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GEOMETRY OF DIFFEOMORPHISM GROUPS, COMPLETE
INTEGRABILITY AND GEOMETRIC STATISTICS

B. Khesin, J. Lenells, G. Misio�lek, and S. C. Preston

Abstract. We study the geometry of the space of densities Dens(M), which is the
quotient space Diff(M)/Diffμ(M) of the diffeomorphism group of a compact man-
ifold M by the subgroup of volume-preserving diffeomorphisms, endowed with a
right-invariant homogeneous Sobolev Ḣ1-metric. We construct an explicit isometry
from this space to (a subset of) an infinite-dimensional sphere and show that the
associated Euler–Arnold equation is a completely integrable system in any space
dimension whose smooth solutions break down in finite time. We also show that the
Ḣ1-metric induces the Fisher–Rao metric on the space of probability distributions
and its Riemannian distance is the spherical version of the Hellinger distance.
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1 Introduction

The geometric approach to hydrodynamics pioneered by Arnold [Arn66] is based
on the observation that the particles of a fluid moving in a compact n-dimensional
Riemannian manifold M trace out a geodesic curve in the infinite-dimensional group
Diffμ(M) of volume-preserving diffeomorphisms (volumorphisms) of M . The general
framework of Arnold turned out to include a variety of nonlinear partial differential
equations of mathematical physics, now often referred to as Euler–Arnold equations.

Historically the metrics of most interest in infinite-dimensional Riemannian
geometry have been L2 metrics, which correspond to kinetic energy. On the
other hand, in recent years there have appeared a number of interesting non-
linear evolution equations described as geodesic equations on diffeomorphism
groups with respect to weak Riemannian metrics of Sobolev H1-type; see e.g.,
[AK98,HMR98,KM03,You10] and their references. In this paper we focus on the
H1 metrics both from a differential-geometric and a dynamical systems perspec-
tive. Our main results concern the geometry of a subclass of such metrics, namely,
degenerate right-invariant Ḣ1 Riemannian metrics on the full diffeomorphism group
Diff(M) and the properties of solutions of the associated geodesic equations. The
Ḣ1 metric is given at the identity diffeomorphism by

〈〈u, v〉〉 = b

∫

M

div u · div v dμ (1.1)

for some b > 0. It descends to a non-degenerate Riemannian metric on the homoge-
neous space of right cosets (densities) Dens(M) = Diff(M)/Diffμ(M). Furthermore,
it turns out that the corresponding geometry on densities is spherical for any compact
manifold M . More precisely, we prove that equipped with (1.1) the space Dens(M)
is isometric to (a subset of) an infinite-dimensional sphere in a Hilbert space.

One motivation for studying this geometry is that such H1 metrics arise natu-
rally on (generic) orbits of diffeomorphism groups in the manifold of all Riemannian
structures on M , using the natural Riemannian metric studied by Ebin [Ebi70]. The
induced metric is a special case of the following general form of the right-invariant
(a-b-c) Sobolev H1 metric on Diff(M) given at the identity by

〈〈u, v〉〉 = a

∫

M

〈u, v〉 dμ + b

∫

M

div u · div v dμ + c

∫

M

〈du�, dv�〉 dμ, (1.2)

where u, v ∈ TeDiff(M) are vector fields on M , μ is the Riemannian volume form,1 �
is the isomorphism TM → T ∗M defined by the metric on M , and a, b and c are non-
negative real numbers. We derive the Euler–Arnold equations for the metric (1.2) in

1 The volume form μ is denoted by dμ whenever it appears under the integral sign.
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the Appendix, which include as special cases the n-dimensional (inviscid) Burgers
equation, the Camassa–Holm equation, as well as the Euler-α equation. A detailed
study of the related curvatures appears in a separate publication [KLMP11].

In the special case of the homogeneous Ḣ1-metric (1.1) the Euler–Arnold equa-
tion has the form

ρt + u · ∇ρ + 1
2ρ2 = −

∫
M ρ2 dμ

2μ(M)
, (1.3)

where u = u(t, x) is a time-dependent vector field on M satisfying div u = ρ.2 This
equation is a natural generalization of the completely integrable one-dimensional
Hunter–Saxton equation [HS91] which is also known to yield geodesics on the homo-
geneous space Diff(S1)/Rot(S1) (the quotient of the diffeomorphism group of the
circle by the subgroup of rotations), see [KM03].

We prove that the solutions of (1.3) describe the great circles on a sphere in a
Hilbert space, and, in particular, the equation is a completely integrable PDE for
any number n of space variables. The corresponding complete family of conserved
integrals can be constructed in terms of angular momenta. Furthermore, we show
that the maximum existence time for smooth solutions of (1.3) is necessarily finite
for any initial conditions, with the L∞ norm of the solution growing without bound
as t approaches the critical time. On the other hand, the geometry of the problem
points to a method of constructing global weak solutions.

The structure of the paper is as follows. In Section 2 we review the geomet-
ric background on Euler–Arnold equations on Lie groups and describe the space
of densities, as well as reductions to homogeneous spaces, particularly as relates to
Diff(M), its subgroup Diffμ(M), and their quotient Dens(M).

In Section 3 we introduce the homogeneous Ḣ1-metric on the space of densities
and study its geometry. Generalizing the results of [Len07] for the case of the circle
we show that for any n-dimensional manifold the space Dens(M) is isometric to a
subset of the sphere in L2(M, dμ) with the induced metric. The Ḣ1 metric general-
izes the Fisher–Rao information metric in geometric statistics and its Riemannian
distance is shown to be the spherical analogue of the Hellinger distance.

In Section 4 we study properties of solutions to the corresponding Euler–Arnold
equation. Since for M = S1 our equation reduces to the Hunter–Saxton equation
we thus obtain an integrable generalization of the latter to any space dimension.
We show that all solutions break down in finite time and indicate how to construct
global weak solutions. Finally we describe the construction of an infinite family of
conserved quantities.

In Section 5 we present a geometric approach which yields right-invariant metrics
of the type (1.2) as induced metrics on the orbits of the diffeomorphism group from
the canonical Riemannian L2 structures on the spaces of Riemannian metrics and
volume forms on the underlying manifold M .

2 We will show that the solution ρ does not depend on the choice of u, which happens precisely
because the metric descends to the quotient space.
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We conclude in Section 6 with some applications. First we discuss gradient flow
on the space of densities in the spherical metric as a heat-like equation. Next we
discuss some applications to shape theory and compare with previous work, as well
as to the dual connections in geometric statistics. Finally we discuss Fredholmness
of the Riemannian exponential map. It also turns out that the Ḣ1-metric on the
space of densities described in this paper is isometric via the Calabi-Yau map to the
metric on the space of Kähler metrics introduced in the 1950s by Calabi.3

In the Appendix we derive the Euler–Arnold equation for the general a-b-c met-
ric (1.2) and show that several well-known PDE of mathematical physics can be
obtained as special cases.

2 Geometric Background

2.1 The Euler–Arnold equations. In this section we describe the general
setup which is convenient to study geodesics on Lie groups and homogeneous spaces
equipped with right-invariant metrics.

Let G be a possibly infinite-dimensional Lie group with identity element e and
TeG denoting the Lie algebra (we are primarily concerned with the case where G
is a subgroup of the group of C∞ diffeomorphisms of a compact manifold M with-
out boundary, under the composition operation). We equip G with a right-invariant
(possibly weak) Riemannian metric 〈〈·, ·〉〉 which is determined by its value at e. The
Euler–Arnold equation on the Lie algebra for the corresponding geodesic flow has
the form

ut = −B(u, u) = −ad∗
uu, (2.1)

where the bilinear operator B on TeG is defined by

〈〈B(u, v), w〉〉 = 〈〈u, advw〉〉, (2.2)

see [AK98] for details. In the case where G is a diffeomorphism group, the adjoint
operation is given by advw = −[v, w], i.e., minus the Lie bracket of vector fields v
and w on M .

Equation (2.1) describes the evolution in the Lie algebra of the vector u(t)
obtained by right-translating the velocity along the geodesic η in G starting at
the identity with initial velocity u(0). The geodesic itself can be obtained by solving
the Cauchy problem for the flow equation

dη

dt
= Rη∗eu, η(0) = e.

3 We are grateful to B. Clarke and Y. Rubinstein for drawing our attention to this point, see more
details in [CR11].
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Example 2.1. Let G = Diffμ(M) be the group of volume-preserving diffeomor-
phisms (volumorphisms) of a closed Riemannian manifold M . Consider the right-
invariant metric on Diffμ(M) generated by the L2 inner product

〈〈u, v〉〉L2 =
∫

M

〈u, v〉 dμ. (2.3)

In this case the Euler–Arnold equation (2.1) is the Euler equation of an ideal incom-
pressible fluid in M

ut + ∇uu = −∇p, div u = 0, (2.4)

where u is the velocity field and p is the pressure function, see [Arn66]. In the
vorticity formulation the 3D Euler equation becomes

ωt + [u, ω] = 0, where ω = curl u.

Example 2.2. Another source of examples are right-invariant Sobolev metrics on
the group G = Diff(S1) of circle diffeomorphisms; see e.g., [KM03]. Of particular
interest are those metrics whose Euler–Arnold equations turn out to be completely
integrable. On Diff(S1) with the metric defined by the L2 product the Euler–Arnold
equation (2.1) becomes the (rescaled) inviscid Burgers equation

ut + 3uux = 0, (2.5)

while the H1 product yields the Camassa–Holm equation

ut − utxx + 3uux − 2uxuxx − uuxxx = 0. (2.6)

We also mention that if G is the Virasoro group, a one-dimensional central exten-
sion of Diff(S1), equipped with the right-invariant L2 metric then the Euler–Arnold
equation is the periodic Korteweg-de Vries equation.

