor funtion g

t

= f

t

C

t

. Obviously, its omponents are still

solutions of L(t)� = 0, and its Wronski matrix is nondegenerate. But now we

have an additional property { the monodromy matrix of g

t

does not depend on t:

g

t

(z + �) = g

t

(z)R(z).

Let t

0

2 (a; b). Let g

t

= g + (t � t

0

)g

0

+ O((t � t

0

)

2

) as t ! t

0

. Also let

L(t) = L + (t � t

0

)L

0

+ O((t � t

0

)

2

) as t ! t

0

. Let us di�erentiate the relation

L(t)g

t

= 0 by t at t = t

0

. We get

(2.5) Lg

0

+ L

0

g = 0:

In order to show that L

0

is a Hamiltonian vetor, we must �nd a pseudodi�er-

ential symbol A suh that L

0

= V

A

(L) = L(AL)

+

� (LA)

+

L. This is the same as

to �nd an A suh that

(2.6) Lg

0

+ (L(AL)

+

� (LA)

+

L)g = 0:

Indeed, the equation Lg

0

+ Fg = 0 with respet to an (n� 1)-th order di�erential

operator F has a unique solution: F =

P

n

j=1



j

�

j�1

, where  = (

1

; :::; 

n

) is equal

to �(Lg

0

)W (g)

�1

(note that to apply a di�erential operator of order n � 1 to a
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set of n funtions h is the same as to multiply the row vetor of oeÆients of this

operator by the Wronski matrix W (h)).

Sine Lg = 0, equation (2.6) is equivalent to

(2.7) L(g

0

+ (AL)

+

g) = 0:

This means that it is enough to �nd an A suh that

(2.8) g

0

+ (AL)

+

g = 0:

That is, to �nd an A suh that

(2.9) (AL)

+

=

n

X

j=1

b

j

�

j�1

;

where b = (b

1

; :::; b

n

) is de�ned as follows:

(2.10) b = �g

0

W (g)

�1

:

Sine g and g

0

have the same monodromy matrix, it follows from (2.10) that b is

doubly periodi: b

i

2 C

1

(M; C ).

In order to prove the existene of A satisfying (2.9), it suÆes to show that the

linear map � : A !

~

L given by �(A) = (AL)

+

is an isomorphism. But this is

obvious: the oeÆients of the operator (AL)

+

, have the triangular form a

i

+ P

i

,

where P

i

is a di�erential polynomial in a

1

; :::; a

i�1

, and hene the oeÆients a

i

of the solution of the equation (AL)

+

= �, � 2

~

L, an be uniquely determined

reursively starting from a

1

.

Only if. Di�erentiating the equation L(t)f

t

= 0, we get

(2.11) Lf

0

+ L

0

f = 0:

(we use the shortened notation f for f

t

). We know that L

0

= V

A

(L) for some A.

This implies:

(2.12) L(f

0

+ (AL)

+

f) = 0:

This means that

(2.13) f

0

+ (AL)

+

f = h;

where h satis�es the equation Lh = 0.
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Let us show that we ould have hosen f

t

in suh a way that h = 0. Indeed, let

g

t

be another set of solutions of L� = 0 given by

(2.14) g

t

= f

t

(C

t

)

�1

;

where C

t

2 LGL

n

(C ). Substituting (2.14) in (2.13), we get

(2.15) g

0

C + gC

0

+ (AL)

+

gC = h

(here we used the shortened notation g for g

t

, and C for C

t

). We want to have

the relation g

0

+ (AL)

+

g = 0. This is equivalent to the relation gC

0

= h, or,

in terms of f , fC

�1

C

0

= h. This happens if and only if C

�1

C

0

= W (f)

�1

W (h),

or C

0

= CW (f)

�1

W (h). This is a �rst order di�erential equation on LGL

n

(C )

(sine W (f)

�1

W (h) is a holomorphi matrix-valued funtion), and it has a unique

solution with the initial ondition C(t

0

) = Id.

