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Singularities of Light Hypersurfaces
and Structure of Hyperbolicity Sets
for Systems of Partial Differential Equations

B. A. KHESIN

§0. Introduction

Wave propagation in nonhomogeneous media (in plasma, for exam-
ple) is described by the field of characteristic cones in space-time (in its
cotangent bundle, to be more precise). The union of these cones defines
a (singular) hypersurface in the cotangent bundle called the /ight surface
of the differential equation. It turns out that singularities of generic sys-
tems of partial differential equations of arbitrary order (generic variational
systems, respectively) are diffeomorphic to the singularities of the cone of
degenerate matrices (degenerate symmetric matrices, resp.); see §1.

In §2 we study the hyperbolicity set in the space of systems with con-
stant coefficients. It turns out that the sequence of simplest (“regular”)
singularities of this set coincide with the boundary singularities of scalar
hyperbolic equations. We prove that the hyperbolicity set in the neigh-
borhood of a nonstrictly hyperbolic system satisfying certain regularity
conditions is algebraic. This result generalizes the corresponding result of
F. John [J1]. We show that as opposed to the case of scalar hyperbolic
polynomials [N], the set of variational hyperbolic systems contains several
connected components, some of which are noncontractible.

Proofs of the main results are given in §3. A motivation of the questions
considered here can be found in [Al, A2].

The author is deeply grateful to V. 1. Arnold for proposing the problems
and permanent help, and to A. B. Givental and B. Z. Shapiro for fruitful
conversations.
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§1. Transversality theorems

1.1. Definitions and the transversality of symbols.

DEeFINITION. The full and main symbols of a system of m partial dif-
ferential equations of order < / in space-time R""' are maps p and
o: T'R™ = Mat, (R) which are degree / polynomial and homogeneous
degree / polynomial in impulses, respectively. The main symbol of a
variational system is a (homogeneous and polynomial in momenta) map
g: T*'R"™"' — SMat, (R), where SMat, (R) is the space of symmetric
(m x m)-matrices.

In local coordinates, the operator P(q, id/dq) defining our system is
polynomial in the variables 9 /9¢q ; with matrix-valued coefficients smoothly
depending on ¢ . Its full symbol is the matrix polynomial p = P(q, p)
obtained by substituting the momentum variables p ; in place of i9/dq;,

and its main symbol p is the main homogeneous part of p (here ¢ ., are

coordinates in space-time R"*'

T;R"“ ).

and p; are coordinates in the dual space

THEOREM 1. For any natural | in the space of all maps o (respec-
tively, variational maps &) which are homogeneous degree | polynomials
in impulses, almost all elements are transversal to the stratified variety of
degenerate matrices in Mat, (R) (in SMat_ (R), resp.) at all points except
the zero point of (S)Mat,, (R).

1.2. Singularities of light hypersurfaces of generic systems.

DEeFINITION. The light hypersurface (i.e., the union of characteristic
cones) of a system on the manifold M"*' is the inverse image in 7°M of
the set of all degenerate matrices of Mat, (R) (or, respectively, SMat, (R)
in the case of variational systems) for the map o (&, resp.) defined by
the main symbol.

It will be convenient, together with the main symbol ¢, to introduce
its spherization, i.e., the map

So: ST"M — (Mat, (R)\ 0)/R".

Here ST"M is the spherization of the bundle 7°M in momenta, i.e.,
the bundle over M"*' with the fibre (R"*'*\ 0)/R*. The map So is
well-defined since o is homogeneous. The inverse image of classes of
degenerate matrices under the map So is the spherization (in momenta)
of the light hypersurface in 7°M . Below we will describe the singular-
ities of this spherization, while the singularities of the light hypersurface
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itself (outside the zero section in 7~ M) are Cartesian products of the
spherization singularities by the interval.

Consider in the space of matrices Mat, (R) (or symmetric matrices
SMat_ (R) ) the natural rank filtration

(SMat, (R)DZ, DX, D,

where Z, is the set of degenerate matrices, Z, is the set of the corank 2
matrices, etc.

