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Abstract: Many conservative partial differential equations correspond to
geodesic equations on groups of diffeomorphisms. Stability of their solutions
can be studied by examining sectional curvature of these groups: negative
curvature in all sections implies exponential growth of perturbations and
hence suggests instability, while positive curvature suggests stability. In
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1. Introduction

The idea that stability of a dynamical system can be investigated using tools of
Riemannian geometry goes back to Hadamard [22], who studied the free motion
of a particle on a surface of constant negative curvature. A similar approach was
considered by Synge [68]. Perhaps the most influential example is due to Arnold
[1], who showed that fluid motions can be viewed as geodesics in the infinite-
dimensional group of volume-preserving diffeomorphisms (volumorphisms). This
led him to examine curvature of the volumorphism group and derive a number of
results on stability of ideal fluids. Roughly speaking, on a finite-dimensional man-
ifold negative sectional curvature is related to instability, and positive sectional
curvature is related to stability of the corresponding geodesic flow; the Rauch
comparison theorem makes this comparison rigorous. Since the work of Arnold,
other partial differential equations have been interpreted as geodesic equations
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in infinite-dimensional spaces and, as with ideal fluids, calculating sectional cur-
vatures in these cases has become a matter of broader interest.

In this paper we examine the sign of the sectional curvature of certain metrics
on infinite-dimensional manifolds (which are associated with several well-known
equations of mathematical physics) and its relevance in the stability analysis of
the associated initial value problems.

Our main interest is in those equations that arise from right-invariant metrics
on the group of (smooth) diffeomorphisms Diff(M), or its subgroup of volume-
preserving diffeomorphisms Diffµ(M), of a compact n-dimensional manifold M

without boundary. Both spaces can be completed to Hilbert manifolds Diffs(M)
and Diffs

µ(M) modeled on Sobolev spaces of Hs vector fields and divergence-free
vector fields, respectively, with s > n/2+1. We assume that M has a Riemannian
metric 〈·, ·〉 with volume form µ. We equip the groups with right-invariant Sobolev
metrics such that, on the tangent space at a diffeomorphism η, we have

(1.1) 〈〈u ◦ η, v ◦ η〉〉η =
∫

M

(
a〈u, v〉+ b〈δu[, δu[〉+ c〈du[, du[〉

)
dµ,

for any vector fields u, v on M . Here d is the exterior derivative, δ = ±∗d∗ is
its (formal) adjoint, a, b, c are non-negative constants, and [ and ] denote the
standard “musical isomorphisms” of the metric corresponding to lowering and
raising of indices. Formula (1.1) simplifies in dimensions n ≤ 3 where we have1

(1.2)

〈〈u ◦ η, v ◦ η〉〉η =


∫
M (auv + buxvx) dx n = 1,∫
M

(
a〈u, v〉+ b div u · div v + c curlu · curl v

)
dA n = 2,∫

M

(
a〈u, v〉+ b div u · div v + c〈curlu, curl v〉

)
dV n = 3.

Using the metric (1.1), one derives a number of PDE that are of interest in
continuum mechanics and geometry. For example, in the one-dimensional case
one obtains Burgers’ equation, the Camassa-Holm equation, and the Hunter-
Saxton equation as geodesic equations for appropriate choices of a and b. In higher
dimensions one gets the EPDiff equation and the so-called template-matching
equation. Furthermore, projection onto Diffµ(M) yields the usual Euler equations

1Recall that curl u = ∗du[ and sgrad f = −(δ∗f)] in two dimensions, while curl u = (∗du[)] in

three dimensions.



294 B. Khesin, J. Lenells, G. Misio lek and S. C. Preston

of hydrodynamics and the Lagrangian-averaged Euler-α equation. We refer to
the paper [31] and the references therein for more details.

The goal of this paper is two-fold. In the first part we describe some aspects of
Riemannian geometry of infinite-dimensional manifolds which are relevant to the
analysis of partial differential equations of mathematical physics. In particular,
we review the framework of the Euler-Arnold equations on Lie groups equipped
with right-invariant metrics and explain the role played by sectional curvature in
the study of (Lagrangian) stability.

In the second part we present new results on the sign of the sectional curva-
ture for the metric (1.1) on Diff(M) and Diffµ(M) for different choices of the
parameters a, b and c. In order to simplify calculations, we will take M to be
either the circle S1 or the flat torus Tn. We show that in most cases the sectional
curvature assumes both signs. Two notable exceptions are: b = c = 0 and n = 1,
in which case the sectional curvature of Diff(S1) turns out to be non-negative;
and a = c = 0 and n ≥ 1, in which case the sectional curvature of the quotient
space Diff(M)/Diffµ(M) is strictly positive for any compact M . The latter case is
studied in detail in the paper [31]. For the H1 metric on Diff(S1) we obtain a sim-
ple curvature expression and explain how it can be viewed as the Gauss-Codazzi
formula for an isometric embedding of the group of circle diffeomorphisms in a
larger space.

Besides the fact that right-invariant H1 metrics (1.1) arise as Lagrangians of
many PDE of continuum mechanics, our motivation to study them is also purely
geometric: they are the natural metrics induced on orbits of pullback actions on
spaces of tensor fields. For example, the canonical L2 metric on the space of
all Riemannian metrics on a compact manifold M induces a metric of the type
(1.1) on Diff(M) (viewed as an orbit of any particular metric under the pullback
action) whose geometry was studied in [31].

2. Preliminaries: metrics and geodesic equations

In this section we review some well-known examples of infinite-dimensional Rie-
mannian manifolds and their geodesic equations. Most interesting from our point
of view are infinite-dimensional Lie groups, especially diffeomorphism groups
equipped with right-invariant metrics. We describe examples of such groups
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in Section 2.1. In Section 2.2 we discuss other situations of interest when the
manifolds are not Lie groups or the metrics are not right-invariant.

2.1. The Euler-Arnold equations on Lie groups: examples. We begin by
describing the general Lie-theoretic setup of Arnold [1].

Consider an infinite-dimensional Lie group G equipped with a smooth right-
invariant (weak) Riemannian metric determined by an inner product 〈〈·, ·〉〉 defined
on the tangent space TeG at the identity element. A geodesic in the group starting
from e in the direction u0 can be obtained from the solution u(t) of the Cauchy
problem for the associated Euler-Arnold equation on TeG, namely

(2.1)
du

dt
= −ad∗uu, u(0) = u0

where for any fixed v ∈ TeG, the operator u → ad∗vu is the adjoint of the lin-
ear operator u → advu = −[v, u] with respect to the inner product on TeG;
specifically,2

(2.2) 〈〈ad∗vu,w〉〉 = −〈〈u, [v, w]〉〉, u, v, w ∈ TeG.

The geodesic is then obtained by solving the flow equation

(2.3)
dη

dt
= DRη(t)u(t), η(0) = e

where ξ 7→ Rη(ξ) denotes the right-translation in G by η.

In the case of ideal hydrodynamics, G is the group of volumorphisms of a
manifold M ,

G = Diffµ(M) := {η ∈ Diff(M) | η∗µ = µ},

with the right-invariant metric given at the identity by the L2 inner product, i.e.,
by setting b = c = 0 in (1.1). The resulting Euler-Arnold equations (2.1) are the
familiar Euler equations of incompressible fluids in M

(2.4) ut +∇uu = −∇p, div u = 0,

sometimes written in the form

(2.5) ωt + Luω = 0,

2Here [·, ·] denotes the commutator on TeG induced by the Lie bracket of right-invariant vector

fields on G, i.e. [u, v] = [X, Y ]e where X, Y are the right-invariant vector fields determined by

Xe = u and Ye = v.
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where ω = curlu is the vorticity.3

If we set a = 1 and c = α2 with b = 0 in (1.1) on the volumorphism group, then
the corresponding Euler-Arnold equation (2.1) is called the Lagrangian-averaged
Euler equation [24, 64]. It is more complicated than (2.4), but its “vorticity” given
by ω = curlu − α2∆ curlu satisfies the same equation as (2.5). The analysis of
this equation presents similar difficulties as (2.4) or (2.5); see e.g., [26].

Remark 2.1. The volumorphism group is one of the three “classical” diffeomor-
phism groups. Another is the symplectomorphism group Diffω(M), consisting
of diffeomorphisms preserving a symplectic form ω of an even-dimensional man-
ifold M , and the third is the contactomorphism group Diffα(M) consisting of
diffeomorphisms η such that η∗α = Fα, where α is a contact form and F is a
nowhere-zero function on an odd-dimensional manifold M . Geodesic equations of
the right-invariant L2 metric on these groups have been studied in [13, 29, 15]. In
two dimensions the geodesic equation on the symplectomorphism group reduces
to the Euler equation (2.4), and in one dimension the geodesic equation for con-
tactomorphisms reduces to the Camassa-Holm equation. Simpler equations arise
when the L2 metric is restricted to the subgroup of Hamiltonian diffeomorphisms
or the subgroup of strict contactomorphisms; see Smolentsev [67] for a review of
their properties.

It is worth pointing out that the subgroup of Hamiltonian diffeomorphisms
carries a bi-invariant metric given at the identity by

(2.6) 〈〈sgrad f, sgrad g〉〉 =
∫

M
fg dµ,

where f and g are assumed to have mean zero. For such metrics we have
〈〈u, advw〉〉 + 〈〈advu,w〉〉 = 0 whenever u, v and w are in the Lie algebra. It
follows that ad∗uu = 0, and hence the Euler equation (2.1) reduces to du/dt = 0.
Geodesics are easy to find as they are one-parameter subgroups: simply fix a
velocity field and compute the flow.