Therefore, we may assume that h in (2.13) is equal to 0.

We have

(2.16) f

0

(z) = �(AL)

+

f(z):

Changing z to z+� and using the monodromy relation f(z+�) = f(z)R(z) (R = R

t

),

we get

(2.17) f

0

(z)R(z) + f(z)

�R

�t

(z) = �(AL)

+

f(z)R(z);

whih, together with (2.16), implies f(z)

�R

�t

(z) = 0. Therefore, W (f)

�R

�t

= 0, whih

means

�R

�t

= 0, or R

t

(z) is independent of t. Thus, the monodromy of L(t) is

independent of t Q.E.D. �

3. Codimension of sympleti leaves.

Theorem 5AB. Let L 2 L be a di�erential operator. Then the following four

numbers oinide:

(i) the odimension of the sympleti leaf O

L

;

(ii) the dimension of the entralizer of the monodromy matrix of L;

(iii) the odimension of the orbit O

�(L)

in the hyperplane � = 1 in the oadjoint

representation of the group G(M) (see Setion 2);

(iv) the dimension of the spae of global setions of the vetor bundle End(E

L

) =

E

L


 E

�

L

(at setions for Case 1, holomorphi setions for Case 2).

Remarks. 1. By the odimension of an orbit of the oadjoint representation we

mean the odimension (in the hyperplane � = 1) of the tangent spae to the orbit

at any point.
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2. We all the dimension of the entralizer of a (restrited) onjugay lass the

odimension of this onjugay lass.

3. For Case 1, it is easy to show that the number (i)-(iv) is �nite. In Case 2, it

follows from algebrai geometry that (iv) is �nite, and Theorem 5AB implies that

so are (i),(ii),(iii).

4. We have seen that sympleti leaves of the lassial (respetively, aÆne) GD

braket are labeled by onjugay lasses in GL

n

(k) (respetively, GL

n

(C )). It turns

out, however, that in the aÆne ase onjugay lasses lose enough to the \identity"

(Id; �) in GL

n

(C ) an be labeled by ongugay lasses of the �nite-dimensional

group GL

n

(C ). Indeed, near the \identity" the group GL

n

(C ) is identi�ed with

a region in its Lie algebra by the exponential map. The Lie algebra of GL

n

(C )

an be thought of as the oadjoint representation of the aÆne Lie algebra



gl

n

(i.e.

the spae of di�erential operators �

d

dz

� A(z)). Therefore, the onjugay lasses

beome oadjoint orbits for the aÆne Lie algebra



gl

n

, and those are enumerated by

� and the monodromy of the orresponding operators �

d

dz

� A(z) (see [F℄,[RS℄).

Proof of Theorem 5AB.

(i)=(ii). Let L 2 L.

Let f be a set of solutions of L� = 0 with a nondegenerate Wronski matrix.

Let R be the monodromy matrix of f : f(x + 1) = f(x)R, R 2 GL

n

(k) (Case 1),

f(z + �) = f(z)R(z), R 2 LGL

n

(C )

0

(Case 2).

We will desribe the tangent spae T

L

O

L

as the image of a ertain operator.

Consider the linear operator

^

L(g) = (Lg)W (f)

�1

sending the spae of vetor-

funtions g = (g

1

; :::; g

n

) suh that

(3.1) g(z + �) = g(z)R(z):

to the spae of doubly periodi vetor-funtions.

Lemma. The tangent spae T

L

O

L

is the set of all di�erential operators of the

form

P

n�1

i=0

p

i+1

D

i

, suh that the vetor p = (p

1

; :::; p

n

) belongs to the image of

^

L.

