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Abstract

Geometric Hydrodynamics has flourished ever since the celebrated 1966 paper
of V. Arnold. In this paper we present a collection of open problems along with
several new constructions in fluid dynamics and a concise survey of recent devel-
opments and achievements in this area. The topics discussed include variational
settings for different types of fluids, models for invariant metrics, the Cauchy and
boundary value problems, partial analyticity of solutions to the Euler equations,
their steady and singular vorticity solutions, differential and Hamiltonian geometry
of diffeomorphism groups, long-time behaviour of fluids, as well as mechanical
models of direct and inverse cascades.
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1. Introduction and Notations

We start with the basic setup of geometric hydrodynamics. This will provide
the background and motivation for various developments discussed in the sequel.

Consider an ideal (that is, incompressible and inviscid) fluid in a fixed domain
M inRn (n = 2, 3). In the Eulerian representation a fluid motion is described by the
evolution of its velocity field which satisfies the incompressible Euler equations

∂tv + v · ∇v = −∇ p, div v = 0, (1.1)

where the velocity field v = v(t, x) is assumed to be tangent to the domain’s bound-
ary, if ∂M �= ∅. The pressure function p = p(t, x) on the right-hand side is defined
uniquely by these conditions, modulo an additive constant, and the divergence of
the field v is computed with respect to the volume form μ in R

n .
While some ideas can be traced back to Helmholtz and Kelvin, the modern geo-

metric approach to hydrodynamics began with the seminal 1966 paper of Arnold
[2]. It is based on the Lagrangian representation of fluid flows in terms of particle
trajectories which can be viewed as curves in the infinite-dimensional configura-
tion space given by the group Dμ(M) of volume-preserving diffeomorphisms of
M . Arnold showed that fluid motions (in analogy with the classical case of the rigid
body) in fact correspond to geodesics of the right-invariant metric on Dμ(M) de-
fined by the kinetic energy. This is a direct consequence of the least action principle
and the postulate that fluid particles are allowed neither to fuse nor to split. Indeed,
assuming appropriate smoothness conditions, let γ = γ (t, x) be the flow of the
velocity field v, that is,

d

dt
γ (t, x) = v(t, γ (t, x)), γ (0, x) = x .
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Differentiating both sides of the flow equation in t and using (1.1) leads immediately
to the second order system

d2γ

dt2 = −∇ p ◦ γ, (1.2)

which, roughly speaking, expresses the fact that the acceleration of the fluid is L2-
orthogonal (in the kinetic energy metric) to the space of divergence-free velocity
fields. The latter constitute the tangent space at the identity to the groupDμ(M) and
the orthogonality condition represents the fact that the particle trajectories describe
a geodesic curve in Dμ(M).

More generally, let the fluid domain be an n-dimensional Riemannian manifold
M and let μ be the Riemannian volume form. The kinetic energy metric on Dμ(M)

is given at the identity e by the L2 inner product

〈v,w〉L2 =
∫
M

(
v(x), w(x)

)
Tx M

μ (1.3)

of divergence-free vector fields v,w ∈ TeDμ(M). As before, the trajectories of fluid
particles satisfy the equations (1.2) and their velocities satisfy the Euler equations
(1.1) with the nonlinear term v·∇v replaced now by the covariant derivative ∇vv

on M and ∇ p by the corresponding Riemannian gradient on M , see [6]. (This
construction also applies if μ is an arbitrary volume form which does not coincide
with the Riemannian volume form on M , provided that the divergence div v is taken
with respect to μ.)

2. Ramifications of the Euler Equations

2.1. The Euler Equations with Sources and Sinks

Various interesting, physically relevant and as yet unresolved, problems can be
formulated already at this stage.

Problem 1. Find a variational (preferably geodesic) formulation describing the
motion of an ideal fluid in a fixed domain M containing sources and sinks. What
is the correct formulation of the variational problem: should one take into account
the exterior forces and/or the “memory” of the fluid?

For example, consider the case of a horizontal pipe with a fluid entering at
one end and exiting at the other end. Such problems have a long history. On the
one hand, as any mechanical system, fluid motions should obey some least action
principle; see [5]. On the other hand, the energy of the fluid in the pipe may not
be conserved since, depending on the boundary conditions, it could be supplied
or drained at the two ends. For instance, in addition to the equations (1.1) and the
initial condition v(0), the full system of the Euler-type equations in the 2D setting
would have to include as data two other items: the function v · n describing the
normal component of the velocity v on the penetrable boundary, as well as the
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vorticity function ω := curl v defined on the source part of the boundary through
which the fluid is supplied. (Since vorticity is transported by the flow, this data will
be sufficient to define it for all times, see [52,138,148,151,152].)

V. Yudovich used such data to formulate a stability criterion for a steady pipe
flow in 2D, which may hint at the appropriate boundary conditions needed to
obtain a variational formulation, see [151,152,154]. We should add that for a “dual”
problem involving a fixed amount of fluid in a domain with a dynamic boundary
its Hamiltonian formulation is described in [86].

2.2. The Euler Equation for Multiphase Fluids and Groupoids

While Arnold’s approach to fluids is limited to systems whose symmetries
form a Lie group, there are many problems in fluid dynamics, such as free boundary
problems, a rigid body in a fluid or fluid flows with vortex sheets, whose symmetries
should instead be regarded as a Lie groupoid. Groupoids can be thought of as
groups with partially defined multiplication: for instance, fluid configurations with
free boundary correspond to diffeomorphisms from one fluid domain to another;
only maps for which the image of one coincides with the source of another admit
composition (“multiplication”).

In [59,60] Arnold’s framework was extended from Lie groups to Lie groupoids
to give a groupoid-theoretic description for incompressible multiphase fluids, gen-
eralized flows, and fluid flows with vortex sheets (the latter are flows whose velocity
field has a jump discontinuity along a hypersurface). A multiphase fluid consists of
several fractions that can freely penetrate through each other without resistance and
are constrained only by the conservation of total density. Beyond the vortex sheet
setting, multiphase fluids arise for example in plasma physics and chemistry. Of
particular interest are multiphase fluids with continuum of phases (or generalized
flows), introduced by Brenier [19]. One can think of them as flows in which every
fluid particle spreads into a cloud thus moving to any other point of the manifold
with certain probability [131].

The Euler equations for multiphase flows on a Riemannian manifold M have
the form {

∂tv j + v j · ∇v j = −∇ p,

∂tρ j + div (ρ jv j ) = 0.

Here ρ1, . . . , ρn ∈ C∞(M) are densities of n phases of the fluid subject to the total
incompressibility condition

∑n
j=1 ρ j = 1, the vector fields v1, . . . , vn ∈ Vect(M)

are the corresponding fluid velocities, and the pressure p ∈ C∞(M) is common
for all phases. For generalized flows the integer index j = 1, . . . , n enumerating
the phases is replaced by a continuous parameter. In the case of vortex sheets the
densities are indicator functions of different parts of the manifold.

It turned out that in all of the above cases the corresponding configuration space
has a natural groupoid structure. Using the corresponding Lie groupoids of multi-
phase diffeomorphisms instead of the Lie group of volume-preserving transforma-
tions in Arnold’s setting one can describe the corresponding Lie algebroids and ob-
tain geometric and Hamiltonian interpretations for the motion of the corresponding
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multiphase fluids, “homogenized” vortex sheets, and generalized flows. Solutions
of the above Euler equations were proved to be precisely the geodesics of an L2-type
right-invariant (source-wise) metric on the corresponding Lie groupoids of multi-
phase volume-preserving diffeomorphisms [59,60]. Another interesting domain for
applications of Lie groupoids is provided by elasticity theory, cf. [65,82,98].

Problem 2. Extend the geodesic and Hamiltonian descriptions of the Euler-Arnold
equations on Lie groupoids to problems of elasticity theory.

Many other open problems discussed below for the Euler equations related to
diffeomorphism Lie groups can also be posed for the corresponding Lie groupoids,
see, for example Sections 5, 7, and 13. For instance, it is natural to extend Arnold’s
study of the differential geometry of infinite-dimensional groups to those groupoids
in view of possible applications to fluid stability problems.

Problem 3. Describe the differential geometry (including computations of sec-
tional and Ricci curvatures, conjugate points, etc.) for the right-invariant (source-
wise) L2-metric on theLie groupoidofmultiphaseor generalized volume-preserving
diffeomorphisms (analogous to Arnold’s description of the differential geometry of
the group Dμ(M)).

3. Variational Setting for Compressible Fluids

3.1. Variational Setting for Shocks

The inviscid Burgers equation

∂tv + v · ∇v = 0

describes freely moving non-interacting particles in a manifold M of any dimension.
It can be also viewed as a geodesic equation, which in this case is defined on
the full diffeomorphism group D(M) equipped with a non-invariant L2-metric
[119]. Once shock waves develop, the Lagrangian representation breaks down in
the sense that the equation ceases to define an evolution in D(M); see for example
[74]. However, particles that stick inside the shocks continue to move along their
own trajectories. For potential solutions with convex potentials there is a pointwise
variational principle described by a “circle law” proposed by Bogaevsky, see [16]
and its generalization in [69,70]. It prescribes the velocity v∗ of the common point
of several colliding waves with velocities vi : the joint velocity v∗ of the shock is
given by the center of the smallest ball (a disk in 2D) covering all the velocities vi
of the colliding waves.

It is an interesting problem to formulate a more general variational principle
for maps of M to itself (one should possibly consider Lipschitz maps to ensure dif-
ferentiability almost everywhere) describing trajectories of particles, which would
be valid before and after the formation of shocks and which would agree with both
the non-invariant L2-metric for the Burgers equation (before the collision) and the
“circle law” for particles sticking to each other after the collision.
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Problem 4. Is it possible to extend Arnold’s geodesic framework from the group
of diffeomorphisms D(M) to the semigroup of mapsMap(M) that would capture
both smooth solutions and their continuations beyond emergence of shock waves
for Burgers-like and compressible fluid equations?

To describe the motion of particles which are fused together inside shocks
one might employ the setting of generalized solutions (see [6,19,20]) to the Euler
equations and the methods of control theory, which are well-adapted to study non-
uniqueness of trajectories of dynamical systems.

3.2. Variational Setting for Sticking Particles

There are various promising approaches to the variational formulation of the
problem for sticking particles, see for example [20,126]. Here, we propose to look
at it from yet another point of view. We begin with the simplest situation: a motion
of two sticking particles of equal mass moving without friction along a line. After
the collision they form a new compound particle whose total mass and momentum
are conserved. The kinetic energy obviously decreases upon collision. This loss can
be interpreted as a transfer of energy to new unobservable degrees of freedom. For
example, we can imagine that the particles move along two very close parallel lines
and that, at the moment of their near-collision, they are joined by a rigid rod. The
compound particle (in the shape of a dumbbell) will remain in the state of rotation:
the angular coordinate of the axis of the rotating dumbbell is the new degree of
freedom. Thus, a portion of the apparently vanishing energy has been allocated to
this “invisible” degree of freedom. There may be physically different realizations
of such invisible degrees of freedom. However, we only need to know that they
exist and we are free to use them at will.

Let x1, x2 be the coordinates of the particles with x1 ≤ x2. The configuration
space of our system is the half-plane X = {(x1, x2)| x1 ≤ x2} ⊂ R

2. Let � =
{(x1, x2)| x1 = x2} be the diagonal and let �⊥ = {(x1, x2)| x1 + x2 = 0} be its
orthogonal complement.

Extend the configuration space to the set Z ⊂ R
2
1 ⊕ R

2
2, where

Z = (X ⊕ {0}) ∪ (� ⊕ �⊥)

= {
(x1, x2, y1, y2)| x1 ≤ x2, y1 = y2 = 0

}
∪ {

(x1, x2, y1, y2)| x1 = x2, y1 + y2 = 0
}

is the union of the original space X ⊂ R
2
1 and the plane �⊕�⊥ and where �⊕{0}

is identified with � ⊂ R
2
1.