Now let H be a closed subgroup of G, and let G/H denote the homogeneous
space of right cosets. The following proposition characterizes those right-invariant
Riemannian metrics on G which descend to a metric on G/H.

Proposition 2.3. A right-invariant metric 〈〈·, ·〉〉 on G descends to a right-invariant
metric on the homogeneous space G/H if and only if the inner product restricted to
T⊥

e H (the orthogonal complement of TeH) is bi-invariant with respect to the action
by the subgroup H, i.e., for any u, v ∈ T⊥

e H ⊂ TeG and any w ∈ TeH one has

〈〈v, adwu〉〉 + 〈〈u, adwv〉〉 = 0. (2.7)

The proof repeats with minor changes the proof for the case of a metric that is
degenerate along a subgroup H; see [KM03].
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Example 2.4. Let G = Diff(S1) and H = Rot(S1), with right-invariant metric
given at the identity by

〈〈u, v〉〉Ḣ1 =
∫

S1

uxvx dx.

The tangent space to the quotient Diff(S1)/Rot(S1) at the identity coset [e] can be
identified with the space of periodic functions of zero mean, and the corresponding
Euler–Arnold equation is given by the Hunter–Saxton equation

utxx + 2uxuxx + uuxxx = 0, (2.8)

see [KM03]. In [Len07] the second author constructed an explicit isometry between
the quotient Diff(S1)/Rot(S1) and a subset of the unit sphere in L2(S1) and
described the corresponding solutions of equation (2.8) in terms of the geodesic
flow on the infinite-dimensional sphere. Below we show that this observation is a
part of a general phenomena valid for manifolds of any dimension.

2.2 The optimal transport framework. Given a volume form μ on M there
is a natural fibration of the diffeomorphism group Diff(M) over the space of vol-
ume forms of fixed total volume μ(M) = 1. More precisely, the projection onto
the quotient space Diff(M)/Diffμ(M) defines a smooth ILH principal bundle4 with
fibre Diffμ(M) and whose base is diffeomorphic to the space Dens(M) of normalized
smooth positive densities (or, volume forms)

Dens(M) =

⎧⎨
⎩ν ∈ Ωn(M) : ν > 0,

∫

M

dν = 1

⎫⎬
⎭ ,

see Moser [Mos65]. Alternatively, let ρ = dν/dμ denote the Radon–Nikodym deriva-
tive of ν with respect to the reference volume form μ. Then the base (as the space of
constant-volume densities) can be regarded as a convex subset of the space of smooth
positive functions ρ on M normalized by the condition

∫
M ρ dμ = 1. In this case

the projection map π can be written explicitly as π(η) = Jacμ(η−1) where Jacμ(η)
denotes the Jacobian of η computed with respect to μ, that is, η∗μ = Jacμ(η)μ.
The projection π satisfies π(η ◦ ξ) = π(η) whenever ξ ∈ Diffμ(M), i.e., whenever
Jacμ(ξ) = 1. Thus π is constant on the left cosets and descends to an isomorphism
between the quotient space of left cosets to the space of densities.

The group Diff(M) carries a natural L2-metric

〈〈u ◦ η, v ◦ η〉〉L2 =
∫

M

〈u ◦ η, v ◦ η〉 dμ =
∫

M

〈u, v〉Jacμ(η−1) dμ (2.9)

4 In the Sobolev category Diffs(M) → Diffs(M)/Diffs
μ(M) is a C0 principal bundle for any suffi-

ciently large s > n/2 + 1, see [EM70].
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Table 1 The geometric structures associated with L2 and Ḣ1 optimal transport

Diff(M) Diffμ(M) Dens(M) = Diff(M)/Diffμ(M)

L2-metric
(non-invariant)

L2-right invariant metric
(ideal hydrodynamics)

Wasserstein distance
(L2-optimal transport)

Ḣ1-metric
(right-invariant)

Degenerate (identically
vanishing)

Spherical Hellinger distance
(Ḣ1-optimal transport)

where u, v ∈ TeDiff(M) and η ∈ Diff(M). This metric is neither left- nor right-invari-
ant, although it becomes right-invariant when restricted to the subgroup Diffμ(M)
of volumorphisms and becomes left-invariant only on the subgroup of isometries.
Following Otto [Ott01] one can then introduce a metric on the base Dens(M) for
which the projection π is a Riemannian submersion: vertical vectors at TηDiff(M)
are those fields u ◦ η with div (ρu) = 0, and horizontal fields are of the form ∇f ◦ η
for some f : M → R, since the differential of the projection is π∗(v ◦ η) = − div (ρv)
where ρ = π(η).5

The associated Riemannian distance in Diff(M)/Diffμ(M) between two measures
ν and λ has an elegant interpretation as the L2-cost of transporting one density to
the other

dist2W (ν, λ) = inf
η

∫

M

dist2M (x, η(x)) dμ (2.10)

with the infimum taken over all diffeomorphisms η such that η∗λ = ν and where
distM denotes the Riemannian distance on M ; see [BB01] or [Ott01]. The function
distW is called the L2-Wasserstein (or Kantorovich-Rubinstein) distance between μ
and ν in optimal transport theory.

Remark 2.5. While the non-invariant L2 metric (2.9) on Diff(M) descends to Otto’s
metric on the quotient space Dens(M) = Diff(M)/Diffμ(M), one verifies that among
non-invariant H1 metrics of this type it is the only one descending to the quotient
Dens(M).

The situation is different for invariant metrics. Recall that the general condition
for a right-invariant metric on a group G to descend to the quotient G/H with
respect to a closed subgroup H was given in Proposition 2.3. Note that this con-
dition is precisely what one needs in order for the projection map from G to G/H
to be a Riemannian submersion, i.e., that the length of every horizontal vector is
preserved under the projection.

It turns out that the degenerate right-invariant Ḣ1 metric (1.1) on Diff(M)
descends to a non-degenerate metric on Dens(M). The skew symmetry condition
(2.7) in this case will be verified in Theorem 4.1. On the other hand, one can check

5 The construction in [Ott01] actually comes from Jacμ(η−1), which is important since it is left-
invariant, not right-invariant.
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that the right-invariant L2-metric (2.3) does not verify (2.7) and hence does not
descend. Similarly, the full H1 metric on Diff(M) obtained by right-translating the
a-b-c product (1.2) also fails to descend to a metric on Dens(M). This is summarized
in Table 1.

3 The Ḣ1-Spherical Geometry of the Space of Densities

In this section we study the homogeneous space of densities Dens(M) on a closed
n-dimensional Riemannian manifold M equipped with the right-invariant metric
induced by the Ḣ1 inner product (1.1), that is

〈〈u ◦ η, v ◦ η〉〉Ḣ1 =
1
4

∫

M

div u · div v dμ (3.1)

for any u, v ∈ TeDiff(M) and η ∈ Diff(M). It corresponds to the a = c = 0 term in
the general (a-b-c) Sobolev H1 metric (1.2) of the Introduction in which, to simplify
calculations, we set b = 1/4. (We will return to the case of any b > 0 in Section 5
and Appendix A.)

The geometry of this metric on the space of densities turns out to be particularly
remarkable. Indeed, we prove below that Dens(M) endowed with the metric (3.1) is
isometric to a subset of a round sphere in the space of square-integrable functions on
M .6 Moreover, we show that (3.1) corresponds to the Bhattacharyya coefficient (also
called the affinity) in probability and statistics and that it gives rise to a spherical
variant of the Hellinger distance. Thus the right-invariant Ḣ1-metric provides good
alternative notions of distance and shortest path for (smooth) probability measures
on M to the ones obtained from the L2-Wasserstein constructions used in standard
optimal transport problems.

3.1 An infinite-dimensional sphere S∞
r . We begin by constructing an isom-

etry between the homogeneous space of densities Dens(M) and a subset of the sphere
of radius r

S∞
r =

⎧⎨
⎩f ∈ L2(M, dμ) :

∫

M

f2 dμ = r2

⎫⎬
⎭

in the Hilbert space L2(M, dμ). As before, we let Jacμ(η) be the Jacobian of η with
respect to μ and let μ(M) stand for the total volume of M .

Theorem 3.1. The map Φ : Diff(M) → L2(M, dμ) given by

Φ : η 	→ f =
√

Jacμη

6 This construction has an antecedent in the special case of the group of circle diffeomorphisms
considered in [Len07].
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defines an isometry from the space of densities Dens(M) = Diff(M)/Diffμ(M)
equipped with the Ḣ1-metric (3.1) to a subset of the sphere S∞

r ⊂ L2(M, dμ) of
radius

r =
√

μ(M)

with the standard L2 metric.
For s > n/2 + 1 the map Φ is a diffeomorphism between Diffs(M)/Diffs

μ(M) and
the convex open subset of S∞

r ∩Hs−1(M) which consists of strictly positive functions
on M .