Proof of the Lemma Applying equation (1.4) to f , we get

(3.2) V

A

(L)f = L(AL)

+

f :

Let V

A

(L) =

P

n�1

i=0

p

i+1

D

i

, and let p = (p

1

; :::; p

n

). Then (3.2) an be rewritten in

the form

(3.3) pW (f) = L(AL)

+

f :

We know that (AL)

+

an be any di�erential operator of the form

P

n�1

i=0

b

i+1

D

i

,

b

i

2 C

1

(M;k). Therefore, the set of possible values of the expression (AL)

+

f is the
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set of all vetor-funtions g on the ylinder satisfying (3.1). Indeed, (3.1) learly

must be satis�ed, and whenever g does satisfy (3.1), one an set b = gW (f)

�1

and

get a doubly periodi vetor-funtion.

This onsideration implies that the set of possible values of p is the image of the

operator

^

L, Q.E.D. �

The Lemma shows that the set of possible values of pW (f) is the image of the

operator L regarded as an operator on the spae of vetor-funtions g satisfying

(3.1), i.e. on the spae of smooth setions of the vetor bundle E

L

. The odimension

of T

L

O

L

is therefore equal to the odimension of this image, sine W (f) is just an

automorphism of

~

L.

The operator L : �(E

L

) ! �(E

L

) is an ellipti operator on the irle (torus), so

its index is equal to zero. Therefore, the dimension of its kernel is equal to the

odimension of its image. Thus, it remains to ompute the dimension of the kernel

of L.

An element that undoubtedly belongs to KerL is f . Furthermore, any other

element g of this kernel, aording to Proposition 1AB, an be represented in the

form g = fC, where C is an n�n-matrix in Case 1 and a holomorphi n�n-matrix

valued funtion on � in Case 2. The matrix C has to satisfy the relation

C = R

�1

CR (Case 1)

C(z + �) = R

�1

(z)C(z)R(z) (Case 2);(3.4)

whih is equivalent to C being in the Lie algebra of the entralizer of the monodromy

of L. This shows that KerL is isomorphi to the Lie algebra of the entralizer, i.e.

their dimensions are the same.

(ii)=(iv) The solutions of (3.4) are exatly the at (respetively holomorphi)

setions of the vetor bundle End(E

L

) = E

L


 E

�

L

, and vie versa.

(iii)=(iv) Let � = D�A 2 g(M)

�

. Then the tangent spae to the oadjoint orbit

at �, T

�

O

�

, onsists of vetors of the form DX � [A;X℄, where X is an arbitrary

matrix-valued funtion on M . Therefore, the odimension of the orbit is equal to

the odimension of the image of the operator D � adA in C

1

(M; gl

n

(k)). Sine

this operator is ellipti, its index is zero, so the odimension of its image equals the

dimension of its kernel. But the kernel of this operator onsists of at (respetively

holomorphi) setions of the bundle E

L


 E

�

L

and only of them. Therefore, the

dimensions of the kernel and the spae of setions oinide. �

Proposition 6AB. The odimension of every sympleti leaf (oadjoint orbit, on-

jugay lass) is ongruent to n modulo 2.

Motivation. Thanks to Theorem 5AB, it is enough to onsider oadjoint orbits.

Coadjoint orbits have a natural sympleti (or holomorphi sympleti) struture

{ the Kirillov-Kostant struture. Therefore, they must all be \even-dimensional",
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i.e. their odimensions must have the same parity. Also, the orbit orresponding

to � = � has odimension n

2

, whih is ongruent to n modulo 2. Therefore, all

odimensions must be ongruent to n modulo 2. �

It is not obvious how to make this argument into a rigorous proof, so we give a

di�erent (algebrai) proof.

Proof. Case 1. Beause of Theorem 5AB, it is enough to show that odimensions

of all onjugay lasses in GL

n

(k) have the same parity. This follows from the fat

that all onjugay lasses in GL

n

(k) are even-dimensional { a standard fat from

linear algebra.

Case 2. Beause of Theorem 5AB, Proposition 6AB is equivalent to the asser-

tion that for any rank n holomorphi vetor bundle E of degree zero over an ellipti

urve M the dimension of the spae H

0

(M;E
E

�

) of global holomorphi setions

of the bundle E 
 E

�

is ongruent to n modulo 2. This assertion is a orollary of

the following Lemma.