Now, consider two points z0 ∈ X ⊂ Z and z1 ∈ Z and a trajectory z(t) in Z for
0 ≤ t ≤ 1 with z(0) = z0, z(1) = z1 such that the action J (z(·)) = ∫ 1

0
1
2 |ż(t)|2dt

is minimal among all trajectories in Z connecting z0 and z1. Let P be the projection
of R2 ⊕ R

2 onto the first summand and define the trajectory x(t) = Pz(t). It is
easy to see that x(t) = (x1(t), x2(t)) represents the motion of two particles on the
line colliding and sticking upon collision with the total momentum being constant.
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Thus, we have established the variational principle in the simplest case of two
particles on the line.

In a similar way we may consider a configuration of n particles x1, . . . , xn on
the line where x1 ≤ x2 ≤ · · · ≤ xn . Let X ⊂ R

n be the set of such configurations.
The set X is stratified: let �m1,...,mk denote the set of (x1, . . . , xn) such that

x1 = · · · = xm1 , xm1+1 = · · · = xm1+m2 , . . . xm1+···+mk−1+1 = · · · = xn,

where m1 + . . . + mk = n. In R
n ⊕ R

n let

Ym1,...,mk = �m1,...,mk ⊕ �⊥
m1,...,mk

=
{
(x1, . . . , xn, y1, . . . , yn) |

(x1, . . . , xn) ∈ �m1,...,mk ,
y1 + · · · + ym1 = 0, . . .

ym1+···+mk−1+1 + · · · + yn = 0

}
,

and define the extended configuration space

Z = (
X ⊕ {0})⋃

⎛
⎜⎜⎝

⋃
k=1,...,n−1

m1+...+mk=n

Ym1,...,mk

⎞
⎟⎟⎠ .

Let P be the orthogonal projection from R
n
1 ⊕R

n
2. Let x0 ∈ X, z0 = x0 ⊕ {0} and

z1 ∈ Z . We can define the trajectory z(t) ∈ Z , 0 ≤ t ≤ 1, connecting z0 and z1
and whose least action J (z(·)) is minimal. Then, the trajectory x(t) = Pz(t) in X
connects x0 and x1 = Pz1 and describes the motion of sticking particles with the
momentum preserved upon every collision.

Now consider a continuum of material points distributed on the line. To be spe-
cific, consider the following situation: let S be the segment 0 ≤ s ≤ 1 on the s-axis
where s is the label of a fluid particle. A fluid configuration is defined by the coordi-
nate f (s) for a particle with the label s, that is it is a map f : S → R, and we assume
that f is a monotone function, that is s1 ≤ s2 ⇒ f (s1) ≤ f (s2). The configuration
space is X = { f ∈ W := L2(S,R) | f is a monotone function on S}. This space
is stratified in the following way. Let f (s) ∈ X . This function may be constant on
at most countably many intervals σ . Let � be the collection of such intervals where
f (s) = const and define the stratum X� to be the set of all functions f in X such that
f |σ = const for every σ ∈ �. Let W� = { f ∈ W | f = const on each σ ∈ �};
then X� = X ∪ W� . We see that its orthogonal complement is

W⊥
� =

{
f ∈ W |

∫
σ

f ds = 0 for every σ ∈ � and f = 0 outside ∪σ∈� σ
}
.

Consider the space W ⊕W and define the set Z ⊂ W ⊕W (which is the desired
extension of the space X ) as follows. First, let Y0 = X ⊕ {0} ⊂ W ⊕ W . Next, for
every � �= ∅, let Y� = X� ⊕ W⊥

� and set

Z := Y0

⋃ (⋃
�

Y�

)
.
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We are now in the position to formulate the variational problem whose solutions
describe motions of a continuous family of particles on the line that stick upon
collisions. Let f0 ∈ X be the initial position of the particles and set g0 = f0 ⊕{0} ∈
Y0 ⊂ Z . Let g1 ∈ Z . For any trajectory gt ∈ Z with 0 ≤ t ≤ 1 we define its action
J {gt } = ∫ 1

0
1
2 |ġt |2dt . Among all trajectories gt in Z connecting g0 and g1 we

choose the one with minimal J {gt } (such trajectory exists and is unique). Now,
define the trajectory ft in X by ft = P gt , where P is the projection from W ⊕ W
onto the first coordinate. This is the desired trajectory of the system.

Remark 3.1. Note that the additional variables (the second term in W ⊕ W in the
definition of the extended space Z ) are necessary to define a sufficiently wide class
of motions. If we simply defined f0, f1 ∈ X then the action minimizing trajectory
ft from f0 to f1 would be a motion along the straight segment connecting these
two points (since X is a convex set). For such a trajectory the particles would not
collide at all (or, if you wish, they would collide only at t = 1).

Remark 3.2. If we attempt to use this approach to construct the motion of a con-
tinuum of particles in R

d , d > 1 then we encounter a new difficulty: the set of
admissible configurations of the particles is no longer convex. Therefore, particle
collisions are not as easily controlled and parametrized as in the one-dimensional
case. In particular, it is unclear how to use this method to give a variational descrip-
tion of the formation of “shock waves”, that is, hypersurfaces where the mass is
concentrated with positive density. In the theory of shock waves individual particle
motions are described for potential solutions only, cf. Section 3.1.

However, there exists another class of sticking flows in R
3, namely, flows with

constant density (and decreasing energy), see [133]. Such flows are dissipative weak
solutions of the Euler equations and are vaguely similar to turbulent flows. Their
construction is based on different ideas (not on a variational principle) and it would
be interesting to define them in a way corresponding to the above 1D systems.

We thus arrive at the following problem:

Problem 5. Find a variational description of the system of material particles, mov-
ing in R

d with d > 1 and sticking upon collision, for both potential and non-
potential fluid flows. This formulation should be sufficiently flexible to describe the
formation and development of shock waves in the system described by the multi-
dimensional Burgers equation.

Remark 3.3. The above variational principle should be closely related to the models
of adhesion particle dynamics studied in [126]. It seems to give the same results for a
finite number of sticking particles. However, the approach in [126] is fundamentally
one-dimensional, while the approach described above may be extended to higher
dimensions as well.

Indeed, for a finite number of particles even in higher dimensions one can
assign which particles stick together. However, on the way to this collision they
may bump into other particles. For a finite number of particles there is an excuse
that the probability of this happening is zero. But, in the case of a continuum, for
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example, given a continuous density at the initial moment particle trajectories will
intersect en masse. One might allow that by envisioning a “dusty matter” with a
multi-flow structure and no pressure (for example, this might be the case of stars
in the universe when different streams of stars move in different directions in the
same volume). Alternatively, one might confine to piecewise-smooth flows with
stratified density (supported on a stratified manifold with components of different
dimensions). The latter setting is close to Kantorovich’s theory of optimal mass
transport, cf. [19,20], where such a motion in 1D with gluing of particles and shock
waves is described and the variational principle is written in terms of differential
inclusions on the space of transport maps.

4. Rigid and Fluid Modelling of Invariant Metrics

Since the work of V. Arnold it is well-known that while the Euler equation of
a rigid body corresponds to a left-invariant metric (depending on the body shape)
on the group SO(3), the Euler equations of ideal hydrodynamics correspond to
an L2 right-invariant metric on the diffeomorphism group Dμ(M), see [2,5]. Left
invariance of the rigid body metric is related to the fact that the body’s energy
depends on the angular momentum in the body and does not depend on its position
in the ambient space. On the other hand, right invariance of the fluid metric is
related to the norm of the velocity field in the space but does not depend on the
parametrization of fluid particles. In other words, the energy metric on SO(3) is
left-invariant because the spaceR3 is isotropic, while the metric onDμ(M) is right-
invariant because the fluid is homogeneous. We thus see that the reasons of right-
and left-invariance are quite different.

A natural question arises: does there exist an interesting mechanical system
with SO(3) as a configuration space such that the energy metric is right-invariant?
The answer is yes, and in what follows we give its description.

First, we define an object called a “hedgehog”. This is a ball B whose center
is a fixed point O ∈ R

3 so that it can freely rotate around it. Suppose that at every
point on the surface of the ball grows a “needle”, that is, there is a (sufficiently
long) radial segment. The whole structure rotates around the fixed center O as a
solid body so that its configuration space is SO(3).

Next, suppose that on every needle there is an infinitesimal point mass which is
able to move freely along the needle; let us call it a bead. Let ρ(ω) be the angular
mass density, so that the bead mass in the solid angle dω is ρ(ω)dω (the hedgehog
itself is massless). Now, suppose that there is a closed surface S surrounding the ball
so that every needle pierces S. Lastly, suppose that every bead is forced to remain
at all times on the surface S and at the same time is confined to its own needle. It
is natural to call this system “beads on the hedgehog” (we do not consider here its
practical realizations). This system depends on the angular bead density ρ(ω) and
the surface S.

There are two cases of the hedgehog having some symmetry. In the first case,
the surface S is a sphere concentric with the hedgehog, while the bead density ρ(ω)

is arbitrary (Fig. 1). It is easy to see that this is the same as a solid body with a fixed
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Fig. 1. Beads on a spherical “hedgehog model”: the angular density of beads on a concentric
sphere S is arbitrary. The corresponding metric on SO(3) is left-invariant

Fig. 2. Beads on a star-shaped “hedgehog model”: the surface S ⊂ R
3 is arbitrary, the

angular density of beads ρ(ω) is constant. The corresponding metric on SO(3) is right-
invariant

point, the Euler top. In this case the metric on SO(3) is left-invariant: the energy
depends on the angular velocity of the system in the body but not in the space.

In the second case, S is an arbitrary star-shaped surface (fixed in R
3), while the

angular density ρ(ω) is constant (Fig. 2). In this case the metric on the group SO(3)

is right-invariant: now the energy depends on the angular velocity of the system in
the space but not in the body. Note that the equations describing this dynamics will
be the Euler-Arnold equations of the right-invariant metric on SO(3) which differ
only by a sign from the standard equations for the Euler top.

In all other cases the metric is neither left- nor right-invariant. It would be
interesting to investigate this system for generic S and ρ(ω). It would also be of
interest to define and study a model system where the configuration space is SL(2),
since this group looks more “liquid-like”. A similar question about possible fluid
models is very intriguing.

Problem 6. Describe a model for an L2 left-invariant metric on the groupDμ(M).
Are there any interesting physical systems exhibiting this type of invariance?

5. The Cauchy and Boundary Value Problems

5.1. On Local Well-Posedness of the Cauchy Problem

First rigorous results on local existence and uniqueness of solutions to the
Cauchy problem for the incompressible Euler equations (1.1) were obtained in



Geometric Hydrodynamics in Open Problems Page 11 of 43    15 

the 1920s by Gunther [53] and Lichtenstein [90] in the class of Hölder C1,α

spaces. Global existence in 2D was established shortly thereafter by Wolibner
[149]. Various subsequent extensions and improvements of these results in Hölder,
Sobolev Hs andWs,p and more exotic Besov Bs

p,q and Triebel-Lizorkin Fs
p,q spaces

can be found in the papers [12,36,66,68,151,152]; see also recent monographs and
surveys [7,10,25,34,96].