Proof. First, observe that the Jacobian of any orientation-preserving diffeomorphism
is a strictly positive function. Next, using the change of variables formula, we find
that ∫

M

Φ2(η) dμ =
∫

M

Jacμη dμ =
∫

M

η∗ dμ =
∫

η(M)

dμ = μ(M)

which shows that Φ maps diffeomorphisms into S∞
r . Furthermore, observe that since

for any ξ ∈ Diffμ(M) we have

Jacμ(ξ ◦ η)μ = (ξ ◦ η)∗μ = η∗μ = Jacμ(η)μ;

it follows that Φ is well-defined as a map from Diff(M)/Diffμ(M).
Next, suppose that for some diffeomorphisms η1 and η2 we have Jacμ(η1) =

Jacμ(η2). Then (η1 ◦ η−1
2 )∗μ = μ from which we deduce that Φ is injective. More-

over, differentiating the formula Jacμ(η)μ = η∗μ with respect to η and evaluating
at U ∈ TηDiff(M), we obtain

Jacμ∗η(U) = div(U ◦ η−1) ◦ η Jacμη.

Therefore, letting π : Diff(M) → Diff(M)/Diffμ(M) denote the bundle projection,
see Figure 1, we find that

〈〈(Φ ◦ π)∗η(U), (Φ ◦ π)∗η(V )〉〉L2 =
1
4

∫

M

(div u ◦ η) · (div v ◦ η) Jacμη dμ

=
1
4

∫

M

div u · div v dμ = 〈〈U, V 〉〉Ḣ1 ,

for any elements U = u ◦ η and V = v ◦ η in TηDiff(M) where η ∈ Diff(M). This
shows that Φ is an isometry.

When s > n/2 + 1 the above arguments extend to the category of Hilbert man-
ifolds modelled on Sobolev Hs spaces, see Remark 3.3 below. The fact that any
positive function in S∞

r ∩ Hs−1(M) belongs to the image of the map Φ follows from
Moser’s Lemma [Mos65] whose generalization to the Sobolev setting can be found
for example in [EM70]. ��
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1

Figure 1: The fibration of Diff(M) with fiber Diffμ(M) determined by the reference density
μ together with the Ḣ1-metric

As an immediate consequence we obtain the following result.

Corollary 3.2. The space Dens(M) = Diff(M)/Diffμ(M) equipped with the right-
invariant metric (3.1) has strictly positive constant sectional curvature equal to
1/μ(M).

Proof. As in finite dimensions, sectional curvature of the sphere S∞
r equipped with

the induced metric is constant and equal to 1/r2. The computation is straightforward
using for example the Gauss–Codazzi equations. ��

It is worth pointing out that the bigger the volume μ(M) of the manifold the
bigger the radius of the sphere S∞

r and therefore, by the above corollary, the smaller
the curvature of the corresponding space of densities Dens(M). Thus, in the case of
a manifold M of infinite volume one would expect the space of densities with the
Ḣ1-metric (3.1) to be “flat”. Observe also that rescaling the metric (3.1) to

b

∫

M

div u · div v dμ

changes the radius of the sphere to r = 2
√

b
√

μ(M).

Remark 3.3. (Hilbert manifold structures for diffeomorphism groups). As we
pointed out in the Introduction, even though for our purposes it is convenient to
work with C∞ maps, the constructions of this paper can be carried out in the frame-
work of Sobolev spaces. Now we describe this setup briefly and refer the reader to
[Ebi70,EM70] or [MP10] for further details.
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For a compact Riemannian manifold M , the set Hs(M, M) consists of maps
f : M → M such that for any p ∈ M and for any local chart (U, φ) at p and any
local chart (V, φ) at f(p), the composition φ◦f ◦φ−1 belongs to Hs(φ(U), Rn). Using
the Sobolev Lemma, one shows that if s > n/2, then this definition is independent
of the choice of charts on M . The tangent space at f ∈ Hs(M, M) is defined as
the set of all Hs-sections of the pull-back bundle TfHs(M, M) = Hs(f−1TM). A
differentiable atlas for Hs(M, M) is constructed using the Riemannian exponen-
tial map on M . For example, to find a chart at the identity map f = e consider
Exp : TM → M ×M given by Exp(v) =

(
π(v), expπ(v) vπ(v)

)
where π : TM → M is

the tangent bundle projection. Since Exp is a diffeomorphism from an open subset U
containing the zero section in TM onto a neighbourhood of the diagonal in M ×M ,
one can define a bijection from the set

Ue = {v ∈ Hs(TM) : v(M) ⊂ U}
onto a neighbourhood of the identity map in Hs(M, M) by

Φ : Ue ⊂ TeH
s(M, M) → Hs(M, M), v → Φ(v) = Exp ◦ v.

The pair (Ue, Φ) gives a chart in Hs(M, M) around f = e. Compactness, prop-
erties of exp and standard facts about compositions of Sobolev maps ensure that
the charts are well-defined and independent of the Riemannian metric on M , with
smooth transition functions on the overlaps.

For any s > n/2 + 1 the group of Hs diffeomorphisms can be now defined as

Diffs(M) = C1Diff(M) ∩ Hs(M, M),

where C1Diff(M) is the set of C1 diffeomorphisms of M . Since C1Diff(M) forms
an open set in C1(M, M), it follows by the Sobolev Lemma that Diffs(M) is also
open as a subset of the Hilbert manifold Hs(M, M) and hence itself a smooth man-
ifold. Furthermore, it is a topological group under composition of diffeomorphisms.
In fact, right multiplications Rη(ξ) = ξ ◦ η are smooth in the Hs topology, whereas
left multiplications Lη(ξ) = η ◦ ξ and inversions η → η−1 are continuous but not
Lipschitz continuous. The subgroup of volume-preserving diffeomorphisms

Diffs
μ(M) = {η ∈ Diff(M) : η∗μ = μ}

is a closed C∞ submanifold of Diffs(M). This follows essentially from the implicit
function theorem for Banach manifolds and the Hodge decomposition.

3.2 The metric space structure of Diff(M)/Diffµ(M). The right invari-
ant metric (3.1) induces a distance function between densities (measures) of fixed
total volume on M that is analogous to the Wasserstein distance (2.10) induced by
the non-invariant L2 metric used in the standard optimal transport. It turns out that
the isometry Φ constructed in Theorem 3.1 makes the computations of distances in
Dens(M) with respect to (3.1) simpler than one would expect by comparison with
the Wasserstein case.
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Consider two (smooth) measures λ and ν on M of the same total volume μ(M)
which are absolutely continuous with respect to the reference measure μ. Let dλ/dμ
and dν/dμ be the corresponding Radon–Nikodym derivatives of λ and ν with respect
to μ.

Theorem 3.4. The Riemannian distance defined by the Ḣ1-metric (3.1) between
measures λ and ν in the density space Dens(M) = Diff(M)/Diffμ(M) is

distḢ1(λ, ν) =
√

μ(M) arccos

⎛
⎝ 1

μ(M)

∫

M

√
dλ

dμ

dν

dμ
dμ

⎞
⎠. (3.2)

Equivalently, if η and ζ are two diffeomorphisms mapping the volume form μ to
λ and ν, respectively, then the Ḣ1-distance between η and ζ is

distḢ1(η, ζ) = distḢ1(λ, ν) =
√

μ(M) arccos

⎛
⎝ 1

μ(M)

∫

M

√
Jacμη · Jacμζ dμ

⎞
⎠ .

Proof. Let f2 = dλ/dμ and g2 = dν/dμ. If λ = η∗μ and ν = ζ∗μ then using the
explicit isometry Φ constructed in Theorem 3.1 it is sufficient to compute the dis-
tance between the functions Φ(η) = f and Φ(ζ) = g considered as points on the
sphere S∞

r with the induced metric from L2(M, dμ). Since geodesics of this metric
are the great circles on S∞

r it follows that the length of the corresponding arc joining
f and g is given by

r arccos

⎛
⎝ 1

r2

∫

M

fg dμ

⎞
⎠,

which is precisely formula (3.2). ��
We can now compute precisely the diameter of the space of densities using stan-

dard formula

diamḢ1 Dens(M) := sup
{

distḢ1(λ, ν) : λ, ν ∈ Dens(M)
}
.

Corollary 3.5. The diameter of the space Dens(M) equipped with the Ḣ1-metric
(3.1) equals π

2

√
μ(M), or one quarter the circumference of S∞

r .

Proof. The upper bound follows easily from formula (3.2), since the argument of
the arccosine is always between 0 and 1. To prove it is arbitrarily close to 0, we
choose the positive functions f and g as in the proof of Theorem 3.4 with supports
concentrated in disjoint areas. ��

The Riemannian distance function distḢ1 on the space of densities Dens(M)
introduced in Theorem 3.4 is very closely related to the Hellinger distance in proba-
bility and statistics. Recall that given two probability measures λ and ν on M that
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are absolutely continuous with respect to a reference probability μ the Hellinger
distance between λ and ν is defined as

dist2Hel(λ, ν) =
∫

M

(√
dλ

dμ
−
√

dν

dμ

)2

dμ.

As in the case of distḢ1 one checks that distHel(λ, ν) =
√

2 when λ and ν are mutu-
ally singular and that distH(λ, ν) = 0 when the two measures coincide. It can also
be expressed by the formula dist2Hel(λ, ν) = 2 (1 − BC(λ, ν)) , where BC(λ, ν) is the
so-called Bhattacharyya coefficient (affinity) used to measure the “overlap” between
statistical samples; see e.g., [Che82] for more details.

In order to compare the Hellinger distance distHel with the Riemannian distance
distḢ1 defined in (3.2) recall that probability measures λ and ν are normalized by
the condition λ(M) = ν(M) = μ(M) = 1. As before, we shall consider the square
roots of the respective Radon–Nikodym derivatives as points on the (unit) sphere
in L2(M, dμ). One can immediately verify the following two corollaries of Theorem
3.1.