Lemma. Let E be a holomorphi vetor bundle over an ellipti urve M of

rank r and degree d. Then dimH

0

(M;E 
E

�

) � rd+ r + d mod 2.

Proof of the Lemma. Let V be a holomorphi vetor bundle over M of degree

d. Then by the Riemann-Roh theorem dimH

0

(M;V ) � dimH

1

(M;V ) = d. Also,

Serre's duality tells us that H

0

(M;V

�

) = H

1

(M;V )

�

. Combining these two fats,

we get:

(3.5) dimH

0

(M;V � V

�

) � d mod 2:

The proof of the Lemma is by indution. For line bundles the statement is

obvious. We assume that we know the Lemma is true for bundles of rank l < m.

Let E be a bundle of rank m. We onsider two possibilities.

1)E is indeomposable. Then a theorem of Atiyah's [At℄ tells us that dimH

0

(M;E


E

�

) equals the greatest ommon divisor (r; d) of the rank r and the degree d of E.

But (r; d) � rd+ r + d mod 2, Q.E.D.

2) E = E

1

�E

2

. Then

(3.6)

H

0

(M;E
E

�

) = H

0

(M;E

1


E

�

1

)�H

0

(M;E

2


E

�

2

)�H

0

(M;E

1


E

�

2

�E

2


E

�

1

):

Using the assumption of indution, ongruene (3.5), and the fats that (E

1




E

�

2

)

�

= E

2


E

�

1

and deg(E

1


E

�

2

) = r

1

d

2

+ r

2

d

1

, we get the ongruene

(3.7) dimH

0

(M;E
E

�

) � (r

1

d

1

+r

1

+d

1

)+(r

2

d

2

+r

2

+d

2

)+(r

1

d

2

+r

2

d

1

) mod 2;

where r

i

are the ranks and d

i

are the degrees of E

i

. But the right hand side of (3.7)

equals to (r

1

+ r

2

)(d

1

+ d

2

) + (r

1

+ r

2

) + (d

1

+ d

2

) = rd+ r + d, Q.E.D. �
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4. Existene of di�erential operators with a presribed monodromy

A natural question in the theory of di�erential equations is: given a onjugay

lass in GL

n

(k) (GL

n

(C )), does there exist a di�erential operator L 2 L whose

monodromy is this onjugay lass? In other words, is the map assigning onjuga-

y lasses to sympleti leaves of the GL

n

- (aÆne GL

n

-) Gelfand-Dikey braket

surjetive? The answer to this question is positive:

Proposition 7AB. (i) Any matrix in GL

n

(k) (with positive determinant if k = R )

is a monodromy matrix of an n-th order di�erential operator on the irle with the

highest oeÆient 1.

(ii) Every holomorphi vetor bundle over an ellipti urve M arises as mon-

odromy of an n-th order operator L = �

n

+

P

n�1

j=0

u

j+1

�

j

, u

j

2 C

1

(M; C ).

Proof. (i) The proof is analogous to that of (ii) given below. For k = R , a proof of

this proposition has been given in [S℄.

(ii) Thanks to Proposition 1B, it suÆes to prove the following statement: for

any monodromy matrix R(z) 2 LGL

n

(C )

0

there exists a smooth vetor funtion

f : � ! C

n

, f = (f

1

; :::; f

n

), suh that f(z + �) = f(z)R(z), and the Wronskian of

f does not vanish on �.

First of all, the vetor bundle on M presribed by the gluing funtion R(z) is

topologially trivial sine R(z) is homotopi to the identity. Therefore, it admits a

smooth trivialization { a smooth funtion X : �! GL

n

(C ) suh that X(z + �) =

X(z)R(z). Let us look for the vetor funtion f in the form f = gX, g = (g

1

; :::; g

n

).

Then the monodromy ondition on f is equivalent to the ondition that g is � -

periodi, i.e. that g 2 C

1

(M; C

n

).

