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The Euler non-mixing made easy
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Abstract
The non-transitivity without extra constraints in the Euler equation in any
dimension is almost evident and can be derived, e.g. from Morse theory.
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The classical Euler equation describes the motion of an invscid incompressible fluid filling a
manifold M as an evolution of its divergence-free velocity field v:

∂tv+∇vv=−∇p.
Here p is the pressure function determined by the equation itself along with the divergence-free
condition div v= 0. In this note we are particularly interested in the three-dimensional setting,
dim M= 3, while the results are also extended to any dimension. One of the main problems of
hydrodynamics is the description of properties of the dynamical system defined by the Euler
equation in an appropriate space of velocity fields. It is known that this is a Hamiltonian system
with the Hamiltonian function given by the L2-energy of the fluid, with the short-time existence
for the corresponding flow for a sufficiently smooth initial v (for v inCk with non-integer k> 1).
While for finite-dimensional Hamiltonian systems on compact manifolds one always has the
Poincaré recurrence, for the 2D Euler on an annulusM= S1 ×R there are wandering solutions
[3, 8], i.e. a neighborhood in the space of initial conditions, such that solutions starting in that
neighborhood will never return to it after some time. Note that the existence of wandering
solutions in 3D Euler, as well as in 2D Euler on an arbitrary M without boundary, is still an
open question.
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There is another related property of dynamics, transitivity. Namely, while wandering solu-
tions emanating from a certain neighborhood never return to it after some time, non-transitivity
of a dynamical system means that there are two different neighborhoods such that solutions
from one of them never pass through the other. The mixing property is an even stronger prop-
erty than transitivity, asking any neighbourhood not only to occasionally overlap with any
other, but to always admit a nonzero intersection after some time. It turns out that the Euler
equation does possess the properties of non-transitivity and non-mixing:

Theorem 1. (i) The 3D Euler equation on a compact M is non-transitive and hence non-
mixing: there are two open neighbourhoods in the Ck, k⩾ 1 phase space of velocities, so that
the Euler flow image of one of them will never intersect the other (as long as the flow exists).
Such neighborhoods can be chosen within (null-homologous) divergence-free fields with any
helicity and sufficiently high energy.
(ii) The Euler equation on a compact M of any dimension is non-transitive and hence non-

mixing in the Ck, k⩾ 1 phase space of velocities (as long as the flow exists).

This property is based on the existence of various first integrals, and, in particular, on vor-
ticity transport, one of remarkable properties of the Euler equation: in 3D the vorticity field
w= curl v is frozen into the flow. A unifying idea for proving non-mixing in the 3D Euler
equation in [1, 6, 7] was as follows: find two neighbourhoods in the space of all velocity fields
with some incompatible topological properties of their vorticities, so that the Euler solutions
with initial conditions in one of them, while preserving this property, would not be able to enter
the other one. In [6] those neighbourhoods contained the fields whose vorticities have many
invariant tori in different isotopy classes (and then one was applying KAM, which required
high regularity, k> 4). In [1] this was the property of vorticity to be of contact type or not,
which allowed lower smoothness (k⩾ 1). The use of the number of hyperbolic zeros of vor-
ticity to prove the Euler non-mixing, which is the key idea for establishing (i), was already
suggested in [6]. As was remarked there, at that time it was unclear how to develop it in order
to construct exact divergence-free vector fields with prescribed values of energy and helicity.
Below we show that this can be easily achieved by utilizing ‘vortex plugs’, while preserving
even more subtle continuous invariants, such as multiplicators of zeros of the vorticity field in
the C2-setting.

There are variations of the above formulation, see [1, 6, 7]: (a) different smoothness, (b)
specifying bounds for helicity and energy, (c) existence of a countably many neighbourhoods,
(d) existence in a given homotopy class for nowhere vanishing vorticity fields, (e) local non-
mixing close to steady solutions (the latter was the initial motivation for the non-mixing study:
prove that some solutions will never get close to steady ones).

Proof. (i) We are proving non-transitivity, from which non-mixing follows. We start with the
C2 case for velocity in 3D. Let w0 be an initial vorticity C1 field. Assume that it has only non-
degenerate zeros (and possibly non-degenerate periodic trajectories) in M (and hence only a
finite number of them). Then there is a C1-small neighbourhood U(w0) of w0, such that all
fields from U(w0) have the same number of zeros and they all are non-degenerate. Similarly,
if another initial vorticity field w1 has a different number of non-degenerate zeros, there is a
small neighborhood V(w1) of fields with the same property and the flow ϕt(V(w1)) will never
intersect U(w0). Thus the Euler flow is non-transitive. Note that the argument above requires
C1-closeness for the vorticity field (and hence C2 for the velocity field), which is the optimal
smoothness for that Morse-type argument to distinguish between different number of zeros.
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To lower the smoothness to C0-regularity for vorticity (and hence C1 for velocity) one
compares vorticity without zeros with vorticity having non-degenerate zeros. Namely, C0-
small perturbations of vorticities with non-degenerate zeros have at least as many zeros as the
unperturbed ones, while vorticities C0-close to the ones without zeros will also have no zeros.
(Note that any three-dimensional M admits a nonzero vorticity field.) Therefore the above
argument still works for C0-closeness for vorticities, thus giving the optimal smoothness for
non-transitivity. Namely, a non-degenerate zero of a vector field always has index ±1, and
according to the index theorem (which is essentially the local Intermediate Value Theorem
in the vector-function setting), it must persist for C0-close perturbations (and globally sums
to the Euler characteristic). Note that one can weaken the nondegeneracy assumption on the
vorticity to just having a certain number of zeros of index ±1.

