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Vladimir Arnold, an eminent mathematician of
our time, passed away on June 3, 2010, nine days
before his seventy-third birthday. This article,
along with one in the previous issue of the Notices,
touches on his outstanding personality and his
great contribution to mathematics.

Dmitry Fuchs

Dima Arnold in My Life
Unfortunately, I have never been Arnold’s student,
although as a mathematician, I owe him a lot. He
was just two years older than I, and according to
the University records, the time distance between
us was still less: when I was admitted to the
Moscow State university as a freshman, he was a
sophomore. We knew each other but did not com-
municate much. Once, I invited him to participate
in a ski hiking trip (we used to travel during the
winter breaks in the almost unpopulated northern
Russia), but he said that Kolmogorov wanted him
to stay in Moscow during the break: they were
going to work together. I decided that he was
arrogant and never repeated the invitation.

Then he became very famous. Kolmogorov an-
nounced that his nineteen year-old student Dima
Arnold had completed the solution of Hilbert’s
13th problem: every continuous function of three
or more variables is a superposition of continuous
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functions of two variables. Dima presented a two-
hour talk at a weekly meeting of the Moscow
Mathematical Society; it was very uncommon
for the society to have such a young speaker.

V. Arnold, drawing, 1968.

Everybody ad-
mired him, and
he certainly de-
served that. Still
there was some-
thing that kept
me at a distance
from him.

I belonged to
a tiny group of
students, led by
Sergei Novikov,
which studied al-
gebraic topology.
Just a decade
before, Pontrya-
gin’s seminar in
Moscow was a
true center of the
world of topol-
ogy, but then

Cartan’s seminar in Paris claimed the leadership,
algebraic topology became more algebraic, and
the rulers of Moscow mathematics pronounced
topology dead. Our friends tried to convince us to
drop all these exact sequences and commutative
diagrams and do something reasonable, like func-
tional analysis or PDE or probability. However, we
were stubborn. We even tried to create something
like a topological school, and, already being a
graduate student, I delivered a course of lectures
in algebraic topology. The lectures were attended
by several undergraduates, and we were happy to
play this game.

Then something incredible happened. One day
I found the lecture room filled beyond capacity; I
even had to look for a bigger room. My audience
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At Otepya, Estonia.

had become diverse: undergraduates, graduate
students, professors. This change had a very clear
reason: the Atiyah-Singer index theorem.

The problem of finding a topological formula
for the index of an elliptic operator belonged
to Gelfand. Our PDE people studied indexes a
lot, and they had good results. It was not a
disaster for them that the final formula was found
by somebody else: their works were respectfully
cited by Atiyah, Singer, and their followers. The
trouble was that the formula stated, “the index is
equal to” and then something which they could
not understand. People rushed to study topology,
and my modest course turned out to be the only
place to do that.

And to my great surprise, I noticed Dima Arnold
in the crowd.

I must say that Dima never belonged to any
crowd. Certainly the reason for his presence did
not lie in any particular formula. Simply, he had
never dismissed topology as nonsense, but neither
had he been aware of my lectures. When he learned
of their existence, he appeared. That was all. He
never missed a lecture.

One day we met in a long line at the student
canteen. “Listen,” he said, “can you explain to me
what a spectral sequence is?” I began uttering the
usual words: a complex, a filtration, differentials,
adjoint groups, etc. He frowned and then said,
“Thus, there is something invariant [‘invariant’ in
his language meant ‘deserving of consideration’]
in all this stuff, and this is the spectral sequence,
right?” I thought for a moment and said, yes. At this
moment we got our meals, and our conversation
changed its direction.

Evidently spectral sequences were not for
Arnold. Nonetheless, there is such a thing as
Arnold’s spectral sequence [9], a humble object
in the world of his discoveries, resembling the
asteroid Vladarnolda in the solar system (the
stability of which he proved approximately at the
time of our conversation in the canteen), named
after him. When I say that he could not appreciate

spectral sequences, I mean that he in general had
a strong dislike for unnecessary technicalities,
and technicalities were often unnecessary to him
because of his extremely deep understanding.
By the way, this attitude toward impressive but
unnecessary tricks extended beyond mathematics.
Years later we spent a week or so with friends at
a ski resort in Armenia. We showed each other
different turns and slidings, but Dima obviously
was not interested. He said that the slope was not
too steep, and he simply went straight from the
top to the bottom, where he somehow managed
to stop. I was surprised: there was a stone hedge
in the middle of the slope that you needed to
go around. Dima said modestly, “You know, at
this place my speed is so high that I simply pull
my legs up and jump over the hedge.” I could
not believe it, so I waited at a safe distance from
the hedge and watched him doing that. It was
more impressive than all our maneuvers taken
together. Whatever he did—mathematics, skiing,
biking—he preferred not to learn how to do it but
just to do it in the most natural way, and he did
everything superlatively well.

I do not remember how it came about that I
began attending his Tuesday seminar. Probably he
asked me to explain some topological work there,
then I had to participate in some discussion, and
then I could not imagine my life without spending
two hours every Tuesday evening in a small room
on the fourteenth floor of the main building of the
MSU. Works of Arnold, his numerous students,
and other selected people were presented at the
seminar, and Dima insisted that every word of
every talk be clear to everybody in the audience.
My role there was well established: I had to re-
solve any topology-related difficulty. Some of my
friends said that at Arnold’s seminar I was a “cold
topologist”. Certainly, a non-Russian-speaker
cannot understand this, so let me explain. In many
Russian cities there were “cold shoemakers” in
the streets who could provide an urgent repair to
your footwear. They sat in their booths, usually
with no heating (this is why they were “cold”),
and shouted, “Heels!…Soles!….” So I appeared as
if sitting in a cold booth and yelling, “Cohomol-
ogy rings!…Homotopy groups!…Characteristic
classes!….”