The group of circle diffeomorphisms Diff(S1) has been a rich source of exam-
ples. In this case we can set c = 0 in the formula (1.1) since in one dimension
du[ = 0 for any vector field u. Two much-studied Euler-Arnold equations that

3In two dimensions ω = curl u is a function and Luω = 〈u,∇ω〉; in three dimensions ω = curl u

is a vector field and Luω = [u, ω].
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arise here are the periodic (inviscid) Burgers equation

(2.7) ut + 3uux = 0

associated with the L2 inner product (with b = 0) and the periodic Camassa-Holm
equation

(2.8) ut − utxx + 3uux − 2uxuxx − uuxxx = 0

obtained from the H1 product (with a = b = 1); see [3, 51].

Interesting examples also arise on the Bott-Virasoro group Vir(S1), the uni-
versal central extension of Diff(S1), with a group law defined by

(2.9) (η, α) ◦ (ξ, β) =
(
η ◦ ξ, α+ β +

1
2

∫
S1

log ∂x(η ◦ ξ) d log ∂xξ

)
where η, ξ ∈ Diff(S1) and α, β ∈ R. The right-invariant metric on the Bott-
Virasoro group given at the identity by the L2 inner product

〈〈(u, a), (v, b)〉〉L2 =
∫

S1

uv dx+ ab,

yields as its Euler-Arnold equation (2.1) the Korteweg-de Vries equation [3, 55]

(2.10) ut + 3uux + auxxx = 0, a = const.

If we use the H1 inner product instead

〈〈(u, a), (v, b)〉〉H1 =
∫

S1

(uv + uxvx) dx+ ab,

then the corresponding Euler-Arnold equation is the Camassa-Holm equation
with drift [51]

ut − utxx + 3uux − 2uxuxx + (κ− u)uxxx = 0, κ = const.

Equations (2.7) and (2.8) have higher-dimensional analogues. For example, the
n-dimensional version of the Burgers equation (2.7) arising from a right-invariant
L2 metric on Diff(M) is the so-called template-matching equation [54]

ut +∇uu+ (∇u)†(u) + (div u)u = 0

while the n-dimensional version of the Camassa-Holm equation (2.8) on Diff(M)
is the EPDiff equation [24].

Other examples of geodesic equations for right-invariant metrics on infinite-
dimensional groups include
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• the equation φt + u(φ) = 0 of passive scalar motion coupled with (2.4)
(on the semidirect product of Diffµ(M) with C∞(M));

• the equation of 3D magnetohydrodynamics (on the semi-direct product
of Diffµ(M) with divergence-free vector fields)

ut +∇uu = −∇p+∇BB, Bt + [u,B] = 0, div u = divB = 0;

• the µ-CH equation, corresponding to an H1-type metric on Diff(S1), see
Remark 6.5 and [30];

• the quasigeostrophic equation in β-plane approximation on T2 on the
central extension of the group of Hamiltonian diffeomorphisms

ωt + {ψ, ω} = −β∂xψ, ω = ∆ψ −Fψ

for some constants β and F (see [25]);

as well as the Boussinesq approximation to stratified fluids, equations for charged
fluids and fluids in Yang-Mills fields, the Landau-Lifschitz equations as well as
various 2-component generalizations of the one-dimensional equations mentioned
above; see e.g., [34, 70] for details and more references.

2.2. Further examples of infinite-dimensional geodesic equations.

2.2.1. Spaces of curves. Let ΩM be the (free) loop space over a compact Rie-
mannian manifold M whose points are smooth maps from S1 to M .4 The tan-
gent space to ΩM at a point γ consists of vector fields in M along γ, i.e., maps
s→ V (s) ∈ Tγ(s)M .

Two metrics on ΩM have been of particular interest. The first is the weak
Riemannian L2 metric given at γ ∈ ΩM by

(2.11) 〈〈U, V 〉〉L2,γ =
∫

S1

〈U(s), V (s)〉γ(s) ds.

Its geodesics correspond to geodesics on the underlying manifold: if η(0) = γ and
η̇(0) = V , then η(t)(s) = expγ(s)(tV (s)).

The other is the Sobolev H1 metric

(2.12) 〈〈U, V 〉〉H1,γ =
∫

S1

(
〈U(s), V (s)〉γ(s) +

〈DU
ds

,
DV

ds

〉
γ(s)

)
ds,

4If M is a Lie group then ΩM becomes a loop group under pointwise multiplication.
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where D/ds denotes the covariant derivative along γ in M . The metric (2.12) is
in fact the more natural of the two because it turns the set ΩMH1 consisting of
all H1 loops in M into a complete Hilbert Riemannian manifold.

The set of simple closed curves in R2 can also be regarded as a version of
the loop space. Such curves may be viewed as boundaries of planar “shapes,”
and finding a suitable notion of distance between shapes has been of interest in
applications to pattern theory. For this purpose, however, parameterizations are
irrelevant; thus it is useful to pass to the quotient by the diffeomorphism group
of S1. Geodesics on the quotient of the metrics induced by (2.11) and (2.12)
were studied by Michor and Mumford [46]. Another approach is to consider the
subspace consisting of those curves parameterized by arc length (or its multiple)
with the induced L2 orH1 metric. The L2 geodesics on this subspace are solutions
of a wave-like equation

(2.13) ηtt = ∂s(σηs), σss − |ηss|2σ = −|ηst|2, |ηs| ≡ 1,

which describes an inextensible string (the asymptotic limit of a string with a
very strong tension); see [61] for a geometric discussion of this equation.

2.2.2. Homogeneous spaces. Degenerate metrics on diffeomorphism groups also
lead to natural geometries on their quotient spaces. For example, if u is a vector
field on S1 and η ∈ Diff(S1), then setting

〈〈u ◦ η, v ◦ η〉〉Ḣ1 =
∫

S1

uxvx dx

one obtains an invariant degenerate Sobolev Ḣ1 metric which is a limiting case
of the H1 metric (1.2) when a → 0 or b → ∞. It becomes a weak Riemannian
metric on the homogeneous space Diff(S1)/S1. The corresponding Euler-Arnold
equation is the Hunter-Saxton equation [32]

(2.14) utxx + 2uxuxx + uuxxx = 0.

Passing to the quotient space is geometrically appealing since the manifold turns
out to be isometric to a subset of the round Hilbert sphere [36].

More generally, the same construction applies on any Riemannian manifold M
using the right-invariant degenerate metric

〈〈u ◦ η, v ◦ η〉〉Ḣ1 =
∫

M
div u · div v dµ,
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on the quotient space Diff(M)/Diffµ(M). Its Euler-Arnold equation is a higher-
dimensional analogue of (2.14) given by

(2.15) ∇ div ut + (div u)∇ div u+∇〈u,∇ div u〉 = 0,

and one can establish a similar isometry with a subset of the round sphere in
a Hilbert space. The induced Riemannian distance turns out to be a spherical
analogue of the Hellinger metric in probability theory; see [31] for details.

2.2.3. Spaces of maps and non-invariant metrics. More generally, given a Rie-
mannian manifold M and a compact manifold N with a volume form ν (and
possibly with boundary), consider the space C∞(N,M) of smooth maps from N

into M . On each tangent space at f ∈ C∞(N,M), we can define an L2 metric
by

(2.16) 〈〈U, V 〉〉f =
∫

M
〈U(x), V (x)〉f(x) dν(x),

and, as in the case of the loop space and (2.11), show that its geodesics come
directly from geodesics on M .

The group of smooth diffeomorphisms Diff(M) is an open subset of the Fréchet
manifold C∞(M,M), so that we can likewise put the metric (2.16) on it. Note
that this metric is not right-invariant; nevertheless the corresponding geodesic
equation can be rewritten on the tangent space to the identity, where it becomes
the multidimensional inviscid Burgers (or pressureless compressible Euler) equa-
tion

(2.17)
∂u

∂t
+∇uu = 0.

Since families of geodesics in M starting from nearby points will typically contain
crossing geodesics (at which time the geodesic in Diff(M) must exit the diffeo-
morphism group), solutions of the pressureless Euler equation solutions in general
will blow up in finite time. Physically, this corresponds to the emergence of a
shock wave leading to collisions of the fluid (or gas) particles. Nonetheless, the
geodesic remains in C∞(M,M) for all time.

Remark 2.2. The equations of incompressible fluids with boundary can be
viewed formally as geodesic equations on the space Eµ(Ω,Rn) of volume-preserving
embeddings of the closure Ω̄ of an open subset of Rn into Rn. These equations
were studied geometrically by Ebin [12] and shown to be identical to the standard
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equations of incompressible fluid mechanics except for the fact that the bound-
ary condition for the pressure is a Dirichlet rather than a Neumann condition.
However the free-boundary equations are not well-posed unless one adds an extra
condition such as in [39].

2.2.4. Spaces of metrics. Another geometrically interesting space is the space
Met(M) of all Riemannian metrics on a compact manifold M . For any metric
g on M and any η ∈ Diff(M) we define the pullback metric η∗g. In [11], Ebin
studied a Riemannian metric on Met(M) which is invariant under the pullback
action. Given g ∈ Met(M) and tangent vectors A and B (smooth tensor fields of
symmetric bilinear forms) the metric is defined by

〈〈A,B〉〉g =
∫

M
Trg(AB) dµg,

where Trg is the trace with respect to g and µg is the Riemannian volume form.
The curvature and geodesics of this metric were computed explicitly by Freed and
Groisser [19]: sectional curvature is non-positive and geodesics generally exist
only for finite time (until the metric becomes degenerate). The diffeomorphism
group embeds in Met(M) as an orbit of a generic g (i.e., with no non-trivial
isometries), and if g is Einstein then the induced metric on Diff(M) is a special
case of (1.1). We refer to Clarke [8] for recent results on the distance and diameter
of this space.

Similarly, one can endow the space of all volume forms Vol(M) on M with a
natural invariant metric defined for n-form fields α and β tangent to µ by

〈〈α, β〉〉µ =
∫

M

α

µ

β

µ
dµ.