Finally, by using the local insertion of ‘vortex plugs’ into a given divergence-free field (to
be described in example 2 below) one can generate new vorticity fields with pairs of new
non-degenerate zeros and with an arbitrary helicity. This is a local construction which can be
thought of as an insertion of a small rotor providing one-directional fast linking of trajectories
inside a small (and isolated from everything else) invariant torus. Given two vorticity fields that
differ by the number of hyperbolic zeros, one can arrange their arbitrary equal helicities, as well
as equal large energies of the corresponding velocities, by using a pair vortex plugs of opposite
signs in each of the fields. Namely, for each of the vorticity fields in a small neighborhood in
M we insert two vortex plugs one after another and ‘rotating’ in the opposite directions. The
first plug would approximately ‘add’ vorticity helicity W and velocity energy E (given by the
bounded curl−1 operator), while the next one would add, respectively −W and E. Thus by
considering linear combinations of those plugs with large positive coefficients one has the
required two-parameter control of the helicity-energy integrals. (For alternative arguments,
also based on a combination of geometry and properties of curl−1, see [1, 6].)

(ii) The easiest way to observe non-transitivity is to recall that the Euler equation in any
dimension has such first integrals as generalized enstrophies and helicities. They are defined
with the help of the 1-form u := v♭ corresponding to a velocity field v by using the Riemannian
metric on M. Namely, for an even-dimensional manifold M2k all moments of the 2k-form
(du)k, i.e. all generalized enstrophies Im(v) =

´
M((du)

k/µ)mµ, are first integrals of the Euler
equation. For an odd-dimensional M2k+1 the generalized helicity I(v) =

´
M u∧ (du)k is a first

integral.
Furthermore, a C1 neighborhood of the velocity v corresponds to a C0 neighborhood of

the vorticity 2-form du. Therefore two sufficiently small C1 neighborhoods of the velocities
v0 and v1 with different values of generalized helicities (for odd dimension) or generalized
enstrophies (for even dimension) will never overlap during the Euler evolution. This implies
non-transitivity for the problem with no extra constraints. (Alternatively, one can use a local
construction of invariants of solutions near singular points of their vorticity form described in
example 4. Then initially non-intersecting C1 neighborhoods of the vorticity with such singu-
larities will never overlap.)

Example 2. Here we describe a construction of a ‘vortex plug’, which is a local deforma-
tion (or surgery) of the vorticity field in 3D allowing one to change its helicity by an arbit-
rary amount. Rectify the vorticity field in a neighborhood of a nonsingular point and consider
a short invariant cylinder inside that neighborhood with cylindrical coordinates (r,θ,z) with
the volume form µ := rdrdθdz, where r⩾ 0. We deform the vorticity field inside this invari-
ant topological cylinder in the following way to introduce two non-degenerate zeros (and a
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non-degenerate periodic orbit) while keeping the field divergence-free and without changing
it on the boundary.

First consider the 2D setting and a family of Hamiltonian fields with Hamiltonian func-
tions H(r,z) = r2(r2 + z2 + a), a ∈ R and non-standard symplectic structure rdr∧ dz degen-
erate along the line r= 0. The corresponding Hamiltonian field has the form

vH :=−1
r
∂H
∂z

∂

∂r
+

1
r
∂H
∂r

∂

∂z
=−2rz

∂

∂r
+ 2

(
2r2 + z2 + a

) ∂

∂z
.

One can see that for a positive value of a this Hamiltonian field is topologically equivalent to
that for the HamiltonianH= r2 near the origin. When the parameter a changes from 0+ to 0−,
two saddles and two centers are born for the corresponding Hamiltonian field vH.

Now we consider an axisymmetric 3D analog of that Hamiltonian field by adding a special
rotation about the z-axis, the field vf := f(H)∂/∂θ which rotates each level of H with its own
speed. One can see that the field vH,f = vH+ vf is divergence-free, divµvH,f = 0 for any function
f. Now, by setting, e.g. a=−1 and choosing an appropriate f one obtains a field vH,f which has
a unit sphere {r2 + z2 = 1} ⊂ R3 as an invariant surface, two non-degenerate focus points (r=
0,z=±1) on it, and a family of nested invariant tori inside, whose core is a non-degenerate
periodic orbit born from the two centers. By choosing an arbitrary speed of rotation in the
θ-direction by means of the function f, one can achieve an arbitrary helicity in that region, and
it does not add to the helicity outside, since this invariant sphere is not linked with anything
outside of it in M. We call it a ‘vortex plug’. By inserting such plugs to the original vorticity
field one can attain any prescribed helicity. One can also see that by changing the parameter
a one can include the plug construction into a deformation from a field without zeros, rather
than making it as a surgery.

