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1. Introduction

One of the achievements of the KAM theory was establishing that a typical Hamil-
tonian system close to a completely integrable one has many invariant tori and hence 
cannot be ergodic. On the other hand, the celebrated Arnold theorem on the structure 
of typical 3D steady flows of an ideal fluid proves that such flows are almost everywhere 
fibered by invariant tori. In this paper we show how this similarity of steady flows and 
integrable systems implies non-ergodicity of the infinite-dimensional dynamical system 
defined by the hydrodynamical Euler equation.

Namely, the motion of an ideal fluid on a Riemannian closed manifold M is described 
by its velocity field u(·, t), which satisfies the Euler equation

∂tu + ∇uu = −∇p, div u = 0, (1.1)

for a pressure function p(·, t) defined by these equations up to a constant. Here ∇uu is 
the covariant derivative of u along itself. This equation implies that the vorticity field
ω := rotu is transported by the flow, i.e.

∂tω + [u, ω] = 0, (1.2)

and hence in any 3D flow the vortex lines at t = 0 are diffeomorphic to the corresponding 
vortex lines at any other t (for which the solution exists). This phenomenon is known as 
Kelvin’s circulation theorem.

A solution u to the Euler equation is called steady (or stationary) when it does not 
depend on time, so it satisfies the equation

∇uu = −∇p, div u = 0.

In particular, Eq. (1.2) implies that the vorticity and the velocity fields commute for 
stationary solutions, that is [ω, u] = 0. The topology of “typical” steady solutions of 3D 
Euler flows was described by Arnold in his structure theorem [1]. Namely, under the 
assumption of sufficient smoothness and non-collinearity of u and rotu, the manifold M , 
away from a singular set, is fibered by 2-tori invariant for both fields u and rotu. The 
motion on these tori is periodic or quasi-periodic. Accordingly, a steady flow in 3D looks 
like an integrable Hamiltonian system with two degrees of freedom on a fixed energy 
level.

Inspired by the mechanism of vorticity transport and the existence of many invari-
ant tori of the vorticity in steady fluid flows, we introduce an integral of motion for 
the Euler equation that is independent of the energy and the helicity (the classical 
first integrals of 3D Euler). This conserved quantity is a functional κ on the space of 
divergence-free vectorfields which measures the fraction of M which is covered by er-
godic invariant tori of rotu. Moreover, the way how the invariant tori are embedded 
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(knotted) in M is also an invariant and it gives a family κa, a ∈ Z, of infinitely many 
conserved quantities. (More precisely, the index a belongs to the countable set of differ-
ent embedding classes for tori into M .) The whole family of quantities {κa} for a given 
divergence-free vectorfield will be called the integrability spectrum of this field on the 
manifold. This setting provides a framework to apply the KAM theory, which in fact 
allows us to prove basic continuity properties of κa evaluated at certain nondegenerate 
vectorfields.

Roughly speaking, the key idea is as follows. The fraction of M filled in with invariant 
tori of the vorticity does not change during the evolution as a consequence of the vorticity 
transport. If the vorticity of a non-stationary solution approaches an integrable (i.e. 
a.e. fibered by tori) divergence-free field v, then the KAM theory of divergence-free 
vectorfields guarantees that the time-dependent vorticity must possess many invariant 
tori of the same topology as those for v, under certain nondegeneracy conditions. This 
allows us to estimate how close a non-stationary solution of the Euler equation can get 
to a given integrable vectorfield, and in particular to a steady solution.

Using the conserved quantities κa, the KAM theory, and simple differential topology, 
we prove the main results of this article: First, the Euler flow (1.1) is not ergodic in the 
Ck-topology, k > 4 and non-integer,1 on the space of divergence-free vectorfields of fixed 
helicity and sufficiently large energy, see Theorem 6.4. This property is a 3D version of 
Nadirashvili’s and Shnirelman’s theorems on the existence of wandering solutions for the 
Euler equation on a 2D annulus [18] and on the 2-torus [22]. Second, if two divergence-free 
vectorfields have different integrability spectra and their vorticities are integrable, then 
any sufficiently small Ck-neighborhoods of these vectorfields do not mix under the Euler 
flow, see Theorem 6.5. Both results hold for any closed Riemannian manifold, so the 
metric does not play a relevant role, in particular negative curvature does not imply 
mixing for the 3D Euler flow in the Ck-topology.

In the particular case of T3 and S3, we prove the existence of open domains of 
divergence-free vectorfields with fixed energy and helicity, in the Ck-topology (k > 4), 
which cannot approach certain steady solutions under the evolution of the Euler equa-
tion, and in the case of T3 we show that there are pairs of steady states that cannot be 
joint by a heteroclinic connection.

We would like to remark that, while any smooth invariant of the vorticity is a con-
served quantity (a Casimir functional) of the Euler flow on account of Kelvin’s circulation 
theorem, we are not aware of any use of this invariant to study the asymptotic behav-
ior of the 3D Euler equation. In particular, the integrability spectrum {κa} that we 
introduce in this paper is especially suited to give information on the Euler flow near 
steady states. This approach might be useful in constructing other conserved quantities 
in order to analyze the 3D Euler equation combining tools from dynamical systems and 
PDEs.

1 We assume that k is a non-integer so that the Euler equation defines a local flow in the Hölder space Ck, 
cf. [10]. This property fails for integer k, see [4].
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The paper is organized as follows. In Section 2 we recall some basic facts of exact 
divergence-free vectorfields and Hodge theory of closed manifolds. A KAM theorem for 
divergence-free vectorfields satisfying appropriate nondegeneracy conditions is stated in 
Section 3. The conserved quantities κ and κa, their main properties and some interme-
diate constructions are introduced in Sections 4 and 5, where we also give examples of 
steady solutions to the Euler equation which are integrable and nondegenerate. Finally, 
in Section 6 we apply the previously developed machinery to prove some non-mixing 
properties of the Euler flow and to estimate the distance between time-dependent solu-
tions of the Euler equation and nondegenerate divergence-free vectorfields.

2. Divergence-free vectorfields on 3D Riemannian manifolds

All along this paper M is a smooth (C∞) closed 3D manifold endowed with a smooth 
Riemannian metric (·,·) and the corresponding volume form μ. We shall assume this form 
to be normalized in such a way that the total volume of M equals 1, that is

∫
M

μ = 1.

The measure of a subset U of M with respect to the volume form μ will be denoted by 
meas(U).

Convention 2.1. Since we shall consider analytic (Cω) functions in some parts of the 
paper, we establish the convention that if a function on a manifold M is said to be 
analytic, then the manifold itself and the volume form μ are assumed to be analytic as 
well.

A vectorfield V on M is called divergence-free or solenoidal (with respect to the 
volume form μ), and we write divV = 0, if the Lie derivative of the volume form along 
V vanishes, i.e. LV μ = 0, or equivalently, since LV = iV d + diV , if the 2-form iV μ is 
closed. The field V is called exact divergence-free or globally solenoidal (with respect 
to μ) if the 2-form iV μ is exact, cf. [3]. In local coordinates (x, y, z), the volume form 
reads as μ = p(x, y, z)dx ∧ dy ∧ dz for some positive function p, and the divergence-free 
condition is written as

∂(pVx)
∂x

+ ∂(pVy)
∂y

+ ∂(pVz)
∂z

= 0. (2.1)

For a vectorfield V we denote by V � its dual 1-form, corresponding to V with respect 
to the Riemannian structure, i.e., (V, W ) = V �(W ) for any vectorfield W on M . It is 
well known [24] that a vectorfield V is divergence-free if and only if the 1-form V � is 
coclosed, i.e., d∗V � = 0, where d∗ is the codifferential operator. Recall that the gradient
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of a function f on M is a vectorfield ∇f defined by (∇f)� = df . The vorticity field 
U := rotV of a vectorfield V is defined by the relation

iUμ = d
(
V �

)
. (2.2)

Clearly U = rotV is an exact divergence-free vectorfield, and rot ◦∇ ≡ 0.