Let Y (z) = �X(z) � X(z)

�1

. This is a smooth matrix-valued funtion periodi

with periods 1 and � , i.e. a funtion onM . Consider the operator D on C

1

(M; C

n

)

de�ned by Dg = �g + gY .

It is easy to hek that the Wronski matrix of f an be written in the form

W (f) = W

D

(g)X, where W

D

(g)

ij

= (D

i�1

g)

j

(i.e. the lines of W

D

(g) are g,

Dg, D

2

g,...). Therefore, our problem redues to �nding g suh that W

D

(g) is

everywhere nondegenerate. This an be done as follows.

Let z = x + �y, x; y 2 R . Set g

m

(z) = e

2�imkx

, 1 � m � n, where k is an

integer. If we regard k as an independent variable, then the expression W

D

(g) is

a polynomial in k and e

2�ikx

(with oeÆients dependent of z). The highest term

in k is the usual Wronskian W (g), whih equals (�ik)

n(n�1)=2

V

n

e

�ikn(n+1)x

, where

V

n

is the Vandermonde determinant of 1; 2; :::; n. The absolute value of this term

equals jV

n

j(�k)

n(n�1)=2

, whih grows as k

n(n�1)=2

as k !1. The rate of growth of

the terms with lower degrees of k is lower, so for k big enough (uniformly in x; y)

the highest term will dominate. Therefore, W

D

(g) does not vanish if k hosen to

be big enough, Q.E.D. �
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5. Examples

Let us desribe an expliit realization of vetor bundles by di�erential operators

for n = 2. Before we do so, let us formulate Atiyah's lassi�ation theorem for

vetor bundles of rank 2.

Atiyah's theorem. (for rank 2 bundles)[At℄ Any rank 2 holomorphi vetor bun-

dle of degree zero over an ellipti urve M = C =(Z � �Z), � 2 C

+

, is isomorphi

to one of the following:

1) E(a; b;m) (a; b 2 C

�

, m 2 Z, m � 0) { the vetor bundle orresponding to

the onjugay lass of the element

(5.1)

��

ae

2�imz

0

0 be

�2�imz

�

; �

�

of GL

n

(C ). The bundles E(a

1

; b

1

;m

1

) and E(a

2

; b

2

;m

2

) are isomorphi i� m

1

=

m

2

, a

1

=a

2

= q

k

a

, b

1

=b

2

= q

k

b

, where k

a

; k

b

2 Z, and q = e

2�i�

.

2) F (a), a 2 C

�

{ the vetor bundle orresponding to the onjugay lass of the

element

(5.2)

��

a 1

0 a

�

; �

�

of GL

n

(C ); the bundles F (a) and F (b) are isomorphi i� a=b = q

k

, k 2 Z.

A bundle E(a; b;m) is never isomorphi to F (~a).

Let us now realize eah bundle from lasses 1) and 2) by a di�erential operator

L = �

2

+ u

1

� + u

2

.

Observe that if a bundle E is realized by a di�erential operator then it is easy

to realize X 
 E, where X is an arbitrary degree zero line bundle. Indeed, let X

orrespond to the onjugay lass of the element (a; �) 2 GL

1

(C ), a 2 C

�

. Let E

be realized by a di�erential operator L. Then it is easy to see that X
E is realized

by the di�erential operator

~

L = e

�(z��z)

Æ L Æ e

��(z��z)

, where

(5.3) � =

log a

� � ��

(any branh of log an be taken).

This observation implies that it is enough for us to realize expliitly the bundles

E(a; a

�1

;m) and F (1) by di�erential operators, sine all the other bundles an be

obtained by tensoring them with line bundles.

It is easy to see that the bundle F (1) is realized by the operator L = �

2

; the orre-

sponding vetor f of solutions is (1; y), where z = x+�y. The bundle E(a; a

�1

; 0) is
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realized by the operator L = �

2

��

2

, where � is de�ned by (5.3) (any nonzero value

of log an be taken); the orresponding vetor f of solutions is (e

�(z��z)

; e

��(z��z)

).