In my capacity as cold topologist, I even had
to publish two short articles. One was called
“On the Maslov–Arnold characteristic classes,”
and the other one had an amusing history. One
day Dima approached me before a talk at the
Moscow Mathematical Society and asked whether
I could compute the cohomology of the pure
braid group (“colored braid group” in Russian);
he needed it urgently. I requested a description
of the classifying space, and the calculation was
ready at the end of the talk. It turned out that
the (integral) cohomology ring was isomorphic
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to a subring of the ring of differential forms
on the classifying manifold. He suggested that
I write a note, but I refused: for a topologist it
was just an exercise; it could be interesting only
in conjunction with an application to something
else. (I knew that Dima was thinking of Hilbert’s
13th problem in its algebraic form: the possibility
of solving a general equation of degree 7 not
in radicals, but in algebraic functions of two
variables.) I suggested that he write an article and
mention my modest contribution in an appropriate
place. He did [2]. But, a couple of months later,
he needed the cohomology of the classical Artin’s
braid group. This was more difficult and took me
several days to complete the calculation. I did it
only modulo 2, but I calculated a full ring structure
and also the action of the Steenrod squares.
(The integral cohomology was later calculated
independently by F. Vainshtein, V. Goryunov, and
F. Cohen and still later Graeme Segal proved
that the classifying space of the infinite braid
group was homologically equivalent to Ω2S3.) I
phoned Dima and explained the results. First
he requested that I give a talk at the seminar
(Next Tuesday! That is tomorrow!), and then he
decidedly refused to do what we had agreed upon
for pure braids: to write an article and mention
my participation where appropriate. After a brief
argument, we arrived at a compromise: I publish
an article about the cohomology of the braid group
without any mentioning of Hilbert’s problem, and
he publishes an article where this cohomology is
applied to superpositions of algebraic functions.
When we met the next day, his article was fully
written and mine had not even been started. But
his article contained a reference to mine and
hence the title of the latter. I could delay no
longer, and the two articles were published in the
same volume of Functional Analysis [5], [14]. Since
the articles in Functional Analysis were arranged
alphabetically, his article was the first, and mine
was the last. But this was not the end of the
story. A cover-to-cover translation of Functional
Analysis was published by an American publisher.
The braid group in Russian is called gruppa kos;
the word kos is simply the genitive of kosa, a
braid, but the American translators thought that
KOS was a Russian equivalent of COS, and the
English translation of my article was attributed
to a mysterious cosine group. I do not know how
many English-speaking readers of the journal tried
to guess what the cosine group was.

As a permanent participant of Arnold’s sem-
inar, I had an opportunity to give talks on my
works not explicitly related to the main direc-
tions of the seminar. I gave a brief account of
my work with Gelfand on the cohomology of
infinite-dimensional Lie algebras, of characteristic
classes of foliations. These things did not interest
Dima much, although he himself had a work on

Summer School “Contemporary Mathematics”
at Dubna, near Moscow, 2006.

similar things [3]. He always considered algebra
and topology as something auxiliary. Once I heard
him saying respectfully, “Siegel’s case, this is a
true analysis,” and this sounded like “true math-
ematics”. Whatever he did, his unbelievably deep
understanding of analysis was always his main
instrument.

One more story of a similar kind. In 1982 John
Milnor, who briefly visited Moscow, delivered a
talk at Arnold’s seminar on a very recent (and
not yet published) work of D. Bennequin on a
new invariant in the theory of Legendrian knots in
contact 3-manifolds. The main result of Bennequin
stated that the “Bennequin number” (now justly
called the “Thurston-Bennequin number”) of a
topologically unknotted Legendrian knot in the
standard contact space must be strictly negative.
For an illustration, Milnor showed an example of a
Legendrian trefoil with the Bennequin number+1.
Arnold said that at last he had seen a convincing
proof that the trefoil is a topologically nontrivial
knot. Certainly, this was a joke: Bennequin’s proof
at that time did not look convincing, and the
nontriviality of the trefoil has a popular proof
understandable to middle school students (via
the tricolorability invariant). But for Dima only an
analytic proof could be fully convincing.

When I joined the Arnold seminar, it had just
acquired the name of “the seminar on singularities
of smooth maps”. In the mid-1960s, Arnold was
fascinated by work of John Mather on singularities.
People could not understand this. Allegedly, Pon-
tryagin said: “We can always remove complicated
singularities of a smooth map by a small perturba-
tion; it is sufficient to study the generic case.” But
singularities appear in families of smooth maps;
you cannot remove them, insisted Dima. Some
people mocked his affection for singularity the-
ory. There is a short story of Stanislav Lem (a Polish
science fiction writer) in which robots that could
experience human emotions were manufactured.
One of these robots felt an immense joy when he
solved quadratic equations—just like you, Dima!
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Dima smiled at such jokes but continued studying
singularities.

The results of Arnold and his students in this
area were very deep and diverse. He classified
all singularities that appear in generic families
depending on no more than 14 parameters and
studied their moduli varieties and discriminants.
He discovered the relations of the theory to sym-
plectic, contact, and differential geometry. It had
deep applications in topology (Vassiliev’s invari-
ants of knots), differential equations, and classical
mechanics.