Example 2.2. Consider the 3-torus M = T
3 = (R/2πZ)3 endowed with the flat metric, 

so that μ = dx ∧ dy ∧ dz. Then a vectorfield V = f∂x + g∂y + h∂z is divergence-free if 
∂f/∂x + ∂g/∂y + ∂h/∂z = 0, and is exact divergence-free if, in addition,

∫
M

f dx ∧ dy ∧ dz =
∫
M

g dx ∧ dy ∧ dz =
∫
M

h dx ∧ dy ∧ dz = 0.

Indeed, the divergence-free condition for V is equivalent to closedness of the 2-form iV μ, 
while to be exact this 2-form has to give zero when integrated against any closed 1-form 
over T3. The above three relations are equivalent to 

∫
iV μ ∧ dx =

∫
iV μ ∧ dy =

∫
iV μ ∧

dz = 0. In fact, the above condition of zero averages means that the divergence-free 
field V “does not move the mass center”, and hence is exact on the torus. Actually, the 
averages of the functions f , g, and h represent the cohomology class of the field V , or 
equivalently, of the corresponding 2-form iV μ. Also note that, in these flat coordinates, 
the vorticity of V is given by the classical relation rotV = ∇ × V .

Let Ck(M), k ≥ 0, be the Hölder space of order k of functions on M (for k ∈ N

this is the space of k times continuously differentiable functions), and Vectk(M) be the 
space of vectorfields on M of the same smoothness. For k ≥ 1, by SVectk and SVectkex
we denote the closed subspaces of Vectk(M), formed by the divergence-free and exact 
divergence-free vectorfields, respectively. The Helmholtz decomposition for vectorfields is 
dual to the Hodge decomposition for 1-forms (see [24,23]) under the duality V �→ V �. It 
states that any vectorfield V ∈ Vectk, k ≥ 1, can be uniquely decomposed into the sum

V = ∇f + W + π, (2.3)

where W ∈ SVectkex and π ∈ H ⊂ Vectk is a harmonic vectorfield. The latter means 
that Δπ� = 0 where Δ is the Hodge Laplacian or, equivalently, dπ� = 0 and d∗π� = 0
(see [24]). It is easy to check that each vectorfield in this decomposition is L2-orthogonal 
to the other components. By the Hodge theory the harmonic vectorfields are smooth; 
they form a finite-dimensional subspace of Vect∞(M), independent of k, whose dimen-
sion equals the first Betti number of M . Moreover, the projections of V onto ∇f , W
and π are continuous operators in Vectk(M) if k is not an integer. A vectorfield V is 
divergence-free if and only if its gradient component vanishes, i.e. ∇f ≡ 0 in Eq. (2.3).

In the following lemma we state some properties of the operator rot which will be useful 
later. The result is well known, but we provide a proof for the sake of completeness.
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Lemma 2.3. For k ≥ 2 the vorticity operator defines a continuous map

rot : SVectk(M) → SVectk−1
ex (M). (2.4)

If k > 2 is not an integer, then the map is surjective and its kernel is formed by harmonic 
vectorfields.

Proof. In local coordinates rot is a first-order differential operator. Since its image is 
formed by exact divergence-free vectorfields, then for k ≥ 2 this map defines a continuous 
linear operator (2.4). Let U ∈ SVectk−1

ex be an exact divergence-free vectorfield. Then U
satisfies Eq. (2.2) with a suitable 1-form V̄ �. If k is not an integer, then by the Hodge 
theory, V̄ � is Ck-smooth [24], whence V̄ ∈ Vectk. Consider the decomposition (2.3) for 
the field V̄ = ∇f +W + π. Since rot∇f = 0, take a new field V = W + π ∈ SVectk. By 
construction, rotV = rot V̄ = U , i.e. the mapping (2.4) is surjective.

Let V belong to the kernel of (2.4). Since divV = 0, then in the decomposition (2.3)
we have ∇f = 0. As we explained above, rotπ = 0, so rotW = 0. Then dW � = 0 and 
d∗W � = 0, hence being L2-orthogonal to harmonic forms, this implies that W = 0. Ac-
cordingly, V = π is a harmonic vectorfield. Since any such vectorfield is divergence-free, 
the lemma is proved. �
3. A KAM theorem for divergence-free vectorfields

Let V be a Ck divergence-free vectorfield (k ≥ 1) on a closed 3-manifold M endowed 
with a volume form μ, and let T 2 ⊂ M be an invariant 2-torus of V of class Ck. We 
assume that in a neighborhood O of the torus T 2, one can construct Ck-coordinates 
(x, y, z), where (x, y) ∈ T

2 = (R/2πZ)2 and z ∈ (−γ, γ) (γ > 0), such that μ|O =
dx ∧ dy ∧ dz and T 2 = {z = 0}.

Remark 3.1. An invariant torus T 2 can be embedded in a 3-manifold M in many non-
equivalent ways. In this and the next section the embedding of T 2 is not relevant since 
our analysis is in a tubular neighborhood O of the torus, which is diffeomorphic to 
T

2 × (−γ, γ) independently of the embedding. The different ways an invariant torus can 
be embedded in M will be exploited later.

Next we state a KAM theorem for divergence-free vectorfields, for which we assume 
that there are functions f(z), g(z) of class Ck defined on (−γ, γ), and a Borelian subset 
Q ⊂ (−γ, γ), satisfying the following KAM nondegeneracy conditions:

1. For each z ∈ Q we have f2(z) + g2(z) �= 0, and the torus T2 × {z} is invariant for 
the vectorfield V , which assumes the form (for this value of z):

ẋ = f(z), ẏ = g(z), ż = 0. (3.1)
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2. The Wronskian of f and g is uniformly bounded from 0 on Q, i.e. there is a positive 
τ such that for each z ∈ Q we have the twist condition:

∣∣f ′(z)g(z) − f(z)g′(z)
∣∣ ≥ τ > 0. (3.2)

Observe that Condition 1 above implies that iV (dx ∧dy∧dz) is exact in the domain O
(in particular, V is divergence-free), provided that Q = (−γ, γ). Indeed,

α := iV (dx ∧ dy ∧ dz) = −g(z)dx ∧ dz + f(z)dy ∧ dz,

so α = dβ, where β is the 1-form

β =
( z∫

0

g(s) ds
)
dx−

( z∫
0

f(s) ds
)
dy.

We also note that if V satisfies Conditions 1 and 2 and is divergence-free with respect 
to a volume form p(x, y, z)dx ∧ dy ∧ dz, then it is easy to check that we must have 
p = p(z) (see Eq. (2.1)). Modifying the coordinate z to a suitable z̃(z) we achieve 
that μ|O = dx ∧ dy ∧ dz̃, and Conditions 1 and 2 still hold. So the assumption that 
μ|O = dx ∧dy∧dz in coordinates (x, y, z) is in fact a consequence of Conditions 1 and 2.