It remains to realize the bundles E(a; a

�1

;m) for m > 0.

Let z

1

; :::; z

m

2 M be pairwise distint points, and let  : M ! C be a smooth

funtion on the ellipti urve whih has the following properties:

(i)  vanishes at z

1

; :::; z

m

and nowhere else;

(ii) in the neighborhood of z

i

the funtion  has the form

(5.4)  (z) = jz � z

i

j

2

:

Suh a funtion is very easy to onstrut: set

(5.5)  (z) =  

0

(z) +

m

X

i=1

 

i

(z)jz � z

i

j

2

;

where  

0

(z) = 1 everywhere exept the disks B(z

i

; r) entered at z

i

of a small

radius r, and  

0

(z) = 0 in B(z

i

; r=2); for i > 0,  

i

is a nonnegative funtion equal

to 1 in B(z

i

; r=2) and to 0 outside B(z

i

; r) ( all  

i

have to be smooth everywhere

and positive in the annuli r=2 < jz � z

i

j < r).

From the de�nition of  it follows that the funtion u = �

2

 = de�ned a priori

in M n fz

1

; :::; z

n

g, an be ontinued to the points z

1

; :::; z

n

(sine it is simply

equal to zero in their neighborhoods). This implies that  is a solution of the

equation L = 0, where L = �

2

� u. Pik a vetor f = (f

1

; f

2

) of solutions of this

di�erential equation with a nondegenerate Wronski matrix. Then there exist unique

holomorphi funtions 

1

(z), 

2

(z) on the ylinder � suh that  = 

1

f

1

+

2

f

2

, and

the vetor-funtion  = (

1

; 

2

) is a global holomorphi setion of the holomorphi

vetor bundle E

L

.

Let us show that this setion vanishes at the points z

1

; :::; z

m

and only at them,

and these zeroes are simple. Indeed, the vetor F =

�

 

� 

�

equals W (f)

t

, thus

 = 0 i� F vanishes, and the vanishing points of F are exatly z

1

; :::; z

m

. Also, in

the neighborhood of z

i

one has F = (z � z

i

)

�

�z � �z

i

1

�

, whih shows that z

i

is a

simple zero of .

It follows from the theory of holomorphi bundles that the presene of a setion

 with the above properties guarantees that E

L

has a line subbundle X of degree m

de�ned by the monodromy funtion e

2�im(z�z

0

)

. The bundle �

2

E

L

is trivial sine

the operator L does not ontain a �rst order term, and hene the Wronskian (whih

is a setion of �

2

E

L

) is onstant. This fat together with Atiyah's lassi�ation

theorem implies that E

L

is isomorphi to X�X

�

, whih is the same as E(a; a

�1

;m),
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where a = e

�2�imz

0

=

Q

j

e

2�iz

j

. Sine the points z

i

ould be hosen arbitrarily,

one an get any value of a.

Let us now desribe the odimensions of sympleti leaves for n = 2 (Case 2). It

follows Theorem 5AB that it is enough to do it for vetor bundles.

Proposition 8B. (i) If E

L

= E(a; b;m) then odim(O

L

) equals 2m+ 2 if m > 0,

2 if m = 0 and a=b is not an integral power of q, and 4 if m = 0 and a=b = q

k

,

k 2 Z.

(ii) If E

L

= F (a) then odim(O

L

) equals 2.

Proof. (i) E(a; b;m) = X

a;m

� X

b;�m

, where X

a;m

, is the line bundle desribed

by the monodromy funtion ae

2�imz

. Therefore, E(a; b;m) 
E(a; b;m)

�

= X

1;0

�

X

1;0

�X

a=b;2m

�X

b=a;�2m

. The number of linearly independent holomorphi se-

tions of this bundle is 2 if m = 0 and a=b 6= q

k

, 4 if m = 0 and a=b = q

k

, and

2m+ 2 if m 6= 0, whih proves (i).