Roughly speaking, a Cauchy problem is locally well-posed in a Banach space
X (in the sense of Hadamard) if given any initial data in X there exists a T > 0
and a unique solution in the space C([0, T ], X) which depends at least continu-
ously on the data. Otherwise, the problem is said to be ill-posed in X . A number of
ill-posedness mechanisms have been investigated in the literature, from loss of reg-
ularity properties of the solution map, to energy decay, to nonuniqueness and finite
time blowup. Although global (in time) well-posedness of the 3D Euler equations
has long been seen as the major open problem in analysis and PDE, interesting
questions concerning local well-posedness (in any dimension) have also remained
open for a long time.

Recall that the Cauchy problem for the incompressible Euler equations is not
well-posed in the standard Hölder spaces in the sense that solutions may depend
discontinuously on general initial data in C1,α . However, this dependence is known
to be continuous in, for example, the “little” Hölder space (essentially, the comple-
tion of smooth functions in the Hölder norm), as well as in Ws,p Sobolev spaces
with p � 2 and s > n/p + 2, cf. for example, [36,67,105]. Somewhat more
refined existence and uniqueness results are available in B1∞,1 and Bn/p+1

p,1 where
1 < p < ∞, see for example [22,120,144]. On the other hand, there are examples
of 3D solutions of (1.1) which exhibit instantaneous loss of regularity. Examples
in Cα with 0 < α < 1, as well as in B1∞,∞, F1∞,2 and log Lipα with 0 < α � 1
were constructed in [11,85,104]. Many other ill-posedness results in the borderline
Sobolev and Besov spaces Wn/p+1,p, Bn/p+1

p,q with 1 � p < ∞ and 1 < q � ∞
and in the classical spaces Ck and Ck−1,1 can be found in [17,18,38].

One remaining case of particular interest can be formulated as follows:

Problem 7. Are the Euler equations (1.1) ill-posed in the Besov spaces B1∞,q for
1 < q < ∞?

To put this problem in a functional space context, first recall that

Hs ⊂ C1+α ⊂ B1∞,1 ⊂ C1 ⊂ Lip ⊂ F1∞,2 ⊂ B1∞,∞ ⊂ logLip ⊂ Cβ

for any 0 < α, β < 1 and s > n/2 + 1 + α and next observe that, in the specified
range, the B1∞,q spaces interpolate between B1∞,1 and the Zygmund space B1∞,∞.

5.2. A Two-Point Boundary Value Problem on Diffeomorphism Groups

Turning to the geodesic equation (1.2), consider the Sobolev completionD s
μ(M)

of the diffeomorphism group Dμ(M). As is well known, the Cauchy problem for
(1.2) can be solved (for small values of t) by standard Banach contraction arguments
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provided that s > n/2 + 1, cf. [36]. Consequently, the L2 metric (1.3) admits a
smooth Riemannian exponential map

expe : TeD s
μ(M) → D s

μ(M) (5.1)

defined in a neighbourhood of the zero vector by expe tv0 = γ (t) where γ is the
unique geodesic from the identity element e with initial velocity v0. Furthermore, as
in the classical finite-dimensional Riemannian geometry, we have d expe(0) = id,
and therefore expe is a local diffeomorphism of Banach spaces by the inverse func-
tion theorem. In particular, this implies local well-posedness of the Euler equations
in Hs for s > n/2+1, as well as unique solvability of the two-point boundary value
problem for the geodesic equation (1.2) in any sufficiently small neighborhood of
e in D s

μ(M). (In geometric language Wolibner’s global existence and uniqueness
result in [149] amounts to a statement about geodesic completeness of the mani-
fold D1,α

μ (M) of Hölder diffeomorphisms under the right-invariant L2 metric (1.3)
when n = 2.)

A natural question is whether the two-point problem holds in the large. We
formulate this as two related problems.

Problem 8. (Two-point boundary value problem) Let M be a compact two-dime-
nsional Riemannian manifold and let ϕ be a volume-preserving diffeomorphism of
M of Sobolev class Hs.

(i) (Surjectivity Problem) Find a divergence-free vector field v ∈ Hs(M) such that
expe v = ϕ.

(ii) (Variational Problem) Find a curve γ (t) inD s
μ(M) from e to ϕ which minimizes

the L2 energy functional E(γ ) = 1
2

∫ 1
0 ‖γ̇ (t)‖2

L2dt.

Although two-point boundary value problems in hydrodynamics are no less funda-
mental than the Cauchy problem they have not received as much attention. From
the geometric point of view (i) and (ii) may be regarded as infinite-dimensional
versions of the classical Hopf–Rinow theorem. One strategy for (i) is to follow the
classical argument of Hopf and Rinow compensating for the lack of local compact-
ness with a priori estimates derived with the help of weak solutions and Lyapunov
functions [132]. Another approach could use the properties of the exponential map
as a nonlinear Fredholm and quasiruled map [37,129,134]. In connection with (ii)
we mention a surprising result of [130,131] that there exist volume-preserving dif-
feomorphisms of a simply connected compact 3-manifold which cannot be joined
by a shortest path in D s

μ(M). For the two dimensional case partial results can be
found in [103].

5.3. Global Geometry of the Group of Volume-Preserving Diffeomorphisms

Next, we turn to questions concerning the global geometry of the group D s
μ.

The following problem is related to Problem 8.

Problem 9. Does the energy (action) functional corresponding to the L2 kinetic
energy metric (1.3) in 2D hydrodynamics satisfy the Palais–Smale condition?
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Another interesting question is related to closed geodesics. Suppose that M
is a compact surface (possibly with boundary) of genus at least 2 or that M is a
multi-connected bounded domain in R

2 with at least two holes.

Problem 10. Does there exist a closed geodesic in D s
μ(M)?

Note that the Kelvin–Helmholtz theorem implies that any geodesic loop in D s
μ(M)

is necessarily a closed geodesic. One may try to construct a suitable Lyapunov
function (see below) to show that in this case a geodesic never returns to its initial
configuration.

Yet another basic problem concerns the fluid configuration space Dμ(M) itself.
As an infinite dimensional (Frechet) Lie group it can be viewed as a Riemannian
homogeneous space equipped with a right-invariant L2 metric (1.3). However, the
groupDμ(M) is not a Riemannian symmetric space. This means that the (geodesic)
central symmetry about the identity in Dμ(M) is not an isometry of the L2-metric.
In this respect, we have to keep in mind that the geodesic symmetry is not the same
as the group-theoretic symmetry, that is, the map g → g−1. The latter (group-
theoretical) inversion maps a right-invariant metric on the group into a left-invariant
one, hence, indeed, it is not an isometry. However, on the group of finitely differen-
tiable diffeomorphisms like D s

μ(M) the group inversion is not even differentiable,
while if we use the Holder Ck,α-class diffeomorphisms, it is not even continuous.
In contrast, the geodesic central symmetry is a smooth map in Dμ(M) for any
reasonable model space (like Hs and Ck,α) but the lack of its isometry property is
not so immediately seen. Hence, phrasing our question somewhat informally, we
may ask

Problem 11. How “far” is Dμ(M) from being an infinite-dimensional (locally)
symmetric Riemannian space?

This question is related to the following long standing (although little known)
paradox. Consider the parallel sinusoidal steady fluid flow given by the stream
function ψ = cos(k y) on the two-dimensional torus. Then well-known Arnold’s
theorem claims that the sectional curvature of the group of exact area-preserving
torus diffeomorphisms is nonpositive in all (and negative in most) two-dimensional
directions containing the direction given by ψ , see [2,6]. (There is a similar state-
ment for a plane-parallel flow in a periodic channel.) Following Arnold’s idea on an
intrinsic relation between negative curvature and the flow (Lagrangian) instability,
one could expect that any plane-parallel flow is unstable. But this does not seem to
be the case, since there are (Eulerian) stable parallel flows (for instance those with
convex velocity profiles on “short tori”, see discussion in [6]), while Lagrangian
and Eulerian instabilities are closely related, cf. [122].

The root of this misunderstanding lies in our “symmetric” intuition. In fact,
this relation between the curvature sign and (in)stability of geodesics exists for
symmetric spaces (say, on groups with bi-invariant metrics), see for example [6,
100]. On the other hand, the group Dμ(M) is not symmetric, but rather “chiral”:
as a Riemannian space it is somewhat twisted in one direction, and hence we
observe a discrepancy between instability of geodesics and its negative curvature.
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The chirality of Dμ(M) might have some other, more profound, consequences
beyond the instability issues, which would be interesting to explore.

6. Partial Analyticity of Solutions in 2D

6.1. Analyticity of Particle Trajectories

The Euler equations keep bringing surprises—such as a relatively recent theo-
rem, which we now present. Suppose that M is a compact 2D real analytic manifold
or a bounded domain with analytic boundary. Let u be a solution of the Euler equa-
tions in M of Sobolev class Hs for s > 2, obeying the slip condition u ‖ ∂M if
∂M �= ∅. Finally, let x(t) be any particle trajectory satisfying the flow equation
d
dt x(t) = u(t, x(t)).

Theorem 6.1. Any particle trajectory x(t) of the flow is a real-analytic function of
t .

This theorem was first established by Serfati [127], then in various forms
by Inci et al. [57], Shnirelman [135], Constantin et al. [26], Zheligov-
sky and Frisch [157] and, in case of stationary flows, Nadirashvili [116]. The
proofs by the above authors are based on two entirely different ideas. In the works
[26,127,157] the function x(t) was formally expanded in the Taylor series, whose
convergence was proved using commutator estimates. Thus, this was a straight-
forward proof. On the other hand, the works [57,116,135] used the Lagrangian
description of the fluid motion, that is they considered the flow as the motion gt on
the infinite-dimensional manifold D s

μ(M), equipped with the L2-metric, along a
geodesic. The manifoldD s

μ(M) is a real-analytic Banach manifold and the geodesic
spray (generating the geodesic flow in the tangent bundle to D s

μ(M)) is an analytic
vector field, since it can be extended to the complexification CD s

μ(M) as a holo-
morphic vector field. Then the standard theorems of existence, uniqueness and
analytical dependence of solution gt on t and on the initial condition x0 can be
applied, since they hold for any analytic Banach manifold [31,56].

The work [135] was based on a similar idea: using the Kelvin–Helmholtz vor-
ticity theorem, one can reduce the Lagrange equation to a first order equation of the
form d

dt gt = V (gt ) on D s
μ(M), where V is an analytic vector field on the infinite-

dimensional manifold D s
μ(M). Then the above basic existence, uniqueness, etc.

theorems are applicable, and the same result follows: the flow gt ∈ D s
μ(M) is an

analytic curve depending analytically on g0.
Interestingly, the latter work closely follows the original approach of Lichten-

stein [89] in his proof of the local in time existence and uniqueness of solutions to
the Euler equation. Lichtenstein proved that the vector field V is Lipschitz (in fact,
he proved that it is C1) and that it can be continued analytically in the complexifi-
cation of D s

μ(M). Thus, in 1925 he was just one step away from proving that the
flow gt is analytic in t! However, Lichtenstein’s work appeared roughly 10 years
before the Banach spaces acquired their name; about 20 years before the concepts
of complex analysis (like the analytic implicit function theorem) were extended to
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the complex Banach spaces; and about 30 years before it was acknowledged that
the basic concepts of smooth and analytic topology including the theory of ODEs
can be transferred to the complex Banach manifolds. So, if he made that step his
discovery would be truly extraordinary.

Problem 12. Are particle trajectories analytic in time in any dimension? For flu-
ids on manifolds with boundary how does this analyticity depend on whether the
boundary is analytic or not?

Nadirashvili [116] proved analyticity of flow lines of a stationary solution to
the 2D Euler equation. His theorem is local and holds independently of the analyt-
icity (or the lack thereof) of the boundary ∂M . It follows the classical analyticity
proof for solutions of analytic elliptic equations and uses the fact that an elliptic
equation becomes hyperbolic if one of the variables, say x1, is replaced by ix1.
(It is worth recalling that flow lines and vorticity lines coincide for stationary 2D
solutions and hence are analytic simultaneously.)