Consider an exact divergence-free vector field W of class Ck and denote by ε :=
‖V −W‖Ck the Ck-distance between V and W .

Theorem 3.2. Assume that the divergence-free vectorfield V satisfies the previous assump-
tions 1–2 with Q = (−γ, γ). Then there are real numbers k0 and ε0 = ε0(V ) > 0 such 
that if k > k0 and ε < ε0, there exists a C1-diffeomorphism Ψ : (x, y, z) �→ (x̄, ȳ, ̄z), 
preserving the volume μ, a Borelian set Q̄ ⊂ (−γ, γ), and C1-functions f̄(z), ḡ(z) such 
that

• meas((−γ, γ) \ Q̄) ≤ Cτ−1√ε as ε → 0, where C depends on k and the Ck-norm 
of V , and τ is defined in the inequality (3.2),

• ‖Ψ − id‖C1 → 0 as ε → 0,
• ‖f − f̄‖C1 + ‖g − ḡ‖C1 → 0 as ε → 0,
• for z̄ ∈ Q̄ the vectorfield W transformed by the diffeomorphism Ψ assumes the form

˙̄x = f̄(z̄), ˙̄y = ḡ(z̄), ˙̄z = 0,

and the ratio (f̄/ḡ)(z̄) is an irrational number.

Herman’s theorem [14] on the class of differentiability, for which Moser’s twist theorem 
holds, implies that one can take k0 = 3. By [14] and a recent theorem of Cheng and 
Wang [8], for closely related KAM-results the C3-smoothness is sharp, so it is very 
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plausible that for k0 < 3 the assertion of Theorem 3.2 is false. In any case, Theorem 3.2
holds for any

k > 3. (3.3)

For the case of Hamiltonian systems, the reader can consult [19,21]. (Note that the 
smoothness of V and W corresponds in [19,21] not to the smoothness of the Hamil-
tonian H, but to that of the Hamiltonian vectorfields J∇H.) For the case when the 
vectorfield V is analytic, this result is proved in [9].

Remark 3.3. The KAM theorem stated above can be proved by taking a Poincaré section 
and reducing the problem to area-preserving perturbations of a twist map in the annulus 
in that section. Indeed, assume that g(z) �= 0 for any z ∈ (−γ, γ) in (3.1) (the case 
f(z) �= 0 is similar) and consider the Poincaré section {y = const}. On account of 
Condition 1, the Poincaré map Π0 of V is a diffeomorphism of the annulus R/2πZ ×
(−γ, γ) given by

(x, z) �→
(
x + 2πf(z)

g(z) , z

)
,

which is a nondegenerate twist map as a consequence of Condition 2. Obviously, the map 
Π0 preserves the area form dx ∧ dz, which is, generally speaking, different from the area 
form AW preserved by the perturbed Poincaré map Πε associated to the vector field W . 
This problem can be overcome by using Moser’s trick [17], which ensures that there exists 
a diffeomorphism Φε of the annulus, so that Φ∗

εAW = dx ∧dz, and this diffeomorphism is 
close to the identity because Π0 and Πε are close. Then the theorem follows by applying 
Moser’s twist theorem [14] to the map Φ−1

ε ◦Πε ◦Φε, which is conjugated to Πε. Observe 
that the perturbed Poincaré map Πε is exact, so that Moser’s theorem is applicable, 
see Remark 3.4 below. The details are left to the interested reader. Notice that the 
use of a Poincaré section in the proof implies that the result does not depend on the 
parametrization of the vectorfield.

Remark 3.4. The condition on the exactness of the divergence-free vectorfield W in The-
orem 3.2 is automatically satisfied if W is a vorticity field. This assumption is crucial for 
the KAM theorem to hold. Indeed, if the 2-form iWμ is exact, the Stokes theorem implies 
that the flux of the vectorfield W across any closed surface is zero, and in particular

∫
T 2

iWμ = 0,

which implies the exactness of the Poincaré map, a necessary condition for applying 
Moser’s twist theorem.
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Other KAM theorems in the context of volume-preserving maps have been obtained 
in [7], while for divergence-free vectorfields the reader can consult [5,6]. These references 
work in the analytic (Cω) setting. The fact that their assertions remain true for vector-
fields of finite smoothness follows from the reduction to Moser’s twist theorem, explained 
in Remark 3.3.

4. A measure of non-integrability of divergence-free vectorfields

The main goal of this section is to define a functional on the set of exact divergence-free 
vectorfields which measures how far a vectorfield V is from an integrable nondegenerate 
vectorfield. We start by introducing a precise definition of integrability, inspired by the 
celebrated Arnold structure theorem for 3D steady flows [1] (see also [3, Section II]).

Definition 4.1. (1) If V is a divergence-free vectorfield with an invariant domain Oj
∼=

T
2 × (−γj , γj) covered by invariant tori of V , and V satisfies condition 1 in Section 3 for 

z ∈ Qj = (−γj , γj), we say that V is canonically integrable on Oj .
(2) A divergence-free C1-vectorfield V on M is called (Arnold) integrable, if there is 

a closed subset G ⊂ M , meas(G) = 0, such that its complement M \ G is a union of a 
finite or countable system of V -invariant domains Oj , where V is canonically integrable. 
If the system of domains Oj is finite, V is called well integrable.

(3) An Arnold integrable vectorfield V is called nondegenerate if the system of domains 
Oj can be chosen in such a way that condition 2 in Section 3 holds for each j.

(4) If the set G introduced above is any Borel subset of M and we do not require 
Qj to be the whole interval (−γj , γj), then V is called partially integrable on M and 
integrable on M outside G with “holes”, corresponding to T2 × ((−γj , γj) \Qj), j ≥ 1.

We recall that an invariant torus T 2 of a vectorfield V on M is called ergodic if the 
field is nonvanishing on the torus and some trajectory of V is dense in T 2. Clearly, an 
invariant torus T 2 ⊂ Oj , T 2 ∼= T

2 × {z}, z ∈ Qj , as in Definition 4.1 above, is ergodic if 
the number f(z)/g(z) is finite and irrational.

Example 4.2. Let u be a steady solution of the 3D Euler equation (1.1) in M , i.e.

∇uu = −∇p, div u = 0 in M.

This equation can be rewritten as

iωiuμ = dα,

where ω := rotu is the vorticity, α := p + |u|2/2 is the Bernoulli function and μ is the 
volume form on M . It is immediate that the Bernoulli function is a first integral for both 
the vectorfields u and ω. The regular level sets of α must be 2-tori, since they admit 
non-vanishing vectorfields tangent to them, see [1] or [3, Section II]. Assume that the set 
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of critical points for the function α has zero measure.2 Then the vorticity ω is Arnold 
integrable in M .

The minimal set D for which V is integrable on M \D measures the non-integrability 
of V . To develop this idea we define the following functional:

Definition 4.3. The partial integrability functional κ on the space of C1 exact divergence-
free vector fields

κ : SVect1ex(M) → [0, 1]

assigns to a vectorfield V ∈ SVect1ex(M) the inner measure3 of the set equal to the 
union of all ergodic V -invariant two-dimensional C1-tori. Since the total measure of M
is normalized by 1, then κ ∈ [0, 1].