Corollary 3.6. The Hellinger distance distHel(λ, ν) between the normalized den-
sities dλ = f2dμ and dν = g2dμ is equal to the distance in L2(M, dμ) between the
points on the unit sphere f, g ∈ S∞

1 ⊂ L2(M, dμ).

Corollary 3.7. The Bhattacharyya coefficient BC(λ, ν) for two normalized den-
sities dλ = f2dμ and dν = g2dλ is equal to the inner product of the corresponding
positive functions f and g in L2(M, dμ):

Figure 2: The Hellinger distance distHel(λ, ν) and the spherical Hellinger distance
distḢ1(λ, ν) between two points f = Φ(λ) and g = Φ(ν) in S∞

1 . The thick arc represents the
image of Diff(M) under the map Φ
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BC(λ, ν) =
∫

M

√
dλ

dμ

dν

dμ
dμ =

∫

M

fg dμ.

Let 0 < α < π/2 denote the angle between f and g viewed as unit vectors in
L2(M, dμ). Then we have

distHel(λ, ν) = 2 sin(α/2) and BC(λ, ν) = cos α,

while

distḢ1(λ, ν) = α = arccos BC(λ, ν).

Thus, we can refer to the Riemannian distance distḢ1(λ, ν) on Dens(M) as the
spherical Hellinger distance between λ and ν, see Figure 2.

3.3 The Fisher–Rao metric in infinite dimensions. It is remarkable that
the right-invariant Ḣ1 metric (3.1) provides an appropriate geometric framework
for an infinite-dimensional Riemannian approach to mathematical statistics. Efforts
directed toward finding suitable differential geometric approaches to statistics go
back to the work of Fisher, Rao [Rao93] and Kolmogorov.

In the classical approach one considers finite-dimensional families of probability
distributions on M whose elements are parameterized by subsets E of the Euclidean
space R

k,

S =
{

ν = νs1,...,sk
∈ Dens(M) : (s1, . . . , sk) ∈ E ⊂ R

k
}

.

When equipped with a structure of a smooth k-dimensional manifold such a family
is referred to as a statistical model. Rao [Rao93] showed that any S carries a natural
structure given by a k × k positive definite matrix

Iij =
∫

M

∂ log ν

∂si

∂ log ν

∂sj
ν dμ (i, j = 1, . . . , k), (3.3)

called the Fisher–Rao (information) metric.7

In our approach we shall regard a statistical model S as a k-dimensional Rie-
mannian submanifold of the infinite-dimensional Riemannian manifold of probabil-
ity densities Dens(M) defined on the underlying n-dimensional compact manifold M .
The following theorem shows that the Fisher–Rao metric (3.3) is (up to a constant
multiple) the metric induced on the submanifold S ⊂ Dens(M) by the (degenerate)
right-invariant Sobolev Ḣ1-metric (1.1) we introduced originally on the full diffeo-
morphism group Diff(M).

7 The significance of this metric for statistics was also noted by Chentsov [Che82]. An infinite-
dimensional version was perhaps first mentioned by Dawid in a commentary [Daw77] on the paper
of Efron [Efr75].
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Theorem 3.8. The right-invariant Sobolev Ḣ1-metric (3.1) on the quotient space
Dens(M) of probability densities on M coincides with the Fisher–Rao metric on any
k-dimensional statistical submanifold of Dens(M).

Proof. We carry out the calculations directly in Diff(M). Given any v and w in
TeDiff(M), consider a two-parameter family of diffeomorphisms (s1, s2) → η(s1, s2)
in Diff(M) starting from the identity η(0, 0) = e with ∂

∂s1
η(0, 0) = v, ∂

∂s2
η(0, 0) = w.

Let

v(s1, s2) ◦ η(s1, s2) = ∂
∂s1

η(s1, s2) and w(s1, s2) ◦ η(s1, s2) = ∂
∂s2

η(s1, s2)

be the corresponding variation vector fields along η(t, s).
If ρ is the Jacobian of η(s1, s2) computed with respect to the fixed measure μ,

then (3.3) takes the form

Ivw =
∫

M

∂

∂s1
(log Jacμη(s1, s2))

∂

∂s2
(log Jacμη(s1, s2)) Jacμη(s1, s2) dμ.

Recall that
∂

∂s1
Jacμη(s1, s2) = div v(s1, s2) ◦ η(s1, s2) · Jacμη(s1, s2)

and similarly for the partial derivative in s2. Using these formulas and changing
variables in the integral, we now find

Ivw =
∫

M

∂
∂s1

Jacμη(s1, s2) ∂
∂s2

Jacμη(s1, s2)
Jacμη(s1, s2)

∣∣
s1=s2=0

dμ

=
∫

M

(
div v ◦ η

) · (div w ◦ η
)

Jacμη dμ

=
∫

M

div v · div w dμ = 4〈〈v, w〉〉Ḣ1 ,

from which the theorem follows. ��
Theorem 3.8 suggests that the Ḣ1 counterpart of optimal transport with its asso-

ciated spherical Hellinger distance is the infinite-dimensional version of geometric
statistics sought in [AN00] and [Che82].

4 The Geodesic Equation: Solutions and Integrability

In the preceding sections we studied the geometry of the Ḣ1-metric (3.1) on the
space of densities Dens(M). In this section we shall focus on obtaining explicit for-
mulas for solutions of the Cauchy problem for the associated Euler–Arnold equation
and prove that they necessarily break down in finite time.
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4.1 Local smooth solutions and explicit formulas. First we derive the geo-
desic equation induced on the quotient Dens(M) by the Riemannian metric (1.1).

Theorem 4.1. If a = c = 0 then the a-b-c metric (1.2) satisfies condition (2.7) and
therefore descends to a metric on the space of densities Dens(M). The corresponding
Euler–Arnold equation is

∇ div ut + div u ∇ div u + ∇〈u, ∇ div u〉 = 0 (4.1)

or, in the integrated form,

ρt + 〈u, ∇ρ〉 + 1
2ρ2 = −

∫
M ρ2 dμ

2μ(M)
(4.2)

where ρ = div u.

Proof. We verify (2.7) for G = Diff(M), H = Diffμ(M) and adwv = −[w, v], where
[·, ·] is the Lie bracket of vector fields on M . Given any vector fields u, v and w with
div w = 0, we have

〈〈adwv, u〉〉Ḣ1 + 〈〈v, adwu〉〉Ḣ1 = −b

∫

M

(
div [w, v] div u + div [w, u] div v

)
dμ

= −b

∫

M

((〈w, ∇ div v〉 − 〈v,∇ div w〉)div u

+
(〈w, ∇ div u〉 − 〈u, ∇ div w〉) div v

)
dμ

= b

∫

M

div w · div v · div u dμ = 0,

which shows that (1.2) descends to Diff(M)/Diffμ(M).
The Euler–Arnold equation on the quotient can be now obtained from

(A.4) in the form (4.1). In integrated form it reads

div ut + 〈u, div u〉 + 1
2(div u)2 = C(t)

where C(t) may in general depend on time. Integrating this equation over M deter-
mines the value of C(t). ��

Note that in the special case M = S1 differentiating equation (4.2) with respect
to the space variable gives the Hunter–Saxton equation (2.8). The gradient of (4.2),
augmented by terms arising from an additional L2 term in (1.1), was derived as a
2D water wave equation in [KSD01], thus our equation represents a limiting case.

Remark 4.2. The right-hand side of equation (4.2) is independent of time for any
initial condition ρ0 because the integral

∫
M ρ2 dμ corresponds to the energy (the

squared length of the velocity) in the Ḣ1-metric on Dens(M) and is constant along
a geodesic. This invariance will also be verified by a direct computation in the proof
below.
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Consider an initial condition in the form

ρ(0, x) = div u0(x). (4.3)

We already have an indirect method for solving the initial value problem for equa-
tion (4.2) by means of Theorem 3.1. We now proceed to give explicit formulas for
the corresponding solutions.

Theorem 4.3. Let ρ = ρ(t, x) be the solution of the Cauchy problem (4.2)–(4.3)
and suppose that t 	→ η(t) is the flow of the velocity field u = u(t, x), i.e., ∂

∂tη(t, x) =
u(t, η(t, x)) where η(0, x) = x. Then

ρ
(
t, η(t, x)

)
= 2κ tan

(
arctan

div u0(x)
2κ

− κt

)
, (4.4)

where

κ2 =
1

4μ(M)

∫

M

(div u0)2 dμ. (4.5)

Furthermore, the Jacobian of the flow is

Jacμ

(
η(t, x)

)
=
(

cos κt +
div u0(x)

2κ
sin κt

)2
. (4.6)

Proof. For any smooth real-valued function f(t, x) the chain rule gives

d

dt
(f(t, η(t, x))) =

∂f

∂t
(t, η(t, x)) + 〈u (t, η(t, x)) , ∇f (t, η(t, x))〉 .

Using this we obtain from (4.2) an equation for f = ρ ◦ η

df

dt
+ 1

2f2 = −C(t), (4.7)

where C(t) = (2μ(M))−1
∫
M ρ2dμ, as remarked above, is in fact independent of time.