Remark 6.2. In dimensions d = 2 and 3 the analyticity of particle trajectories in
R
d (that is in the case without boundary) was proved in [26]. Apparently the higher

dimensional case does not present fundamentally new difficulties, and the study
in [26] was confined to low dimensions because of their physical significance.
The paper [55] covers several related cases, including vortex patches among other
situations.

There is also the following related problem: are particle trajectories of Yudovich
solutions analytic in time? (Recall that the Yudovich class consists of divergence-
free vector fields u satisfying ‖curl u‖L∞ < ∞. This inequality implies that the field
u has the Osgood property [121], which guarantees the uniqueness of trajectories.)
It is currently only known that they are Gevrey regular, due to the result in [50], see
also [23]. It seems to be unknown if this Gevrey regularity is sharp.1

The difficulty here is as follows. It is known that Sobolev vector fields are
integrated to Sobolev diffeomorphisms; in other words, Sobolev vector fields form
the Lie algebra of the group of Sobolev diffeomorphisms. However, it is unknown
what would be the result of integration for vector fields from the Yudovich class,
that is what are “Yudovich homeomorphisms”. Do such homeomorphisms form
a group? Does this “group” admit the structure of a real Banach manifold? Can
this “manifold” be complexified? Presumably, the answers are “no” to all those
questions, and one has to look for other approaches to this problem.

In regard to analyticity,Lebeau [84] considered piecewise-continuous solutions
of 2D Euler equations which are irrotational outside of a time-dependent curve and
have a tangential discontinuity on the curve, cf. Section 13 on vortex sheets. Lebeau
proved that the curve of discontinuity is analytic as long as such a solution exists,
that is, the vortex sheets are analytic in 2D.

1 We thank the anonymous referee for this remark.
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6.2. Stationary Flows and Partially Analytic Functions

For a stationary solution u of the Euler equations particle trajectories are the
same as flow lines. The stream function ψ(x) of a stationary flow u = ∇⊥ψ is a
peculiar function: it may be an Hs function but its level lines are analytic. A function
ψ(x) whose level lines are real-analytic will be called a partially analytic function.
The set of partially analytic functions is by no means a vector space: just consider
a pair of such functions ψ1 and ψ2 whose (analytic) level lines are transversal to
each other; then the level lines of ψ1 + ψ2 are not necessarily analytic. Thus, one
arrives at an important problem to find a natural structure on the set of partially
analytic functions.

One natural idea would be to choose level lines, rather than the values at points,
as an adequate representation of a partially analytic function. For example, consider
a function ψ(x1, x2) defined on a periodic curvilinear strip M = {(x1, x2) | g(x1) ≤
x2 ≤ h(x1)}, where g and h are real periodic functions with the same period 
,
and such that every level line ψ(x) = const has an equation x2 = a(x1, ψ) with
a(x1, 0) ≡ g(x1) and a(x1, 1) ≡ h(x1). One can assume that x1 ∈ T = R/
Z.
Then the function a(x1, ψ) uniquely defines ψ(x1, x2) in the flow domain M . The
function a(x1, ψ) is of class Hs and it is analytic in x1 for any fixed ψ .

To be more precise, let us define the corresponding function spaces. Let us fix
σ > 0.

Definition 6.3. The space Xs
σ consists of real-analytic functions f (x1), x1 ∈ T

which can be analytically continued into the strip |Im x1| ≤ σ and such that f (· ±
iσ) ∈ Hs(T), where the norm is || f ||Xs

σ
= ‖ f (· − iσ)‖Hs (T) +‖ f (· + iσ)‖Hs (T).

Definition 6.4. The space Y s
σ consists of functions a(x1, ψ) such that

(i) for any ψ ∈ [0, 1], a(x1, ψ) ∈ Xs
σ ;

(ii) the functions a(x1 ± iσ,ψ) belong to Hs(T × [0, 1]).
The norm in the space Y s

σ is defined as follows:

||a||Y s
σ

= ||a(· + iσ, ·)||Hs (T×[0,1]) + ||a(· − iσ, ·)||Hs (T×[0,1])

Finally we define the space Zs
σ follows:

Definition 6.5. A functionψ(x1, x2)defined in the domain M = {(x1, x2) | g(x1) ≤
x2 ≤ h(x1)} belongs to the space Zs

σ if its level lines ψ = const can be defined
by the equation x2 = a(x1, ψ), where the function a(·, ·) belongs to the space Y s

σ .
The norm in Zs

σ is induced from the space Y s
σ .

An immediate application of this space is to the description of the set of stream
functions of stationary solutions of the Euler equations in the periodic domain
M = {(x1, x2) | g(x1) ≤ x2 ≤ h(x1) for x1 ∈ T}. Indeed, if we consider stationary
solutions u(x1, x2) in Hs with stream functions ψ(x1, x2) in Hs+1 then the set of
stationary solutions does not form a smooth manifold in Hs . This difficulty was
partially circumvented by Choffrut and Sverak [24] by resorting to the C∞
Frechet spaces and the Nash–Moser–Hamilton inverse function theorem. In this
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C∞ setting the stationary solutions form a smooth manifold parametrized locally
by distribution functions of the vorticity. However, those tools might be too powerful
for the task in finite smoothness.

On the other hand, using the space Y s
σ , Danielski [29] established a local

description of the set of stationary flows in the periodic channel. Let u0 be the
velocity field of a parallel flow satisfying several conditions in the domain M0 =
T×[0, 1]. Namely, assume that u0(x1, x2) = (U0(x2), 0) satisfies (1) U0(x2) > 0,
(2) U ′

0(x2) = F0(x2) > 0, (3) U ′′
0 (x2) > 0; and finally, (4) let ψ0(x1, x2) =

�0(x2) = ∫ x2
0 U0(t)dt be the stream function of the flow u0, then ψ0 satisfies the

boundary conditions ψ0(x1, 0) = 0, ψ0(x1, 1) = 1. Its level curves ψ0 = const
have the equation x2 = a0(ψ) where a0(ψ) is the inverse function to �0(·).

One can regard the above periodic domain M = {(x1, x2) | g(x1) ≤ x2 ≤
h(x1) for x1 ∈ T} as being close to the parallel strip M0. We are looking for the
stationary flows in M which are close to the parallel flow u0 in M0.

Theorem 6.6. For any parallel flowu0 possessing the properties (1)–(4) there exists
ε > 0 such that the following holds. Suppose that ||g(x1)−0||Xs

σ
< ε and ||h(x1)−

1||Xs
σ

< ε. Then there exist stationary flows u ∈ Hs close to u0 in the following
sense:

(1) for each solution u, its stream function ψ ∈ Zs+1
σ ;

(2) the stream function ψ satisfies relation �ψ = F(ψ) for a certain monotone
function F ∈ Hs−1 close to F0 in Hs−1;

(3) the functions ψ form an analytic submanifold � ⊂ Zs
σ which is locally analyt-

ically diffeomorphic to a neighbourhood of F0 in Hs−1[0, 1].
The stationary flows with stagnation points present some additional difficulties.

6.3. An Attractor of 2D Euler Equations and its Semianalytic Structure

Consider a compact analytic Riemannian 2-manifold M with or without bound-
ary, for example, a 2-torus. Let YU (M) be the Yudovich space of vector fields on
M consisting of divergence-free vector fields u such that curl u is in L∞(M). The
Euler equations define a perfect dynamics on the space YU (M), that is a one-
parameter group S of transformations St : YU (M) → YU (M) continuous in the
H1 topology (that is weakly continuous in YU (M)). For any u ∈ YU (M) let
O(u) be the orbit of u. Let Ō(u) be the weak closure of O(u) in H1(M). Note
that for any v ∈ O(u), one has ||curl v||L2 = ||curl u||L2 and for any w ∈ Ō(u),
||curl w||L2 ≤ ||curl u||L2 .

Definition 6.7. A field u ∈ YU (M) is called a generalized minimal flow (or a
GM-flow) if for any w ∈ Ō(u) we have ‖curl w‖L2 = ‖curl u‖L2 . The set of all
generalized minimal flows is denoted by GM .

This definition has the following meaning. For any fluid flow its vorticity is trans-
ported by the fluid (the Kelvin–Helmholtz theorem). Thus, the vorticity field is
deformed by the flow and, as t → ∞, this deformation effectively leads to mixing.
The mixing operator K has the form K f (x) = ∫

M K (x, y) f (y) dy, where the
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Fig. 3. The appearance of vorticity blobs in the flows on the two-torus

kernel K (x, y) is a non-negative measure in M × M such that
∫
M K (x, y) dx ≡ 1

and
∫
M K (x, y) dy ≡ 1 (that is K is a bistochastic operator). Any mixing operator

is a contraction in L2(M). Thus, for any w ∈ Ō(u), curl w = K (curl u) for some
mixing operator K . If u ∈ GM then for any w ∈ Ō , curl w is equimeasurable
with curl u. In other words, curl u is not mixed by the Euler flow; the measure
μ = (curl u) dx can be disintegrated into components μα which are permuted by
the flow and keep their individuality even as t → ∞.

In [136] it was proved that the set GM ⊂ YU (M) is nonempty and it is a weak
attractor for the Euler flow (see also [32]). (In fact, it is an attractor in a specific
sense and it has not been proved that it is an attractor in the usual sense.) For some
domains (including the periodic strip) Bedrossian and Masmoudi [13] proved
that this subset is nontrivial, that is, there exists u ∈ YU (M) such that u /∈ GM .

Any stationary flow is by definition a GM-flow. However, numerical examples
show that there exist nonstationary GM flows (at least, on the torus). Such a flow
comprises several large vortices (blobs) gracefully moving around and permanently
changing their shapes. These flows appear to be time-periodic and quasiperiodic;
it is unclear whether they can be more complex (say, chaotic).

If u(x) is a stationary flow (that is a fixed point of the group {St }) then the
level lines of vorticity are at the same time the flow lines and hence are real-
analytic. Futhermore, if u ∈ GM is, say, periodic or quasiperiodic, our conjecture
is that the level lines of vorticity curl u(x, t) = const are analytic as well. At
least this property is preserved by the Euler evolution. Hence, we propose several
problems/conjectures.

Problem 13. Prove that for any two-dimensional compact analytic Riemannian
manifold M with analytic boundary the set GM (M) of generalized minimal flows
is a nonempty and proper subset of the Yudovich space YU (M).

Problem 14. Prove that for any GM-flow u(x, t) the level lines of vorticity
curl u(x, t) = const are real-analytic.

One other property of GM-flows is observed in the numerical simulations, cf.
Figure 3. The flow domain M contains some number of vorticity blobs B1, . . . , BN

and a background B0. Accurate numerical results hint at the following conjecture.

Problem 15. For any GM-flow curl u = const in B0.
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Thus, the level sets of curl u are of two sorts: real-analytic curves and entire domain
B0.

6.4. Are Anisotropic Function Spaces the Future of Hydrodynamics?

The function spaces used in the theory of linear PDEs are less suitable for the
nonlinear ones and they seem completely inadequate for the Euler equations. One
of the most prominent features of the Euler solutions is the built-in analyticity of the
particle trajectories, flow lines for stationary flows, and (conjectured) analyticity of
level lines of vorticity of GM-flows.

Problem 16. Define anisotropic spaces more appropriate for hydrodynamics with
larger smoothness in the direction of flow lines. Prove existence and uniqueness
theorems for ideal hydrodynamics in those function spaces in any dimension.