More or less at the same time, a widely popu-
larized version of the singularity theory emerged
under the colorful name of the theory of catas-
trophes. It was promoted by two remarkable
topologists, R. Thom and E. C. Zeeman. “The
most catastrophic feature of the theory of catas-
trophes is a full absence of references to the works
of H. Whitney,” Dima wrote in one of his books. In-
deed, mathematically, the theory of catastrophes
was based on a classification of singularities of
generic smooth maps of a plane onto a plane. The
classification was fully done in 1955 by Whitney
[15], but the founding fathers of catastrophe the-
ory preferred to pretend that the works of Whitney
never existed. Still, Dima made his contribution
to the popularization of catastrophes: he wrote
a short popular book under the title “Theory of
Catastrophes”. It was written in 1983 and then
translated into a dozen languages.

In 1990 I moved to a different country, and
we met only four or five times after that. The
last time that I saw him was in spring 2007,
when he visited California. We travelled together
through the Napa and Sonoma Valleys; he was es-
pecially interested in visiting Jack London’s grave.
He spoke endlessly of his new (was it new?) pas-
sion for continued fractions, numerical functions,
and numerical experimentation. I boasted that I
taught a course of history of mathematics, and he
immediately began testing my knowledge of the
subject: Who proved the Euler theorem of poly-
hedra? Who proved the Stokes theorem? To his
apparent displeasure I passed the exam. (He was
especially surprised that I knew that Descartes
proved the Euler theorem more than one hundred
years before Euler. Why do you know that? I said
that Efremovich told me this some thirty years
before.) More than that, I knew something that he
did not know: the Stokes theorem as it is stated in
modern books,

∫
C dϕ =

∫
∂Cϕ, was first proved and

published by the French mathematician E. Goursat
(1917). We discussed a bit our further plans, and
Dima said that whatever he plans, he always adds,
as Leo Tolstoy did, EBЖ = esli budu жiv,
“If I am alive.” I said that I also never forget to add
this, but apparently neither of us took it seriously.
Anyhow, we never met again.

In a cavern, 2008.

My tale of Dima Arnold
is becoming lengthy, al-
though I feel that what I
have said is a small fraction
of what I could say about
this tremendous personal-
ity. Still, the story would
be incomplete if I did not
mention something known
to everybody who has
ever communicated with
him, if only occasionally:
his universal knowledge of
everything. Whatever the
subject was—Chinese his-
tory, African geography,
French literature, the sky
full of stars (especially this:
he could speak endlessly
on every star in every constellation)—he demon-
strated without effort a familiarity with the subject
which exceeded and dwarfed everybody else’s, and
this, combined with his natural talent as a story-
teller, made every meeting with him a memorable
event. Some friends recollect a sight-seeing tour in
Paris he gave a couple of months before his death.
Obviously, no tourist agency ever had a guide of
this quality. Instead of adding my own recollec-
tions, I finish my account with a translation of
a letter I received from him a year after our last
meeting and two years before his death.

Paris, March 26, 2008
Dear Mitya,

I have recently returned to
Paris from Italy where I wan-
dered, for three months, in karstic
mountains working at ICPT (the
International Center for Theo-
retical Physics) at Miramare, the
estate of the Austrian prince
Maximilian who was persuaded
by Napoleon III to become the
Emperor of Mexico (for which he
was shot around 1867 as shown
in the famous and blood-drenched
picture of Edouard Manet).

I lived in the village of Sistiana,
some 10 kilometers from Miramare
in the direction of Venice. It was
founded by the pope Sixtus, the
same one who gave names to both
the chapel and Madonna. Passing
the POKOPALIŠCE1 (the cemetery)
some 3 versts2 to the North, I
reached a deer path in a moun-
tain pine grove. These deer do

1This word has a notable similarity to Russian KOPATЬ,

to dig.
2
VERSTA is an old Russian measure of length, ≈ 1.1 km.

April 2012 Notices of the AMS 485



not pay much attention to a small
tin sign, DERŽAVNAYA MEŽA3 (the
state border). After that it is Slove-
nia to which I ran, following the
deer. But at the next sign, PERI-
COLO, the deer refused to go any
farther. The local people (whose
language is closer to Russian than
Ukrainian or Bulgarian) explained
to me that the sign is a warn-
ing that the nearby caves have
not been demined. And they were
mined during the FIRST world war
when my deer path was called SEN-
TIERA DIGUERRA and was a front
line (described by Hemingway in
“A Farewell to Arms”).

I did not go down to these
particular caves, but every day
I visited tens of them, of which
some (but not all) were shown on
a map (where they were called
YAMA,4 GROTTA, CAVA, CAV-
ERNA, ABISSA, dependingly of the
difficulty of the descent). All these
caves look pretty much the same
(a colorful scheme is provided):
there is a hole on the mountain, a
meter in size, and down go walls,
of not even vertical but rather a
negative slope. The depth of the
mine is usually around 10 or 20
meters (but I descended to YAMA
FIGOVICHEVA with the officially
declared depth of 24 meters and to
the half of the height, or rather the
depth, of GROTTA TERNOVIZZA
whose depth is marked as 32
meters and to which one cannot
descend without a rope). At the
bottom of the YAMA a diverging
labyrinth of passages starts, of the
lengths on the order of 100 meters.
They go to lakes, stalactites, etc.
Sometimes there is even a descent
to the Timavo river (which flows
about 50 kilometers at the depth
100 or 200 meters, depending on
the height of hills above). Before
this 50 kilometers it is a forest
river resembling Moscow River at
Nikolina Gora5 with a charming
Roman name of REKA.6

3Both words belong to old Russian.
4Russian �MA means a gap.
5A village some 30 kilometers from Moscow where many

remarkable Russian people (including Dima) used to

spend their vacations.
6
REKA is the Russian for a river.

Ya. Eliashberg and V. Arnold, 1997.