COROLLARY TO THEOREM 1. For an arbitrary manifold M "1 and any

generic main symbol o (&, resp.) the singularities of the spherization of
the light hypersurface are diffeomorphic to singularities of the filtration in
the space of matrices

Mat, (R)D X, D>...2 DX

(degenerate symmetric matrices in SMat, (R), resp.) and their trivial ex-
tensions. The set of generic maps is massive, i.e., is the intersection of a
countable number of open everywhere dense sets. This set will be everywhere
dense in the compact manifold M il for an arbitrary manifold it will be

dense in the fine topology in the space of symbols [AVG].

REMARK 1. Theorem 1 and its Corollary can be carried over (word for
word) to the case of the space of systems with constant coefficients and
(with some simplifications of the proofs) to the case of full symbols (full
variational symbols), i.e., almost all the symbols are transversal to the strat-
ified variety of degenerate matrices in (S)Mat, (R) and the singularities
of the light hypersurface for the generic full symbol are diffeomorphic to
the singularities of the stratification of this variety.

REMARK 2. Similar arguments show that the light hypersurface of the
generic symbol is in general position with respect to the natural contact
structure in the space (T°R"*'*\ 0)/R*. Normal forms of such a pair
and the related character of light propagation in the neighborhood of the
singularity, studied in [A1, A2], differ significantly from the “conic refrac-
tion” effect discovered by Hamilton. Such refraction is typical for systems
with constant coefficients for which the contact structure is degenerate on
the surface of the light cone.

§2. Structure of hyperbolicity sets

We will restrict ourselves to the case M = R"*'.

DEeFINITION. The system o is called hyperbolic if for any q = (x, ) €
R™' its characteristic cone (the trace of the light surface) in T, R™ is
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hyperbolic with respect to the time-directed vector (0, 1) (the cone H =
0) is hyperbolic with respect to the vector £ if for any p the polynomial
h(A) = H(p + A%¢) in the variable A has only real zeros).

2.1. Light surfaces of hyperbolic systems.

PROPOSITION. For generic hyperbolic variational systems, the singulari-
ties of light surfaces are diffeomorphic to those of the stratification

SMat, (R) DX, >---DX DX
of the variety of degenerate symmetric matrices.
Indeed, the set of degenerate symmetric matrices is hyperbolic (since
{4 € SMat, (R)| det4 = 0}

is a hyperbolic hypersurface with respect to the direction connecting the
zero and unit matrices). Thus generic singularities of light surfaces for
variational systems are hyperbolic and each singularity is hyperbolic rela-
tive to its own sector of directions. Hence the requirement that the system
under consideration be hyperbolic means that the time-directed vectors
belong to the hyperbolicity sectors for every singularity. This condition
holds, by definition, for systems lying inside the hyperbolicity domain, so
that the singularities of these systems coincide with those of all generic
variational symbols. q.e.d.

Following [A1, A2], note that for variational hyperbolic systems the ex-
istence of points of nonstrict hyperbolicity (i.e., singularities of the light
hypersurface) occurs typically: a light surface of a generic variational sys-
tem lying inside the hyperbolicity domain possesses singular points consti-
tuting a codimension 2 set on the surface.

On the contrary, nonstrict hyperbolicity in the space of all systems oc-
curs only at boundary points of the hyperbolicity set (i.e., at points any
neighborhood of which contains nonhyperbolic systems). Here, in contrast
to the case of hyperbolic polynomials, there exist nonstrictly hyperbolic
systems that can not be approximated by strictly hyperbolic ones (see [J1,
J2] and Theorem 3 below). In other words, some strata of the boundary
of the hyperbolicity domain lie separately from inner points of this set.
Moreover, it turns out that the hyperbolicity set itself has no inner points
at all for certain relations between m,n,and / (eg.,if /=1, n=3,
m==+2,+3, £4 ( mod 8); see [L]).