Although this metric is flat, it is not geodesically complete in general. Orbits
of the diffeomorphism group in Vol(M) are the homogeneous spaces of densities
Diff(M)/Diffµ(M) of constant positive curvature; we refer to [31].

The map g 7→ µg, where µg is the Riemannian volume of g, is a submersion
and it becomes a Riemannian submersion after suitable rescaling of the metric
on Vol(M). Its fibers are the spaces of metrics Metµ(M) with the same volume
form µ. These fibers are globally symmetric (with non-positive curvature and
indefinitely extendable geodesics) in the induced metric from Met(M); see [11].
The natural action on Metµ(M) is pullback by volumorphisms, and if g has no
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nontrivial isometries, then the orbits of Diffµ(M) are embedded submanifolds
with right-invariant metrics.

3. Global aspects of infinite-dimensional Riemannian geometry

The obstacles that arise in the study of global Riemannian geometry of infinite-
dimensional manifolds are well known. They are mostly caused by the lack of
local compactness or the fact that the topology generated by the metric may be
weaker than the manifold topology. As a result some of the finite-dimensional
techniques are not available or are of limited use. For example, the Riemannian
exponential map may not be defined on the whole tangent bundle or even be
smooth, conjugate points may cluster along finite geodesic segments or have in-
finite multiplicity, etc. In this section we illustrate some of these situations with
a few familiar examples.

3.1. Degenerate distance functions. The distance between two points in a
weak Riemannian Hilbert manifold can be defined as in finite dimensions, i.e.,
as the infimum of lengths of piecewise smooth curves joining them. It is easy to
prove that it satisfies all the axioms of a metric space except for nondegeneracy,
which typically requires some additional assumptions.

As an example, consider the right-invariant L2 metric on Diff(M) defined by

〈〈u ◦ η, v ◦ η〉〉η =
∫

M
〈u, v〉 dµ,

which corresponds to the case b = c = 0 in (1.1). In [45] it is shown that the
geodesic distance is identically zero (i.e., between any two diffeomorphisms there
are curves of arbitrarily short length). This is essentially related to the lack
of control over the Jacobian. The same phenomenon also occurs for the right-
invariant L2 metric on the Bott-Virasoro group [5], for the L2 metric on the
“shape space” of curves modulo reparameterizations [46], and for the bi-invariant
Hofer-type L2 metric (2.6) on the Hamiltonian diffeomorphisms [17].

On the other hand, we obtain nondegenerate Riemannian distances for the L2

metric on Diffµ(M) [14], the right-invariant metric on Diff(M) corresponding to
c = 0 in (1.1) [53], the space C∞(N,M) of maps in the L2 metric (2.16), the
space of arc-length parameterized curves [61], and the space Diff(M)/Diffµ(M)
of densities [31].
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3.2. Completeness and minimizing geodesics. Even if the geodesic distance
is nondegenerate, thus providing a genuine metric space structure on a space of
maps, this metric space may not be complete. For example, the completion of
C∞(N,M) in the non-invariant L2 metric (2.16) consists of measurable maps
from N to M which may not even be continuous. The same phenomenon occurs
for the group of volumorphisms Diffµ(M) with the L2 metric if M is a three-
dimensional manifold—in this case the completion in the Riemannian distance is
the space of all measure-preserving maps; see [65].5

In finite dimensions, completeness of a Riemannian manifold M as a metric
space is equivalent to geodesic completeness, i.e., extendability of geodesics for all
time, which in turn implies that any two points in M can be joined by a minimal
geodesic. The proof of this result, the Hopf-Rinow theorem, relies crucially on lo-
cal compactness, and the result is no longer true in infinite dimensions as observed
by Grossman [21] and Atkin [4]. Grossman constructed an infinite-dimensional
ellipsoid in the space `2 of square-summable sequences with points which cannot
be connected by a minimal geodesic in the induced metric from `2, and Atkin
modified this construction to get points that cannot be joined by any geodesic at
all. Interestingly, Ekeland [16] showed that on a complete Riemannian Hilbert
manifold the set of points attainable from a given one with a minimizing geodesic
contains a dense Gδ set (recall that a Gδ is a countable intersection of open sets).

One situation in which everything works nicely is the H1 completion of the
space of smooth loops ΩMH1 . Unlike many other examples discussed here, it is a
genuine (strong) Riemannian Hilbert manifold in the topology generated by the
distance function of (2.12), and by the result of Eliasson [18] any two of its points
can be joined by a minimizing geodesic.

3.3. Exponential map and extendability of geodesics. If the Cauchy prob-
lem for the geodesic equation on a (possibly weak) Riemannian Hilbert manifold
M is locally well-posed, then the exponential map of M can be defined as in
finite dimensions. Using the scaling properties of geodesics we set

expp : U ⊂ TpM→M, expp(v) = γ(1),(3.1)

where γ(t) is the unique geodesic from γ(0) = p with initial velocity γ̇(0) = v in
some open neighborhood U of zero in the tangent space at p.

5If M is two-dimensional, the completion of Diffµ(M) in the L2 metric is unknown.



304 B. Khesin, J. Lenells, G. Misio lek and S. C. Preston

In general local (in time) well-posedness refers to constructing a unique solution
for a given initial data on a short time interval which depends at least continuously
on the data. However it is desirable that the dependence be at least C1 smooth.
Indeed, in this case applying the inverse function theorem for Banach manifolds,
it is possible to deduce that (as in finite dimensions) the exponential map is
a local diffeomorphism; this implies in particular nondegeneracy of the geodesic
distance as in Section 3.1. Furthermore, other geometric tools such as Jacobi fields
and curvature can be introduced to study rigorously stability in the problem of
geodesic deviation (we shall elaborate on this in Section 4).

The exponential maps defined on suitable Sobolev completions in the examples
discussed so far are either at least C1 smooth or else continuous (even differen-
tiable) but not C1. The former include, for Sobolev index s sufficiently large,

• the L2 metric on the volumorphism group Diffs
µ(M) whose geodesics cor-

respond to the Euler equations of ideal hydrodynamics; see [14],
• the H1 metric on Diffs

µ(M) corresponding to the Lagrangian-averaged
Euler equation; see [64],

• the H1 metric on Diffs(S1) corresponding to the Camassa-Holm equation
in [9] and its generalization to Diffs(M) and the EPDiff equation in [53],

• the H1 metric on the free loop space ΩMH1 in [50],
• the homogeneous Ḣ1 metric on Diffs(S1)/S1 corresponding to the Hunter-

Saxton equation in [32] and its generalization (2.15) on Diffs(M)/Diffs
µ(M);

see [31],
• the right-invariant L2 metrics on Mets(M), Mets

µ(M) and Vols(M) in
[11, 19],

• the noninvariant L2 metric on Hs(N,M) or Diffs(M) whose geodesics are
described by pointwise geodesics on M ; see [14].

The metrics for which C1 dependence fails include

• the L2 metric on the Virasoro group whose geodesic equation corresponds
to the Korteweg-de Vries equation; see [10],

• the right-invariant L2 metric on Diffs(S1) which yields the (right-invariant)
Burgers equation [9] or its higher-dimensional generalization and the
template-matching equation [45],
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• the L2 metric on unit-parametrized curves in the plane yielding the whip
equation (2.13) in [61], or on the equivalence classes of curves under
reparametrizations in [46].

Later on we will describe examples where the exponential map fails to be C1 as a
result of accumulation of conjugate points at t = 0 (as in [9], [10], [49], and [61]);
this is the most common way to prove the result.

It is well-known that the group of volumorphisms Diffs
µ(M) of a two-dimensional

manifold M equipped with the right-invariant L2 metric is geodesically complete,
i.e., its geodesics which correspond to solutions of the 2D incompressible Euler
equations are defined globally in time when s > 2.6 This result is due to Wolibner
[71] with subsequent contributions by Yudovich [72] and Kato [28] and follows
from conservation of vorticity, although the argument is not routine. In three
dimensions the problem is open and challenging.

One might expect the right-invariant H1 metric on the volumorphism group
to be somewhat better behaved, but as of now we have the same result: global
existence in two dimensions is relatively easy [64] but in three dimensions is
unknown [26]. On the other hand, it is known that smooth solutions of the one-
dimensional Camassa-Holm equation (2.8) break down for certain initial data
[43, 44]. All solutions of the periodic Hunter-Saxton equation (2.14) as well as
its higher-dimensional generalization (2.15) are also known to blow up in finite
time.

For the non-invariant L2 metric on Diffs(M) (whose geodesics are given by
pointwise geodesics on M) global existence clearly fails: for a typical initial ve-
locity field two geodesics will eventually cross (which corresponds to a “shock”).
On the other hand in Hs(M,M) geodesics exists for all time, since such maps
need not be injective.

Geodesics in the space of metrics Mets(M) and volume forms Vols(M) typically
become degenerate in finite time (see [8] and [19]), while geodesics in Mets

µ(M)
persist for all time [11]. Both the L2 and H1 metrics on the homogeneous space
of equivalence classes of curves in the plane admit geodesics that degenerate

6We do not discuss weak solutions (for which much of the geometry seems to break down) of the

PDE mentioned above.
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to points [46]. On the space of unit-speed curves, the whip equation would be
expected to blow up in finite time physically [61], but this is not yet proved.

4. Jacobi fields, curvature, and stability

As mentioned in the Introduction, one application of Riemannian techniques in
the study of equations of fluid dynamics has been to the problem of (Lagrangian)
stability using the equation of geodesic deviation (the Jacobi equation), which
involves the curvature tensor. In this section we describe this approach for a
general infinite-dimensional manifold equipped with a possibly weak Riemannian
metric, but whose exponential map is assumed to be at least C1. We will discuss
Jacobi fields (as infinitesimal perturbations) and the role played by sectional
curvature and its sign. Various results for specific examples mentioned in the
previous sections will be the subject of Section 5.