This was a part of Jason’s expe-
dition (with argonauts). On his way
back from Colchis (with the golden
fleece) he sailed his ship Argo up-
stream Ister (Danube) and its trib-
utaries to the Croatian peninsula
named Capudistria (which is visi-
ble from my window at Sistiana),
then they dragged the ship to
REKA and, following Timavo, they
reached to northernmost point of
the Adriatic, where the Roman city
of Aquileia was later built.

Near Aquileia, I discovered a
goddess Methe, new to me, but
this is a separate story. (She saves
any drinker of drunkenness, how-
ever much he drank. Allegedly, she
was the mother of Athena, and
Jupiter ate her, since he was afraid
that she would give birth to a son,
and that this son would dethrone
him, precisely as he himself had
dethroned his father.) Aquileia is
a Roman port of the first century,
preserved as well as Pompeii, with-
out any Vesuvius: simply Attila
who destroyed the city left the port
intact, including the canals, ships
(which survive to our time), quays,
knechts and basilicas (which be-
came Christian in the IV century)
with mosaics of 50 m × 100 m in
size, and absolutely everything as
in Pompeii. No room to describe
everything, I am just sending my
best (Easter) wishes.

On June 3, I go to Moscow, there
will be a conference dedicated to
the centenary of LSP.7

Dima

7Lev Semenovich Pontryagin
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Yakov Eliashberg

My Encounters with Vladimir Igorevich
Arnold
My formation as a mathematician was greatly
influenced by Vladimir Igorevich Arnold, though I
never was his student and even lived in a different
city. When I entered Leningrad University in 1964
as an undergraduate math student, Arnold was
already a famous mathematician. By that time
he had solved Hilbert’s 13th problem and had
written a series of papers which made him the “A”
in the KAM theory. Arnold was also working as
an editor of the publishing house Mir, where he
organized and edited translations of several books
and collections of papers not readily accessible
in the USSR. One of these books, a collection of
papers on singularities of differentiable mappings,
was an eye opener for me.

The first time I met Arnold was in January 1969
at a Winter Mathematical School at Tsakhkadzor in
Armenia. I was eager to tell him about some of my
recently proved results concerning the topology of
singularities. Later that year he invited me to give
a talk at his famous Moscow seminar. I remember
being extremely nervous going there. I could not
sleep at all in the night train from Leningrad to
Moscow, and I do not remember anything about
the talk itself.

In 1972 Vladimir Igorevich was one of my
Ph.D. dissertation referees or, as it was called, an
“official opponent”. I remember that on the day
of my defense, I met him at 5 a.m. at the Moscow
Train Station in Leningrad. He immediately told
me that one of the lemmas in my thesis was wrong.
It was a local lemma about the normal form of
singularities, and I thought (and, frankly, still do)
that the claim is obvious. I spent the next two
hours trying to convince Vladimir Igorevich, and
he finally conceded that probably the claim is
correct, but still insisted that I did not really have
the proof. A year later he wrote a paper devoted
to the proof of that lemma and sent me a preprint
with a note that now my dissertation is on firm
ground.

After my Ph.D. defense I was sent to work at
a newly organized university in Syktyvkar, the
capital of Komi Republic in the north of Rus-
sia. In 1977 we organized there a conference on
global analysis which attracted a stellar list of
participants, including V. I. Arnold. During this
conference I asked Arnold to give a lecture for
our undergraduate students. He readily agreed
and gave an extremely interesting lecture about
stability of the inverse pendulum, and even made
a demonstration prepared with the help of one of

Yakov Eliashberg is professor of mathematics at Stan-

ford University. His email address is eliash@math.

stanford.edu.

A talk at Syktyvkar, 1976.

our professors, Alesha Zhubr. Arnold had certain
pedagogical methods to keep the audience awake.
During his lectures he liked to make small mis-
takes, expecting students to notice and correct
him. Apparently, this method worked quite well at
the Moscow University. Following the same routine
during his Syktyvkar lecture, he made an obvious
computational error—something like forgetting
the minus sign in the formula (cosx)′ = − sinx—
and expected somebody in the audience to correct
him. No one did, and he had to continue with
the computation, which, of course, went astray:
the terms which were supposed to cancel did not.
Very irritated, Arnold erased the blackboard and
started the computation all over again, this time
without any mistakes. After the lecture, he told me
that the undergraduate students at Syktyvkar Uni-
versity are very bad. The next day, after my regular
class, a few students came to me and asked how
is it possible that such a famous mathematician is
making mistakes in differentiating cosx?

Whenever I happened to be in Moscow, which
was not very often, Arnold usually invited me
to visit the hospitable home he shared with his
wife, Elya. When he moved to a new apartment in
Yasenevo on the outskirts of Moscow, he told me
over the phone how to get there. In particular, I
was instructed to walk south when I got out of the
metro station. When I got to that point it was a
dark gray late winter afternoon, and it was quite a
challenge to figure out in which direction I should
go.

Once he ran a psychological test on me to
determine which of my brain hemispheres is the
dominant one. To his satisfaction, the test showed
that it was the right one, which, according to
Arnold, meant that I have a geometric rather than
an algebraic way of thinking. During another visit, I
was deeply honored when he told me that while he
files most preprints systematically, I was among
the few people who were assigned a personal
folder.