Remark 3. An advantage of theC1-setting for vorticity is that one has plenty of locally defined
continuous Casimirs – namely, multiplicators (i.e. eigenvalues of the linearization) of non-
degenerate zeros of vorticity. Each non-degenerate zero of vorticity in 3D with simple eigen-
values gives 2 locally defined Casimirs (the eigenvalues at each singularity sum to zero because
of the divergence-free condition). These Casimirs may replace the first integrals of [6] measur-
ing the volume of invariant tori in a given isotopy class (or maybe other more subtle invariants
for nonvanishing fields). In the C0-case one has only semicontinuous integer-valued Casimirs
measuring the number of zeros or the like. For instance, in [1] one studies vorticities of contact
type, which must have no zeros, so the index argument provides a weaker requirement for a
neighborhood to stay away from fields with zeros, which are certain not to be of contact type.
In order to prove (c) one can consider fields wk that have at least 2k non-degenerate zeros, thus
providing a countable number of neighbourhoods.

Finally, note that for (d) and (e) one needs to use more subtle arguments. For instance,
whenever one imposes additional constraints for a nonvanishing field, e.g. to stay in the same
homotopy class, subtle invariants of contact homology are employed in [1]. The local non-
mixing discussed in [7] was based on a specific fibrated structure of 3D steady solutions.

Example 4. Here we present a construction of C2 local invariants for velocity in any dimen-
sion. For an odd-dimensional manifold M2k+1 the Darboux theorem says that a generic
(i.e. maximally non-integrable) 1-form u locally has the form u= dz+

∑
xidyi. Moreover,

one can achieve the same form via volume-preserving transformations (see e.g. [1]) and thus
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this form has no local invariants. Consider now a special form u= d(z2)+
∑k

i=1 x
2
i d(y

2
i ). We

compute that du=
∑k

i=1 d(x
2
i )∧ d(y2i ) and

u∧ (du)k = d
(
z2
) k∧
i=1

d
(
x2j
)
∧ d

(
y2j
)
= 22k+1x1 . . .ykzdx1 ∧ ·· · ∧ dyk ∧ dz .

In the latter expression the origin x1 = . . .= yk = z= 0 is a special point where the form van-
ishes. Moreover, it is stable: any C2 perturbation of the original form u will have the same
type of degeneration for u∧ (du)k. And finally, any volume-preserving diffeomorphism of a
neighborhood of that point cannot change the constant coefficient. In particular, e.g. the form
au is not volume-preserving diffeomorphic to u in the vicinity of the origin for a ̸= 1. On the
other hand, adjusting u outside of the origin, one can achieve any value of the total integral for
the form u∧ (du)k i.e. of the total generalized helicity.

Note also that in many cases one can extend this consideration to the C1-setting for u. For
instance, on a contact manifoldM2k+1 there is a 1-form ũ such that ũ∧ (dũ)k has no zeros, and
hence its C1 neighborhood can be separated from that of u with zeros described above (this
reminds the consideration in [1] of 1-forms of contact type in 3D).

One can see that in 3D the degenerations of du corresponds to zeros of the vorticity field
w= curlv defined by iwµ= du for u= v♭. Then the local invariants of u∧ (du)k at the origin
are analogous to the multiplicators of the vorticity field w.

Similarly, one constructs local invariants at degenerations of u=
∑k

i=1 x
2
i d(y

2
i ) on even-

dimensional manifolds M2k. Note that in 2D they boil down to invariants of du= 4xydx∧
dy, and hence to those of the Morse function xy, with respect to transformations preserving
the area form dx∧ dy. The front coefficient is an invariant delivered by Le Lemme de Morse
Isochore [9].

It is worth mentioning that without requirement of the volume preservation, local invariants
of typical degenerations of closed 2-forms du are subtle and have been studied in [2].

Remark 5. To summarize, without imposing extra constraints Problem #31 from [5] about
non-mixing in low smoothness becomes rather straightforward, due to the existence of various
Casimirs separating coadjoint orbits. Actually, this is a property of all Euler-Arnold equations
for any Lie group: the existence of a Casimir which separates neighborhoods of coadjoint
orbits implies non-mixing of the corresponding equation in the dual of its Lie algebra. This
property is based solely on the ‘kinematics’ of the equation. So from this point of view any
Euler-Arnold equation admitting Casimirs (and in particular, the Euler fluid dynamics in any
dimension) is non-mixing. The above leads to the following natural rectification of the problem
from [5]:

Problem 6. Is the Euler equation non-mixing within the coadjoint orbits of initial vorticity
functions in 3D?

An answer to this question should involve the actual ‘dynamics’ of the Euler equation,
similarly to the study of wandering orbits in 2D fluids in [3, 8], which is counterposed to finite
dimensions with Poincaré’s recurrence on all compact coadjoint orbits. One may hope that
such tools as contact-type forms and KAM, proposed in [1, 6, 7], might be useful for this
updated problem or could find other applications in hydrodynamics.
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