The concept of GM-flows appears closely related to the “ancient flows” for
the Navier–Stokes equations but, in fact, it is different. Both concepts express the
general idea that, in reality, we observe flows that have existed since long time
ago (one may imagine a river flow). In this regard, it is not natural to consider
flows starting at some definite time t0 with some (arbitrary) initial velocity u0.
GM-flows have natural, intrinsic structure (analytic level lines of vorticity) and
some natural, finite regularity in the transversal direction. The question of which
functional classes are suitable for their study is an intriguing open problem.

Problem 17. Determine the true regularity of GM-flows in the framework of anis-
otropic function spaces.

7. More Differential Geometry: the L2 Exponential Map and its Singularities

In classical finite-dimensional Riemannian geometry singular values of the
exponential map are the conjugate points. The question concerning existence of
conjugate points in diffeomorphism groupsD s

μ(M) and their role in hydrodynamics
was posed by Arnold [2]. Examples for the two-torus T2 and the spheres Sn were
constructed in [101,102] with further examples in [15,33,88,123,124,131,140,
147].

In infinite dimensions conjugate points are of two types depending on whether
the derivative of the exponential map fails to be one-to-one (mono-conjugate points)
or onto (epi-conjugate points). Moreover, they can accumulate along finite geodesic
segments or have infinite order. Such pathological situations can be ruled out in 2D
but not in 3D hydrodynamics. More precisely, we have the following result from
[37,103]:

Theorem 7.1. Let M be an n-dimensional Riemannian manifold (possibly with
boundary).

(i) If n = 2 then the L2 exponential map is a nonlinear Fredholm map of index
zero.
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(ii) If n � 3 the the Fredholm property of the L2 exponential map fails in general.

Thus the structure of singularities of the exponential map in 2D hydrodynamics
resembles that of a smooth map between finite-dimensional manifolds. This leads
to the following natural question.

Problem 18. Quantify the failure of the Fredholm property of the L2 exponential
map in D s

μ(M) for a compact Riemannian 3-manifold M.

Examples of three-dimensional manifolds for which the exponential map (5.1) is not
Fredholm can be found for example in [37,103,123]. It is reasonable to expect that
this failure is borderline in the following sense. Explicit formulas for the derivative
of the exponential map of a general right-invariant Sobolev Hr metric derived in
[103] decompose it as A + Kr where A is an invertible operator and

w �→ Krw = (1 − �)−r/2Pe(ιwd(1 − �)r/2v
�
0)

�, v0 ∈ TeD
s
μ

where Pe = 1−∇�−1div is the usual Helmholtz–Weyl (or Leray–Hopf) projector
onto divergence-free vector fields, ιw denotes the interior multiplication by a vector
field w, while � and � stand for the standard isomorphisms of the Riemannian metric
on M . When n � 3 and r > 0 then the operator Kr turns out to be compact
and the associated Hr exponential map is Fredholm. In the case of the 3D fluids
K0 is no longer compact. In order to measure the deviation of K0 from being a
compact operator one can, for example, examine its essential spectrum. Explicit
examples like the rotating solid cylinder or the Taylor–Green vortex, as well as
careful numerical experiments, may provide some valuable insight.

Here are several other interesting questions concerning the structure and the
role of conjugate points in 2D hydrodynamics.

Problem 19. (a) Determine the order of the first conjugate point along any L2

geodesic starting from the identity in D s
μ(M).

(b) Is there a relation between existence of conjugate points inD s
μ(M) and Arnold

stability criterion for stationary flows in M?

The answer to (a) may have some bearing on Problem 8. For example, if the
order of any conjugate point turns out to be always greater than one then the fact
that the exponential map is Fredholm of index zero would indicate that there is only
one connected component of the identity over which expe is a covering map, see
[103].

Regarding (b) recall that according to Arnold’s criterion [2,5,6] a stationary
flow of an ideal fluid is Lyapunov stable if the quadratic form given by the sec-
ond derivative of the kinetic energy restricted to the coadjoint orbits is positive or
negative definite. It can be shown that for simple domains such as the disk, the
annulus and the straight channel no steady flows satisfying Arnold’s stability pos-
sess conjugate points. (We assume here that the two-dimensional fluid domain M
has a nonempty boundary.) It is therefore tempting to expect that this is true more
generally. See [33] for additional background and [141] for recent results in this
direction.
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8. Long Time Behaviour of 2D Flows

Since existence, uniqueness and regularity of 2D solutions of (1.1) on the infinite
time interval is quite well established we can proceed to ask questions concerning
the long time behaviour of fluid flows.

8.1. Complexity Growth for 2D Flows

Let M be a two-dimensional compact manifold possibly with boundary. Recall
that the L2 exponential map (5.1) is a local diffeomorphism near the identity e in
D s

μ(M). Fix ε > 0 and let Uε = expe(Bε) where Bε = {v ∈ TeD s
μ | ‖v‖Hs < ε}

is an open Hs ball of radius ε. Any diffeomorphism in D s
μ(M) can be represented

as a product η = η1 ◦ · · · ◦ ηN of a finite number of elements from Uε, see [92–
94]. Let Cε(η) denote the minimal number of factors in this representation and let
C(η) = lim supε→0

(
ε Cε(η)

)
be the absolute complexity of η.

Problem 20. Show that for any geodesic γ (t) inD s
μ(M) its absolute complexity is

exponentially bounded above:

C(γ (t)) � et‖γ̇0‖Hs .

This estimate would imply the well known double exponential estimate for solutions
of the Euler equations (1.1), namely ‖v(t)‖Hs � eC1etC2 . However complexity of
a flow as defined above has a broader sense than its regularity.

Problem 21. Show that for a typical geodesic γ (t) inD s
μ(M)we have C(γ (t)) � t .

Roughly, we say that a family of geodesics starting from the identity in D s
μ(M)

is typical if the complement of the corresponding set of initial velocities in TeD s
μ

has infinite codimension. Examples of “typical” L2 geodesics whose complexity
grows linearly in time are the one-parameter subgroups of D s

μ(M) and (possibly)
the quasi-periodic solutions of (1.1).

8.2. Aging of the Fluid, Irreversibility and Lyapunov Functions

Consider an arbitrary solution u = u(t, x) of the Euler equations in M . Given
any two time instants can one decide which velocity field u(t1, x) or u(t2, x) cor-
responds to an earlier time instant? In other words, is it possible to determine the
aging of the fluid from its velocity field? Numerical experiments suggest that fluids
“age” with time: starting with a smooth initial velocity u0(x) the corresponding
solution becomes “wrinkled” in that its derivatives generally grow.2

Problem 22. (Aging problem) Is it possible to quantify the “aging” property of the
fluid?

2 V. Yudovich referred to this phenomenon as “regularity deterioration”.
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Perhaps the best way is to find a Lyapunov function L defined and continuous
on the space of fluid velocities in TeD s

μ such that d
dt L(u(t, ·)) � 0 where u is a

solution of (1.1) with equality holding on a “slim” subset of TeD s
μ (say, of infinite

codimension).
The first Lyapunov function in this context was constructed by Yudovich in

1970s for flows with a rectilinear streamline (for example, flows in domains whose
boundary contains a straight line segment), see [153,155]. The construction was
subsequently generalized for arbitrary bounded domains in [114]. It implies “reg-
ularity deterioration” at least on the boundary.

It is natural to expect that there are also Lyapunov functions which are supported
inside the fluid domain. Examples describing evolution of weak singularities in the
Lagrangian flow were found in [132]. The fact that these singularities become grad-
ually “sharper” as the fluid evolves suggests the same deterioration phenomenon
stressed by Yudovich.

Consider an ideal fluid in a periodic channel M = T × (0, a). Assume that its
initial velocity u0 is C1 close to that of a plane-parallel flow whose velocity profile
v = v(x2) satisfies v′ > 0 and v′′ > 0 in (0, a). Suppose that the level lines of
ω0 = curl u0 satisfy ∇ω0 �= 0 in M and that one of the lines ω0 = const has a
“kink”.

Problem 23. Show that the “kink” does not disappear as the fluid evolves in time.

9. Entropy and Fluids

9.1. Entropy of a Set and Entropy of a Measure

In general terms, entropy is a measure of diversity of some ensemble. For a
finite set S with N elements of equal “weights” (that is, equivalent in some respect)
the entropy H(S) is equal to log2 N . If the elements si ∈ S (i = 1, . . . N ) have
different weights wi then we define the entropy of the weighted finite set S to be
H(S) = −∑N

i=1 wi log2 wi . For example, if the whole mass (assumed to be 1)
is concentrated at some sk then H(S) = 0; otherwise H(S) > 0 with maximum
value log2 N if wi = 1/N for all i = 1, . . . N .

If S is an infinite set then the definition of H(S) is not so clear. It is based on
approximations of the set S by finite sets and of the weight (that is, the probability
measure) μ on S by some discrete weights.

Suppose that S is a compact subset of a complete metric space X . In the absence
of a measure on S we can define the Kolmogorov ε-entropy of the set S as Hε(S) =
log2 Nε where Nε is the cardinality of the minimal ε-net, that is, the minimal number
of ε-balls in X covering S. (In fact, Hε(S) is usually defined as an equivalence class
of such functions as ε → 0.) If S is equipped with a measure then we define an
analogue of a weighted finite set as above and we can try to define a suitable
analogue of the ε-entropy.3 One option is to define it as the ε-entropy of the support

3 It is not clear if such an object has anything in common with the entropy of an invariant
measure as typically defined in the theory of dynamical systems.
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of the given probability measure μ. This, however, would give only an upper bound,
just like for weighted finite sets. Another option is to define

Hε,δ(μ) = inf
{
Hε(Y ) | Y ⊂ X is compact and μ(X \ Y ) � δ

}
.

What is the relation of Hε,δ(μ) to the entropy of a weighted finite set?
The definition of entropy given above depends on a pre-existing measure on X .

If X is a finite set then we can take μ to be a counting measure; if X is a phase
space of classical mechanics then μ could be a Liouville measure. But on a general
metric space no such choices are available. On the other hand, if X is also a vector
space then we can cover its compact subsets by congruent sets other than metric
balls. For example, we can use cylindrical domains with finite-dimensional base.
Suppose that X is a Hilbert space with coordinates x1, x2, . . . and let Xn be the
subspace defined by xi = 0, i > n. Subdivide Xn into cubes C j of side length
ε > 0 and let K j = π−1

n (C j ) where πn is the orthogonal projection onto Xn .
Given a compact set S ⊂ X for any n let Ñ (n, ε) be the number of cubes C j ⊂ Xn

having nonempty intersection with πn(S). Let Ñ (ε) = supn Ñ (n, ε) < ∞ and now
define H̃ε(S) = log2 Ñ (ε). Note the similarity of this function to Hε(S) defined
previously.

Finally, consider an analogue of the ε, δ-entropy for a probability measure μ.
Let Xn be a finite-dimensional subspace of X as before subdivided into ε-cubes
C j and let K j = π−1

n (C j ). Set Hε,n(μ) = ∑
j μ(K j ) log2 μ(K j ) and observe that

for any fixed ε this quantity is bounded uniformly in n. Define the ε-entropy of μ

to be Hε(μ) = supn Hε,n(μ).

Problem 24. Investigate properties of the entropy functions Hε, Hε,δ, H̃ε and H̃ε,δ

in this section and explain relations between them.