Indeed, direct verification gives

μ(M)
dC(t)

dt
=
∫

M

ρρt dμ =
∫

M

div u div ut dμ

= −
∫

M

〈u, ∇ div u〉 div u dμ − 1
2

∫

M

(div u)3 dμ = 0,

where the last cancellation follows from integration by parts.
Set C = 2κ2. Then, for a fixed x ∈ M the solution of the resulting ODE in (4.7)

with initial condition f(0) has the form

f(t) = 2κ tan (arctan (f(0)/2κ) − κt) ,



GAFA GEOMETRY OF DIFFEOMORPHISM GROUPS 351

which is precisely (4.4).
In order to find an explicit formula for the Jacobian we first compute the time

derivative of Jacμ(η)μ to obtain

d

dt
(Jacμ(η)μ) =

d

dt
(η∗μ) = η∗(Luμ) = η∗(div u μ) = (ρ ◦ η) Jacμ(η)μ.

This gives a differential equation for Jacμη, which we can now solve with the help
of (4.4) to get the solution in the form of (4.6). ��

Note that (4.6) completely determines the Jacobian regardless of any “ambi-
guity” in the velocity field u satisfying div u = ρ in equation (4.2). The reason is
that the Jacobians can be considered as elements of the quotient space Dens(M) =
Diff(M)/Diffμ(M) (a convenient way to resolve the ambiguity is by choosing velocity
as the gradient field u = ∇Δ−1ρ).

Remark 4.4 (Great circles on S∞
r ). We emphasize that formula (4.6) for the Jaco-

bian Jacμη of the flow is best understood in light of the correspondence between
geodesics in Dens(M) and those on the infinite-dimensional sphere S∞

r established
in Theorem 3.1. Indeed, the map

t →
√

Jacμ (η(t, x)) = cos κt +
div u0(x)

2κ
sin κt

describes the great circle on the unit sphere S∞
1 ⊂ L2(M, dμ) passing through the

point 1 with initial velocity 1
2 div u0.

4.2 Global properties of solutions. The explicit formulas of Theorem 4.3
make it possible to give a fairly complete picture of the global behavior of solutions
to the Ḣ1 Euler–Arnold equation on Dens(M) for any manifold M . It turns out
for example that any smooth solution of equation (4.2) has finite lifespan and the
blowup mechanism can be precisely described.

By the result of Moser [Mos65], the function on the right side of formula (4.6)
will be the Jacobian of some diffeomorphism as long as it is nowhere zero. Hence
up to the blowup time we have a smooth path in the space of densities, which lifts
to a smooth path in the diffeomorphism group; see Proposition 4.6. Geodesics leave
the set of positive densities and hit the boundary corresponding to the boundary
of the diffeomorphism group. The latter consists of Hs maps from M to M , which
are degenerations of diffeomorphisms. To make sense of weak solutions of (4.2), one
would need a way of lifting the curve (4.6) to a smooth curve in Hs(M, M).

First, we note that there can be no global smooth (classical) solutions of the
Euler–Arnold equation (4.2). As in the case of the one-dimensional Hunter–Saxton
equation all solutions break down in finite time.

Proposition 4.5. The maximal existence time of a (smooth) solution of the Cauchy
problem (4.2)–(4.3) constructed in Theorem 4.3 is

0 < Tmax =
π

2κ
+

1
κ

arctan
(

1
2κ

inf
x∈M

div u0(x)
)

. (4.8)
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Furthermore, as t ↗ Tmax we have ‖u(t)‖C1 ↗ ∞.

Proof. This follows at once from formula (4.4) using the fact that div u = ρ. Alter-
natively, from formula (4.6) we observe that the flow of u(t, x) ceases to be a diffe-
omorphism at t = Tmax. ��

Observe that before a solution reaches the blow-up time it is always possible to
lift the corresponding geodesic to a smooth flow of diffeomorphisms using a slight
variation of the classical construction of Moser [Mos65].

Proposition 4.6. If div u0 is smooth, then there exists a family of smooth diffeo-
morphisms η(t) in Diff(M) satisfying (4.6), i.e., such that Jacμ(η(t)) = ϕ(t) where

ϕ(t, x) =
(

cos κt +
div u0(x)

2κ
sin κt

)2

, (4.9)

provided that 0 ≤ t < Tmax. Furthermore η is smooth in time as a curve in Diff(M).
If u0 is in Hs for s > n/2 + 1, the curve η(t) is in Diffs(M).

Proof. It is easy to check that
∫
M ϕ(t, x) dμ is constant in time, which allows one

to solve the equation Δf(t, x) = −∂ϕ/∂t(t, x) for f , for any fixed time t. Using the
explicit formula (4.9), we easily see that f is smooth in time and spatially in Hs+1

if u0 is in Hs.
For t in [0, Tmax), we define a time-dependent vector field by the formula X(t, x) =

∇f(t, x)/ϕ(t, x). Let t 	→ ξ(t) denote the flow of X starting at the identity (which
exists for t ∈ [0, Tmax) and x ∈ M by compactness of M). Using the definition of f
and LX(ϕμ) = div (ϕX)μ, we compute

d

dt
ξ∗(ϕμ) = ξ∗

(
∂ϕ

∂t
μ + LX(ϕμ)

)
= 0.

Since ϕ(0) = 1 and ξ(0) = e we have ξ∗(ϕμ) = μ for any 0 ≤ t < Tmax. Denoting
by η(t) the inverse of the diffeomorphism ξ(t), we find that η∗μ = ϕμ, from which
it follows that Jacμ(η(t, x)) = ϕ(t, x) as desired. ��

The method of Proposition 4.6 gives a particular choice of a diffeomorphism flow
η, and hence a velocity field appearing in (4.2) and satisfying div u = ϕ. The flow
must break down at the critical time Tmax, since the vector field X becomes singular
(when ϕ reaches zero). The difficulty here is that one constructs η indirectly, by first
constructing ξ = η−1, and it is this inversion procedure that breaks down at the
blowup time Tmax.

For the Hunter–Saxton equation on Diff(S1)/Rot(S1) the related construction of
weak solutions was explained in [Lene07]. In this case the flow is determined (up to
rotations of the base point) by its Jacobian. If the initial velocity is not constant in
any interval, then the singularities of the flow are isolated so that it is a homeomor-
phism (but not a diffeomorphism past the blowup time). In terms of the spherical
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picture, the square root map Φ from Theorem 3.1 maps only onto a small portion
of the space of functions with fixed L2 norm, but its inverse can be defined on the
entire sphere. In higher dimensions if the Jacobian is not everywhere positive the
situation is much more complicated. Nevertheless, in this case it may be possible to
apply the techniques of Gromov and Eliashberg [GE73] in order to construct a map
with a prescribed Jacobian. It would be interesting to extend Moser’s argument to
construct a global flow of homeomorphisms out of this flow of maps (past the blowup
time).

4.3 Complete integrability. For a 2n-dimensional Hamiltonian system, com-
plete integrability means the existence of n functionally independent integrals
H1, . . . , Hn in involution (one of which is the Hamiltonian of the system); in such
a case the motion can be determined by quadrature. In infinite dimensions the sit-
uation is more subtle: the existence of infinitely many constants of motion may
not suffice to determine the motion. Infinite-dimensional systems have been studied
intensively since the discovery of the complete integrability of the Korteweg-de Vries
equation. Other examples include one-dimensional equations like the Camassa–Holm
and Hunter–Saxton equations, and two-dimensional examples like the Kadomtsev–
Petviashvili, Ishimori, and Davey–Stewartson equations.

In addition to having an explicit formula for solutions (see Theorem 4.3), one
can also construct infinitely many independent constants of motion, using the fact
that geodesic motion on a sphere of any dimension is completely integrable. First
consider the unit sphere Sn−1 ⊂ R

n, given by the equation
∑n

j=1 q2
j = 1 with

q = (q1, . . . , qn) ∈ R
n and equipped with its standard round metric. The geodesic

flow in this metric is defined by the Hamiltonian H =
∑n

j=1 p2
j on the cotangent

bundle T ∗Sn−1. It is a classical example of a completely integrable system, which
has the property that all of its orbits are closed.

Proposition 4.7. (see e.g., [Bol10])

(i) The functions hij = piqj − pjqi, 1 ≤ i < j ≤ n on T ∗
R

n (as well as their
reductions to T ∗Sn−1) commute with the Hamiltonian H =

∑n
j=1 p2

j and
generate the Lie algebra so(n).

(ii) The functions

Hk :=
∑

1≤i<j≤k

h2
ij =

k∑
j=1

p2
j

k∑
j=1

q2
j −

⎛
⎝ k∑

j=1

qjpj

⎞
⎠

2

for k = 2, . . . , n form a complete set of independent integrals in involution
for the geodesic flow on the round sphere Sn−1 ⊂ R

n, that is {Hi, Hj} = 0,
for any 2 ≤ i, j ≤ n.

Proof. The Hamiltonian functions hij in T ∗
R

n generate rotations in the (qi, qj)-plane
in R

n, which are isometries of Sn−1. These rotations commute with the geodesic flow
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on the sphere and hence {hij , H} = 0. A direct computation gives {hij , hjk} = hik,
which are the commutation relations of so(n).

The involutivity of Hk is a routine calculation. ��
Alternatively, one can consider the chain of subalgebras so(2) ⊂ so(3) ⊂ · · · ⊂

so(n). Then Hk is one of the Casimir functions for so(k) and it therefore commutes
with any function on so(k)∗. In particular, it commutes with all the preceding func-
tions Hm for m < k. They are functionally independent because at each step Hk

involves new functions hjk. Note that on the cotangent bundle T ∗Sn−1 the function
Hn coincides with the Hamiltonian H since

∑n
j=1 q2

j = 1 and
∑n

j=1 piqi = 0 (“the
tangent plane equation”).