2.2. Singularities of the boundary of hyperbolicity domains. The de-
scription of singularities of the set of hyperbolic systems in the space of
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all systems or of all variational systems is related to the nontransversality
of the map o and the stratified variety
(S)Mat (R) DX, D>---DX DX .

Boundary singularities are numbered by the corank k of the map ¢ in
the inverse image of the nontransversality point and the number j of the
stratum X ; to which that point belongs. To an arbitrary pair (k, j) of
this type corresponds its own hierarchy of singularities connected with the
codimension of various arrangements of these manifolds. The following
theorem describes the beginning of this classification.

DEFINITION. A singularity of the boundary of the hyperbolicity domain
is called regular in the space of all systems if for the corresponding symbol
o the hypersurfaces a(Tq' ]R"”) and Z \Z, are tangent to each other at a
point regular for both of them, i.e., the pair (k, j) is equal to the simplest
pair (0,1).

Notice that for n + 1 > m” the map o can not have any corank 0
points in its inverse image, i.e., there are no regular singularities among
the singularities of the boundary.

The hierarchy of stable regular singularities is described by the following
theorem.

THEOREM 2 (B. Z. Shapiro, B. A. Khesin). Regular singularities of the
boundary of the hyperbolicity domain in the space of all systems (or all
variational systems) coincide stably (with respect to the degree of homo-
geneity ) with the boundary singularities of the hyperbolicity domain for
hypersurfaces in R" (see [VSh]).

2

2.3. Algebraic properties of the hyperbolicity boundary. Now let us dis-
cuss the structure of the hyperbolicity set 2 in the case of general systems
with constant coefficients. Such systems constitute a finite-dimensional
real space RY , which is the space of coefficients of polynomial maps o .

THEOREM 3. (i) (Sturm, see [K]) The set of hyperbolic systems % c RY
is semialgebraic and closed.

(ii) Let g, € A be a nonstrictly hyperbolic system in n = 3 independent
space variables. Suppose also that Imao, and X, \ X, are transversal ev-
erywhere except zero and that the intersection of the homogeneous varieties
Imo, and (£,\Z,) consists of a finite number of rays, while any point from
(Imay) N (2, \ Z,) is a regular value of the map a,, .

Then in the neighborhood of o, the set A is a nonsingular algebraic
variety in RY and its codimension is equal to the number of rays described
above.
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COROLLARY. Let m =3 and | = 2. Then in the neighborhood of the
map o, with matrix entries

2 2 2 2 .
(ao),',j = (po + C[(pl +p, +p3))6,',j -(1- C,')p,'p.]

(here 0 < ¢, < ¢, < ¢y < | arearbitrary constants) the set 2 is an algebraic
variety of codimension 4.

This statement is, in fact, a theorem of John (see [J1, J2]). Note that
algebraicity is proved in [J2] by constructing an explicit rational parame-
terization of the set % C R®' which involves 77 parameters in the neigh-
borhood of the point g, .

2.4. Global structure of hyperbolicity domains. In [N] the following
result about the structure of hyperbolicity domains for polynomials was
proved.

THEOREM ([N]). (1) The set of (strictly) hyperbolic polynomials is the
union of two connected and simply-connected components.

(ii) Each hyperbolic polynomial is the limit of a sequence of strictly hy-
perbolic polynomials.

If we pass to the matrix case, then not only the local properties of
hyperbolicity domains change (compare the theorem in [J1] and Theorem
3 with statement (ii) of the theorem in [N]), but their global properties
also change significantly. All these effects occur even for second-order
variational systems with one space variable (/ =2, n = 1) and we further
concentrate our efforts on this case.

