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We show that nonuniqueness of the Leray–Hopf solutions of the
Navier–Stokes equation on the hyperbolic plane H

2 observed by
Chan and Czubak is a consequence of the Hodge decomposition.
We show that this phenomenon does not occur on H

n whenever
n ≥ 3. We also describe the corresponding general Hamiltonian
framework of hydrodynamics on complete Riemannian manifolds,
which includes the hyperbolic setting.

harmonic forms | steady flows | ill-posedness | Dirichlet problem |
Dodziuk’s theorem

Consider the initial value problem for the Navier-Stokes
equations on a complete n-dimensional Riemannian mani-

fold M

∂tv+∇vv−Lv = −grad p; div v= 0 [1]

vð0; xÞ= v0ðxÞ: [2]

The symbol ∇ denotes the covariant derivative and L = Δ − 2r,
where Δ is the Laplacian on vector fields and r is the Ricci
curvature of M. Dropping the linear term Lv from the first
equation in Eq. 1 yields the Euler equations of hydrodynamics,

∂tv+∇vv = −grad p; div v= 0: [3]

Most of the work on well-posedness of the Navier–Stokes
equations has focused on the cases whereM is either a domain in
R
n or the flat n-torus Tn. In fundamental contributions J. Leray

and E. Hopf established existence of an important class of weak
solutions described as those divergence-free vector fields v in
L∞([0, ∞), L2) ∩ L2([0, ∞), H1) that solve the Navier–Stokes
equations in the sense of distributions and satisfy

��vðtÞ��2L2 + 4
Z t

0

��Def vðsÞ��2L2 ds≤
��v0��2L2 and

lim
t↘0

��vðtÞ− v0
��
L2 = 0

[4]

for any 0 ≤ t < ∞ and where Def v= 1
2 ð∇v+∇vTÞ is the so-called

deformation tensor (ref. 2). When n = 2 using interpolation in-
equalities and energy estimates, it is possible to show that the
Leray–Hopf solutions are unique and regular but the problem is
in general open for n = 3 (e.g., refs. 3 and 4).
There have also been studies on curved spaces, which with few

exceptions have been confined to compact manifolds (possibly
with boundary) (e.g., ref. 5 and references therein). In a recent
paper (1) Chan and Czubak studied the Navier–Stokes equation
on the hyperbolic plane H

2 and more general noncompact mani-
folds of negative curvature. In particular, they showed that in the
former case the Cauchy problem (Eq. 1 and 2) admits nonunique
Leray–Hopf solutions and in the latter a similar nonuniqueness

holds for a modified Navier–Stokes equation using the results of
Anderson (6) and Sullivan (7).
Our goal in this paper is to provide a direct formulation of the

nonuniqueness of the Leray–Hopf solutions on H
2 and explain

that it relies on the specific form of the Hodge decomposition for
1-forms (or vector fields) in this case. We also show that no
such phenomenon can occur in the hyperbolic spaceHnwith n≥ 3,
thus answering the question raised in ref. 1. As a by-product, we
describe the corresponding Hamiltonian setting of the Euler
equations on complete Riemannian manifolds (in particular,
hyperbolic spaces).
We point out that this type of nonuniqueness cannot be found in

the Euler equations. Furthermore, it is of a different nature than
the examples constructed, e.g., by Shnirelman (8) or De Lellis
and Székelyhidi (9). On the other hand, it is similar to non-
uniqueness of solutions of the Navier–Stokes equations defined in
unbounded domains of the higher-dimensional Euclidean space
(cf. Heywood, ref. 10).

1. Stationary Harmonic Solutions of the Euler Equations
Our main result is summarized in the following theorem.

Theorem 1.1.

i) There exists an infinite-dimensional space of stationary L2

harmonic solutions of the Euler equations on H
2.

ii) There are no stationary L2 harmonic solutions of the Euler
equations on H

n for any n > 2.