The same procedure allows one to construct integrals in infinite dimensions, for
S∞

r ⊂ L2(M, dμ). Similarly, on the cotangent space T ∗S∞
r with position coordinates

qi and momentum coordinates pi, Hamiltonians hij = piqj − pjqi generate rotations
of the sphere in the (qi, qj)-plane. They now form the Lie algebra so(∞) of the
group of unitary operators on L2 and generate an infinite sequence of functionally
independent first integrals {Hk}∞

k=2 in involution. This sequence corresponds to the
infinite chain of embeddings so(2) ⊂ so(3) ⊂ · · · ⊂ so(∞) and provides infinitely
many conserved quantities for the geodesic flow on the unit sphere S∞

r ⊂ L2(M, dμ).
We summarize the above consideration in the following

Theorem 4.8. The Euler–Arnold equation (4.2) of the right-invariant Ḣ1-metric
on the space of densities Dens(M) is an infinite-dimensional completely integrable
dynamical system.

Remark 4.9. In 1981 Arnold posed a problem of finding equations of mathematical
physics which realize geodesic flows on infinite-dimensional ellipsoids (see Problem
1981-29 in Arnold’s problems). The Ḣ1-geodesic equation on Dens(M) can be viewed
as an example of such, being the geodesic flow on an infinite-dimensional sphere and
manifesting a high degree of integrability, since all of its orbits are closed.

Furthermore, the geodesic flow on an n-dimensional ellipsoid (and sphere as the
limiting case) is known to be a bi-hamiltonian dynamical system and its first integrals
can be obtained by a procedure similar to the Lenard-Magri scheme. On the other
hand, the one-dimensional Hunter–Saxton equation has a bi-Hamiltonian structure.
It would be interesting to find explicitly a bi-Hamiltonian structure for the higher-
dimensional equation (1.3) and relate the Hk functionals to the Lenard-Magri type
invariants.

5 The Space of Metrics and the Diffeomorphism Group

Apart from the fact that the Euler–Arnold equations of H1 metrics yield a number
of interesting evolution equations of mathematical physics discussed above there is
also a purely geometric reason to study them. Below we show that right-invariant
Sobolev metrics of the type studied in this paper arise naturally on orbits of the
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diffeomorphism group acting on the space of all Riemannian metrics and volume
forms on M . Our main references for the constructions recalled are [Ebi70,FG89].

Given a compact manifold M consider the set Met(M) of all (smooth) Riemann-
ian metrics on M . This set acquires in a natural way the structure of a smooth Hilbert
manifold.8 The group Diff(M) acts on Met(M) by pull-back g 	→ Pg(η) = η∗g and
there is a natural geometry on Met(M) which is invariant under this action. If g is
a Riemannian metric and A, B are smooth sections of the tensor bundle S2T ∗M ,
then the expression

〈〈A, B〉〉g =
∫

M

Tr
(
g−1A g−1B

)
dμg (5.1)

defines a (weak Riemannian) L2-metric on Met(M). Here μg is the volume form of
g. This metric is invariant under the action of Diff(M), see [Ebi70].

The space Vol(M) of all (smooth) volume forms on M also carries a natural
(weak Riemannian) L2-metric

〈〈α, β〉〉ν =
4
n

∫

M

dα

dν

dβ

dν
dν, (5.2)

where ν ∈ Vol(M) and α, β are smooth n-forms and which appeared already in
the paper [FG89].9 It is also invariant under the action of Diff(M) by pull-back
μ → Pμ(η) = η∗μ.

There is a map Ξ: Met(M) → Vol(M) which assigns to a Riemannian metric g
the volume form μg. One checks that Ξ is a Riemannian submersion in the normali-
zation of (5.2). Furthermore, for any g in Met(M) there is a map ιg : Vol(M)×{g} →
Met(M) given by

ιg(ν) =
(

dν

dμg

)2/n

g,

which is an isometric embedding.
For any μ ∈ Vol(M) the inverse image Metμ(M) = Ξ−1[μ] can be given a struc-

ture of a submanifold in the space of Riemannian metrics whose volume form is
μ. The metric (5.1) induces a metric on Metμ(M), which turns it into a globally
symmetric space. The natural action on Metμ(M) is again given by pull-back by
elements of the group Diffμ(M).

The sectional curvature of the metric (5.1) on Met(M) was computed in [FG89]
and found to be nonpositive. The corresponding sectional curvature of Metμ(M) is
also nonpositive. On the other hand, the space Vol(M) equipped with L2-metric
(5.2) turns out to be flat.

8 Indeed, the closure of C∞ metrics in any Sobolev Hs norm with s > n/2 is an open subset of
Hs(S2T ∗M).

9 The space Vol(M) of volume forms on M contains the codimension one submanifold Dens(M) ⊂
Vol(M) of those forms whose total volume is normalized.
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We now explain how these structures relate to our paper. Observe that the
pull-back actions of Diff(M) on Met(M) and Vol(M) (and similarly, the action
of Diffμ(M) on Metμ(M)) leave the corresponding metrics (5.1) and (5.2) invariant.
This allows one to construct geometrically natural right-invariant metrics on the
orbits of a (suitably chosen) metric or volume form.

We first consider the action of the full diffeomorphism group Diff(M) on the
space of Riemannian metrics Met(M).

Theorem 5.1. If g ∈ Met(M) has no nontrivial isometries, then the map
Pg : Diff(M) → Met(M) is an immersion, and the metric (5.1) induces a right-
invariant metric on Diff(M) given at the identity by

〈〈u, v〉〉 = 〈〈Lug, Lvg〉〉g

= 2
∫

M

〈du�, dv�〉 dμ + 4
∫

M

〈δu�, δv�〉 dμ − 4
∫

M

Ric(u, v) dμ, (5.3)

for any vector fields u, v ∈ TeDiff(M) and where Ric stands for the Ricci curvature
of M .

Remark 5.2. If the metric g is Einstein then Ric(u, v) = λ〈u, v〉 for some constant
λ and the induced metric in (5.3) becomes a special case of the Sobolev a-b-c metric
(1.2) with a = −4λ, b = 4 and c = 2.

Proof. First, observe that the differential of the pull-back map Pg(η) with respect
to η is given by the formula

(Pg)∗η(v ◦ η) = η∗(Lvg),

for any v ∈ TeDiff(M) and η ∈ Diff(M), where Lv stands for the Lie derivative. If g
has no nontrivial isometries then it has no Killing fields and therefore the differen-
tial Pg∗ is a one-to-one map. The last identity in (5.3) involving the Ricci curvature
is obtained by rewriting the inner product 〈〈u, v〉〉 =

∫
M 〈Lug, Lvg〉 dμ explicitly in

terms of d and δ. Right-invariance follows from invariance of the metric under the
action of diffeomorphisms. ��
Remark 5.3. More generally, if g has non-trivial isometries, then the above pro-
cedure yields a right-invariant metric on the homogeneous space Diff(M)/Isog(M);
see the diagram (5.5) below.

In exactly the same manner we obtain an immersion of the volumorphism group
Diffμ(M) into Metμ(M).

Corollary 5.4. If g ∈ Metμ(M) has no nontrivial isometries then the map
Pg : Diffμ(M) → Metμ(M) is an immersion and (5.1) restricts to a right-invariant
metric on Diffμ(M).
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Finally, we perform an analogous construction for the action of Diff(M) on the
space of volume forms Vol(M). In this case the isotropy subgroup is Diffμ(M) and
we obtain a metric on the quotient space Diff(M)/Diffμ(M).

Proposition 5.5. If μ is a volume form on M then the map Pμ : Diff(M) → Vol(M)
defines an immersion of the homogeneous space Dens(M) into Vol(M) and the right-
invariant metric induced by (5.2) has the form

〈〈u, v〉〉 = 〈〈Luμ,Lvμ〉〉μ =
4
n

∫

M

div u · div v dμ. (5.4)

Proof. The differential of the pullback map is

(Pμ)∗η(v ◦ η) = η∗(Lvμ)

for any v ∈ TeDiff(M) and η ∈ Diff(M). Right-invariance and the fact that Lvμ =
(div v) μ yields the desired formula. ��

The three immersions described in Theorem 5.1, Corollary 5.4 and Proposition
5.5 can be summarized in the following diagram.

Isog(M) emb−−−−→ Diffμ(M)
proj−−−−→ Diffμ(M)/Isog(M)

Pg−−−−→ Metμ(M)∥∥∥
⏐⏐"emb

⏐⏐"emb

⏐⏐"emb

Isog(M) emb−−−−→ Diff(M)
proj−−−−→ Diff(M)/Isog(M)

Pg−−−−→ Met(M)⏐⏐"emb

∥∥∥
⏐⏐"proj

⏐⏐"Ξ

Diffμ(M) emb−−−−→ Diff(M)
proj−−−−→ Diff(M)/Diffμ(M)

Pµ−−−−→ Vol(M)

(5.5)

The first three terms of each row in (5.5) form smooth fiber bundles in the obvious
way. The third column is a smooth fiber bundle since Isog(M) ⊂ Diffμ(M). The
fourth column is a trivial fiber bundle which already appeared in [FG89].

Remark 5.6. While curvatures of the spaces Met(M), Metμ(M) and Vol(M) have
relatively simple expressions, the induced metrics above on the corresponding homo-
geneous spaces

Diff(M)/Isog(M), Diffμ(M)/Isog(M) and Diff(M)/Diffμ(M)

turn out to have complicated geometries (with the exception of Dens(M) discussed
in the previous sections). For example, one can show that the sectional curvature of
Diff(M)/Isog(M) in the induced metric assumes both signs, see [KLMP11].