REMARK. Systems with one space variable have the following specific
feature: the inverse image a_l(Z) in R? = Tq' R'*! of the set on degen-
erate matrices X is a set of lines, and hence the hyperbolicity of the set
! (X) with respect to some direction implies its hyperbolicity for almost
all other directions (different from ¢_,(Z)). On the set of these symbols
there is an action of the group GL,(R) of linear transformation in the
inverse image. The property mentioned above means that hyperbolicity of
some symbol implies hyperbolicity of almost all symbols from its orbit.

Consider the connected components of the hyperbolicity domain in the
space of GL,-orbits of symbols. Note that the reduction to the orbit space
means in fact that we pass from the space of maps {o} to the space of
their images {Imo}, ignoring their parameterization and the hyperbolic
direction (see Subsection 3.4 below).
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REMARK. One can easily verify that part (i) of the theorem in [N], in
these terms, means that the set of orbits for hyperbolic polynomials in two
variables (m =1, n+1 = 2) consist of one simply-connected component
(notice that all scalar polynomials are variational systems of order m =1,
since (1 x 1)-matrices are always symmetric). For hyperbolic variational
systems of order m > 1 the situation is quite different.

THEOREM 4. Let RY be the space of variational (m x m)-systems of the
second order with one space variable (=2, n=1, N= N(m)), and A
be the space of GL,-orbits of hyperbolic maps 2 C RY . Then

(i) for m = 2, the set A consists of two connected components, one
of which is contractible and the other is homotopy equivalent to the circle
S,; moreover, the generator of its fundamental group can be realized as a
symbol with variable coefficients;

(ii) for m > 2, the set A contains at least one contractible component

m(m+1
and at least [m/2] components homotopy equivalent to S~ -2;
(iii) for m = 3, the set A contains at least 5 connected components.

REMARK. The answer to the following question, raised in [A2], is still
unknown: Can nontrivial generators of the homotopy groups of the com-
ponents of A or 2A be realized by (pseudo-)differential operators with
constant coefficients but with a large number of space variables?

§3. Proof of the main theorems

3.1. Proof of the transversality theorem for symbols. In the proof of
Theorem 1, the homogeneity in momenta hampers the use of the weak
transversality theorem. Hence the proof is a simplified version of the
corresponding strong theorem. We consider the case of all systems here
(the case of variational systems differs only in the replacement of the space
Mat (R) by SMat, (R)).

LEMMA 1. Consider the smooth map of the Cartesian product of the

cotangent space R**? = T*R"™' by the space R* to the matrix space
Mat, (R) defined by the formula

(p,q,¢e)—oa(e), whereo(e):=0+¢e +---+ee,
the e, ..., e, being all the different products of arbitrary monomials

Ry of degree | by the basis matrices, i.e., by the basis vectors

in the space Mat, (R). Then this map has no critical values different from
zero. This means that the given map is transversal to any submanifold in
Mat  (R) at any nonzero point.
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ProoF oF LEMMA 1. Choosing appropriate values of ¢,,..., ¢, we
can require that the matrix polynomial ¢,e, +---+¢.e, assume any chosen
value at any chosen point (p, q), where p # 0. In other words, any point
from Mat (R) belongs to the image of our map, and the space R’ (and
thus R xR’ ) maps onto the tangent space to Mat  (R) at any nonzero
point, q.e.d.

PrOOF OF THEOREM 1. For any submanifold in Mat, (R) and almost
all ¢, the map o(e) is transversal to this submanifold at a nonzero point
of Mat, (R). This follows from Lemma 1 and Sard’s theorem (see the
lemma in the proof of the transversality theorem in [AVG]). In particular,
o(e) is transversal to the rank stratification of degenerate matrices

Mat, (R)D X D---D%,_ DL D---.

Choosing a sufficiently small &, we obtain a map arbitrarily close to o
and transversal to this stratification everywhere except zero.

PrROOF OF THE COROLLARY. The following result is quite well known
(see [Al, AVG]).