As an example, if M = Qd is the unit cube in R
d and μ = μd is the d-

dimensional Lebesgue measure then Hε(μ) = ε−dεd log2 εd = d log2 ε. The result
is the same if we view the cube as a subset Qd ⊂ Xd supporting μd and compute
its ε-entropy in the whole space X . But what will happen if we consider Qd as a
subset of Xn for some n > d and rotate it so that it is no longer a coordinate cube?
In this case the sum becomes

∑
j μ

d(C j ) log2 μd(C j ) ∼ log2 εd + o(log2 ε) so
that the principal asymptotic does not change under rotations of M . The same can
be said about other deformations: the ε-entropy behaves like d log2 ε · μd(X).

9.2. Entropy Decrease for the Euler Flow

Computer experiments show that the velocity field of an ideal 2D fluid behaves
similarly for all initial conditions. The outcome is a small collection of moving vor-
tices forming a hierarchical structure of “islands”, “lakes”, “satellites”, “archipela-
goes”, etc. that are not mixing but instead preserve their individuality. This scenario
looks quite strange from the physical viewpoint. It is obvious that the diversity of
the initial conditions is much higher than that of the outcomes. The quantitative
measure of the diversity in this case is the ε-entropy.

The natural (physical) phase space here is V 0 = {u ∈ L2(M,R2) | div u =
0, u ‖ ∂M}. Consider an initial velocity ensemble, that is, a probability measure
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μ0 in V 0. In fact, the initial velocity should be more regular than merely L2 so
that the Cauchy problem is correctly posed. A good example is the Yudovich space
Y = {u ∈ V 0 | curl u ∈ L∞}, but we can also start with an initial velocity in
V s = TeD s

μ for some s > 2. The exact value of the Sobolev index s is not essential
because in the long run the flow will approach some asymptotic regime possessing
a “natural” though presently unknown regularity. This asymptotic flow will belong
to the Yudovich space and may be more regular but it is not clear if this regularity
can be captured by some nice function space (for example, it may be an element of
a Frechet space and there may be no reasonable choice of a Banach space for this
purpose).

Suppose that μ0 is a compactly supported measure in V 0. We can define its
ε-entropy Hε(μ0) (or at least its principal asymptotic as ε → 0). Let μt be the
measure at time t transported by the Euler flow. The phenomenon discussed here
can be described by the inequality lim inf t→∞ Hε(μt ) � Hε(μ0) in the sense that
for a limiting measure μ∞ we have Hε(μ∞) = O(Hε(μ0)) as t → ∞ and for
some measures μ0 the “big Oh” is replaced by the “little oh”.

Such a result would make a physicist uneasy because it looks like a violation
of the Liouville theorem. However, this is not a real violation since the true phase
space of the fluid includes not only velocities of all the fluid particles but also their
positions. Therefore, the elements of the space V represent merely “half” of the
phase space coordinates with the other “half” represented by the flow map in Dμ.

Problem 25. Explain the phenomenonof entropy decrease for solutions of theEuler
equations (1.1).

10. Hamiltonian Properties of the Euler Equation

The Riemannian geometric approach to hydrodynamics has a Hamiltonian re-
formulation, see for example [3,6]. Namely, consider again the group of smooth
volume-preserving diffeomorphismsDμ(M) and denote its Lie algebra of divergence-
free vector fields by g = Vectμ(M). The regular dual space g∗ of g can be naturally
identified with the space of 1-forms modulo differentials of functions on M , that is
with the space of cosets g∗ = �1(M)/d�0(M). The inertia operator A : g → g∗
relies on the choice of metric on M and to a divergence-free vector field v it asso-
ciates the coset [v�] of the 1-form u = v� related by means of the metric. Then the
hydrodynamic Euler equation (1.1) can be written as an evolution of 1-forms

∂t u + Lvu = −d f

for a certain time-dependent function f on M , or as an evolution of cosets of
1-forms:

∂t [u] = −Lv[u],
where u = v� ∈ �1(M) and [u] ∈ �1(M)/d�0(M). This is a Hamiltonian
equation with respect to the Lie-Poisson structure on g∗ and with the Hamiltonian
function given by the fluid’s kinetic energy E(v) = 1

2 〈Av, v〉 = 1
2‖v‖2

L2(M)
. This

way, the equations of an ideal fluid dynamics in any dimension form a Hamiltonian
system.
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10.1. Nonintegrability

In the two-dimensional case, besides the kinetic energy, this system has in-
finitely many enstrophy invariants. These invariants are Casimir functionals: they
do not depend on the metric on M , but specify a coadjoint orbit (that is a particular
set of isovortical vector fields) on which the Euler evolution takes place but say
nothing about the dynamics on the orbit itself.

Problem 26. Prove non-integrability of the 2D Euler equation.

It is worth to emphasize that, while there is a number of papers related to in-
finitely many conserved quantities or the Lax form of the Euler equation in 2D
(see, for example, [47,87]), these features cannot be regarded as good indicators
of integrability. The existence of a Lax pair is a property of all Euler–Poincaré
equations, since the latter are Hamiltonian on the dual space to a Lie algebra with
respect to the Lie–Poisson structure and hence are given by the coadjoint opera-
tor, “mimicking the commutator” in the Lie algebra. Typically, in order to prove
algebraic-geometric integrability of a Lax equation one needs to present a Lax form
nontrivially depending on a spectral parameter. However, no such form has been
found for the 2D Euler equations.

On the other hand, one could try to prove non-integrability of this infinite-
dimensional system with the help of the methods used to show non-integrability of
finite-dimensional Hamiltonian systems. This could invoke, for instance, the meth-
ods related to nontrivial monodromies for periodic orbits [113,159], or Melnikov
integrals for bifurcations of saddle separatrices, or one might be able to proceed by
means of a “local” analysis in the vicinity of a steady solution. Since there are sev-
eral (not necessarily equivalent) definitions of integrability in infinite dimensions,
the above problem would be to show that the 2D Euler equations fail to satisfy at
least one of these integrability definitions.

Note that the set of all Casimirs has been recently fully described in [58,61] for
two-dimensional surfaces M without boundary for the groups of symplectic and
Hamiltonian diffeomorphisms. The two-dimensional boundary case was settled in
[79].

10.2. Finite-Dimensional Approximations

It is also worth pointing out that there are various approximations of the 2D
Euler equations on the plane, the 2-torus or the 2-sphere by finite-dimensional
Hamiltonian systems. Two of the best known approximations are (i) by SU(N )-
algebras, whose structure constants converge to those of the algebra Vectμ(T2)

[156] and (ii) by a system of N point vortices on R
2, as N → ∞ [97]. In a recent

paper [108] it was shown how both of these approximations can be unified within
a quantization approach to the 2D hydrodynamics.

Dynamics of N point vortices on the plane has been studied since the time
of Helmholtz and Kirchhoff [97] and is of particular interest; see for example
[118]. For instance, on the plane or the sphere the corresponding finite-dimensional
Hamiltonian systems turn out to be integrable for N ≤ 3, while for the torus the
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system is integrable only for N ≤ 2. This is related to the fact that the corresponding
Kirchhoff equations for point vortices on R

2 and S2 are invariant with respect to
the three-dimensional isometry groups E(3) and SO(3), while for T2 this group of
isometries is isomorphic to R

2 and hence two-dimensional. While integrability still
holds for 4 vortices at zero total vorticity on the sphere S2 and at zero total vorticity
and momentum on the plane R

2, for N ≥ 4 point vortices of generic strengths the
motion becomes non-integrable, see [80,81,158].

In [106,108,136] the authors observed the following intriguing phenomenon:
on the two-dimensional sphere and torus the 2D Euler motion for a smooth and suf-
ficiently general initial vorticity after some time (and with a very small numerical
viscosity) leads to merging of smaller vortex formations of the same sign into larger
blobs, cf. Figure 3. Surprisingly, in those numerical simulations it was recovered
that this clustering continues until the blob dynamics, approximated by point vortex
motion, “becomes integrable”. Namely, such clustering leads to an integrable dy-
namics of 2 vortex blobs on the torus, 3 vortex blobs for general angular momentum
on the sphere, and 4 vortex blobs on the sphere provided that the initial angular
momentum was zero, thus exactly recovering integrable cases for N = 2, 3, and 4
point vortices on T

2,R2 and S2 discussed above see [106,108].

Problem 27. Justify the phenomenon observed in [106,108] that integrable cases
of point vortices seem to be attractors for 2DEuler flows with generic smooth initial
vorticity in 2D (for small numerical viscosity). Design a model of dissipation in
the 2D Euler equation which would produce such an integrable dynamics at large
times.

Historically, studies of point vortices include constructions of explicit solutions,
conditions for the presence and absence of a collapse, description of relative equi-
libria, bifurcation of solutions for N = 2 and N = 3 point vortices, see [1,118].
A nice collection of integrable motions on the sphere and torus can be found in
[107,118]. For manifolds with boundary there is a broader variety of motions. For
instance, the cusp motion of a pair of point vortices on a half-plane is related to
the golden ratio [78]. The motion of 3 point vortices on a half-plane is already
non-integrable [150], as well as, apparently, the motion of two point vortices in the
quadrant. The motion of point vortices on the half-plane and the quadrant for the
lake equation is related to the motion of vortex rings, membranes and to the more
general binormal equation [62,63,150].

Problem 28. Study in detail the motion and bifurcations of a small number of
vortices on various manifolds: half- and quarter-plane, hemi- and quarter-sphere,
disk, torus, cylinder and half-cylinder, etc.

Of particular interest is the study of point vortices on non-orientable manifolds,
which started only recently, see for example [8,9,137,143] for a description of the
motion and bifurcations of a small number of vortices on such non-orientable
surfaces as the Möbius band, projective plane and the Klein bottle.

Problem 29. Study the first non-integrable cases for a small number of point
vortices on non-orientable surfaces. Describe the full set of Casimirs and finite-
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dimensional approximations for the group of area-preserving diffeomorphisms of
non-orientable surfaces, analogous to the ones in the orientable cases.

11. Dynamical Properties of the Euler Equation: Wandering Solutions,
Chaos, Non-mixing and KAM

Consider a finite-dimensional model of Euler hydrodynamics: the Euler–Poincaré
equation on a finite-dimensional Lie group corresponding to a positive-definite en-
ergy form. This system is Hamiltonian on a coadjoint orbit and satisfies the condition
of the Poincaré recurrence theorem. Indeed, by fixing the energy level one confines
the dynamics to the compact set (even for a non-compact group) which is the inter-
section of the energy level and the orbit. The dynamics preserves the volume form
on this intersection (see [6]) and hence yields to Poincaré’s recurrence. Therefore
every point of the orbit in the course of evolution returns arbitrarily close to its
initial position after arbitrarily large time.

This is not the case for a general infinite-dimensional dynamical system and,
in particular, for the Eulerian hydrodynamics. Nadirashvili showed that the Euler
equation of a 2D fluid has wandering solutions: there is an initial condition of a
fluid in a 2D annulus whose neighbourhood never returns sufficiently closely to the
initial condition after a certain time [117]. A 3D analogue of that result is unknown.

Problem 30. Prove that the 3D Euler equation has wandering solutions.

The only type of results in this direction are the non-transitivity and non-mixing
properties of the 3D Euler equations proved using the ideas of the KAM theory; see
[72]. It turns out that the dynamical system defined by the hydrodynamical Euler
equation on any closed Riemannian 3-manifold M is not mixing in the Ck topology
(for k > 4 and non-integer) for any prescribed value of helicity and sufficiently
large energy. Furthermore, this non-mixing property of the flow of the 3D Euler
equation has a local nature: in any neighbourhood of a “typical” steady solution
on S

3 there is a generic set of initial conditions such that the corresponding Euler
flows will never enter a vicinity (in the Ck norm for any non-integer k > 10) of the
original steady flow; see [73].