6 Applications and Discussion

Here we discuss connections of the above metrics on the space of densities to gradient
flows, shape theory, and Fredholmness.
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6.1 Gradient flows. The L2-Wasserstein metric (2.10) on the space of densi-
ties was used to study certain dissipative PDE (such as the heat and porous medium
equations) as gradient flow equations on Dens(M), see [Ott01,Vil09]. It turns out
that the Ḣ1-metric yields the heat-like equation as a gradient equation on the infi-
nite-dimensional L2-sphere.

Proposition 6.1. The Ḣ1-gradients of the potentials

H(f) =
∫

M

h(f) dμ and F (f) = −1
2

∫

M

〈∇f,∇f〉 dμ

where f ∈ S∞
r ∩ Hs−1(M) is the square root of the Radon–Nikodym derivative,

f2 = dλ/dμ, on the space of densities and s > n/2 + 2, are given by the formulas

grad H(f) = h′(f) − chf and grad F (f) = Δf − cf

for any function h ∈ C∞(R) with bounded derivatives and where ∇ and Δ denote
the gradient and the Laplace–Beltrami operator on M . Here the constants ch and c
are given by

ch = μ(M)−1

∫

M

h′(Jac1/2
μ η) Jac1/2

μ η dμ,

c = −μ(M)−1

∫

M

|∇Jac1/2
μ η|2 dμ.

Sketch of proof. For a small real parameter ε and any mean-zero function β on M ,
write the expression

H(f + εβ) =
∫

M

h(f + εβ) dμ =
∫

M

h(f) dμ + ε

∫

M

h′(f)β dμ + O(ε2).

Using the L2 metric on S∞
r ⊂ L2(M, dμ) to identify the variational derivative δH/δf

of H with its gradient grad H, compute〈δH

δf
, β
〉

=
d

dε
H(f + εβ)

∣∣
ε=0

=
∫

M

h′(f)β dμ,

which gives the gradient δH/δf = h′(f) of H in the ambient L2-space. To find the
gradient of H on the space of densities, we need to project δH/δf to the tangent
space TfS∞

r . This is equivalent to subtracting chf with an appropriate coefficient ch

to make the result L2-orthogonal to f itself. Under our assumptions, the difference
h′(f) − chf still belongs to Hs−1, and the whole argument can be carried out in the
Sobolev framework. The computation of the gradient of F is similar. ��

It follows from the above proposition that the associated gradient flow equation
on the space S∞

r ∩ Hs−1(M) can be interpreted as the heat-like equation

∂tf = grad F (f) = Δf − cf.
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Observe that the heat equation can be obtained from the Boltzmann (relative)
entropy functional E(λ) =

∫
M λ log λ dμ in the L2-Wasserstein metric on the density

space Dens(M); see e.g., [Ott01].

6.2 Shape theory. It is tempting to apply the distance distḢ1 to problems of
computer vision and shape recognition. Given a bounded domain E in the plane
(a 2D “shape”) one can mollify the corresponding characteristic function χE and
associate with it (up to a choice of the mollifier) a smooth measure νE normalized to
have total volume equal to 1. One can now use the above formula (3.2) to introduce
a notion of “distance” between two 2D “shapes” E and F by integrating the product
of the corresponding Radon–Nikodym derivatives with respect to the 2D Lebesgue
measure.

In this context it is interesting to compare the spherical metric to other right-
invariant Sobolev metrics that have been introduced in shape theory. For example,
in [SM06] the authors proposed to study 2D “shapes” using a certain Kähler metric
on the Virasoro orbits of type Diff(S1)/Rot(S1).

This metric is particularly important because it is related to the unique complex
structure on the Virasoro orbits. Furthermore, it has negative sectional curvature,
which provides uniqueness of the corresponding geodesics.

The paper of Younes et al. [YMSM08] discusses a metric on the space of immersed
curves which is also isometric to an infinite-dimensional round sphere and hence has
explicit geodesics. Its relation with the above metric is similar to the relation of
distances between the characteristic functions of shapes and between their bound-
ary curves. In [You10] a one-dimensional version of (3.2) is used to define distances
between densities on an interval.

6.3 Affine connections and duality. One of the problems in geometric sta-
tistics is to construct an infinite-dimensional theory of so-called dual connections
(see [AN00], Section 8.4). In this section we describe a family of such connections
∇(α), as well as their geodesic equations, on the density space Dens(M) in the case
when M = S1, which generalize the α-connections of Chentsov [Che82].

Identify the space of densities with the set of circle diffeomorphisms which fix a
prescribed point: Dens(S1) � {

η ∈ Diff(S1) : η(0) = 0
}

. Set A = −∂2
x and given a

smooth mean-zero periodic function u define the operator A−1 by

A−1u(x) = −
x∫

0

y∫

0

u(z) dzdy + x

1∫

0

y∫

0

u(z) dzdy.

Let v and w be smooth mean-zero functions on the circle and denote by V = v◦η
and W = w ◦ η the corresponding vector fields on Dens(S1). For any α ∈ R define

η → (∇(α)
V W )(η) =

(
wxv + Γ(α)

e (v, w)
)

◦ η,
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where

Γ(α)
e (v, w) =

1 + α

2
A−1∂x(vxwx). (6.6)

Following [AN00] we say that two connections ∇ and ∇∗ on Dens(S1) are dual
with respect to 〈〈·, ·〉〉 if U〈〈V, W 〉〉 = 〈〈∇UV, W 〉〉+ 〈〈V, ∇∗

UW 〉〉 for any smooth vector
fields U , V and W . One can prove the following result.

Theorem 6.2.

(i) For each α ∈ R the map ∇(α) is a right-invariant torsion-free affine connection
on Dens(S1) with Christoffel symbols Γ(α).

(ii) ∇(0) is the Levi-Civita connection of the Ḣ1-metric (3.1) and ∇(−1) is flat.
(iii) The connections ∇(α) and ∇(−α) are dual with respect to the Ḣ1-metric for

any α ∈ R.
(iv) The equation of geodesics of the affine α-connection ∇(α) coincides with the

generalized Proudman–Johnson equation

utxx + (2 − α)uxuxx + uuxxx = 0.

The cases α = 0 and α = −1 correspond to one-dimensional completely inte-
grable systems: the HS equation (2.8) and the μ-Burgers equation, respectively.

For the latter statement we note that the equation for geodesics of ∇(α) on
Dens(S1) reads

η̈ + Γ(α)
η (η̇, η̇) = 0

where Γ(α)
η is the right-translation of Γ(α)

e . Substituting η̇ = u ◦ η gives

ut + uux + Γ(α)
e (u, u) = 0

and using (6.6) and differentiating both sides of the equation twice in the x variable
completes the proof. The generalized Proudman–Johnson equation can be found e.g.
in [Oka09].

Remark 6.3. From the formula (6.6) we see that the Christoffel symbols Γ(α) do not
lose derivatives. In fact, with a little extra work it can be shown that this implies
that ∇(α) is a smooth connection on the Hs Sobolev completion of Dens(S1) for
s > 3/2. Consequently, one establishes the existence and uniqueness in Hs of local
(in time) geodesics of ∇(α) using the methods of [MP10].

Dual connections of Amari have not yet been fully explored in infinite dimensions.
We add here that as in finite dimensions [AN00] there is a simple relation between
the curvature tensors of ∇(α) i.e. R(α) = (1 − α2)R(0) where R(0) is the curvature of
the round metric on Dens(S1). It follows that the dual connections ∇(−1) and ∇(1)

are flat and in particular there is a chart on Dens(S1) in which the geodesics of the
latter are straight lines.
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6.4 The exponential map on Diff(M)/Diffµ(M). Finally we describe the
structure of singularities of the exponential map of our right-invariant Ḣ1-metric on
the space of densities. Recall from Proposition 3.5 that the diameter of Dens(M)
with respect to the metric (3.1) is equal to π

√
μ(M)/2. This immediately implies

the following.

Proposition 6.4. Any geodesic in Dens(M) = Diff(M)/Diffμ(M) through the ref-
erence density is free of conjugate points.

Using the techniques of [MP10] one can show that the Riemannian exponential
map of (3.1) on Dens(M) is a nonlinear Fredholm map. In other words, its differ-
ential is a bounded Fredholm operator (on suitable Sobolev completions of tangent
spaces) of index zero for as long as the solution is defined. The fact that this is true
for the general right-invariant a-b-c metric given at the identity by (1.2) on Diff(M)
or Diffμ(M) also follows from the results of [MP10]. More precisely, we have the
following

Theorem 6.5. For any Sobolev index s > n/2 + 1, the Riemannian exponential
map of (3.1) on the quotient Diffs(M)/Diffs

μ(M) of the Hs completions is Fredholm
up to the blowup time t = Tmax given in (4.8).

The proof of Fredholmness given in [MP10] is based on perturbation techniques.
The basic idea is that the derivative of the exponential map along any geodesic
t 	→ η(t) = expe(tu0) can be expressed as (expe)∗tu0 = t−1dLη(t)Ψ(t), where Ψ(t) is
a time dependent operator satisfying the equation

Ψ(t) =

t∫

0

Λ(τ)−1 dτ +

t∫

0

Λ(τ)−1B
(
u0, Ψ(τ)

)
dτ, (6.7)

and where Λ = Ad∗
ηAdη (as long as t < Tmax). If the linear operator w 	→ B(u0, w)

is compact for any sufficiently smooth u0 then Ψ(t) is Fredholm being a compact
perturbation of the invertible operator defined by the integral

∫ t
0 Λ(τ)−1 dτ . In the

same way one can check that this is indeed the case for the homogeneous space of
densities with the right-invariant metric (3.1). We will not repeat the argument here
and refer to [MP10] for details.