THEOREM. The smooth manifold
Q = ((S)Mat,,(R) \ 0)/R"

has an algebraic stratification Q > Q, > Q, D ---, where Q, =
(Z,\ O)/R" is the set of classes of (symmetric) matrices whose corank
exceeds r — 1. The codimension of Q, in Q equals P in the space of all
matrices and r(r + 1)/2 in the space of symmetric matrices. The trace of
Q, onany r*-dimensional (respectively (r(r—1)/2)-dimensional) manifold
transversal to Q,\ Q,,, in Q is locally diffeomorphic to the manifold of
degenerate matrices (degenerate symmetric matrices, resp. ) of order r,
i.e., to the stratification

(SMat (R) DX, >---DXZ _ | DZ.

The Corollary follows from this theorem and Theorem 1 claiming that
the spherization of a generic symbol is transversal to the stratification Q, D
-+ D @,_,- Indeed, the inverse image of a submanifold under a map
transversal to it is the cylinder over the intersection of the submanifold
with the image of the map (see [AVG]).

3.2. Regular singularities of the boundary of the domain of hyperbolic
systems. In this subsection we prove Theorem 2 about the coincidence of
stable regular singularities of the boundary of hyperbolicity domains for
systems and hypersurfaces.
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Studying stable (in degree /) singularities, we can ignore restrictions
connected with the degree of homogeneity and consider So as an arbitrary
smooth map from ST*R""' in Mat, (R)\0)/R".

The fact that the symbol belongs to the boundary of the hyperbolic
domain means we have nontransversality at some point A4 of the spher-
izations SImog, and SZ of the surfaces Img, and . By definition, a
singularity of the boundary is regular if the surfaces SImg, and SZ are
smooth in the neighborhood of the point 4. It is convenient to consider
the germ of the smooth surface SZ, near the point A4 as the level of
some function with nonvanishing gradient. Restrict this function to the
surface SImg,. Deformations (in particular, versal deformations) of the
mutual positions of the surfaces Imo and X, are (versal) deformations
of the restricted function [Kh]. Now among the deformations of the given
function, we must choose those whose 0-level surface is hyperbolic (i.e.,
the preimage of Z, in § T*R™' must be hyperbolic). Since we study the
O-level surface only (the trace of SZ, in SImo ), the nonuniqueness of
the choice of function is unimportant.

Thus the study of stable (in /) regular boundary singularities in the
space of systems is reduced to the study of the boundary of the hyperbolic
domain in the space of hypersurfaces in R” (or in the space of functions
R" — R). Therefore the list of singularities in the two problems is the
same. Boundary singularities of the hyperbolic domain in the space of
hypersurfaces are described in detail in the paper [VSh].

This proof can be carried over word for word to the case of variational
systems, since in our study of regular singularities we only use the smooth-
ness of the surface SZ at the point A of the space ((S)Mat,, (R)\0) /R*.

3.3. Proof of the theorem on local structure and algebraic properties of
the set of hyperbolic systems. In order to prove that 2 is algebraic in the
neighborhood of ¢, (Theorem 3(ii)) it suffices to check smoothness (or
nonsingularity) of this set in the neighborhood of the given point. But the
semialgebraicity of 2 proved in (i) means that this set is determined by a
finite number of algebraic equalities and inequalities, while the smoothness
of this set in the neighborhood of ¢, means that only the equalities are
significant in this neighborhood.

The nonsingularity of 2 follows from the regularity of the intersection
(Img,) NZ, and dimensional considerations. Indeed

dim(Img,) = codimZ, = 4.

Let the point B lie on the ray along which Imo, and Z, intersect, and let
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V' denote the germ of the (4-dimensional) manifold transversal to X, at
the point B . The trace W), of the 4-dimensional surface Img, on V is 3-
dimensional because Im g, is homogeneous. The regularity of (Img,)NZ,
implies the smoothness of W, at the point B.

A
0 Y/

a) b)

FIGURE 1. Sections of the cone of signature (2, 2).