Over the years I gave a number of talks at his
seminar with variable success. The mostdisastrous
was my last talk in 1985. Shortly before one
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of my trips to Moscow, Misha Gromov sent me
a preliminary version of his now very famous
paper “Pseudoholomorphic curves in symplectic
geometry”, which is one of the major foundational
milestones of symplectic topology. I was extremely
excited about this paper and thus volunteered to
talk about it at Arnold’s seminar. I think that I was
at this moment the only person in the Soviet Union
who had the paper. Arnold heard about Gromov’s
breakthrough but had not seen the paper yet. After
a few minutes of my talk, Arnold interrupted me
and requested that before continuing I should
explain what is the main idea of the paper. This
paper is full of new ideas and, in my opinion, it is
quite subjective to say which one is the main one.
I made several attempts to start from different
points, but Arnold was never satisfied. Finally,
towards the end of the two-hour long seminar, I
said something which Arnold liked. “Why did you
waste our time and did not start with this from
the very beginning?”, he demanded.

Vladimir Igorevich made two long visits to Stan-
ford. During his first quarter-long visit Arnold was
giving a lecture course, but he made it a rule for
himself to go every morning for a long bike ride
into the hills (called the Santa Cruz Mountains)
surrounding Stanford. I have heard a lot of sto-
ries about Arnold’s superhuman endurance and
his extremely risky adventures, especially in his
younger years. I can testify that at almost sixty
years old, Arnold at Stanford was also very im-
pressive. On a windy day after swimming in our
cold Pacific Ocean, where the water temperature
is usually around 13◦C, he refused a towel. He
had a very poor bike which was not especially
suited for mountain biking. Yet he went with it
everywhere, even over the roads whose parts were
destroyed by a mudslide and where he had to
climb clutching the tree roots, hauling his bike
on his back. During one of these trips, Vladimir
Igorevich met a mountain lion. He described this
encounter in one of his short stories. Both Arnold
and the lion were apparently equally impressed
with the meeting. Many years later, during his
second visit to Stanford, Arnold again went to
the same place hoping to meet the mountain lion.
Amazingly, the lion waited for him there! I am also
fond of hiking in those hills, yet neither I nor any
of people I know ever met a mountain lion there.

When he was leaving Stanford, Vladimir Igore-
vich gave me a present—a map of the local hills
on which he had marked several interesting places
that he had discovered, such as an abandoned
apple farm or a walnut tree grove.

In between the two visits Arnold had a terrible
bike accident in Paris which he barely survived. It
was a great relief to see him active again when I
met him in Paris two years later. He proudly told
me that during this year he had written five books.
“One of these books,” he said, “is coauthored with

Vladimir Arnold, 1957.

two presidents. Can you guess with which ones?” I
certainly could not guess that these were Vladimir
Putin and George W. Bush.

During his last visit to Stanford and Berkeley a
year ago, Arnold gave two series of lectures: one
for “Stanford professors”, as he called it, and the
other for the school-age children at Berkeley Math
Circles. There is no telling which of these two
groups of listeners Vladimir Igorevich preferred.
He spent all his time preparing for his lectures for
children and even wrote a book for them. Lectures
at Stanford were an obvious distraction from that
main activity. Each Stanford lecture he would
usually start with a sentence like “What I am going
to talk about now is known to most kindergarten
children in Moscow, but for Stanford professors I
do need to explain this.” What followed was always
fascinating and very interesting.

It is hard to come to terms that Vladimir
Igorevich Arnold is no longer with us. It is certainly
true, though commonplace to say, that Arnold was
a great and extremely influential mathematician,
that he created several mathematical schools, and
that his vision and conjectures shaped a large part
of modern mathematics. But, besides all that, he
was a catalyst for the mathematical community. He
hated and always fought mediocrity everywhere.
With his extreme and sometimes intentionally
outrageous claims, he kept everybody on guard,
not allowing us to comfortably fall asleep.

His departure is also painful to me because there
are several unfulfilled mathematical promises
which I made to him but never had time to
finish. Though it is too late, I will do it now as a
priority.

488 Notices of the AMS Volume 59, Number 4



Yulij Ilyashenko

V. I. Arnold, As I Have Seen Him
A student, visiting his schoolmaster in math, the
famous and severe Morozkin. A radiant slim youth,
almost a boy. This was Arnold as I first saw him,
more than fifty years ago.

A graduate student (in 1960), conducting tu-
torials in honors calculus (taught to freshmen at
Mekhmat, the Department of Mechanics and Math-
ematics of the Moscow State University). There was
a permanent kind of smile on his face, his eyes
were sparkling, and when he looked at you, a wave
of good will would come forth.

From 1968 to 1986 I had the privilege of work-
ing with Arnold at the same section of Mekhmat,
called the “Division of Differential Equations”. It
was shaped by Petrovski and chaired by him until
his premature death in 1973. When Arnold joined
the division, it was full of the best experts in dif-
ferential equations, partial and ordinary. Besides
Arnold and Petrovski, the faculty of the divi-
sion included stars of the elder generation (who
were then in their thirties and forties): Landis,
Oleinik, Vishik, as well as brilliant mathemati-
cians of Arnold’s generation: Egorov, Kondratiev,
Kruzhkov, and others.

The first glorious results of Arnold are de-
scribed in other papers in this collection. Let me
turn to differential equations, a subject whose de-
velopment I have been closely following. Needless
to say, these are personal remarks, not a complete
history.

In 1965 Arnold came back from France, where
he spent almost a year. From there he brought a
keen interest in the newborn singularity theory, of
which he became one of the founding fathers. He
also brought the philosophy of general position
invented by René Thom, which became sort of a
compass in Arnold’s investigations in differential
equations and bifurcation theory.

In the form that Arnold gave to it, this phi-
losophy claimed that one should first investigate
objects in general position, then the simplest
degenerations, together with their unfoldings. It
makes no sense to study degenerations of higher
codimension until those of smaller codimension
have been investigated.