The functional κ does not distinguish between different isotopy classes of invariant 
tori. In the following section we shall define a version of this functional taking into account 
the way in which invariant tori are embedded in M . Before describing properties of κ, 
let us provide explicit examples of stationary solutions to 3D Euler whose vorticities 
are integrable and nondegenerate. The examples are on T3 and S3, with the canonical 
metrics.

Example 4.4 (Existence of steady solutions of the Euler equation in T3 whose vorticities 
are integrable and nondegenerate). Consider the divergence-free vectorfield uz defined by 
uz = f(z)∂x+g(z)∂y, where f and g are analytic nonconstant 2π-periodic functions. The 
function z is a first integral of uz, hence the trajectories of this vectorfield are tangent 
to the tori Tc := {z = c}, and on each torus the field is linear. The same happens with 
the vorticity rotuz = −g′(z)∂x + f ′(z)∂y. Now note that:

1. The fields uz and rotuz commute, [uz, rotuz] = 0, and the Bernoulli function is given 
by α = 1

2 (f2 + g2). This implies that uz is a solution of the steady Euler equation 
on T

3, cf. Example 4.2.
2. For generic f and g the field rotuz satisfies the nondegeneracy conditions 1 and 2 of 

Section 3 everywhere except for finitely many values of z.

Therefore, one has κ(rotuz) = 1. Note that all the invariant tori of rotuz are in one 
and the same isotopy class, which is nontrivial, because the tori Tc are homologically 
nontrivial. Similarly, one can construct steady solutions ux and uy of the Euler equation 

2 Note that this non-degeneracy property fails for the important class of Beltrami solutions, defined by 
the equation rotu = λu (λ is a constant).
3 We recall that the inner measure of a set is the supremum of the measures of its compact subsets. We 

use here the inner measure rather than the Lebesgue measure to avoid the delicate issue of whether the 
union of ergodic invariant tori is measurable or not (cf. also Definition 5.1).
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on T3 whose invariant tori are given by {x = c} or {y = c}, and hence not isotopic to 
the tori {z = c}.

Example 4.5 (Existence of steady solutions of the Euler equation in S3 whose vorticities 
are integrable and nondegenerate). It is convenient to represent S3 as the set of points 
{(x, y, z, w) ∈ R

4 : x2 + y2 + z2 +w2 = 1}. Consider the Hopf fields u1 and u2 on S3 that 
satisfy the equations rotu1 = 2u1 and rotu2 = −2u2, and hence they are divergence-free. 
In coordinates these fields read as u1 = (−y, x, w, −z)|S3 and u2 = (−y, x, −w, z)|S3 . It 
is evident that the function F := (x2 + y2)|S3 is a first integral of both u1 and u2, 
and its regular level sets are tori, so these vectorfields are well integrable. Since all the 
trajectories of ui are periodic, they are completely degenerate. It is not difficult to check 
the following properties:

• (u1, u1) = (u2, u2) = 1 and (u1, u2) = 2F − 1, where (·,·) is the scalar product on S3

with respect to the round metric.
• u1 × u2 = −∇F , where × and ∇ are the vector product and the gradient operator, 

respectively, on S3 with respect to the round metric.

Now define the vectorfield

u := f(F )u1 + g(F )u2,

where f, g are analytic functions. Of course, the field u is divergence-free because F is a 
first integral of ui, and it is non-vanishing whenever f2 +g2 �= 0 because {u1, u2} defines 
a basis on each level set of F . After a few straightforward computations we get

rotu =
[
f ′(2F − 1) + 2f + g′

]
u1 −

[
g′(2F − 1) + 2g + f ′]u2,

u× rotu =
[
ff ′ + gg′ + 4fg + (2F − 1)

(
fg′ + gf ′)]∇F.

Therefore, defining H(F ) := ff ′ + gg′ + 4fg + (2F − 1)(fg′ + gf ′), we conclude that u
is a steady solution of the Euler equation on S3 with Bernoulli function α =

∫ F

0 H(s) ds, 
cf. Example 4.2. The vorticity rotu is well integrable (F is a first integral) and for 
generic choices of f and g it is nondegenerate. Therefore, κ(rotu) = 1. Moreover, all 
the invariant tori of rotu are in the same isotopy class, which is in fact the trivial one 
because the tori are unknotted.

The proposition below summarizes the main elementary properties of the partial in-
tegrability functional κ.
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Proposition 4.6. The partial integrability functional κ satisfies the following properties:

1. If V is partially integrable and for some j and z ∈ Qj which is a point of density 
for Qj the corresponding functions f and g satisfy the twist condition (3.2), then 
κ(V ) > 0.

2. If V is Arnold integrable and nondegenerate, then κ(V ) = 1.
3. If Φ is a volume-preserving C2-diffeomorphism of M , then κ(V ) = κ(Φ∗V ).
4. If all the trajectories of V in the complement of an invariant zero-measure subset of 

M are periodic, then κ(V ) = 0. The same result holds if V has two first integrals 
which are independent almost everywhere on M .

5. If a domain O ⊂ M is V -invariant and all the trajectories of V in O have positive 
maximal Lyapunov exponent, then κ(V ) ≤ 1 − meas(O).

6. Let ξ(t) be a trajectory of V and denote its closure in M by F . Then κ(V ) ≤
1 − meas(F).

Proof. Statements 1–5 follow almost straightforwardly from the definitions, so we leave 
their proofs to the reader. Let us focus on statement 6. Consider the domains Oj as in 
Definition 4.1 and the sets Õj ⊂ Oj consisting of ergodic invariant tori. It suffices to 
show that meas(Õj ∩F) = 0 for each j. In the coordinates (x, y, z), corresponding to Oj, 
denote by πz the natural z-projection. Assume the contrary, i.e. that the measure above is 
nonzero, then meas(J) > 0, where J := πz(Õj∩F). Choose any three points z1 < z2 < z3
in J . Since z1, z3 ∈ πz(F), then for suitable t1, t3 we have πz(ξ(t1)) < z2 < πz(ξ(t3)). 
By continuity, there exists t2 ∈ (t1, t3) such that ξ(t2) ∈ (πz)−1(z2) =: T 2. Since T 2 is 
an ergodic invariant torus under the flow of V , then ξ(t) ∈ T 2 for all t. Hence J = {z2}, 
which is of measure zero. This contradiction proves statement 6. �

The following theorem establishes that the functional κ(V ) is continuous at V if the 
vectorfield is integrable and nondegenerate. This property, which will be the key in our 
study of the 3D Euler dynamics, is a consequence of the KAM theorem, stated in Sec-
tion 3, and generally fails at points which are not integrable nondegenerate vectorfields. 
Moreover, if V is analytic we prove that κ is Hölder continuous at V , using the properties 
of analytic functions to control the contribution to κ(W ) from a neighborhood of the 
singular set of V . We recall that, by definition, a function is analytic on a closed set if it 
is analytic in a neighborhood of the set.