The trace K of the homogeneous surface Z, on v* is diffeomorphic

to the cone {ab—cd =0} € rR* (see Subsection 3.1). The cone K (which
has signature (2,2)) is not hyperbolic for any direction. Its 3-dimensional
sections by 3-planes (or surfaces) not passing through the vertex are also
nonhyperbolic (these sections are hyperboloids of one sheet; see Figure
1,a)). However, for sections of the cone K passing through the vertex,
there exists an open sector of hyperbolic directions & (see Figure 1,b)).
By assumption, the 3-dimensional trace W, of the surface Imog, on the
transversal V' passes through the vertex of the cone K (i.e., intersects X, )
and therefore the intersection W, N K is a hyperbolic cone of signature
(2,1) (see Figure 1,b)).

A symbol o close to g, has an image Imo close to Img,. So the
trace W of this image on the transversal manifold V' is smooth and close
to W,. The hyperbolicity condition for ¢ implies that the germs of all
intersections of Imo and X are hyperbolic. In particular, the intersection
of W and K must be hyperbolic. As we showed above, this is possible
only if W passes through the vertex of the cone X .

The existence condition of the intersection ray ImeNZ, (or that of the
intersection point of the smooth 3-dimensional trace W with the vertex
of the cone K on the 4-dimensional transversal manifold V') defines a
smooth hypersurface in the space of all systems {c} = R" in the neigh-
borhood of g;,. The intersection of such hypersurfaces corresponding to
different rays is smooth (since the preimages of these rays in T; R™' do
not coincide) and has codimension equal to the number of these rays.
g.e.d.
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3.4. Connected components of the hyperbolic domain in the space of vari-
ational systems. Before proving Theorem 4 about the global structure of
the hyperbolic domain, let us make the following

REMARK. Systems with n = 1, / = 2 (besides being hyperbolic with
respect to almost all directions, as we mentioned above) have the following
important feature: for generic &, the set Img is the double cover of the
quadratic half cone. Indeed, the image of a line not passing through the
origin in R’ = Tq' R*! undera quadratic (/ = 2) map is a parabola in the
space of matrices and therefore the surface Im &, by the homogeneity of
& , is half of the quadratic cone. Since / is even, the map & is a double
covering. For exceptional values of &, this half-cone degenerates into a
4-fold covered flat sector with vertex at the zero of the space of symmetric
matrices.

-

LEMMA 2. Main symbols &: R? — SMat,, (R) with coinciding images
(half-cones) in the space of matrices lie in one orbit of the GL,-action by
linear changes of independent space variables.

Proor. If symbols have the same image, then they map any line that
does not pass through O € R’ into a parabola generating the same half-
cone (see the Remark above). For any two parabolas, an appropriate rota-
tion of the plane R? will identify their points at infinity, i.e., one and the
same unique ruling of the cone will not intersect either of the parabolas.
An appropriate homothetic transformation of the source plane will identify
parabolas with the same point at infinity. Thus symbols with coinciding
image differ only by a linear change of variables. q.e.d.

So the space of GL,-orbits on the set of all symbols is the space of
all positions of the half-cone (and its degenerate versions) in the space
SMat_ (R).

The hyperbolicity of the map & means that Imé NZ, consists of 2m
rays (multiplicity taken into account)—the maximal possible value allowed
by the order of the system.

(I) LeMMA 3. For m = 2, the set of variational hyperbolic symbols con-
sists of two connected components one of which is contractible and the other
is homotopy equivalent to the circle.

ProoF. For m = 2, we have dim SMat,(R) = 3 and the cone of de-
generate matrices X is quadratic (as well as Imé& ) so that the maximal
possible number of intersection rays is 4. Consider the traces of these cones
on the spherization of the space of symmetric matrices R’ = SMat, (R) (or
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on any 2-plane lying in R® \ 0 and intersecting both halves of the cone X ).
Two classes of mutual positions of the hyperbola (the section of 2-plane by
the cone X ) and the ellipse (section by the half-cone Imég ) with maximal
number of intersections (see Figure 2,a),b)) complete the description of
the connected components in this dimension.