Let M be a (possibly weak) Riemannian Hilbert manifold whose geodesic
equation is written in the form

D

dt

dγ

dt
= 0,

where dγ
dt is the tangent vector field and D

dt is the covariant derivative along the
curve γ(t) in M. If γ̄(s, t) is a family of geodesics with γ̄(0, t) = γ(t) then the
formula

(4.1) J(t) =
∂γ̄

∂s
(0, t)

gives a Jacobi field J(t) along γ, i.e., a solution of the Jacobi equation

(4.2)
D2J

dt2
+R

(
J,
dγ

dt

)dγ
dt

= 0

obtained by differentiating the geodesic equation in s and evaluating at s = 0.
As in finite dimensions, the Riemann curvature tensor R of M arises here due to
the fact that covariant derivatives do not commute in general. Furthermore, the
basic result of Cartan applies as well, so that for any v and w ∈ TpM we have

(4.3) (D expp)tv(tw) = J(t)

where J(t) is the Jacobi field along γ(t) = expp(tv) solving (4.2) with initial
conditions J(0) = 0 and J ′(0) = w.
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Recall that the sectional curvature in the direction of the 2-plane σ spanned
by the vectors Xp, Yp ∈ TpM is given by the formula

(4.4) Kp(σ) =
〈R(Xp, Yp)Yp, Xp〉
|Xp|2|Yp|2 − 〈Xp, Yp〉

.

Example 4.1. On a two-dimensional Riemannian manifold, the Jacobi equation
can be reduced to a single ODE for a function j(t) representing the component
of J orthogonal to γ̇, which takes the form

(4.5)
d2j(t)
dt2

+Kγ(t)j(t) = 0,

where K is the sectional curvature at a point γ(t). In the special case where K
is constant, the solution of (4.5) with j(0) = 0 is

j(t) = j′(0) ·


1√
K

sin
√
Kt K > 0

t K = 0
1√
|K|

sinh
√
|K|t K < 0

.

This simple special case is the source of much of our intuition about curvature
and stability. Suppose that we know precisely the initial position of a particle
traveling along a geodesic and its initial velocity only approximately. If K > 0
then all Jacobi fields are bounded uniformly in time, and thus geodesics starting
with nearby initial velocities will remain nearby for all time. If K < 0 then the
Jacobi fields grow exponentially in time, so that small errors are magnified and
the motion is unpredictable. If K = 0 then the growth is linear. On higher
dimensional manifolds with variable curvature things become more subtle.

Recall that singular values of the Riemannian exponential map are called con-
jugate points. More precisely, two points p and q along a geodesic in M are con-
jugate if D expp, viewed as a linear operator from TpM to TqM given by (4.3),
either fails to be injective (in which case the points are called mono-conjugate) or
it fails to be surjective (the points are called epi-conjugate); see Grossman [21].
In finite dimensions both types coincide.

Next, we state the Rauch comparison theorem for weak Riemannian metrics
following Biliotti [6]. This result relates growth of Jacobi fields to bounds on the
sectional curvature and is a far-reaching generalization of Sturm’s comparison
theorem on oscillation of solutions of second order ODE.
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Theorem 4.2. Let M and M̃ be (possibly infinite-dimensional) weak Riemann-
ian manifolds modeled on Hilbert spaces E and Ẽ, with E isometric to a closed
subspace of Ẽ. Assume that M and M̃ have smooth Levi-Civita connections (and
hence smooth exponential maps) with sectional curvatures K and K̃. Let γ and
γ̃ be two geodesics of equal length and suppose that for every X ∈ Tγ(t)M and
X̃ ∈ Tγ̃(t)M̃ we have

K(X, γ′(t)) ≤ K̃(X̃, γ̃′(t)) .

Let J and J̃ be the Jacobi fields along γ and γ̃ such that

• J(0) = 0 and J̃(0) = 0,
• J ′(0) is orthogonal to γ′(0) and J̃ ′(0) is orthogonal to γ̃′(0), and
• ‖J ′(0)‖ = ‖J̃ ′(0)‖.

If J̃(t) is nowhere zero in the interval (0, a] and if γ̃ has at most a finite number
of points which are epi-conjugate but not mono-conjugate in (0, a], then

(4.6) ‖J(t)‖ ≥ ‖J̃(t)‖ for all t ∈ [0, a].

It often happens that such pathological points which are epi-conjugate but not
mono-conjugate can fill out a whole interval (this is the case for the volumorphism
group of a three-dimensional manifold [60]) so that the criterion above may only
be useful if the exponential map is Fredholm; see Remark 4.6 below.

Remark 4.3. Theorem 4.2 implies that if K̃(X, γ̇) ≥ −k for some positive con-
stant k (e.g., take M to be a constant negative curvature space) and if γ̃ is
free of conjugate points, then any Jacobi field along γ̃ in M̃ satisfies ‖J̃(t)‖ ≤
‖J ′(0)‖k−1/2 sinh kt, which gives essentially the maximum Lyapunov exponent
for the system. In the opposite direction, if K(X, γ̇) ≤ 0 (i.e., take M̃ to be a
flat space) then ‖J(t)‖ ≥ ‖J ′(0)‖t, which can be interpreted as a weak insta-
bility with perturbations growing at least linearly in time. In general, however,
one should be cautious when drawing conclusions based on the Rauch theorem
and one’s finite-dimensional intuition: positive curvature does not imply stability,
while negative curvature does not necessarily imply exponential instability, as we
discuss below.

For a general Riemannian manifold without additional structure one does not
expect more precise results on the relation between curvature and stability. How-
ever, most of our examples have a group structure under which the Riemannian



Curvatures of Diffeomorphism Groups 309

metric is right-invariant, which can be used to get additional information. To this
end it will be convenient to decouple the Jacobi equation (4.2) into two first-order
equations.

Namely, let M be a group G with a right-invariant (weak) Riemannian met-
ric. As in Section 2.1 its geodesics γ(t) can be described by a pair of equations
consisting of the Euler-Arnold equation (2.1) and the flow equation (2.3)

(4.7)
dγ

dt
= DRγ(u),

du

dt
+ ad∗uu = 0

defined in G and TeG respectively. Let γ̄(s, t) be a family of such geodesics with
γ̄(0, t) = γ(t) and with Eulerian velocity ū = DRγ̄−1

dγ̄
dt . Setting y = DRγ−1J

(where J is the Jacobi field along γ as in (4.1)) and z = ∂ū
∂s |s=0 and differentiating

both equations in (4.7) with respect to s at s = 0, we obtain a splitting of the
Jacobi equation (4.2) into

dy

dt
− aduy = z(4.8)

dz

dt
+ ad∗uz + ad∗zu = 0.(4.9)

The linearized Euler equation (4.9) can be used to define a notion of stability:
a solution u of the Euler equation is (linearly) stable if every perturbation z is
bounded uniformly in time. Using (4.8) one can then relate this notion to stability
of Lagrangian trajectories (as in [57] for the volumorphism group) and draw
sharper conclusions about the behaviour of geodesics than is generally possible
using only Rauch’s theorem. The next two examples illustrate the subtleties.

Example 4.4 (Rigid body motion). Let G = SO(3). Its Lie algebra so(3) = TeG

is spanned by the vectors e1, e2 and e3 satisfying [e1, e2] = e3, [e2, e3] = e1,
[e3, e1] = e2. This is the group of antisymmetric matrices represented as

x1e1 + x2e2 + x3e3 =

 0 −x1−x2

x1 0 −x3

x2 x3 0

 .

The shape of the rigid body determines a left-invariant7 Riemannian metric by
the conditions 〈e1, e1〉 = λ1, 〈e2, e2〉 = λ2, and 〈e3, e3〉 = λ3 for some positive

7All of our equations so far which have been stated for right-invariant metrics apply to left-

invariant metrics after a possible change of the sign.
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numbers λ1, λ2, λ3. The left-invariant analogue of (4.7) reads as follows

dγ

dt
= γu,

du

dt
= ad∗uu

with the Euler-Arnold equation given explicitly by

du1

dt
=
λ2 − λ3

λ1
u2u3,

du2

dt
=
λ3 − λ1

λ2
u1u3,

du3

dt
=
λ1 − λ2

λ3
u1u2.

Consider one steady solution of this equation given by u1 = u3 = 0 with u2 = 1,
supposing that 0 < λ1 < λ2 < λ3. The linearized Euler equation (4.9) takes the
form

dz1

dt
=
λ2 − λ3

λ1
z3,

dz2

dt
= 0,

dz3

dt
=
λ1 − λ2

λ3
z1

and if λ1 < λ2 < λ3 it admits exponentially growing solutions.8 The linearized
flow equation (4.8) takes the form

dy1

dt
+ y3 = z1,

dy2

dt
= z2,

dy3

dt
− y1 = z3,

so that y(t) grows exponentially if z(t) does. On the other hand, sectional curva-
ture in all directions containing e2 can be made positive by a suitable choice of
λ’s. Using e.g., the formulas of Milnor [47] we compute for x = x1e1 + x2e2 that

〈R(e2, x)x, e2〉 =
(λ2 − λ1)2 − λ2

3 + 2λ3(λ2 − λ3 + λ1)
4λ3

(x1)2

+
(λ3 − λ2)2 − λ2

1 + 2λ1(λ1 − λ3 − λ2)
4λ1

(x3)2,

which is positive-definite if e.g., λ1 = 4
5 , λ2 = 1, λ3 = 6

5 . Hence, we have
positive curvature along the geodesic but exponentially growing Jacobi fields.
This happens because the Rauch comparison theorem bounds Jacobi fields only
up to the first conjugate point; beyond that point all bets are off.