Theorem 4.7. Let V ∈ SVectkex(M) be an integrable nondegenerate vectorfield. Then the 
functional κ is continuous at V in the Ck-topology, provided that k > 3. Moreover, if 
V is analytic (Cω) and well integrable, then κ is Hölder-continuous at V with some 
exponent θ > 0:

κ(V ) = 1 ≥ κ(W ) ≥ 1 − CV ‖V −W‖θCk , (4.1)

for all W ∈ SVectkex(M).
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Proof. Let V be an integrable nondegenerate vector field and W ∈ SVectkex(M) an exact 
divergence-free vectorfield that is close to V . By definition we have that κ(V ) = 1. 
Consider a domain Oj as in Definition 4.1 and set ε := ‖V − W‖Ck . We now take a 
subset Õj(δ) ⊂ Oj for any small δ > 0 such that:

• meas(Oj\Õj(δ)) → 0 as δ → 0.
• V is canonically integrable in Õj(δ).
• V satisfies the uniform twist condition 2 of Section 3, cf. the inequality (3.2), with 

τ = δ, i.e.

∣∣f ′(z)g(z) − f(z)g′(z)
∣∣ ≥ δ > 0. (4.2)

Then the KAM Theorem 3.2 implies that the contribution κ(j)(W ) to κ(W ), coming 
from a set Õj(δ), is

κ
(j)(W ) ≥ meas

(
Õj(δ)

)
− Cjδ

−1‖V −W‖1/2
Ck , (4.3)

where Cj is a δ-independent positive constant. In order to get an estimate for κ(W ) that 
just depends on ε, we relate the small parameters δ and ε by choosing δ = ε1/2−θ1 for 
some θ1 ∈ (0, 1/2). Accordingly, denoting by Ωε

j the set Õj(ε1/2−θ1) for each j, we get 
from Eq. (4.3) that

κ
(j)(W ) ≥

(
meas(Oj) − meas

(
Oj\Ωε

j

)
− Cjε

θ1
)
−→ meas(Oj) as ε → 0. (4.4)

Since κ(W ) ≥
∑

j κ
(j)(W ) and 

∑
j meas(Oj) = 1, then summing relations (4.4) in j we 

conclude that

1 ≥ κ(W ) −→ 1 as ε −→ 0.

That is, κ is continuous at V .
If V is an analytic vectorfield, then the measure of the set Oj\Ωε

j where Eq. (4.2)
fails, satisfies

meas
(
Oj\Ωε

j

)
≤ Cjε

θ2 (4.5)

for some θ2 > 0, on account of Lojasiewicz’s vanishing theorem [16, Section 6.3], which 
we apply to the analytic function in the LHS of Eq. (4.2). Therefore, Eqs. (4.4) and (4.5)
imply that

κ
(j)(W ) ≥ meas(Oj) − Cjε

θ3 . (4.6)

Finally, summing up for finitely many j in Eq. (4.6) (we recall that now V is well 
integrable), we conclude that
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1 ≥ κ(W ) ≥ 1 − CV ε
θ,

thus proving Eq. (4.1). �
Corollary 4.8. If M is analytic and V ∈ SVectkex(M) is analytic on the closure Oj of 
some domain Oj, where V is canonically integrable and nondegenerate, then

κ(W ) ≥ meas(Oj) − CV ‖V −W‖θCk ∀W ∈ SVectkex ,

for some θ > 0 and a positive constant CV . If the manifold M is smooth and the vector-
field V is not assumed to be analytic in Oj, then

κ(W ) ≥ meas(Oj) −E
(
‖V −W‖Ck

)
,

where E(t) is a continuous function satisfying limt→0 E(t) = 0.

We finish this section by observing that on any closed 3-manifold M there is a 
nontrivial vector field W ∈ SVectkex(M) such that κ(W ) = 0. Indeed, take a couple 
of functions (f1, f2) : M → R

2 which are independent almost everywhere in M , i.e. 
rank(df1(x), df2(x)) = 2 for all x ∈ M except for a zero-measure set. Of course such a 
couple exists on any analytic M , e.g. two generic Cω functions. Now we define W as the 
unique vectorfield such that:

iWμ = df1 ∧ df2.

It is obvious that W is divergence-free and exact because iWμ = d(f1df2), and that f1, f2
are first integrals of W . It then follows from Proposition 4.6, item 4, that κ(W ) = 0.

In contrast, the following seemingly obvious fact is still an open problem: to prove that 
there are open domains in SVectkex(M) where κ < 1/2. To bypass this difficulty, in the 
next section we shall define and study a version of the partial integrability functional κ, 
where the isotopy type of the invariant tori is fixed.

5. Isotopy classes of invariant tori

In the previous section we have introduced the partial integrability functional κ which 
gives the measure of ergodic invariant tori, without distinguishing between different 
isotopy classes. Now we are going to exploit the different ways an invariant torus can 
be embedded in M and define a countable number of such quantities. We recall that 
two embedded tori T 2

0 and T 2
1 are isotopic if there exists a family of embedded tori T 2

t , 
t ∈ [0, 1], connecting T 2

0 and T 2
1 . It is well known that this property is equivalent to the 

existence of an isotopy Θt : M×[0, 1] → M such that Θ0 = id and Θ1(T 2
0 ) = T 2

1 [12]. This 
equivalence relation defines the set of isotopy classes of embedded tori in M , we denote 
this set by I(M). It is well known that the set of isotopy classes I(M) is countable.
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The invariant tori in each domain Oj introduced in Definition 4.1 have the same 
isotopy class, but the class can vary for different values of j. In this section, to be more 
precise, for each isotopy class a ∈ I(M) we consider the sets Oa

j which are the domains 
Oj whose invariant tori are in the isotopy class a. Accordingly, now one can define a 
family of functionals κa, a ∈ I(M), on the space of exact divergence-free vectorfields.

Definition 5.1. Given an isotopy class a ∈ I(M), the partial integrability functional

κa : SVect1ex(M) → [0, 1]

assigns to an exact C1-smooth divergence-free vectorfield V the inner measure of the set 
of ergodic V -invariant two-dimensional C1-tori lying in the isotopy class a. The sequence

I(M) � a �→ κa(V )

is called the integrability spectrum of V .

By definition one has

κ(V ) ≥
∑
a

κa(V ) (5.1)

for the quantity κ(V ) introduced before, since the inner measure is superadditive.

Remark 5.2. It is easy to check that items 1 and 3–6 of Proposition 4.6, and Corollary 4.8
hold true if we substitute κ by κa and Oj by Oa

j . Moreover, Theorem 4.7 also holds for κa, 
where the estimate (4.1) now takes the form

∣∣κa(W ) − κa(V )
∣∣ ≤ CV ‖V −W‖θCk ∀W ∈ SVectkex(M).

Remark 5.2 and (5.1) imply that the integrability spectrum is continuous at points V
which are integrable nondegenerate vectorfields (here k > 3):

Proposition 5.3. Let V ∈ SVectkex(M) be an integrable nondegenerate vectorfield. Then 
for each a ∈ I(M) the function V �→ κa(V ) is continuous at V .

In the following lemma we introduce a subset I0(M) consisting of tori, lying in a fixed 
3-ball, embedded in M . This subset of I(M) is key to prove Theorem 5.7 below. Roughly 
speaking the lemma shows that knotted tori in a ball cannot be unknotted in M .