In 1970 he published a short paper [6], in which
a strategy for developing any kind of local theory
based on the above philosophy was suggested. He
also defined algebraically solvable local problems.
He started to call them “trivial”, but later stopped
doing that. “Let us forget the overloaded term,” he
once told me about this word. In the same paper
he also stated that the problem of distinguishing
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center and focus is trivial. Bruno challenged this
statement, and I proved that the center-focus
problem is algebraically unsolvable (1972).

Also in 1970 Arnold proved that the problem
of Lyapunov stability is algebraically unsolvable.
He constructed a 3-parameter family in the space
of high-order jets, where the boundary of stability
is nonalgebraic. In the same paper he wrote:
“One may expect that the Lyapunov stability,
having lost algebraicity and no more restricted by
anything, may present some pathologies on the
set theoretic-level….” He also suggested that the
problem may be algorithmically unsolvable. This
conjecture is still open. In the mid-1970s it turned
out that a nonalgebraic boundary of Lyapunov
stability occurs in unfoldings of degenerations
of codimension three in the phase spaces of
dimension four. This was discovered by Shnol’ and
Khazin, who investigated the stability problem in
the spirit of Arnold and studied all the degenerate
cases up to codimension three.

In 1969 Bruno defended his famous doctoral
thesis about analytic normal forms of differential
equations near singular points. One of his results
is the so-called Bruno condition: a sufficient con-
dition for the germ of a map to be analytically
equivalent to its linear part. In dimension one,
Yoccoz proved the necessity of this condition
(1987); this result was rewarded by a Fields Medal,
which he got in 1994. So the problem is still a
focus of interest in the mathematics community.
But let us get back to the late 1960s. In his review
of the Bruno thesis, Arnold wrote: “The existing
proofs of the divergence [of normalizing series]
are based on computations of the growth of coef-
ficients and do not explain its nature (in the same
sense as the computation of the coefficients of
the series arctanz does not explain the divergence
of this series for |z| > 1, although it proves this
divergence).” Following this idea, Arnold tried to
find a geometric explanation of the divergence
of normalizing series when the denominators are
too small. He predicted an effect which he later
called “materialization of resonances”. An “almost
resonant” germ of a vector field that gives rise
to “exceedingly small denominators” is close to a
countable number of resonant germs. Under the
unfolding of any such germ, an invariant mani-
fold bifurcates from a union of coordinate planes
and remains in a small neighborhood of the sin-
gular point of this almost resonant germ. These
invariant manifolds, which constitute a countable
number of “materialized resonances”, accumulate
to the singular point and prevent the linearization.

A. Pyartli, a student of Arnold, justified this
heuristic description in his thesis in the early 1970s
for vector fields with planar saddles. He continued
the investigation and in 1976 found an invariant
cylinder, a materializationof resonances fora germ
of a planar map. Then he asked Arnold, “Why does
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With students of Moscow Mathematics
Boarding School, 1960s.

such a cylinder prevent the linearization?” Why,
indeed?! Arnold himself started thinking about
the problem and came to the theory of normal
forms for neighborhoods of embedded elliptic
curves. An overview of this theory is given in his
book [12]. As usual, this new path was paved by
the followers of Arnold: Pyartli, myself, Saveliev,
Sedykh, and others.

Arnold’s approach to the local bifurcation the-
ory produced a genuine revolution. In the late
1960s he suggested to his students two prob-
lems: to prove a reduction principle that excludes
excessive “hyperbolic variables” from any local
bifurcation problem and to study the first really
difficult bifurcation problem in codimension two.
The first problem was solved by A. Shoshitaishvili,
the second one by R. Bogdanov. “It was not by
chance that I launched two different people in two
directions simultaneously,” Arnold later said to
me. Arnold was especially proud that Bogdanov
proved the uniqueness of the limit cycle that oc-
curs under the perturbation of a generic cuspidal
singular point. F. Takens investigated indepen-
dently the same codimension two bifurcation as
Bogdanov; it is now named the “Bogdanov-Takens”
bifurcation.

In [8] Arnold described the new approach to
the theory and listed all problems that occur in
the study of local bifurcations of singular points
of vector fields in codimension two. This was
a long-standing program. J. Guckenheimer and
N. Gavrilov made important contributions to its
development; final solutions were obtained by
H. Zoladec (in the mid-1980s), again under the
(nonofficial) supervision of Arnold.

In the mid-1970s Arnold himself considered
another local bifurcation problem in codimension
two, the one for periodic orbits. He discovered
strong resonances in the problem and predicted all
possible unfoldings occurring in generic perturba-
tions of the Poincaré maps with these resonances
(1977). There were four of them. The first case

was reduced to Bogdanov-Takens; two other cases
were investigated by E. Horosov (1979), a graduate
student of Arnold, in his Ph.D. thesis. The fourth
case, the famous resonance 1 : 4, was investigated
by A. Neishtadt, F. Berezovskaya, A. Khibnik (in-
fluenced by Arnold), and B. Krauskopf, a student
of Takens. The problem that remains unsolved for
bifurcations of codimension two is the existence
of very narrow chaotic domains in the parameter
and phase spaces.

Later local bifurcations of codimension three
were investigated by Dumortier, Roussarie, So-
tomayor, and others. The bifurcation diagrams
and the phase portraits became more and more
complicated. It became clear that it is hopeless
to get a complete picture in codimension four.
The new part of the bifurcation theory started
by Arnold and his school seems to be completed
by now. What is described above is a very small
part of the new domains that were opened in
mathematics by Arnold.