Along the way one constructs a family of functionals on the space of divergence-
free C1 vector fields on M which are integrals of motion of the 3D Euler equation:
given a vector field these functionals measure the part of the manifold M foli-
ated by ergodic invariant tori of fixed isotopy types. The KAM theory allows one
to establish certain continuity properties of these functionals in the Ck-topology
and to get a lower bound on the Ck-distance between a divergence-free field (in
particular, a steady solution) and a trajectory of the Euler flow. This way one ob-
tains an obstruction for the mixing under the Euler flow of Ck-neighbourhoods of
divergence-free vector fields on M . The local version of non-mixing is based on a
similar KAM-type argument to generate knotted invariant tori from elliptic orbits
in nondegenerate steady Euler flows.
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Problem 31. Relax the restrictions on the smoothness index k of the Ck spaces
(related to application of the KAM) and prove non-transitivity and non-mixing
properties of the 3D Euler in full generality.

It turns out that the Euler equations on higher-dimensional Riemannian man-
ifolds possess a kind of universal embedding property, somewhat similar to the
theorems of Whitney and Nash on embeddings of manifolds as submanifolds in
higher-dimensional Euclidean spaces.

Namely, it was shown in [139] that a certain large class of finite-dimensional
quadratic dynamical systems in R

d can be realized as subsystems of the hydro-
dynamical Euler equation on the manifold SO(d) × T

d+1 with a certain metric
depending on the original system. Subsequently, Torres de Lizaur [142] proved
that such a realization is possible for any dynamical system of a finite-dimensional
manifold or for its approximation. This way essentially any finite-dimensional dy-
namical system or its approximation to an arbitrary degree can be embedded as
an invariant (tiny) subsystem in a higher-dimensional Euler equation for a certain
metric.

The construction in [142], which has already found other applications, goes as
follows: for a given finite-dimensional dynamical system one first embeds it via
Whitney to a system on a submanifold inside a higher-dimensional torus, extends it
hyperbolically to a dynamical system in the torus, and then writes it via the smooth
vector field (represented by a Fourier series) in that torus. Then one truncates it
to a Fourier polynomial (this is where the approximation with an arbitrary pre-
cision takes place). Finally, one observes that a Fourier polynomial vector field
v(x) = ∑

l cl e
ilx ∂/∂x rewritten in trigonometric coordinates pl := eilx becomes

quadratic: v(p) = i
∑

k,l k cl pk pl ∂/∂pk . After that one employs Tao’s embedding
[139] of quadratic systems to the higher-dimensional Euler equations. The exam-
ples include such structurally stable systems exhibiting chaos as the ABC flows
inside the higher Euler phase space.

One should note that the dynamics of the Euler equation outside of this tiny
submanifold is not controlled and, in principle, could be rather regular. For in-
stance, one might have dynamical systems with a very regular behaviour almost
everywhere, but with some chaotic behaviour on a very tiny submanifold.

Problem 32. Consider an integrable system on a compact 2n-dimensional man-
ifold, which has n first integrals in involution, functionally independent almost
everywhere. How wild could such a system be on a singular submanifold, where
the integrals become dependent?What are constraints dictated by the integrability?
Could one observe a chaos on some tiny submanifold of an integrable system?

12. Steady Euler Flows

Steady Euler flows in a domain M ⊂ R
d are defined by the equation v · ∇v =

−∇ p along with the divergence-free restriction div v = 0 and the condition v||∂M
of tangency to the boundary. While it is easy to construct a steady 2D flow with
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compact support in R
2 (take a radial stream function with compact support) it is a

notoriously difficult task to perform this feat in 3D.
An explicit recent example of a smooth steady incompressible Euler flow in R

3

with compact support was given in [51], see also a more general approach of [27].
In this type of solutions the pressure and Bernoulli function are dependent.

Arnold pointed out the remarkable topology of steady 3D fields: for an analytic
steady field, not everywhere collinear with its curl, the flow domain is almost
everywhere fibered into invariant tori and annuli, see [2,6]. If the steady field is
everywhere collinear with its vorticity but the proportionality coefficient is a generic
function, then the domain is still fibered in a similar way. If the steady field is
Beltrami, that is, it is an eigenfield for the curl operator, curl v = λ v, then its
topology can be very intricate. Hence a paradox arises: a generic steady field has
a very regular topology, while a sufficiently chaotic field must necessarily be an
eigenfield for the curl operator.

Problem 33. Explain this paradox: what is a typical steady field and what gener-
icity notion is natural for steady fields?

It is worth mentioning that the notion of a typical object in fluid dynamics might
be quite different from the standard one. For instance, as discussed in Section 6.1
stream functions of steady 2D flows always have analytical levels even if they have
only finite smoothness across the levels.

In [115] the authors considered slightly compressible 3D vector fields and their
incompressible limit to explain the above paradox. The paper [42] also sheds more
light on this problem: the levels of the Bernoulli function cannot be spheres.

It turned out that the topology of Beltrami fields can be arbitrarily complicated.
In [40] it was established that for any finite link L ⊂ R

3 and any nonzero real
number λ one can deform the link L by a C∞ diffeomorphism of R3, arbitrarily
close to the identity in any Cm norm, such that the image of the link becomes a set
of vortex lines of a Beltrami field v with the eigenvalue λ in R

3, curl v = λv in R
3

and, moreover, v falls off at infinity as |x |−1. In [41] a similar result was proved
for the existence of a finite collection of toroidal knotted or linked stream/vortex
tubes in R

3. The boundaries of such tubes are structurally stable invariant tori
for a Beltrami field with a quasiperiodic flow on them. Furthermore, there are
Beltrami fields with invariant tori of arbitrary topology that enclose regions with
any prescribed number of hyperbolic periodic orbits, see [39,43]. In this series
of papers Encisco and Peralta-Salas with coauthors established other interesting
topological properties of Beltrami fields on manifolds. We refer to these papers for
various open problems related to this topic.

Another active direction of research is related to the interaction of topological
and metric properties of divergence-free vector fields. By topological we mean
those properties that are defined using the volume form only, for example average
linking of the field trajectories, which is given by the field’s helicity. For an exact
divergence-free vector field u on a three-dimensional manifold M with a volume
form μ its helicity (or asymptotic Hopf) invariant is

H(u) =
∫
M

ω ∧ d−1ω =
∫
M

(u, curl−1u) μ,
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where ω := ιuμ (interior product) is the 2-form on M whose kernel field is u,
see [109–112]. (Here the second expression for helicity, convenient in explicit
computations, relies on a choice of a Riemannian metric on M , while the first
one shows that helicity does not depend on that choice.) Actually, the helicity was
shown to be the only topological invariant in a large class of functionals under
the action of the group of volume-preserving diffeomorphisms [44]. (One should
also mention that for velocity fields v that are solutions of the Euler equation, their
helicity is defined as the helicity invariant of the corresponding vorticity field u :=
curl v, hence in terms of the velocity the corresponding expression is H(curl v) =∫
M (curl v, v) μ.)

While topological properties of the fields require only fixing a volume form,
their geometric properties require a Riemannian metric to define them. An example
of the latter is the L2-energy of the field E(u) := 1

2‖u‖2
L2(M)

= 1
2

∫
M (u, u) μ.

The inequality “helicity bounds energy”,

E(u) ≥ const · H(u),

means that nontrivial average linking of the (magnetic) field’s trajectories prevents
its energy from complete dissipation via volume-preserving diffeomorphisms, see
[4,110,111]. (This process is often called magnetic relaxation.) This inequality can
be proven by noticing that the operator curl−1 on a compact manifold or domain
M has bounded spectrum and by applying the Poincaré inequality; see [4,6]. Ge-
ometrically one can visualize this inequality for a vector field confined to a pair
of simply linked solid tori. To minimize the energy of this linkage one needs to
shorten trajectories of the field. On the other hand, due to the incompressibility
property the shrinking of trajectories in one of the tori leads to stretching of the
trajectories in the other. It is a particularly challenging problem to describe and
analyze the process of magnetic relaxation to an equilibrium, possibly nonsmooth;
see [14,110–112].

Note that the “helicity–energy” inequality is far from being sharp: helicity H(u)

could be zero, while the field u could possess nontrivially linked tori with opposite
linkings or a higher order nontrivial linking. For knots there is a hierarchy by the
Milnor and Massey numbers: once the preceding invariants are equal to zero, the
invariants of the next level are well defined and distinguish the corresponding knots
and links.

Problem 34. ([6]) Find a sequence of higher helicity invariants for vector fields so
that, given a field, if all the previous invariants are equal to zero for it, then the first
nonzero invariant bounds the field’s energy from below.

We refer to the book [6] and its second edition for the discussion of open
problems and a large bibliography on the subject, see also [30,46,83,112].

13. Singular Vorticities in the Euler Equation

The localized induction approximation (LIA) procedure applied to the 3D Euler
equation in vorticity form gives the vortex filament (or binormal) equation:

∂tγ = γ ′ × γ ′′
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for the vorticity δγ supported on a curve γ ⊂ R
3. Similarly, for the vorticity 2-form

δP supported on a vortex membrane, a submanifold Pn−2 ⊂ R
n of codimension

2, the LIA equation turns out to be

∂t q = J (MCP (q)),

where MCP (q) is the vector of the mean curvature of the membrane P at the point
q ∈ P and J rotates by π/2 this vector in the normal plane to Nq P to P , see
[54,62,64,71,128].

The binormal equation is known to be equivalent to a 1D compressible fluid
equation and to the nonlinear Schrödinger equation (NLS) in 1D via the Hasimoto
transform. It also gives singular solutions of the Gross–Pitaevsky (or the 3D NLS)
equation [62,63].

Problem 35. Find a direct link from 3D NLS equation to 1D NLS equation as a
reduction to singular solutions, rather than going through the LIA procedure. A
similar question arises for the compressible Euler equations as a reduction from
3D to singular solutions supported on 1D submanifolds.

Another interesting case of singular solutions is that of the vorticity supported
on a hypersurface, called a vortex sheet. One can introduce a symplectic structure on
vortex sheets similar to the Marsden-Weinstein symplectic structure on membranes;
see [71] for the corresponding Hamiltonian formalism.

However, it is more natural to describe the motion of vortex sheets by means
of a variational principle à la Arnold, albeit for a different object, as geodesics
on an infinite-dimensional Lie groupoid, see Section 2.2. Using the corresponding
vortex sheet groupoid instead of the group of volume-preserving diffeomorphisms
in Arnold’s framework, one obtains a geometric interpretation for discontinuous
fluid flows, as well as their Hamiltonian description on the corresponding dual Lie
algebroid, see [59]. It turns out that vortex sheet type solutions of the Euler equation
are precisely the geodesics of an L2-type right-invariant (source-wise) metric on the
Lie groupoid of discontinuous volume-preserving diffeomorphisms. The geodesics
on the groupoid turn out to be weak solutions of the Euler equation with vortex
sheet initial data [59].

Geometric description of vortex sheets leads to an interesting non-local metric
of hydrodynamical pedigree on shape spaces: it is an H−1/2-metric on closed
hypersurfaces bounding the same volume (or equivalently, on constant densities
inside those hypersurfaces), see [59]. Such a metric is constructed with the help
of the Neumann-to-Dirichlet operators and it is always nondegenerate since it is
bounded below by the Kantorovich–Wasserstein distance. Geodesics with respect
to this metric describe motions of potential fluid flows with vortex sheets and fluids
with free dynamic boundary, cf. [59,86,91].