Lemma 5.4. Let M be a closed 3-manifold and B ⊂ M a 3-ball. Two-tori embedded in B
whose core knots are neither isotopic nor mirror images in B, are not isotopic in M . In 
particular, the subset I0(M) ⊂ I(M) of isotopy classes of such tori is isomorphic to Z.
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Proof. Let us take two knots L1, L2 contained in B ⊂ M . Recall that a knot is a smoothly 
embedded circle. For each i ∈ {1, 2}, define a torus T 2

i ⊂ B ⊂ M , which is the boundary 
of a tubular neighborhood N(Li) of the knot Li ⊂ B, i.e. T 2

i = ∂N(Li). Let us prove 
that if T 2

1 and T 2
2 are isotopic in M , then the knots L1 and L2 are isotopic in B or they 

are mirror images of each other. First, T 2
1 and T 2

2 being isotopic it follows that there is 
a diffeomorphism Θ′ : M\T 2

1 → M\T 2
2 , and we claim that this implies that M\N(L1)

is diffeomorphic to M\N(L2). Indeed, the manifold M\T 2
i consists of two connected 

components, that is N(Li) and M\N(Li), so the existence of Θ′ implies that:

• either there is a diffeomorphism Θ : M\N(L1) → M\N(L2), as desired,
• or diffeomorphisms Θ1 : M\N(L1) → N(L2) and Θ2 : M\N(L2) → N(L1).

In the second case, since there is a diffeomorphism Φ′ : N(L2) → N(L1) because both sets 
are solid tori, we conclude that the diffeomorphism Θ−1

2 ◦Θ′ ◦Θ1 transforms M\N(L1)
onto M\N(L2), as we wanted to prove.

Accordingly, M\N(L1) is diffeomorphic to M\N(L2), so performing the connected 
sum prime decomposition [13] of M\N(Li), its uniqueness readily implies that there 
exists a diffeomorphism Φ : B\N(L1) → B\N(L2). It is easy to see that B\N(Li) is 
diffeomorphic to B\Li, so we get that B\L1 is diffeomorphic to B\L2. We conclude from 
Gordon–Luecke’s theorem [11] that either L1 and L2 are isotopic in B provided that Φ
is orientation-preserving, or they are mirror images of each other otherwise.

The previous discussion implies that different isotopy classes of knots in B that are 
not mirror images, define different isotopy classes of embedded tori in M ⊃ B, where the 
tori are just the boundaries of tubular neighborhoods of the knots. Therefore, one can 
define each element in I0(M) as the set of embedded tori in a 3-ball whose core knots 
are either isotopic or mirror images. It is standard that the set I0(M) is isomorphic to Z, 
see e.g. [20]. �
Remark 5.5. In general, the set of isotopy classes I(M) is bigger than I0(M), e.g. an 
embedded torus T 2 can be homologically nontrivial in M , that is 0 �= [T 2] ∈ H2(M ; Z), so 
different homology classes give rise to different isotopy classes. Of course I(M) = I0(M)
if e.g. M = S

3.

While the index a ∈ I(M) takes values in the set of all isotopy classes of embedded tori 
in M , for our purposes often it suffices to assume that a takes values in the subset I0(M)
of embedded tori in a 3-ball of M , i.e. a ∈ I0(M) ∼= Z, cf. Lemma 5.4. The existence of 
“many” invariant tori of a vectorfield, taking into account their isotopy classes, will be 
exploited in our analysis of the Euler equation below.

Example 5.6. In Example 4.4 of an integrable vectorfield on T3, all invariant tori of the 
field rotuz are defined by {z = c}, and hence they are in the same isotopy class, call it 
a0 ∈ I(T3). Therefore, κa0(rotuz) = 1 and κa(rotuz) = 0 for all a �= a0. As we discussed 
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in Example 4.4, the isotopy class a0 is nontrivial, and in fact it does not belong to I0(T3), 
cf. Lemma 5.4.

We finish this section by constructing an exact divergence-free vectorfield Va, for any 
a ∈ Z, on a closed 3-manifold M which is canonically integrable and nondegenerate on 
a domain Oa

1 ⊂ M whose measure can be made arbitrarily close to 1. Moreover, the 
Va-invariant tori in Oa

1 correspond to the isotopy class a ∈ I0(M).

Theorem 5.7. Let M be a closed 3-manifold with volume form μ. Then, for any a ∈
I0(M) ∼= Z and 0 < δ < 1 there exists a partially integrable vectorfield Va ∈ SVect∞ex(M)
such that:

• It admits a Va-invariant domain Oa
1 with meas(Oa

1) = 1 − δ.
• Va|Oa

1 is canonically integrable and nondegenerate, and so κa(Va) ≥ 1 − δ.
• Va|Oa

1
can be taken analytic if M and μ are analytic.

Proof. We divide the construction of the vectorfield Va in three steps:

Step 1: Let La be a knot in a 3-ball B. Take a solid torus Ωa ⊂ B which is a tubular 
neighborhood of the knot La, and hence diffeomorphic to S1 × (0, 1)2. We assume that 
for different a ∈ Z, the knots La are neither isotopic nor mirror images in B. It is easy 
to see that for any 0 < δ < 1, one can smoothly glue a big ball B̃ to Ωa to get a new 
domain, which we still denote by Ωa, which is a solid torus isotopic to the original one, 
La being at its core, and

meas(B\Ωa) = δ

4 . (5.2)

Next, we embed the 3-ball B in M in such a way that Eq. (5.2) holds (with respect to 
the volume form μ) and

meas(M\B) = δ

4 . (5.3)

If the manifold M is analytic, the submanifolds La, Ωa and B can be slightly perturbed 
to make them analytic [15], keeping Eqs. (5.2) and (5.3). Let N(La) be a small closed 
tubular neighborhood of the curve La of measure

meas
(
N(La)

)
= δ

4 , (5.4)

and define the set Ôa
1 := Ωa\N(La) ⊂ B ⊂ M . This set is obviously fibered by tori 

belonging to the same isotopy class a ∈ I0(M) in M on account of Lemma 5.4 (so for 
different a, the isotopy classes of the tori are different). Proceeding as in Section 3 we 
parameterize the domain Ôa

1 with coordinates (x, y, z) ∈ T
2 × (−1, 1). One can choose 
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these coordinates in such a way that the volume form μ|Ôa
1

= dx ∧ dy ∧ dz. Indeed, for 
general coordinates the volume form has the expression μ|Ôa

1
= p(x, y, z)dx ∧ dy ∧ dz for 

some positive function p, so defining a new variable 
∫ z

−1 p(x, y, s) ds, which we still call z, 
one obtains the desired coordinate system.

Step 2: Now we construct a smooth vectorfield Va on M that is divergence-free with 
respect to the volume form μ and that is canonically integrable and nondegenerate in 
a domain O1

a ⊂ Ô1
a. This vectorfield can be easily defined using the local coordinates 

(x, y, z) by the expression:

Va :=
{
f(z)∂x + g(z)∂y in Ôa

1 ,

0 in M\Ôa
1 ,

where the functions f , g are smooth, satisfy the twist condition (3.2) with a constant 
τ(c) > 0 in each interval [−c, c] for c < 1, and are chosen in such a way that they glue 
smoothly with 0 as z → ±1. By construction, the tori T 2(c) := T

2×{c} are Va-invariant 
and nondegenerate for c ∈ (−1, 1). It is obvious from the expression of the volume form 
μ in the coordinates (x, y, z) that

diVa
μ = 0. (5.5)

Accordingly, defining a Va-invariant set Oa
1 ⊂ Ôa

1 , expressed in the coordinates (x, y, z)
as T2 × (−c0, c0) for some c0 < 1, and such that meas(Ôa

1\Oa
1) = δ/4, then the set Oa

1
has measure

meas
(
Oa

1
)

= 1 − δ

by Eqs. (5.2)–(5.4). Moreover, Va is canonically integrable and nondegenerate in Oa
1 , so 

κa(Va) ≥ 1 − δ. If the manifold and the volume form are analytic, it is clear that the 
vectorfield Va can be taken analytic in Oa

1 .