One should not forget that Arnold also inspired
many discoveries in oral communications, while
no trace of this influence is left in his publications.
For instance, he discovered “hidden dynamics” in
various problems of singularity theory. This means
that a classification problem for singularities often
gives rise, in a nonevident way, to a classification
problem for special local maps. Thus, he inspired
the solution by S. Voronin (1982) of the local clas-
sification problem for singularities of envelopes
for families of planar curves and the discovery
of quite unexpected Ecalle-Voronin moduli of the
analytic classification of parabolic fixed points
(1981).

Arnold suggested a sketch of the proof of
analytic unsolvability of the Lyapunov stability
problem (Ilyashenko, 1976). Only later did I un-
derstand that, honestly speaking, it should have
been a joint work.

In 1980 he pointed out that our joint work
with A. Chetaev on an estimate of the Hausdorff
dimension of attractors might be applied to the
2D Navier-Stokes equation. This gave rise to an
explicit estimate of the Hausdorff dimension of
these attractors (Ilyashenko, 1982–83), a first step
in the subject later developed by O. Ladyzhenskaya
and M. Vishik with his school.

This is only my personal experience, a minor
part of the great panorama of Arnold’s influence
on contemporary mathematics. He had a very
strong feeling of mathematical beauty, and his
mathematics was at the same time poetry and art.
From my youth, I considered Arnold as a Pushkin
in mathematics. At present, Pushkin is a beloved
treasure of the Russian culture, but during his life,
he was not at all treated as a treasure.
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The same is true for Arnold. His life in Russia
before perestroika was in no way a bed of roses.
I remember very well how we young admirers
of Arnold expected in 1974 that he would be
awarded the Fields Medal at the ICM at Vancou-
ver. He did not receive it, and the rumor was
that Pontryagin, the head of the Soviet National
Mathematics Committee, at the discussion of the
future awards said, “I do not know the works of
such a mathematician.” For sure, it could not have
been the personal attitude of Pontryagin only; it
was actually the position of the Soviet government
itself. Two medals instead of four were awarded
that year. Much later, Arnold wrote that one of the
others was intended for him, and then awarded to
nobody.

In 1984 a very skillful baiting of Arnold was
organized at Mekhmat. As a result, he had a
serious hypertension attack. His election as a
corresponding member of the Soviet Academy of
Sciences stopped the baiting, but his enemies tried
(though unsuccessfully) to renew it five years later.

In 1986 Arnold decided to quit Mekhmat and to
move to the Steklov Institute. Yet he wanted to keep
a half-time position of professor at Mekhmat. Only
after considerable efforts did he get the desired
half-time position. I tried to convince Arnold not
to quit Mekhmat. I asked him, “Dima, who may say,
following Louis XIV’s ‘L’etat s’est moi,’ Mekhmat is
me?” “Well,” he answered, “I guess NN” (he named
an influential party member at the department).
“No, Dima, YOU are Mekhmat.” But he did not
listen.

In 1994 he quit Mekhmat completely. He was
offended. He taught a course and a seminar,
and suddenly he was informed that this load was
insufficient for the half-time position of professor,
but only for a quarter-time position (a status that

does not, in fact, exist). He spoke with the head
of Mekhmat Human Resources. This was an aged
woman who maintained her position from the
communist times. “She screamed at me,” said
Arnold with a sort of surprise. Then he resigned
from the Moscow State University.

Needless to say, in such an environment the
students of Arnold were not hired at Mekhmat.
The only exceptions were N. Nekhoroshev and
A. Koushnirenko, hired in the early 1970s, and
much later A. Varchenko. I remember two other
attempts, both unsuccessful. At the same time, the
best of the best Mekhmat students asked Arnold
to be their advisor. So, Mekhmat rejected the best
of the best of its alumni. The same happened with
students of Manin, Kirillov, Gelfand.…At the end of
the 1980s, a critical mass of excellent mathemati-
cians not involved in the official academic life had
accumulated. Following a suggestion of N. N. Kon-
stantinov, a well-known educator and organizer
of mathematical olympiads, these mathematicians
decided to create their own university. In 1991 a
group of leading Russian mathematicians formed
a council and established a new Independent
University of Moscow, IUM. This group included
the following members of the Russian Academy
of Sciences: V. I. Arnold (chairman of the coun-
cil), S. P. Novikov, Ya. G. Sinai, L. D. Faddeev;
and the following professors: A. A. Beilinson,
R. L. Dobrushin, B. A. Dubrovin, A. A. Kirillov,
A. N. Rudakov, V. M. Tikhomirov, A. G. Khovanskii,
M. A. Shubin. Professors P. Deligne and R. MacPher-
son of Princeton and MIT also played crucial roles
in the founding of the Independent University.

Arnold was very enthusiastic about the new
university, and in the first years of its existence
he did a lot to shape its spirit and teaching style.
Together with the first dean of the College of Math-
ematics of the IUM, A. Rudakov, Arnold thoroughly
discussed the programs, and he himself taught a
course on partial differential equations. Under his
influence, the Independent University became one
of the focal centers of Russian mathematical life.

In 1994 another educational institution, the
Moscow Center of Continuous Mathematical Ed-
ucation (MCCME), was created. From the very
beginning, Arnold was the head of the board of
trustees of this center. The center, headed by
I. Yashchenko, the director, became a very influen-
tial institution in Russian mathematical education
and a powerful tool in the struggle against modern
obscurantism. Arnold was one of the leaders of
that struggle.

In 2005 Pierre Deligne, together with the IUM
faculty, organized a contest for young Russian
mathematicians. This contest was funded by
Deligne from his Balzan Prize (and named after
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him) with the goal “to support Russian mathe-
matics, struggling for survival.” The funds of the
contest were strictly limited. In 2006 Arnold met
D. Zimin, the head of “D. B. Zimin’s Charity Foun-
dation Dynasty”, and convinced him to establish a
similar “Dynasty contest”. Now the contest has be-
come permanent, Lord willing and the creek don’t

rise, as the proverb says. This is only one of the
examples of the long-lasting influence of Arnold
on Russian mathematical life.