Example 4.5 (Couette flow). ConsiderM = Diffµ([0, 1]×S1) with the L2 metric.
The “plane-parallel Couette flow” u(x, y) = x ∂

∂y is a steady solution of the Euler
equation. This solution is known to be Eulerian stable [2, 56] even though the
sectional curvature is non-positive in all sections and typically negative [48]. A
closer inspection reveals that the growth of all Jacobi fields is precisely linear [57].
Hence, we do no better than what Rauch’s theorem says: negative curvature need
not imply exponential instability.

8This corresponds to the well-known fact that rotation of a rigid body about its largest and

smallest axes is stable, but rotation about the middle axis is unstable.
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It is worth pointing out that one can relate Eulerian stability to Lagrangian
stretching, i.e., to the growth of Adη(t) in the operator norm. Using the formula
d(Adηy)/dt = Adη(dy/dt − aduy) and defining Y and Z by y = AdηY and
z = AdηZ, equation (4.8) can be rewritten as

(4.10)
dY

dt
= Z,

while equation (4.9) becomes

(4.11)
d

dt
(Ad∗ηAdηZ) + ad∗Zu0 = 0

after incorporating conservation of vorticity Ad∗ηu = u0; see [53]. Observe that the
operator Z → Ad∗η(t)Adη(t)Z is selfadjoint and positive-definite, while Z 7→ ad∗Zu0

is anti-selfadjoint with constant coefficients. This makes (4.11) somewhat simpler
to analyze than (4.9) (even if u is independent of time) because z 7→ ad∗uz+ ad∗zu
is not selfadjoint; see [66].

Remark 4.6 (Fredholm exponential maps and conjugate points). If the exponen-
tial map of a weak Riemannian manifold M is known to be smooth, one can ask
about the distribution and nature of its singular values (conjugate points): can
mono-conjugate and epi-conjugate points coincide, have finite multiplicity, or be
discretely distributed along finite geodesic segments?

These questions turn out to have positive answers if the derivative of the ex-
ponential map is a Fredholm operator between the tangent spaces of M with
index zero.9 This was first established for the free loop space ΩMH1 with the
Sobolev H1 metric (2.12) in [50]. In this case the proof of Fredholmness is based
on the fact that the curvature operator R in (4.2) is compact. In general one
does not expect compactness of the curvature operator. However, in the spe-
cial case when M is a group G with a right-invariant metric, one can analyze
the derivative of the exponential map using the pair of equations (4.10)–(4.11)
to conclude that it is a sum of two terms, the first determined by the positive-
definite operator Z → Ad∗ηAdηZ and the second a composition of a bounded map
with Y → ad∗Y u0. The former is invertible. Thus if the latter is compact, then
the exponential map will be Fredholm of index zero. This strategy works on the
volumorphism group Diffs

µ(M) with the L2 metric if n = 2 (but not if n ≥ 3)

9In this case the exponential map is said to be a nonlinear Fredholm map of index zero (provided

that M is connected).
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as well as for right-invariant Sobolev metrics of sufficiently high order on any
diffeomorphism group; see [53].

Fredholmness fails for the exponential map of the ellipsoid in `2 with the in-
duced metric (there are sequences of mono-conjugate points accumulating at an
epi-conjugate point, or a mono-conjugate point of infinite order [21]). It also
fails for the free loop space with the L2 metric [50] and for the volumorphism
group Diffs

µ(M) of a three-dimensional manifold in the L2 metric [60]. In the
latter case, we can have mono-conjugate points that are dense in an interval and
epi-conjugate points that fill up an interval.

On the other hand, smoothness of the exponential map implies (by the inverse
function theorem) that any sufficiently short geodesic segment is free of conjugate
points and hence is locally minimizing. In particular, if for some tn ↘ 0 the points
γ(tn) along a given geodesic are mono-conjugate to γ(0), then the exponential is
not C1. This method was used to prove that the exponential maps associated
to the KdV equation [49], the right-invariant Burgers equation [9], and the whip
equation (2.13) [61] cannot be C1.

5. The sign of the curvature: previous results

In the remainder of the paper we will focus on the sign of the sectional curvature
in the examples described above. It turns out that with few exceptions sectional
curvature can be positive or negative depending on the two-dimensional direction.
This section contains a survey of known results and techniques. New results will
be presented in Sections 6 and 7.

The simplest curvature formula arises on Diff(M) ⊂ C∞(M,M) equipped with
the L2 metric (2.16). If U = u ◦ η and V = v ◦ η are two vector fields on Diff(M)
where u, v ∈ TeDiff(M) then the covariant derivative of the L2 metric is computed
in terms of the covariant derivative on M as (∇UV )η = (∇uv)◦η. Therefore, the
L2 curvature of Diff(M) is completely determined by the Riemannian curvature
of M and can be computed [48] directly from the definition as

〈〈R(u ◦ η, v ◦ η)v ◦ η, u ◦ η〉〉L2 =
∫

M
〈R(u, v)v, u〉 ◦ η dµ.

A few simple observations can be made based on this formula. If the vector fields
u and v have unit L2 norms and are chosen to have disjoint supports, then the
integral on the right-hand side will be zero. Consequently, the L2 curvature of
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Diff(M) cannot be strictly positive or strictly negative even if M has constant
(non-zero) curvature. Furthermore, it is also clear that it can be non-negative
(non-positive) if and only if the sectional curvature of M is non-negative (non-
positive).

One can similarly obtain relatively simple expressions for the L2 curvature of
the volumorphism group Diffµ(M) (following [48]) or the free loop space ΩM , as
well as the curvature of the unit-speed loops in R2 (see [61]). To do this we use
submanifold geometry.

As in finite dimensional geometry, if N is a submanifold of a (weak) Riemann-
ian manifold M, then the induced Levi-Civita connection on N is related to that
on M via the second fundamental form

(5.1) Π(U, V ) = ∇MU V −∇NU V,

where U and V are vector fields tangent to N . Π is symmetric and tensorial (i.e.,
its value at any p ∈ N depends only on the values Up and Vp), and the curvature
of N can then be computed using the Gauss-Codazzi formula

〈〈RN (U, V )V,U〉〉 = 〈〈RM(U, V )V,U〉〉

+ 〈〈Π(U,U),Π(V, V )〉〉 − 〈〈Π(U, V ),Π(U, V )〉〉.
(5.2)

If N = Diffµ(M) is the volumorphism group and M = Diff(M) is the group
of all diffeomorphisms with the L2 metric, then the corresponding second funda-
mental form is Π(U, V ) = ∇∆−1 div (∇uv) ◦ η, where U = u ◦ η, V = v ◦ η and
where u and v are divergence free vector fields on M . The following theorem
summarizes the known results in this important case; see [40, 41, 48, 58, 63, 67]

Theorem 5.1. Let M be a compact manifold of dimension n ≥ 2, possibly with
boundary. Consider the volumorphism group Diffµ(M) with the L2 metric. For
any u ∈ TeDiffµ(M) define

Kmin(u) = inf
v∈TeDiffµ(M)

〈〈R(v, u)u, v〉〉L2

‖v‖2
L2‖u‖2

L2 − 〈〈u, v〉〉2L2

to be the minimum sectional curvature in directions containing u, and similarly
define Kmax(u) to be the maximum curvature. Then we have

(1) Kmin(u) < 0, unless u is a Killing field in which case Kmin(u) = 0;
(2) if n ≥ 3 and M is flat then Kmax(u) > 0, unless div (∇uu) = 0 in which

case Kmax(u) = 0;
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(3) if n = 2 and M is flat then Kmax(u) > 0, unless u is plane parallel
u = f(x) ∂

∂y or purely rotational u = f(r) ∂
∂θ , in either of which cases

Kmax(u) = 0.

Proof. All three statements follow from the Gauss-Codazzi formula (5.2) which is
the most effective way to determine the sign of the curvature of Diffµ(M). Part
(1) can be found in [63] when n = 3 and M is flat although the technique works
in any dimension. In part (2), the fact that div (∇uu) = 0 implies Kmax(u) =
0 is essentially due to [48] while the converse can be proved using the same
approximation scheme as in [59] (used there to find conjugate points). Finally,
part (3) is a special case of a result in [58] which works for any steady flow on a
surface. �

In particular, it follows from Theorem 5.1 that for any M of dimension n ≥ 2
the L2 sectional curvature of Diffµ(M) assumes both signs. The first examples in
the special case of the flat 2-torus M = T2 were worked out by Arnold [1], who
used the Lie-theoretic approach of Section 2.1. He derived a general formula for
the sectional curvature of a group M = G with a right-invariant metric in terms
of the coadjoint operator (2.2) as

〈〈R(u, v)v, u〉〉 =
1
4
‖ad∗vu+ ad∗uv‖2 − 〈〈ad∗uu, ad∗vv〉〉

− 3
4
‖aduv‖2 +

1
2
〈〈aduv, ad∗vu− ad∗uv〉〉

(5.3)

and applied it to the case of Diffµ(T2).

Example 5.2. If u and v are vector fields on T2 with the stream functions
f(x, y) = cos (jx+ ky) and g(x, y) = cos (lx+my) then the (unnormalized) sec-
tional curvature of Diffµ(T2) is

(5.4) 〈〈R(u, v)v, u〉〉L2 = − π2(jm− kl)4(j2 + k2 + l2 +m2)(
(j + l)2 + (k +m)2

)(
(j − l)2 + (k −m)2

) < 0.

On the other hand, if we pick f(x, y) = cos (3kx− y) + cos (3kx+ 2y) and
g(x, y) = cos (kx+ y) + cos (kx− 2y) then

lim
k→∞

K(u, v) =
9

8π2
.