1 1
1
0
;Ijk <:{: :}i:::léf}
a) b) ©)

FIGURE 2

So in contrast to scalar polynomials ( m = 1), for which the hyperbolic-
ity domain has a unique connected component (see the remark preceeding
Theorem 4), for systems such that m > 1, there are several different com-
ponents.

Systems o similar to those shown in Figure 2,a) can be homotoped to a
system whose image Img is a plane sector (see the 2-dimensional section
in Figure 2,c)), while systems like those in Figure 2,b) contract to a system
whose image is a line joining the origin O € R® with the unit matrix. So
systems of type 2,b) constitute the contractible component while the set
of systems of type 2,a) are homotopy equivalent to the circle, i.e., the line
segment (section of the sector) on Figure 2,c) can be rotated. gq.e.d.

LEMMA 4. The generator of the fundamental group m, of the nontrivial
component of the set of hyperbolic systems for m = 2 can be realized by a
hyperbolic symbol on M +1 = §' x R with nonconstant coefficients.

PROOF. A system of type &, whose image is the 4-fold cover of a sector
may be presented, for example, as follows. Let (x, y, z) be coordinates

in the space
3 _J(a+b c .
s = (50 ,,))

={(a,b,c)a’ -b*-c*=0}.

Then 6,: R’ =R’ , where
. 2 .2 2 .2
ao(p)}‘)'_—(p +4 12(p —’l),O)

In this case the generator of the nontrivial connected component of the

put
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2
3
0/ Im&
a) 0123210 b) 0101210
1 1
: O K2 O
c) 0121210 d) 1212121 e) 0101010
FIGURE 3

hyperbolic domain can be realized on S 'xR by the symbol
&:T"(RxS') — SMat,(R),
where
. 2 .2 2,2 2 .2, . 1
agp, A, x,t)=(p"+4",2(p"—A")cosx, 2(p"—A")sinx), x€S§, teR,
thus finishing the proofs of Lemma 4 and statement (i) of Theorem 4.
(I1) In the case of arbitrary m, notice that the cone X of degenerate
matrices divides the space SMat_ (R) into m+1 components enumerated
by the index of the matrices (see Figure 2). The hyperbolic embedding of
the half-cone Im & defines a cyclic sequence of 2m numbers from 0 to
2m (i.e., a sequence of 2m + 1 numbers with coinciding first and last
numbers), which reflects the order of intersection of these components
by Imé . For example, on Figure 2,a) this sequence is 01010, for Figure
2,b) it is 01210. Different sequences obviously correspond to different
components of the hyperbolic domain.
For arbitrary m, systems with sequences like

k,(k=1),...,1,0,1,...,(m=k),...,0,....k; k=0,1,..., [g]

(the case k = 0 corresponds to the sequence 0, ..., m,...,0) can be.
realized by sectors of type 4, as in the proof of Lemma 4. These systems
are the representatives of [%]+ 1 different connected components of the
hyperbolic domain. Arguments similar to those used above in the case
m = 2 show that the k = 0 component is contractible, while the others
can be retracted on the spheres

smm=N2=2 " Ghere m(m + 1)/2 = dim SMat, (R).
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This estimate for the number of components is rather rough:

(IIT) PropPosITION. For m = 3, the hyperbolic domain has at least five
connected components.

ProoF. For m = 3, the cone X is a cubic homogeneous surface, while
Img is still the half-cone. The Figures 3,a)-3,e) show the two-dimensional
sections of hyperbolic embeddings of the half-cone in the space SMat,(R)
by Z. These sections are different dispositions of an ellipse (the section of
Img ) and an elliptic curve (the section of X) with the maximal possible
number of intersections, equal to 6. Such embeddings realize 5 differ-
ent cyclic sequences of indices of symmetric matrices (namely 0123210,
0101210, 0121210, 1212121, 0101010) and therefore represent different
connected components of the hyperbolic domain. q.e.d.
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