Remark 6.6. We emphasize that the perturbation argument described above works
only for sufficiently short geodesic segments in the space of densities. Recall that for
the round sphere in a Hilbert space the Riemannian exponential map cannot be
Fredholm for a sufficiently long geodesic because any geodesic starting at one point
has a conjugate point of infinite order at the antipodal point. In the case of the met-
ric (3.1) on the space of densities one checks that ‖Λ(t)−1‖ ↗ ∞ as t ↗ Tmax since
it depends on the C1 norm of η via the adjoint representation. Therefore the argu-
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ment of [MP10] breaks down here past the blowup time as equality (6.7) becomes
invalid.10

Appendix A: The Euler–Arnold Equation of the a-b-c Metric

In this Appendix we compute the general Euler–Arnold equation for the a-b-c metric (1.2)
on the full diffeomorphism group Diff(M), and consider the degenerations of the metric in
case one or more of the parameters vanish. It is convenient to proceed with the derivation
of the Euler–Arnold equation in the language of differential forms. As usual, the symbols �
and � = �−1 denote the isomorphisms between vector fields and one-forms induced by the
Riemannian metric on M . While we use d and δ notations throughout, we will continue to
employ the more familiar formulas when available. For example, in any dimension we have
δu� = − div u for any vector field u, while if n = 1 then du� = 0. For n = 1 the metric (1.2)
simplifies to

〈〈u, v〉〉 = a

∫

S1

uv dx + b

∫

S1

uxvx dx.

Recall also that the (regular) dual T ∗
e Diff(M) of the Lie algebra TeDiff(M) admits the

orthogonal Hodge decomposition11

T ∗
e Diff(M) = dΩ0(M) ⊕ δΩ2(M) ⊕ H1, (A.1)

where Ωk(M) and Hk denote the spaces of smooth k-forms and harmonic k-forms on M ,
respectively.

We now proceed to derive the Euler–Arnold equation of the a-b-c metric (1.2). Let
A : TeDiff(M) → T ∗

e Diff(M) be the self-adjoint elliptic operator

Av = av� + bdδv� + cδdvb (A.2)

(the inertia operator) so that

〈〈u, v〉〉 =
∫

M

〈Au, v〉 dμ, (A.3)

for any pair of vector fields u and v on M .

Theorem A.1. The Euler–Arnold equation of the general Sobolev H1 metric (1.2) on
Diff(M) has the form

Aut = −a
(

(div u) u� + ιudu� + d〈u, u〉
)

− b
(

(div u) dδu� + dιudδu�
)

−c
(

(div u) δdu� + ιudδdu� + dιuδdu�
)

(A.4)

where A is given by (A.2) and u is assumed to be a time-dependent vector field of Sobolev
class Hs with s > n

2 + 1 on the manifold M .

10 It is tempting to interpret this phenomenon as the infinite multiplicity of conjugate points on
the Hilbert sphere forcing the classical solutions of (4.2) to break down before the conjugate point
is reached.
11 Orthogonality of the components in (A.1) is established for suitable Sobolev completions with
respect to the induced metric on differential forms 〈〈α�, β�〉〉.
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Proof. By definition (2.2) of the bilinear operator B, for any vectors u, v and w in TeDiff(M)
we have

〈〈B(u, v), w〉〉 = 〈〈u, advw〉〉 = −
∫

M

〈Au, [v, w]〉 dμ. (A.5)

Integrating over M the following identity

〈Au, [v, w]〉 =
〈
d〈Au,w〉, v〉 − 〈

d〈Au, v〉, w〉 − dAu(v, w)

and using ∫

M

〈
d〈Au,w〉, v〉 dμ = −

∫

M

〈Au,w〉 div v dμ

we get

〈〈u, advw〉〉 =
∫

M

〈
(div v)Au + d〈Au, v〉 + ιvdAu,w

〉
dμ.

On the other hand, we have

〈〈B(u, v), w〉〉 =
∫

M

〈AB(u, v), w〉 dμ

and, since w is an arbitrary vector field on M , comparing the two expressions above, we
obtain

B(u, v) = A−1
(
(div v)Au + d〈Au, v〉 + ιvdAu

)
. (A.6)

Setting v = u, isolating the coefficients a, b, and c, and using (2.1) yields the equa-
tion (A.4). The simplification in the b term comes from d2 = 0.

The requirements on the smoothness of vector fields u follow from the Hilbert manifold
structure on diffeomorphism groups, see Remark 3.3. ��
Remark A.2 (Wellposedness of the Cauchy problem). In order to study wellposedness of
the Cauchy problem for Euler–Arnold equation (A.4), it is convenient to switch to Lagrang-
ian coordinates and consider the corresponding geodesic equation in the Hs Sobolev frame-
work on Diffs(M), with a suitably large Sobolev index s (s > n

2 + 1). The right-invariant
metric defined by (A.3) admits a smooth Levi-Civita connection on Diffs(M), and therefore
its geodesics can be constructed by Picard iterations as solutions to an ordinary differential
equation on a smooth Hilbert manifold (cf. Remark 3.3). This approach has been employed
in several particular cases listed in the remark below.

We point out however that the two Cauchy problems in the Lagrangian and Eulerian for-
mulations are not equivalent. For example, for the Lagrangian framework, as a consequence
of the fundamental theorem of ODE the geodesics η in Diffs(M) will depend smoothly (with
respect to Hs norms) on the initial data u0. On the other hand, in the Eulerian setting
the solution map u0 → u(t) for the corresponding PDE (A.4) viewed as a map from Hs

into C([0, T ],Hs), while retaining continuity in general, may not be even Lipschitz. This
is essentially due to derivative loss which occurs upon changing back from Lagrangian to
Eulerian coordinates, as it involves the inversion map u(t) = η̇(t) ◦ η−1(t).

Remark A.3. Special cases of the Euler–Arnold equation (A.4) include several well-known
evolution PDE.
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• For n = 1 and a = 0, we obtain the Hunter–Saxton equation (2.8).
• For n = 1 and b = 0, we get the (inviscid) Burgers equation ut + 3uux = 0.
• For n = 1 and a = b = 1, we obtain the Camassa–Holm equation ut − utxx + 3uux −

2uxuxx − uuxxx = 0.
• For any n when a = 1 and b = c = 0 we get the multi-dimensional (right-invariant)

Burgers equation ut + ∇uu + u(div u) + 1
2∇|u|2 = 0, referred to as the template matching

equation.
• For any n and a = b = c = 1 we get the EPDiff equation mt + Lum + m div u = 0, where

m = u� − Δu�; see e.g., [HMR98].

Now observe that if a = 0 then the a-b-c metric becomes degenerate and can only be
viewed as a (weak) Riemannian metric when restricted to a subspace. There are three cases
to consider.
(1) a = 0, b �= 0, c = 0: the metric is nondegenerate on the homogeneous space Dens(M) =

Diff(M)/Diffμ(M) which can be identified with the space of volume forms or densities
on M . This is our principal example of the paper, studied in Sections 3 and 4.

(2) a = 0, b = 0, c �= 0: the metric is nondegenerate on the group of (exact) volumorphisms
and the Euler–Arnold equation is (A.8), see Corollary A.5 below.

(3) a = 0, b �= 0, c �= 0: the metric is nondegenerate on the orthogonal complement of the
harmonic fields. This is neither a subalgebra nor the complement of a subalgebra in
general and thus the approach of taking the quotient modulo a subgroup developed
in the other cases cannot be applied here. However, in the special case when M is
the flat torus T

n the harmonic fields are the Killing fields which do form a subalgebra
(whose subgroup Isom(Tn) consists of the isometries). In this case we get a genuine
Riemannian metric on the homogeneous space Diff(Tn)/Isom(Tn).

In cases (1) and (3) above one needs to make sure that the degenerate (weak Riemann-
ian) metric descends to a non-degenerate metric on the quotient. This can be verified using
the general condition (2.7) in Proposition 2.3. We have already done this for case (1) in
Theorem 4.1; the proof for case (3) is similar.

We now return to the nondegenerate a-b-c metric (a �= 0) and restrict it to the subgroup
of volumorphisms (or exact volumorphisms). Observe that one obtains the corresponding
Euler–Arnold equations with b = 0 directly from (A.4) using appropriate Hodge projections.

Corollary A.4. The Euler–Arnold equation of the a-b-c metric (1.2) restricted to the
subgroup Diffμ(M) has the form

au�
t + cδdu�

t + aιudu� + cιudδdu� = dΔ−1δ
(
aιudu� + cιudδdu�

)
. (A.7)

The Euler–Arnold equation (A.7) is closely related to the H1 Euler-α equation which
was proposed as a model for large-scale motions by Holm, Marsden and Ratiu [HMR98]; in
fact if the first cohomology is trivial they are identical (with α2 = c/a).

There is also a “degenerate analogue” of the latter equation which corresponds to the
case where a = b = 0:

Corollary A.5. The Euler–Arnold equation of the right-invariant metric (1.2) with a =
b = 0 on the subgroup of exact volumorphisms is

δdu�
t + PLu(δdu�) = 0, (A.8)

where P is the orthogonal Hodge projection onto δΩ2(M).

This represents a limiting case of the Euler-α equation as α → ∞.
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