Thus it is easy to find negative curvature, but there are many sections with
positive curvature as well.
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There are two cases in which the curvature is known to have a remarkably
simple form. The first is Diff(S1) with the right-invariant L2 metric (that is,
a = 1 and b = 0 in (1.2)) whose curvature at the identity (and hence everywhere
by right invariance) is given by

(5.5) 〈〈R(u, v)v, u〉〉L2 =
∫

S1

(uvx − vux)2 dx

and thus is non-negative. We will show in Section 7 that this attractive formula
does not generalize to higher dimensions, and the sectional curvature of the right-
invariant L2 metric on Diff(M) can assume both signs.

The second case is the space of densities Diff(M)/Diffµ(M) equipped with the
homogeneous Sobolev Ḣ1 metric obtained by setting b = 1 and a = c = 0 in
(1.1). This space turns out to be isometric to the round sphere of radius 2 and
therefore has constant positive curvature

(5.6) 〈〈R(u, v)v, u〉〉Ḣ1 =
1
4

(
‖u‖2

Ḣ1‖v‖2
Ḣ1 − 〈〈u, v〉〉2Ḣ1

)
.

We refer to [36, 31] for detailed calculations.

When the exponential map is not smooth, the curvature may be positive but
unbounded above; this allows for conjugate points that occur arbitrarily close to
any given point along a geodesic. In such situations one cannot determine stability
studying geodesic deviation even for short times, since the Rauch Theorem 4.2
immediately fails. This applies for example to the right-invariant L2 metric on
the Virasoro group (which yields the KdV equation) whose exponential map is
also known not to be smooth and whose sectional curvature is unbounded and of
both signs [49, 10].

6. The sign of the curvature: the one dimensional case

In this section we present new results on the sign of the sectional curvature
of the right-invariant H1 metric on the group Diff(S1). In this case the Sobolev
H1-metric (1.1) reduces to the a-b metric

(6.1) 〈〈u, v〉〉H1 =
∫ 1

0

(
auv + buxvx

)
dx

with a > 0 and b > 0. The corresponding Euler-Arnold equation (2.1) reads

(6.2) mt = −3auux + b(2uxuxx + uuxxx), m = Au = au− buxx.
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For a = b = 1 we get the periodic Camassa-Holm equation with period 1. For
other values we can rescale by y = x

√
a
b and s = t

√
a
b so that (6.2) becomes

us − usyy + 3uuy − 2uyuyy − uuyyy = 0,

which is the Camassa-Holm equation with period
√
a/b.

Recall from Section 5 that the sectional curvature of Diff(S1) equipped with
the a-b metric (6.1) is already known in the “end-point” cases where either a = 0
or b = 0. In the former case, the sectional curvature is positive and constant (see
(5.6)), and in the latter it is non-negative (see (5.5)). We will next show that
when both a and b are positive, the curvature of Diff(S1) can assume both signs.

Remark 6.1. In what follows we will often use the letter S as a shorthand
notation for the (non-normalized) sectional curvature S(u, v) = 〈〈R(u, v)v, u〉〉 if
the metric used is clear from the context.

Lemma 6.2. The sectional curvature of Diff(S1) endowed with the right-invariant
a-b metric (6.1) where a > 0 and b > 0 is given by

(6.3) S(u, v) = 〈〈R(u, v)v, u〉〉H1 = 〈〈Γ(u, v),Γ(u, v)〉〉H1 − 〈〈Γ(u, u),Γ(v, v)〉〉H1 ,

for any u, v ∈ TeDiff(S1), where Γ is the Christoffel map defined by

(6.4) Γ(u, v) = A−1∂x

(
auv +

b

2
uxvx

)
, A = a− b∂2

x.

Proof. We have ad∗vu = A−1(2auvx + avux − 2bvxuxx − bvuxxx) and therefore an
easily verified identity

ad∗vu+ ad∗uv = ∂x(uv) + 2Γ(u, v),

which yields
ad∗uu = 1

2∂x(u2) + Γ(u, u).

Using the general curvature formula (5.3), we obtain

〈〈R(u, v)v, u〉〉H1 = ‖Γ(u, v)‖2
H1 − 〈〈Γ(u, u),Γ(v, v)〉〉H1 + L(u, v),

where

L(u, v) = 〈〈Γ(u, v), ∂x(uv)〉〉H1 − 1
2〈〈Γ(u, u), ∂x(v2)〉〉H1 − 1

2〈〈Γ(v, v), ∂x(u2)〉〉H1

+ 1
4‖∂x(uv)‖2

H1 − 1
4〈〈∂x(u2), ∂x(v2)〉〉H1

− 3
4‖aduv‖2

H1 + 1
2〈〈aduv, ad∗vu− ad∗uv〉〉H1
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and aduv = −vxu+ uxv. Since 〈〈f,A−1g〉〉H1 =
∫
S1 fg dx for any functions f and

g, we can perform all these computations without ever explicitly evaluating A−1.

It turns out that L(u, v) is always zero. We have L(u, v) =
∫
S1 Λ(u, v) dx,

where

Λ(u, v) = ∂x(auv + b
2uxvx)∂x(uv)− 1

2∂x(au2 + b
2u

2
x)∂x(v2)− 1

2∂x(av2 + b
2v

2
x)∂x(u2)

+ a
4

[
∂x(uv)

]2 + b
4

[
∂2

x(uv)
]2 − a

4

[
∂x(u2)

][
∂x(v2)

]
− b

4

[
∂2

x(u2)
][
∂2

x(v2)
]

− 3a
4 (uvx − vux)2 − 3b

4 (uvxx − vuxx)2 + a
2 (vux − uvx)(uvx − vux)

+ b
2(vux − uvx)(−2vxuxx − vuxxx + 2uxvxx + uvxxx).

Expanding this and simplifying, we obtain

Λ(u, v) =
b

2
∂

∂x

(
−v2uxuxx − u2vxvxx + uvuxvxx + uvvxuxx

)
,

which integrates to zero. �

The following proposition shows that it is easy to find sections of positive H1

curvature on Diff(S1) with the a-b metric (6.1). In fact, the curvature is strictly
positive along all subspaces spanned by two trigonometric functions.

Theorem 6.3. Consider Diff(S1) endowed with the right-invariant H1 metric
given at the identity by (6.1) with a > 0 and b > 0. If k and l are strictly positive
distinct integer multiples of 2π, then

(6.5) S(cos kx, cos lx) = S(cos kx, sin lx) = S(sin kx, sin lx) = C(k, l) > 0,

where S(u, v) = 〈〈R(u, v)v, u〉〉H1 and

C(k, l) =
1
8

(
(a+ b

2kl)
2

a+ b(k − l)2
(k − l)2 +

(a− b
2kl)

2

a+ b(k + l)2
(k + l)2

)
.

Moreover, for k an integer multiple of 2π, we have

S(cos kx, sin kx) = 2C(k, k) =
(a− b

2k
2)2

a+ 4bk2
k2 > 0 and

S(cos kx, 1) = S(sin kx, 1) = 2C(k, 0) =
a2k2

2(a+ bk2)
> 0.
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Proof. Let u = cos kx and v = cos lx. From the definition (6.4) of the Christoffel
map Γ we have

Γ(u, u) = −2ak − bk3

2a+ 8bk2
sin (2kx), Γ(v, v) = − 2al − bl3

2a+ 8bl2
sin (2lx),

Γ(u, v) = −(k + l)(2a− bkl)
4a+ 4b(k + l)2

sin (k + l)x− (k − l)(2a+ bkl)
4a+ 4b(k − l)2

sin (k − l)x.

Substituting these into (6.3) gives the formula for S(cos kx, cos lx). The other
formulas are proved in a similar way. �

Sections of negative H1 curvature are trickier to find.

Theorem 6.4. For every choice of a > 0 and b > 0, there exist velocity fields u
and v such that the sectional curvature of Diff(S1) endowed with the a-b metric
(6.1) is strictly negative, i.e., S(u, v) = 〈〈R(u, v)v, u〉〉H1 < 0.

Proof. Set α = a/(4π2b) and pick

u(x) = φ+ cos 4πx, v(x) = sin 2πx,

where

φ = −3
2
α2 − α− 2
α(α+ 4)

;

substitution into (6.3) yields

S(u, v) =
2bπ4(α4 + 18α3 + 357α2 − 20α− 36)

(α+ 9)(α+ 4)2
.

Observe that this quantity is negative for 0 < α ≤ 0.34.

The second example is constructed differently and works when α ≥ 0.34.
Choose a positive integer j such that 1

2

√
α/0.34 < j ≤

√
α/0.34 and define

r = α/j2 so that 0.34 ≤ r < 1.36. Set

ψ =

√
−(73r2 − 188r + 45)(r + 16)

128(r + 9)(r − 2)2
.

It is easy to see that this is defined in the range specified above. Set

u(x) = cos 2πjx+ ψ cos 4πjx and v(x) = sin 2πjx+ 2ψ sin 4πjx.

Substituting into (6.3), we obtain

S(u, v) = −3π4bj4

64
P (r)

(r + 9)2(r + 4)(r − 2)2
,
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where P (r) = 1435r6+21940r5−55074r4−222512r3+584323r2−215364r+15552.
This quantity S(u, v) is negative for 0.34 ≤ r < 1.36, as desired. �

Remark 6.5 (The µCH equation). An interesting example of a right-invariant
H1-type metric on Diff(S1) is given at the identity by

〈〈u, v〉〉H1
µ

= c µ(u)µ(v) +
∫

S1

u′(x)v′(x) dx ,

for any positive constant c, where µ(u) :=
∫
S1 u(x)dx is the mean value of the

field over the circle. This metric yields yet another integrable evolution equation

utxx − 2cµ(u)ux + 2uxuxx + uuxxx = 0

as a geodesic equation on the diffeomorphism group which “interpolates” between
the Hunter-Saxton and Camassa-Holm equations. (This equation is sometimes
called the µHS or µCH equation and was introduced in [30].) The group Diff(S1)
equipped with the H1

µ metric above admits sections of negative curvature; e.g.,
S(u, v) < 0 whenever

u(x) =
3π2k2

c
+ cos (4πkx), v(x) = sin (2πkx) ,

and k is any nonzero integer.