It is also easy to see that F (a) 
 F (a)

�

= X

1;0

� F

3

(1), where F

3

(1) is the

vetor bundle of rank 3 whose monodromy matrix is the 3 � 3 Jordan ell with

eigenvalue 1. Therefore, the number of linearly independent holomorphi setions

of F (a)
 F (a)

�

is 2. This settles (ii).

Remark. Thus, in Case 2, unlike Case 1, the odimensions of sympleti leaves

an be arbitrarily large, even for n = 2. However, the onjugay lasses labeling

all sympleti leaves of odimension > n

2

stay away from the (Id; �) 2 GL

n

(C ), by

virtue of Remark 4 at the end of Setion 3.

Appendix: Classi�ation of sympleti leaves with a given monodromy.

In onlusion, let us disuss the problem of �nding disrete invariants of sym-

pleti leaves.

In Case 1 (for k = R ), this problem was studied in [OK℄, and it was shown

that it is equivalent to the problem of homotopy lassi�ation of quasiperiodi

nondegenerate urves, i.e. urves in R

n

with presribed monodromy and nonvan-

ishing Wronskian. This problem, in turn, is equivalent to homotopy lassi�ation

of quasiperiodi nonattening urves { smooth urves x(t) in RP

n�1

with pre-

sribed monodromy suh that the vetors x

0

; x

00

; :::; x

(n�1)

are linearly independent

at eah t (the equivalene is established by replaing the original urve in R

n

by its

projetion to RP

n�1

).

For general n, this topologial problem turns out to be diÆult. It is solved only

for n = 2 (where this problem is equivalent to lassi�ation of projetive strutures

on the irle [Ku℄, of Hill's operators [LP℄, or oadjoint orbits of the Virasoro algebra

[K1℄,[Se℄), for n = 3 [KS℄,and for any n in ase R = Id [S℄.
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In the ase of ellipti urve the geometri notion orresponding to the problem

of �nding disrete invariants of sympleti leaves is the notion of a quasiperiodi

nondegenerate tube { a funtion  : � ! C

n

with presribed monodromy R(z)

((z + �) = (z)R(z)) and nonvanishing �-Wronskian. Then we have

Proposition. Sympleti leaves of the aÆne GL

n

-GD braket whose monodromy

is the onjugay lass of R(z) are in one-to one orrespondene with homotopy

lasses of quasiperiodi nondegenerate tubes with monodromy R(z).

Let us onsider the ase of trivial monodromy (R(z) = Id). Then a quasiperiodi

nondegenerate tube is just a smooth map  : M ! C

n

with nonvanishing Wron-

skian. An obvious homotopy invariant of suh a map is the winding invariant { the

homotopy lass of the mapM ! C

�

realized by the Wronski determinant detW ().

This invariant takes values in Z

2

, and an take any presribed value.

Therefore, lassi�ation of sympleti leaves with trivial monodromy depends on

the answer to

Question 1. Is it true that two quasiperiodi nondegenerate tubes are homotopi

in the lass of suh tubes if and only if their winding invariants are the same?

In the ase n = 2, by projeting C

2

to C P

1

, we an redue this question to

the problem of homotopy lassi�ation of nowhere holomorphi maps. A nowhere

holomorphi map is a map f : M ! C P

1

suh that �f is not equal to zero at any

point of M . An obvious homotopy invariant of nowhere holomorphi maps is the

winding invariant { the homotopy lass of the map �

f

: M ! T

u

C P

1

from M to

the spae of unit tangent vetors to C P

1

(this spae is di�eomorphi to RP

3

) given

by the formula �

f

(z) = �f(z)=j�f(z)j. It takes value in Z=2Z � Z=2Z . Translating

Question 1 into the language of nowhere holomorphi maps, we ome to

Question 2. Is it true that two nowhere holomorphi maps are homotopi in the

lass of suh maps if and only if their winding invariants are the same?
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