Step 3: It remains to prove that Va is exact, that is the 2-form β := iVa
μ is exact. Hodge 

decomposition explained in Section 2 implies that this is equivalent to

∫
M

h ∧ β = 0

for any closed 1-form h on M . To prove this, we notice that β is supported in the solid 
torus Ωa ⊂ B, and h = dR in the 3-ball B for some function R ∈ C∞(B), because any 
closed form is exact in a contractible domain. So we have

∫
h ∧ β =

∫
h ∧ β =

∫
dR ∧ β =

∫
d(Rβ) −

∫
Rdβ =

∫
Rβ = 0,
M Ωa Ωa Ωa Ωa ∂Ωa
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where we have used Eq. (5.5), Stokes theorem and the fact that β = 0 in ∂Ωa. This 
completes the proof of the theorem. �
6. A non-ergodicity theorem for the 3D Euler equation

Our goal in this section is to apply the previously developed machinery to study 
the evolution of the Euler equation (1.1) on a closed 3-manifold M . For a non-integer 
k > 1 the classical result of Lichtenstein (see e.g. in [10]) shows that the Euler equation 
defines a local flow {St} of homeomorphisms of the space SVectk(M), where for any 
u ∈ SVectk(M) the solution

u(t, ·) = St(u), S0(u) = u,

is defined for t∗(u) < t < t∗(u) and is C1-smooth in t. It is unknown whether the numbers 
t∗ < 0 and t∗ > 0 are finite.

For this u and for t∗ < t < t∗ we denote by St
0 : M → M the (non-autonomous) flow 

of the equation

ẋ = u(t, x), x ∈ M,

which describes the Lagrangian map of the fluid flow. According to Kelvin’s circulation 
theorem (see e.g. [3]), the corresponding vorticity field rotu(t) is transported by the fluid 
flow:

rotu(t) = St
0∗
(
rotu(0)

)
. (6.1)

Since the maps St
0 are volume-preserving Ck-diffeomorphisms of M , the item 3 in 

Proposition 4.6 and Remark 5.2 imply the following.

Theorem 6.1. If u ∈ SVectk(M) for k > 2 and non-integer, then κa(rotSt(u)) = const
for all a ∈ I(M). In other words, the integrability spectrum of rotu, that is

a ∈ I(M) �→ κa

(
rot(u)

)
is an integral of motion of the Euler equation on the space SVectk(M).

The classical conserved quantities of the Euler equation (e.g. [3, Section I.9]) are the 
energy,

E(u) :=
∫

(u, u)μ,

M
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and the helicity

H(u) :=
∫
M

(u, rotu)μ.

(Note that in terms of the vorticity field ω = rotu the helicity assumes the form H(u) =
Ĥ(ω) :=

∫
M

(rot−1 ω, ω) μ.) Theorem 6.1 introduces other conserved quantities κa, a ∈
I(M), of the Euler flow. Below we are going to make use of the continuity property of 
these functionals.

The following lemma is a version of Theorem 5.7 where we fix the energy and helic-
ity, and construct a vectorfield with prescribed values of those quantities, as well as a 
prescribed value of a partial integrability functional κa.

Lemma 6.2. Let M be a closed 3-manifold endowed with a volume form μ, and fix an 
arbitrary h ∈ R and a sufficiently large e > 0. Then, for any a ∈ I0(M) ∼= Z and 
0 < δ < 1 there exists a vectorfield ua ∈ SVect∞(M) such that:

1. rotua has an invariant domain Oa
1 with meas(Oa

1) = 1 − δ.
2. rotua|Oa

1 is canonically integrable and nondegenerate, so that κa(rotua) ≥ 1 − δ.
3. rotua|Oa

1
can be taken analytic provided that M and μ are analytic.

4. H(ua) = h and E(ua) = e.

Proof. For each a ∈ I0(M), let Va be the exact smooth divergence-free vectorfield con-
structed in Theorem 5.7, which is supported on the set Õa

1 and is analytic in a set Oa
1

provided that the manifold M and the volume form μ are analytic. Applying Lemma 2.3
we obtain that there exists a vectorfield u′

a ∈ SVect∞(M) such that rotu′
a = Va. The 

properties of the vectorfield Va imply that the above conditions 1, 2 and 3 hold, so it 
remains to prove that one can modify u′

a to fulfill condition 4 without altering the other 
conditions.

Indeed, define the vectorfield ua := u′
a+v+λv′, λ ∈ R, where v and v′ are divergence-

free vectorfields supported on sets K and K ′ respectively such that K ∩Ωa = K ′∩Ωa =
K ∩K ′ = ∅. We also assume that the helicity H(v′) = 0. Then

H(ua) = H
(
u′
a

)
+ H(v),

where we have used that
∫
M

v rotu′
a =

∫
M

v′ rotu′
a =

∫
M

v rot v′ =
∫
M

v′ rot v = 0,

which, in turn, holds since the supports of v, v′ and rotu′
a are pairwise disjoint, and that
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∫
M

u′
a rot v =

∫
M

v rotu′
a = 0,

integrating by parts, and the same for v′. Since the helicity of v can take any real value, 
it follows that one can choose it so that H(ua) = h. Regarding the energy we have

E(ua) = E
(
u′
a + v

)
+ 2λ

∫
M

v′
(
u′
a + v

)
+ λ2E

(
v′
)
,

and hence choosing appropriate λ and v′ we get that E(ua) = e for an arbitrary real 
e ≥ E(u′

a + v). By construction, rotua = Va in the domain Ωa, which completes the 
proof of the lemma. �
Remark 6.3. For a given vector field ω = rotu its helicity and energy satisfy the Schwartz 
inequality

∣∣Ĥ(ω)
∣∣ =

∣∣∣∣
∫
M

(u, ω)μ
∣∣∣∣ ≤ C

∫
M

(ω, ω)μ = CE(ω),

where the constant C depends on the Riemannian geometry of the manifold M , as de-
scribed by Arnold [2], see also [3, Chapter III]. This constant is the maximal absolute 
value of the eigenvalues of the (bounded) operator rot−1 on exact divergence-free vector-
fields. In terms of the velocity field u, when comparing the helicity H(u) and the energy 
E(u) we are dealing with the unbounded operator rot, and so the above inequality is no 
longer relevant.

Now we are in a position to prove the non-ergodicity of the Euler flow. Everywhere 
below we assume that k > 4 is a non-integer number.

Theorem 6.4. Let M be a closed 3-manifold with a volume form μ. Fix two constants 
h ∈ R and e � 1. Then there is a non-empty open set Γa ⊂ SVectk(M) for each a ∈ Z

such that H(Γa) = h, E(Γa) = e, and

Γa ∩ St(Γb) = ∅

for a �= b and for all t for which the local flow is defined.