7. The sign of the curvature: higher dimensions

In order to simplify the formulas we present the results for the case when M is
the flat torus Tn = Rn/Zn. We recall the general formula for the Sobolev metric
(1.1) in the form

(7.1) 〈〈u, v〉〉H1 = a

∫
Tn

〈u, v〉 dµ+ b

∫
Tn

δu[ · δv[ dµ+ c

∫
Tn

〈du[, dv[〉 dµ

and observe from (5.6) that when a = c = 0, then the corresponding sectional
curvature of Diff(Tn) is strictly positive and constant.

In this section, we show that in the general a-b-c case, the sectional curvature
of (7.1) on Diff(Tn) assumes both signs. The case when at least two of the
parameters a, b, c are nonzero is treated in Section 7.1, the case b = c = 0 is
treated in Section 7.2, and the case a = b = 0 on the subgroup Diffµ,ex(T2) is in
Section 7.3. We assume n = 2; all examples discussed below generalize naturally
to higher dimensions.
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7.1. The H1-metric on Diff(Tn): the EPDiff equation. In the case when
all parameters a, b and c of the H1 metric (7.1) are strictly positive, the Euler-
Arnold equation (2.1) is a multidimensional generalization of the Camassa-Holm
equation. In the special case where a = b = c = 1 and the manifold is a flat
torus10 we obtain the EPDiff equation [24].

Theorem 7.1. If M is the flat torus Tn and at least two of the parameters a, b, c
are nonzero in (7.1), then the curvature of Diff(Tn) takes on both signs.

Proof. The formula for the coadjoint operator for the a-b-c metric (7.1) is

(7.2) ad∗vu = A−1
(
(div v)Au+ d〈Au, v〉+ ιvdAu

)
,

where Av = av[ + bdδv[ + cδdvb; see [31].

If we pick u = f(x) ∂
∂x and v = g(x) ∂

∂x then (7.2) gives

ad∗vu = (a− b∂2
x)−1

(
a
(
2gxf + fxg

)
− b
(
2gxfxx + gfxxx

))
.

The value of c is irrelevant in this case, since du[ = dv[ = 0. Thus, formula
(5.5) yields examples with positive curvature whenever a 6= 0. If a = 0 but b
is nonzero, then positive curvature directions exist since this space is isometric
to a sphere [36]. Finally, if a and b are both nonzero, then Theorem 6.4 yields
examples of negative curvature.

To finish the proof we need negative-curvature examples when b = 0 with a

and c both nonzero, and when a = 0 while b and c are both nonzero. We will
present them for the two-dimensional flat torus T2.

Let u = f(x) ∂
∂y and v = g(x) ∂

∂x so that Au = (af − cfxx) ∂
∂y and Av =

(ag − bgxx) ∂
∂x . If a 6= 0, then using (7.2) we find

ad∗uu = (a− b∂2
x)−1

(
affx − cfxfxx

)
∂
∂x ,

ad∗vu = (a− c∂2
x)−1

(
a
(
gxf + gfx

)
− c
(
gxfxx + gfxxx

))
∂
∂y ,

ad∗uv = 0,

ad∗vv = (a− b∂2
x)−1

(
3aggx − b(2gxgxx + ggxxx)

)
∂
∂x .

10In general, EPDiff involves the rough Laplacian ∇∗∇ rather than the Hodge Laplacian dδ + δd;

these operators differ by a Ricci curvature term due to the Bochner-Weitzenböck formula. If

the manifold is Einstein the EPDiff metric is a special case of (7.1).
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We also have aduv = gfx
∂
∂y . If f(x) = g(x) = sin kx for some k which is an

integer multiple of 2π, then it is easy to see that

ad∗uu =
k(a+ ck2)
2(a+ 4bk2)

sin 2kx ∂
∂x ,

ad∗vu =
k(a+ ck2)
a+ 4ck2

sin 2kx ∂
∂y ,

ad∗vv =
3k(a+ bk2)
2(a+ 4bk2)

sin 2kx ∂
∂x ,

aduv =
k

2
sin 2kx ∂

∂y .

Note that these formulas are valid if a = 0 as well, as long as b 6= 0 and c 6= 0.
Indeed, in this case all vectors have to be projected to the orthogonal complement
of the harmonic fields,11 but since∫ 1

0

∫ 1

0
sin kx dx dy =

∫ 1

0

∫ 1

0
sin 2kx dx dy = 0,

we see that all components are already orthogonal to the harmonic fields.

Substitution into (5.3) now gives the formula

S(u, v) = −k
2(7a3 − 8a2bk2 + 56a2ck2 + 44ack4b+ 76c2k4a+ 160c2k6b)

32(a+ 4ck2)(a+ 4bk2)
.

In particular, when a = 0 then

S(u, v) = −5ck4/16

and when b = 0 we obtain

S(u, v) = −k
2(7a2 + 56ack2 + 76c2k4)

32(a+ 4ck2)
.

In either case the sectional curvature is negative for any k 6= 0. All these examples
work on Tn as well, if x and y denote the first two variables of the coordinate
system. �

11The metric (7.1) on Diff(T2) with a = 0 is degenerate and only defined on the homogeneous

space Diff(T2)/T2. Hence everything is only defined modulo harmonic fields on T2.
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7.2. The L2-metric on Diff(Tn): the Burgers equation. If b = c = 0, then
the formula (7.1) reduces to the L2 inner product, and the corresponding geodesic
equation (2.1) is the multi-dimensional Burgers equation

ut +∇uu+ div(u)u+ 1
2∇〈u, u〉 = 0,

also called the template matching equation; see [23]. However, in contrast with
the one-dimensional case, the curvature of the right-invariant L2-metric assumes
both signs when n ≥ 2. For simplicity we only prove the result for n = 2.

Proposition 7.2. The sectional curvature of Diff(T2) equipped with the right-
invariant metric (7.1) with b = c = 0 is given by the formula (5.5) for any
u = f(x) ∂

∂x and v = g(x) ∂
∂x , in which case S(u, v) ≥ 0. On the other hand, if

u = sin (2πx) ∂
∂x and v = sin2 (2πx) ∂

∂y then S(u, v) < 0.

Proof. In this case the operator ad∗vu defined by (2.2) has the form

ad∗vu = u div v + (ιvdu[)] +∇〈u, v〉.

Thus, when u = f(x) ∂
∂x and v = g(x) ∂

∂x we get ad∗vu =
(
2gxf + gfx

)
∂
∂x , which

is the same formula as in the one-dimensional case and the first part of the
proposition follows.

Furthermore, if w = g(x) ∂
∂y then we compute

ad∗wu = 0,

ad∗uu = 3ffx
∂
∂x ,

ad∗uw =
(
fxg + fgx

)
∂
∂y ,

ad∗ww = ggx
∂
∂x .

Combining these formulas with aduw = −fgx
∂
∂y in (5.3), we get

S(u,w) = a

∫ 1

0

(
1
4f

2
xg

2 − 2ffxggx

)
dx.

Taking f(x) = sin (2πx) and g(x) = sin2 (2πx), we find S(u,w) = −15π2/16. �

A similar consideration in the general case can be summarized as the following
statement.
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Theorem 7.3. The sectional curvature of Diff(Tn) equipped with the right-invariant
L2 metric (i.e., the a-b-c metric (7.1) with a = 1 and b = c = 0) assumes both
signs.

7.3. The homogeneous Ḣ1-metric on Diffµ,ex(T2). Consider next the Lie
group Diffµ,ex(T2) of exact volumorphisms of the flat torus T2, which consists of
symplectic diffeomorphisms preserving the center of mass. Its Lie algebra consists
of Hamiltonian vector fields u = sgrad f with f ∈ C∞(T2). Following Arnold [1]
we calculate the sectional curvature of the metric

〈〈u, v〉〉 = c

∫
T2

〈du[, du[〉 dµ,(7.3)

on this group. It turns out to be just as convenient to work with a more general
right-invariant metric given at the identity by

(7.4) 〈〈u, v〉〉 = 〈〈sgrad f, sgrad g〉〉 =
∫

T2

fΛg dµ,

where the (positive-definite, symmetric) operator Λ defining the inner product
is given by the formula Λ = λ(∆) for some function λ : R+ → R+.12 For a
vector p ∈ R2, we will write F (p) = λ(|p|2) for convenience. The metric (7.3)
corresponds to λ(z) = cz2 and Λ = c∆2.

Theorem 7.4. Suppose f(x, y) = cos (jx+ ky) and g(x, y) = cos (lx+my),
where j, k, l,m are integer multiples of 2π. Set p = (j, k) and q = (l,m) and let
u = sgrad f and v = sgrad g. Then13

(7.5) S(u, v) =
|p ∧ q|2

8

{
1
4

(
F (p)− F (q)

)2( 1
F (p+ q)

+
1

F (p− q)

)
− 3

4

(
F (p+ q) + F (p− q)

)
+ F (p) + F (q)

}
,

where p ∧ q = jm− kl.

Proof. Recall that sgrad f = −fy
∂
∂x +fx

∂
∂y , so that if {f, g} = fxgy−fygx denotes

the Poisson bracket, then [sgrad f, sgrad g] = sgrad{f, g}. Given any smooth

12More precisely, if a function f is written in an eigenbasis of the positive-definite Laplacian as

f =
∑

k akφk with ∆φk = γkφk, then Λf =
∑

k akλ(γk)φk.
13Note that for F (p) = |p|2 formula (7.5) reproduces (5.4), up to a rescaling factor.
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functions f , g and h on the torus let u = sgrad f , v = sgrad g and w = sgradh
be the corresponding skew-gradients. Integration by parts gives

〈〈ad∗vu,w〉〉 = −
∫

T2

(Λf){g, h} dµ

=
∫

T2

h{g,Λf} dµ = 〈〈w, sgrad Λ−1{g,Λf}〉〉,

from which we deduce that ad∗vu = sgrad Λ−1{g,Λf}.