Problem 36. Describe the differential geometry of shape spaces equipped with
such H−1/2-metrics obtained as metrics on dynamic boundaries or vortex sheets.
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14. The Compressible Euler Equation and the NLS Equation

There is a well-known relation between the NLS equation and (quantum) com-
pressible fluids in any dimension. In 1927 Madelung [95] gave a hydrodynamic
formulation of the Schrödinger equation. For a pair of real-valued functions ρ and
θ on an n-dimensional manifold M (with ρ > 0) the Madelung transform is the
mapping � : (ρ, θ) �→ ψ given by ψ = √

ρeiθ : M → C.
The Madelung transform maps the system of equations for a barotropic-type

fluid to the Schrödinger equation. Namely, let the function (or density) ρ and the
potential velocity field v = ∇θ satisfy the barotropic-type fluid equations⎧⎪⎨

⎪⎩
∂tρ + div(ρv) = 0,

∂tv + ∇vv + ∇
(

2V − 2 f (ρ) − 2�
√

ρ√
ρ

)
= 0

(14.1)

for some functions V : M → R and f : (0,∞) → R. Then, the (time-dependent)
complex-valued wave function ψ = √

ρeiθ given by the Madelung transform sat-
isfies the nonlinear Schrödinger equation on M :

i∂tψ = −�ψ + Vψ − f (|ψ |2)ψ. (14.2)

The 1D Madelung transform, when interpreted in terms of curvature and torsion of
the curve γ , reduces to the Hasimoto transform.

It turns out that the Madelung transform not only maps one Hamiltonian equa-
tion to another, but it also preserves the symplectic structures related to the equations
[75,76,125]. More precisely, let PC∞(M,C) denote the complex projective space
of smooth complex-valued functions ψ on M : its elements are cosets [ψ] of the unit
L2-sphere of wave functions. The Madelung transform induces a symplectomor-
phism between PC∞(M,C\{0}), the projective space of non-vanishing complex
functions, and the cotangent bundle of probability densities T ∗Dens(M) equipped
with the canonical symplectic structure [75,76]. Furthermore, the Madelung trans-
form is an isometry and a Kähler map between the spaces T ∗Dens(M) equipped
with the Sasaki-Fisher-Rao metric, which is the cotangent lift of the Fisher-Rao
metric on the space of densities Dens(M), and PC∞(M,C\{0}) equipped with the
Fubini-Study metric and the natural symplectic structures defined above, see [75–
77]. Finally, in [49] it was shown that the Madelung transform can be regarded as
the momentum mapping for the space of wave functions regarded as half-densities
on M and acted upon by the semi-direct product group of diffeomorphisms and
smooth functions.

Problem 37. Extend the above results on symplectomorphism and the Kähler map
to the wave functions with zeros on M. Explain the quantization condition contro-
versy [48,145,146] in the language of the momentummap for the above semi-direct
product group.

The connection between equations of quantum mechanics and hydrodynam-
ics might shed some light on the hydrodynamic quantum analogues studied, for
example, in [21,28]: the motion of bouncing droplets in certain vibrating liquids
manifests many properties of quantum mechanical particles.
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Fig. 4. The 2D direct and inverse cascades together. (Illustration from the cover of Russian
magazine “Engineer”, where the gears are Education, Science, and Enterprise. No comment)

Problem 38. Explain the droplet-quantum particle correspondence by a combina-
tion of averaging and the Madelung transform.

15. Mechanical Models of Direct and Inverse Cascades

15.1. Three Models of Energy Propagation

The inverse cascade phenomenon looks especially striking if we think of its
mechanical model. Imagine a mechanism consisting of a countable number of
wheels connected with gears, chains, springs and other joints which are assumed to
be weightless and frictionless. Suppose that at the moment t = 0 some wheels are
set into rotation (Fig. 4). In the course of motion the energy is redistributed among
the wheels. The standard idea of statistical mechanics is that the energy tends to the
uniform distribution between the wheels so that it will spread further and further.
However, there are some other types of behaviour of such infinite mechanisms.

On the one hand, the energy can spread so fast that at least part of it escapes to
infinity in finite time and the total energy in the system decreases. On the other hand,
the energy may become “trapped”, that is it does not spread at all, and, moreover,
it is concentrated in the first few wheels and its distribution does not depend on the
initial energy profile, provided the energy is initially contained in any finite number
of wheels.

There is also a softer regime, where the energy does not spread to all the wheels
but its distribution depends on the initial profile (the Fermi–Pasta–Ulam regime).
This might seem implausible but the fluid presents us with examples of such be-
haviour. In fact, consider a fluid flow u(x, t) on the torus Tn , n = 2 or n = 3. We
can regard the Fourier coefficients uk(t) as the analogue of the kth wheel angular
velocity. The time evolution of uk is described by a certain quadratic system of
ODEs which can be regarded as a description of connections between the wheels
(we could even design a realistically looking “mechanism” made of weightless and
frictionless parts realizing these connections). Then, for n = 3, we can expect a
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breakdown of a regular solution of the Euler equation and a transition to a turbulent
motion with decreasing energy (which will be discussed below in more detail). If
n = 2, we observe the inverse energy cascade with the formation of a few large
vortices so that the energy is concentrated in a few lower harmonics, while the
energy spectrum is decreasing over frequencies.

Thus, we have at least three types of behaviour of an “infinite mechanism”:
the tendency to the energy equidistribution, the inverse cascade (the energy tends
to concentrate in the first few modes) and the direct cascade (the energy escapes
to infinity in finite time). It is important to find out which properties of the mech-
anisms are responsible for so different behaviour. As a first step in this direction
we can try to design some models, that is some simpler devices displaying similar
behaviour. The original mechanism, such as a fluid in the Fourier representation,
is too complicated to yield to the statistical theory with a lot of unrelated features.
It would be interesting to find simpler (though infinite) mechanical systems which
display the same statistical behaviour and which can be regarded as models of the
fluid in this respect.

15.2. A Model of Energy Equidistribution

A classical example of a mechanical system with a well established tendency
to the energy equidistribution is the gas of a large (but finite) number of solid balls
moving inside a bounded domain. It appears possible to modify this system to
obtain a system with the direct energy cascade. Consider a system of a countable
number of balls Bj moving inside a bounded domain (“box”) D. Suppose these
balls fall into a countable number of “families” F1, F2, . . . such that the family Fi
includes ni equal balls of radius ri and mass mi . For simplicity suppose that the
balls of a family Fi “feel” only balls of the neighbouring families Fi−1 and Fi+1
and can penetrate through the balls from other families without any resistance. This
means that the Hamiltonian of the system has the form

H(p, q) =
∑
i

∑
Fi

p2
j

2mi
+

∑
i

∑
Bj∈Fi
Bk∈Fi+1

Ui,i+1(|q j − qk |).

Suppose that the total mass is M = ∑
i nimi < ∞ and the sequences of masses mi

and radii ri are decreasing fast enough. Then each ball Bj ∈ Fi is moving through a
“gas” formed by the balls Bk ∈ Fi+1. The “gas” particles Bk ∈ Fi+1 are feeling the
resistance of the “gas” formed by the balls Bk ∈ Fi+2, etc. The question is whether
one can define the sequences ni ,mi , ri in such a way that the direct energy cascade
in the direction of growing i would occur, and the energy would dissipate from
the system? If the answer to the first question is affirmative, could one point at the
details of an actual 3D fluid which play the role of the balls of different families?

Now, the next natural question concerns what happens with the energy that has
escaped from the system? One can introduce the “limit absorption principle” for
our system. Namely, one can introduce a friction for the balls of the family FN

which absorbs the energy and then let N go to infinity. But this solution is not
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Fig. 5. A mechanical apparatus to mimic the inverse cascade

completely legitimate as here the energy sink is included from the beginning and
it is only moved farther and farther away. So, this explanation of the energy escape
is circular.

Problem 39. Is there a more natural way to introduce energy dissipation without
explicit introduction of a friction mechanism?

It would be intriguing to find a relation of the above model to the mechanism
of the energy dissipation in the weak solutions of the Euler equations whose rate
is defined by the Duchon–Robert formula [35]. This would follow the footsteps of
Maxwell’s molecular vortex model for electromagnetic waves [99].

15.3. A Model of the Inverse Cascade

A mechanical model of the inverse cascade requires a more sophisticated design.
First of all, the system will consist of a countable number of chambers C1,C2, . . .

with rigid walls, see Fig. 5. Each chamber Ci is separated by a vertical wall into
two parts, call them the left room and the right room. The wall contains two doors,
the upper and the lower door. Each chamber Ci contains ni equal elastic balls Bi

j
of radius ri and mass mi moving inside Ci and interacting with the walls, with
the details of the mechanism and with other balls according to the laws of elastic
collision. There is a shutter at the lower door equipped with a spring which, when
open, permits the balls to enter from the right room into the left one and, when shut,
prevents the balls from going back. The shutter is connected to a damper which is
interacting with the balls in the next chamber Ci+1. The upper door has no shutter
and the balls can move freely through this door in both directions.

The balls enter the left room from the right one through the lower and the upper
doors and exit only through the upper door, provided the shutter at the lower door
works properly (this is, of course, a true Maxwell’s demon). The last condition can
be satisfied provided that the shutter, being a part of the system, is permanently
cooled, that is its energy being transferred to the balls in the chamber Ci+1 (see the
analysis by Feynman [45]). To this end, the balls in Ci+1 should be much smaller
and much more numerous than inCi , that ismi+1 � mi , ri+1 � ri and ni+1 � ni .
Then the balls in Ci+1 form a “gas” which is effectively viscous and absorbs the
energy of the shutter. If “Maxwell’s demon” works properly then the balls in Ci are
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entrained into the circular motion: on average, they enter from the right room into
the left room through the lower door and leave from the right room mostly through
the upper door. Thus, there appears a stream of balls from the upper door. Let us put
a “turbine” which is rotated by this (possibly weak) stream. In order to ensure its
rotation we put a ratchet-and-pawl which would prevent the reverse rotation of the
turbine. To make this device work we should attach it to the second damper using
the balls in Ci+1 to dissipate the energy. Let this turbine drive through a system of
connecting parts a “stirrer” which transfers energy from the turbine to the balls in
the chamber Ci−1; these balls should be much larger than the ones in Ci , that is
mi−1 � mi , ri−1 � ri , and ni−1 � ni .

The system should work as follows. The balls in the chamber Ci are, on the
average, taking part in the circular motion entering from the right room into the left
one through the lower door and from the left room into the right one through the
upper door (equipped with a nozzle), while the shutter at the lower door is damped
by the damper. The latter is braked by the “gas” of the balls in Ci+1 which are
much smaller than the balls in Ci . The energy of the stream of the balls in Ci is
transferred through the turbine to the much larger balls in the chamber Ci−1. The
ratchet-and-pawl pair is cooled by a similar damper (see the above analysis of this
pair by Feynman). As a result, on the average the energy is transferred to the balls
in the first few chambers.

This mechanism looks like a sort of perpetuum mobile. However, it is neither a
perpetuum mobile of the first nor of the second kind. In fact, it is not a perpetuum
mobile at all but, rather, it is a chain of heat engines: the balls inside each chamber
Ci are the “working body” of the engine. The balls in the next chamber Ci+1 play
the role of a cooler (they are cooling the shutter, the “Maxwell’s demon” and the
ratchet-and-pawl), while the balls in the previous chamber Ci−1 are playing the
role of the load. The engines are quite primitive and their efficiency is very low;
however, there is an infinite number of them so that their overall efficiency is 100%.
Hence, here is the problem.

Problem 40. Is there a similar mechanism which describes a cascade in real hy-
drodynamics? Is it possible to define the parameters ni , mi , and ri in such a way
that the above apparatus works as intended?

It would be interesting and important to find a link between this device and a
more convenient heat engine; in particular, to find some analogues of Maxwell’s
demon or, perhaps even more importantly, to show that a similar mechanism works
in a 2D ideal fluid, thus ensuring inverse energy cascade in it.
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