Proof. Take the vectorfields ua ∈ SVectk(M) constructed in Lemma 6.2, all of them of 
fixed energy e and helicity h. Since meas(O1

a) = 1 − δ and rotua|O1
a

is nondegenerate, 
Corollary 4.8 and Remark 5.2 imply that any vectorfield u′

a ∈ Γa which is ε-close to ua

in the Ck topology satisfies

κa

(
rotu′

a

)
≥ 1 − δ − E(ε),
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where E is an error function satisfying limε→0 E(ε) = 0, and hence κb(rotu′
a) ≤ δ+E(ε)

for any b �= a, in view of (5.1). Since the quantity κa(rotu′
a) is conserved by the Euler 

flow, cf. Theorem 6.1, the theorem follows by taking δ and ε sufficiently small. �
This theorem implies that the dynamical system defined by the Euler flow (1.1) in 

the space Λe,h ⊂ SVectk(M) of fixed energy e � 1 and helicity h, is neither ergodic nor 
mixing. The reason is that there are open sets of Λe,h which do not intersect under the 
evolution of the Euler equation. We recall that according to a result of N. Nadirashvili [18]
(see also [3, Section II.4.B]) the dynamical system defined by the 2D Euler equation on 
an annulus has wandering trajectories in the C1-topology, which is the strongest form 
of non-ergodicity. Namely, for the Euler equation in a 2D annulus there is a divergence-
free vectorfield u0, such that for all fields in a sufficiently small C1-neighborhood U of 
u0 and sufficiently large time T the Euler flow St after this time is “never returning”:
U ∩ St(U) = ∅ for all t > T , [18]. A similar result was proved by A. Shnirelman [22]
showing the existence of wandering solutions for the Euler equation on the 2-torus in 
appropriate Besov spaces. Our result can be regarded as a 3D version of the 2D Nadi-
rashvili’s and Shnirelman’s theorems.

Our next theorem provides a criterion to guarantee that neighborhoods (in the 
Ck-topology) of two divergence-free vectorfields do not intersect under the Euler flow. 
The result is stated in terms of the integrability spectrum introduced in Definition 5.1.

Theorem 6.5. Let u, v ∈ SVectk(M) be vectorfields such that rotu and rot v are integrable 
and nondegenerate. Assume that the integrability spectra of rotu and rot v are different. 
Then the orbit of a sufficiently small Ck-neighborhood of u under the Euler flow stays 
at a positive Ck-distance from v.

Proof. By assumption, there is some a ∈ I(M) for which κa(rot v) > κa(rotu). Then 
Proposition 5.3 implies that this inequality remains true for all vectorfields v′ ∈ U(v)
and u′ ∈ U(u), where U(v) and U(u) are sufficiently small Ck-neighborhoods of v and u. 
Since κa(rotu′) is a conserved quantity of the Euler flow according to Theorem 6.1, the 
claim follows. �

If u ∈ SVectk(M) is an analytic divergence-free vectorfield, one can get an explicit 
estimate for the Ck-distance between u and a trajectory St(v) of the Euler flow, as stated 
in the following theorem.

Theorem 6.6. Let u, v ∈ SVectk(M) be vectorfields such that rotu and rot v are 
canonically integrable and nondegenerate in domains Oa

1 and Ob
1, a �= b, respectively. 

We also assume that u is analytic in Oa
1 and that meas(Oa

1) =: σa(u) > 1/2 and 
meas(Ob

1) =: σb(v) > 1/2. Then there are constants η > 0 and Cu (the latter depending 
only on u) such that for all t one has the estimate

distCk

(
u,St(v)

)
≥ Cu

(
σa(u) + σb(v) − 1

)η
> 0. (6.2)



520 B. Khesin et al. / Advances in Mathematics 267 (2014) 498–522
Proof. The assumptions imply that κa(rotu) ≥ σa(u) > 1/2 and κb(rot v) ≥ σb(v) >
1/2, so κa(rot v) ≤ 1 − κb(rot v) < 1/2. The theorem then follows from Corollary 4.8
and Remark 5.2, where η = 1/θ. �

In Examples 4.4 and 4.5 (see also Example 5.6) we have constructed analytic steady 
solutions of the Euler equation in T3 and S3 whose vorticities are integrable and nonde-
generate vectorfields. Applying Theorem 6.6 one can estimate from below the Ck-distance 
of these steady solutions u to the trajectories of the Euler flow for many initial conditions. 
For instance, take a vectorfield v as in Lemma 6.2, analytic in Oa

1 and whose invariant 
tori are non-trivially knotted, and let w be a field from an ε-neighborhood U(v) of v in 
the Ck-topology. In this case, κa0(rotu) = 1 and κa(rotw) ≥ 1 − δ − Cvε

θ by Corol-
lary 4.8 and Remark 5.2 (here a0 �= a denotes the isotopy class of the invariant tori of 
the steady state), so we conclude that

distCk

(
u,St(w)

)
≥ Cu

(
1 − δ − Cvε

θ
)η
.

In fact, in Example 4.4 we have constructed steady solutions ux, uy and uz on T3 whose 
invariant tori (as well as invariant tori of their vorticities) are given by {x = c}, {y = c}
and {z = c}, respectively, so they are not isotopic (and homologically distinct). Therefore, 
the steady states ux, uy and uz have Ck-neighborhoods Ux, Uy and Uz such that a 
trajectory of the 3D Euler equation cannot pass through two different neighborhoods, 
i.e. these neighborhoods do not mix under the Euler flow. In particular, no two of these 
steady states can be joined by a heteroclinic connection.

Remark 6.7. One should mention that there are other dynamical properties of C1 vec-
torfields that are invariant under diffeomorphisms and that can be used to analyze the 
behavior of the 3D Euler equation, similarly to the invariants κa introduced in this pa-
per. A natural extension of the functionals κa consists in considering similar invariants 
for sets of embedded tori, forming non-trivial links instead of knots discussed above. In 
this case, for a given number N of link components, the index a runs over isotopy classes 
of configurations of N embedded non-intersecting tori in M . This gives more elaborate 
examples of mutually avoiding open sets.

Another extension is given by considering the rotation numbers of the invariant tori. 
Such invariants allow one to “localize” the conserved quantities κa by taking those 
invariant tori whose rotation number belongs to a certain interval.

In a different spirit, one can also consider the functional n(V ), defined as the number 
of singular points of the field V if all the singularities are hyperbolic and as infinity oth-
erwise, and it is obviously invariant under diffeomorphisms. The hyperbolic permanence 
theorem implies that n(V ) is locally constant at V if n(V ) < ∞, so proceeding as we 
explain in this section, one could prove the non-ergodicity of 3D Euler using n instead 
of κa. The main advantages of the invariants κa compared with n (or other invariants 
of vectorfields) are:
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• It is easy to show that the conserved quantities κa are independent of the energy and 
the helicity (see Lemma 6.2). Additionally, the construction of exact divergence-free 
vectorfields with prescribed κa is not very hard (see Theorem 5.7), while it is not 
clear how to construct exact divergence-free vectorfields whose all singularities are 
hyperbolic.

• The invariants κa are lower semicontinuous and are particularly well behaved for 
vectorfields that are close to nondegenerate integrable stationary solutions of the 
Euler equation, which are “typical” according to Arnold’s structure theorem. The 
latter allows one to analyze the role of these steady states for the long time dynamics 
of 3D Euler in Ck, k > 4.
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