We can assume that |p|, |q|, |p− q|, and |p+ q| are all nonzero. Furthermore,
since ∆f = |p|2f and ∆g = |q|2g we find that

ad∗uu = ad∗vv = 0,

ad∗vu = −F (p) sgrad Λ−1θ, and ad∗uv = F (q) sgrad Λ−1θ,

where

θ(x, y) = {f, g}(x, y) =
1
2

(jm− kl)
(

cos
(
(j − l)x+ (k −m)y

)
− cos

(
(j + l)x+ (k +m)y

))
.

Clearly, we have θ = 1
2(p∧q)(ϕ−ψ), where ϕ and ψ are eigenfunctions satisfying

Λϕ = F (p− q)ϕ and Λψ = F (p+ q)ψ. Combining the above formulas we obtain

aduv = − sgrad θ = −p ∧ q
2

sgrad(ϕ− ψ),

ad∗vu = −(p ∧ q)F (p)
2

sgrad
(

ϕ

F (p− q)
− ψ

F (p+ q)

)
,

ad∗uv =
(p ∧ q)F (q)

2
sgrad

(
ϕ

F (p− q)
− ψ

F (p+ q)

)
.

Since, on the other hand, we have

〈〈sgradϕ, sgradϕ〉〉 = 1
2F (p− q), 〈〈sgradϕ, sgradψ〉〉 = 0,

and 〈〈sgradψ, sgradψ〉〉 = 1
2F (p+ q),

substituting into the sectional curvature formula (5.3) yields (7.5). �

Corollary 7.5. In the particular case when the metric is given by (7.3) the
sectional curvature can assume both signs depending on p and q.
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Indeed, for the metric (7.3) we have F (p) = λ(|p|2) = c|p|4, and a straightfor-
ward computation gives S(u, v) > 0 when p = (10π, 0) and q = (8π, 2π), while
S(u, v) < 0 when p = (2π, 0) and q = (0, 2π).

Appendix A. Semi-direct products and curvature formulas

Formula (6.3) for the sectional curvature of theH1 metric derived in Lemma 6.2
of Section 6 resembles the formula for the curvature of a Riemannian submanifold
N isometrically immersed in an ambient manifold M, given by (5.2). Observe
however that the sign of (5.2) is the opposite of the sign for (6.3). The next
proposition shows how to rearrange (6.3) to make the analogy work.

Proposition A.1. The sectional curvature (6.3) of Diff(S1) with the H1 metric
(6.1) can be rewritten in either of the two following forms

S(u, v) =− a
2

∫
S1

(uvx − vux)2 dx+ a
b 〈〈T (u, u), T (v, v)〉〉 − a

b 〈〈T (u, v), T (u, v)〉〉,

(A.1)

S(u, v) = 1
a

∫
S1

(
a(uvx − vux) + b

2(vxuxx − uxvxx)
)2
dx

(A.2)

+ b
a〈〈Q(u, u), Q(v, v)〉〉 − b

a〈〈Q(u, v), Q(u, v)〉〉,

where the bilinear operators T and Q are defined by

T (u, v) = A−1
(
auv + b

2uxvx

)
, Q(u, v) = −∂2

xA
−1
(
auv + b

2uxvx

)
.(A.3)

Proof. Note that Γ(u, v) defined by (6.4) is related to Q and T by Γ(u, v) =
∂xT (u, v) and Q(u, v) = −∂xΓ(u, v).

We prove (A.1) first. Let u and v be any vector fields and set q = auv+ b
2uxvx.

Then T (u, v) = A−1q, so that

〈〈Γ(u, v),Γ(u, v)〉〉 =
∫

S1

∂xT (u, v)A∂xT (u, v) dx = −
∫

S1

qA−1∂2
xq dx.

Now using the identity A−1∂2
x = −1

b + a
bA

−1, we find

〈〈Γ(u, v),Γ(u, v)〉〉 =
1
b

∫
S1

(
auv + b

2uxvx

)2
dx− a

b
〈〈T (u, v), T (u, v)〉〉.

Using the same trick also on the other term in (6.3) gives (A.1). A similar
technique reduces (A.2) to (6.3). �
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The formulas (A.1) and (A.2) suggest that Diff(S1) with the a-b metric (6.1)
can be realized as an isometrically immersed submanifold of some simpler mani-
fold. For (A.2) such an immersion is described in the following theorem.

Theorem A.2. Let Diff(S1) nC∞(S1) denote the semidirect product of the dif-
feomorphism group Diff(S1) with C∞(S1) with group structure given by

(η, F ) · (ξ,G) = (η ◦ ξ, F ◦ ξ +G).

Define a right-invariant Riemannian metric on this group by the L2 inner product
at the identity

(A.4) 〈〈(u, f), (v, g)〉〉 =
∫

S1

(
auv + bfg

)
dx.

Let Υ: Diff(S1) → Diff(S1) n C∞(S1) denote the map Υ(η) = (η, ln ηx). Then
Υ is an embedding and a group homomorphism and the right-invariant metric
induced on Diff(S1) by (A.4) is the a-b metric (6.1). Furthermore, the curvature
formula (A.2) is the Gauss-Codazzi formula for the embedding Υ.

Proof. The Lie algebra for G = Diff(S1) n C∞(S1) is the semidirect product
g = Vect(S1) n C∞(S1), which has an interpretation as the space of first-order
differential operators vD + f for v ∈ Vect and f ∈ C∞. For details on the
geometry of the semidirect product see e.g., [42, 70]. For this semi-direct product
the adjoint operator has the form

ad(u,f)(v, g) = (−uvx + uxv, vfx − ugx),

which implies that the Arnold operator (2.2) is

(A.5) ad∗(u,f)(v, g) =
(
2uxv + uvx + b

agfx, gux + gxu
)
.

The general curvature formula (5.3) implies, after some simplifications, that the
curvature of the semidirect product Diff(S1) n C∞(S1) can be written as

(A.6) 〈〈R̄((u, f), (v, g))(v, g), (u, f)〉〉 = a

∫
S1

(
uvx − vux + b

2a(gfx − fgx)
)2
dx

+ b
4

∫
S1

(gux − fvx)(gux − fvx + 8vfx − 8ugx) dx.

Observe that Υ is a group homomorphism:

Υ(η ◦ ξ) =
(
η ◦ ξ, ln(ηx ◦ ξ) + ln(ξx)

)
= Υ(η) ·Υ(ξ)
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using the chain rule. Smoothness of this map can be proved using Sobolev Hs

topology. For our purposes it is enough to note that Υ is formally an immersion
since at the identity we have

DΥe(u) = (u, ux),

which is obviously injective.14 Hence the induced metric on Diff(S1) is given at
the identity by

〈〈u, v〉〉 = 〈〈DΥ(u), DΥ(v)〉〉 =
∫

S1

(
auv + buxvx

)
dx,

which is precisely the a-b metric (6.1).

The orthogonal complement of the image of DΥe in the metric (A.4) consists
of those vectors of the form

(
b
ahx, h

)
for some function h : S1 → R. We can now

compute the second fundamental form (5.1) of the embedding: because of the
right-invariance, we have 〈〈Π(u, u), w〉〉 = 〈〈ad∗uu,w〉〉 for w ∈ (Im DΥe)⊥, where
ad∗ is the operator given in (A.5). We then have

Π(u, u) =
(

b
ahx, h

)
where h = −A−1∂2

x

(
au2 + b

2u
2
x

)
.

Polarization yields Π(u, v) =
(

b
aQ(u, v)x, Q(u, v)

)
, where Q is given by (A.3).

Substituting (A.6) when f = u′ and g = v′, together with the second fundamental
form, into (5.2) reproduces (A.2). �

We conjecture that there is another embedding-homomorphism of Diff(S1) into
an infinite-dimensional Lie group with right-invariant metric which reproduces
formula (A.1), but we do not know what it might be.
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14In the interpretation via differential operators, we consider operators of the form uD+ux = Du.

The homomorphism DΥ : uD 7→ Du is evidently a homomorphism of Lie algebras Vect →
Vect n C∞.
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[69] F. Tığlay and C. Vizman, Generalized Euler-Poincare equations on Lie groups
and homogeneous spaces, orbit invariants and applications, Lett. Math. Phys. 97
(2011), 45–60.



332 B. Khesin, J. Lenells, G. Misio lek and S. C. Preston

[70] C. Vizman, Geodesic equations on diffeomorphism groups, SIGMA 4 (2008), no.
030, 22pp.

[71] W. Wolibner, Un theorème sur l’existence du mouvement plan d’un fluide par-
fait, homogene, incompressible, pendant un temps infiniment long, Math. Zeit. 37
(1933), 698–726.

[72] V. Yudovich, Non-stationary flows of an ideal incompressible fluid, Zhur. Vysch.
Mat. Fiz. 3 (1963), no. 6, 1407–1456.

B. Khesin
Department of Mathematics,
University of Toronto,
M5S 2E4, Canada
E-mail: khesin@math.toronto.edu

J. Lenells
Department of Mathematics,
Baylor University,
One Bear Place #97328, Waco, TX 76798, USA.
E-mail: Jonatan Lenells@baylor.edu

G. Misio lek
Institute for Advanced Study,
Princeton, NJ 08540, USA
and
Department of Mathematics,
University of Notre Dame, IN 46556, USA
E-mail: gmisiole@nd.edu

S. C. Preston
Department of Mathematics,
University of Colorado,
CO 80309, USA
E-mail: Stephen.Preston@colorado.edu