Proof: Recall the Hamiltonian formulation of the Euler Eq. 3
on a complete Riemannian manifold M (e.g., ref. 11). Consider
the Lie algebra greg =VectμðMÞ of (sufficiently smooth) di-
vergence-free vector fields on M with finite L2 norm. Its dual
space g∗reg has a natural description as the quotient space

Ω1
L2=dΩ0

L2 of the L2 1-forms modulo (the L2 closure of) the exact
1-forms on M. Namely, the pairing between cosets
½β�∈Ω1

L2=dΩ0
L2 of 1-forms β∈Ω1

L2 and vector fields w∈VectμðMÞ
is given by

h½β�;wi :=
Z
M
ðιwβÞdμ;

where ιw is the contraction of a differential form with a vector
field w, and μ is the Riemannian volume form on M.
Let A: greg → g∗reg denote the inertia operator defined by the

Riemannian metric. The operator A assigns to a vector field
v∈VectμðMÞ the coset [v♭] of the corresponding 1-form v♭ via the
pairing given by the metric. The coset is defined as the 1-form up
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to adding differentials of the L2 functions on M. Thus, in the
Hamiltonian framework the Euler equation reads

d
dt

�
v♭
�
= −Lv

�
v♭
�
;

where ½v♭�∈Ω1
L2=dΩ0

L2 and Lv is the Lie derivative in the di-
rection of the vector field v.
The space Ω1

L2 of the L2 1-forms on a complete manifold M
admits the Hodge–Kodaira decomposition

Ω1
L2 = dΩ0

L2 ⊕ δΩ2
L2 ⊕H1

L2 ;

where the first two summands denote the L2 closures of the
images of the operators d and δ, whereas H1

L2 is the space of the
L2 harmonic 1-forms on M. Therefore, we have a natural rep-
resentation of the dual space

g∗reg = δΩ2
L2 ⊕H1

L2 :

It turns out that the harmonic forms in the above represen-
tation correspond to steady solutions of the Euler equation.
Namely, one has the following proposition.

Proposition 1.2. Each harmonic 1-form on a complete manifold M
that belongs to L2 ∩ L4 defines a steady solution of the Euler Eq. 3
on M.
Proof of Proposition 1.2: Let α be a bounded L2 harmonic 1-form

on M. Let vα denote the divergence-free vector field corre-
sponding to α; i.e., v♭α = α: Because the 1-form α is harmonic,
using Cartan’s formula gives

Lvαα= ιvαdα+ dιvαα= dιvαα:

We claim that ιvαα∈Ω0
L2 and consequently dιvαα∈ dΩ0

L2 : In-
deed, by the definition of the vector field vα we have

��ιvαα��2L2 =
Z
M
ðαðvαÞÞ2dμ=

��α��4L4 ;

which is finite by assumption. It follows that the 1-form dιvαα must
correspond to the zero coset in the quotient space g∗reg =Ω1

L2=dΩ0
L2 ,

which in turn implies that Lvαα= 0∈ g∗reg. The latter means that the
1-form α defines a steady solution of the Euler equation,
dα=dt = −Lvαα= 0, which proves the proposition.

If M is compact, then the space of harmonic 1-forms is always
finite-dimensional [and isomorphic to the deRham cohomology
group H1(M)].
According to a result of Dodziuk (12), the hyperbolic space Hn

carries no L2 harmonic k-forms except for k = n/2, in which case
it is infinite-dimensional. It therefore follows that there can be
no L2 harmonic stationary solutions of the Euler equations onH

n

for any n > 2, which proves part ii of Theorem 1.1.
To prove part i we note that for n = 2 the space of harmonic

1-forms on H
2 is infinite-dimensional. Moreover, it allows for

the following construction. Consider the subspace S ⊂H1
L2 of

1-forms that are differentials of bounded harmonic functions
whose differentials are both in L2 and L4:

S =
�
dΦjΦ is harmonic on H2and dΦ∈L2 ∩L4�:

It turns out that the subspace S is already infinite-dimensional.
Indeed, let us consider the Poincaré model of H2, i.e., the unit
disk D with the hyperbolic metric〈,〉h, which we denote by Dh.
It is conformally equivalent to the standard unit disk with the

Euclidean metric〈,〉e, denoted by De. Bounded harmonic func-
tions on Dh can be obtained by solving the Dirichlet problem on
De, i.e., by constructing harmonic functions Φ on D with boundary
values φ prescribed on ∂D. First, note that any such 1-form dΦ is
clearly harmonic:

ΔdΦ = dδdΦ = dΔΦ= 0:

Second, observe that

��dΦ��2
L2ðDhÞ =

Z
D

hdΦ; dΦih dμh =
Z
D

det
�
gij
�hdΦ; dΦie detðgijÞdμe

=
Z
D

hdΦ; dΦie dμe =
��dΦ��2

L2ðDeÞ

and

��dΦ��4
L4ðDhÞ =

Z
D

hdΦ; dΦi2h dμh =
Z
D

det2
�
gij
�hdΦ; dΦi2e detðgijÞdμe

=
Z
D

	
1− jzj2


2
hdΦ; dΦi2e dμeðzÞ≤

Z
D

hdΦ; dΦi2e dμe
=
��dΦ��4

L4ðDeÞ;

where det(gij) = 1/(1 − jzj2)2 is the determinant of the hyperbolic
metric.
Furthermore, for sufficiently smooth boundary values φ ∈

C1+σ(∂D) there is a uniform upper bound for its harmonic ex-
tension inside the disk,

��dΦðxÞ��≤C
��φ��C1+ σð∂DÞ

for any x ∈ D and 0 < σ < 1, and some positive constant C (e.g.,
ref. 13). This implies that (for sufficiently smooth φ) the 1-forms
dΦ define an infinite-dimensional subspace S of harmonic forms
in L2 ∩ L4, which satisfy assumptions of the proposition above. It
follows that they define an infinite-dimensional space of sta-
tionary solutions of the Euler equations on the hyperbolic plane
H

2. This completes the proof of Theorem 1.1.

2. Nonunique Leray–Hopf Solutions of the Navier–Stokes
Equations
Using the fact that suitably scaled steady solutions of the Euler
equations also solve the Navier–Stokes system, the authors in
ref. 1 obtained a type of ill-posedness result for the Leray–Hopf
solutions in the hyperbolic setting.

Theorem 2.1 (ref. 1).Given a vector field ve = (dΦ)♯ on H
2 there exist

infinitely many real-valued functions f(t) for which vns = f(t)ve is
a weak solution of the Navier−Stokes equations with decreasing
energy (i.e., satisfying the Leray–Hopf conditions).
An immediate consequence of this result and Theorem 1.1 is

the following.

Corollary 2.2. There exist infinitely many weak Leray–Hopf solutions
to the Navier–Stokes equation on H

2. There are no nonunique
Leray–Hopf harmonic solutions to the Navier–Stokes equation on
H

n with n ≥ 3 arising from the above construction.

Remark 2.3: The phenomenon of nonuniqueness of solutions to
the Navier–Stokes equation in unbounded domains Ω ⊂ R

n, n ≥
3, is of similar nature (10). Indeed, that construction is based on
the existence of a harmonic function with gradient in L2 and
appropriate boundary conditions in such domains. The Green
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function Φ(x) =G(a, x) centered at a point a outside of Ω has the
decay like Gða; xÞ∼ jxj2−n as x → ∞, so that jdΦðxÞj∼ jxj1−n and
hence jdΦðxÞj2 ∼ jxj2−2n. Thus, for n ≥ 3 the 1-forms dΦ belong to
L2 ∩ L4 on Ω. The corresponding divergence-free vector fields
(dΦ)♯ provide examples of stationary Eulerian solutions in Ω
(with nontrivial boundary conditions) and can be used to con-
struct time-dependent weak solutions vns = f(t)(dΦ)♯ to the
Navier–Stokes equation in Ω, as in Theorem 2.1.

3. Appendix
To make this paper self-contained we provide here some details of
the construction of the weak solutions given in ref. 1. It is conve-
nient to rewrite the Navier–Stokes Eq. 1 in the language of dif-
ferential forms,

∂tv♭ +∇vv♭ −Δv♭ + 2r
�
v♭
�
= −dp; δv♭= 0; [5]

where δv♭ = −div v and Δv♭ = dδv♭ + δdv♭ is the Laplace–deRham
operator on 1-forms.
Let v be the vector field vns = f(t)(dΦ)♯ on H

2 as in Theorem
2.1. Because the 1-form dΦ is harmonic, one needs only to
compute the covariant derivative term and the Ricci term:

∇vns v
♭
ns =

1
2
f 2ðtÞdjdΦj2 and 2r

�
v♭ns

�
= −2f ðtÞdΦ:

Direct computation, taking into account the fact that for H2 we
have r = −1, shows that both terms can be absorbed by the
pressure term, so that the pair ðv♭ns; pÞ, where p := (2f(t) −
f′(t))Φ − 1/2f2(t)jdΦj2, satisfies Eq. 5.
Finally, a quick inspection shows that any differentiable

function f(t) satisfying

f 2ðtÞ+ 4
Z t

0
f 2ðsÞds ≤ f 2ð0Þ

yields a vector field vns that satisfies the remaining conditions in
Eq. 4 required of a Leray–Hopf solution.
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