Arnold’s talks were always special events.
He began giving lectures at Mekhmat in Sep-
tember 1961 about the newborn theory later
named KAM (Kolmogorov–Arnold–Moser). A ru-
mor spread among the students that “Arnold has
solved problems that Poincaré failed to solve.”
His lectures were very fast and intense, yet they
attracted the best students in the department.
He repeated this course twice, in 1962–63 and in
1963–64.

After that he gave brilliant courses in theo-
retical mechanics, ordinary differential equations,
supplementary chapters of ODE, singularity the-
ory, geometric theory of PDE, and many others. All
these courses gave rise to world-famous books,
written by Arnold, sometimes with his students.
In 1968 Arnold started teaching a course in ODE
that became, in a sense, a course of his life. He
taught it every year until the late eighties, except
for sabbaticals.

Arnold completely changed the face of the dis-
cipline. His presentation was coordinate-free: all
the constructions were invariant with respect to
coordinate changes. “When you present material
in coordinates,” he said, “you study your coor-
dinate system, not the effect that you want to
describe.” His language was quite different from
that of the previous textbooks and courses: dif-
feomorphisms, phase flows, rectification of vector
fields, exponentials of linear operators.…The lan-
guage of pictures was even more important in his
course than that of formulas. He always required
a student to present the answer in both ways, a
formula and a figure, and to explain the relation
between them. He drastically renewed the prob-
lem sets for the course: propagation of rays in
nonuniform media and geodesics on surfaces of
revolution, phase portraits of the Newton equation
with one degree of freedom, images of the unit
square under linear phase flows—students were
expected to draft all of these even without ex-
plicit calculations of the corresponding solutions.
In the first years the course was difficult both
for students and teaching assistants. Later on it
smoothed out and became one of the highlights
of the Mekhmat curriculum.

All his life V. I. Arnold was like a star that
shines, sparkles, and produces new life around it.

V. Arnold and B. Khesin, Toronto, 1997.

Boris Khesin

On V. I. Arnold and Hydrodynamics
Back in the mid-1980s, Vladimir Igorevich once
told us, his students, how different the notion of
“being young” (and in particular, being a young
mathematician) is in different societies. For in-
stance, the Moscow Mathematical Society awards
an annual prize to a young mathematician under
thirty years of age. The Fields Medal, as is well
known, recognizes outstanding young mathemati-
cians whose age does not exceed forty in the year
of the International Congress. Both of the above
requirements are strictly enforced.

This can be compared with the Bourbaki group,
which is comprised of young French mathemati-
cians and which, reportedly, has an age bar of
fifty. However, as Arnold elaborated the story, this
limit is more flexible: upon reaching this age the
Bourbaki member undergoes a “coconutization
procedure”. The term is derived from a tradition
of some barbaric tribe that allows its chief to carry
out his duties until someone doubts his leadership
abilities. Once the doubt arises, the chief is forced
to climb to the top of a tall palm tree, and the whole
tribe starts shaking it. If the chief is strong enough
to get a good grip and survives the challenge, he
is allowed to climb down and continue to lead the
tribe until the next “reasonable doubt” in his lead-
ership crosses someone’s mind. If his grip is weak
and he falls down from the 20-meter-tall tree, he
obviously needs to be replaced, and so the next
tribe chief is chosen. This tree is usually a coconut
palm, which gave the name to the coconutization
procedure.

As far as the coconutization in the Bourbaki
group is concerned, according to Arnold’s story,
the unsuspecting member who reaches fifty is
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invited, as usual, to the next Bourbaki seminar.
Somewhere in the middle of the talk, when most
of the audience is already half asleep, the speaker,
who is in on the game for that occasion, in-
serts some tedious half-a-page-long definition. It
is at this very moment that the scrutinized (“co-
conutized”) member is expected to interrupt the
speaker by exclaiming something like, “But excuse
me, only the empty set satisfies your definition!” If
he does so, he has successfully passed the test and
will remain a part of Bourbaki. If he misses this
chance, nobody says a word, but he will probably
not be invited to the meetings any longer.

Arnold finished this story by quoting someone’s
definition of youth in mathematics which he liked
best: “A mathematician is young as long as he
reads works other than his own!”

Soon after this “storytelling” occasion, Arnold’s
fiftieth anniversary was celebrated: in June 1987
his whole seminar went for a picnic in a suburb of
Moscow. Among Arnold’s presents were a “Return
to Arnold” stamp to mark the reprints he gave to
his students to work on, a mantle with a nicely
decorated “swallowtail”, one of low-dimensional
singularities, and such. But, most importantly,
he was presented with a poster containing a
crossword on various notions from his many
research domains. Most of the questions were
rather intricate, which predictably did not prevent
Arnold from easily cracking virtually everything.
But one question remained unresolved: a five-letter
word (in the English translation) for “A simple
alternative of life”. None of the ideas worked
for quite some time. After a while, having made
no progress on this question, Arnold pronounced
sadly, “Now I myself have been coconutized.…” But
a second later he perked up, a bright mischievous
expression on his face: “This is a PURSE!” (In
addition to the pirate’s alternative “Purse or Life”,
the crossword authors meant the term “purse”
in singularity theory standing for the description
of the bifurcation diagram of the real simple
singularity D+

4 , also called hyperbolic umbilic—
hence the hint on “simple” alternative.)

Arnold’s interest in fluid dynamics can be traced
back to his “younger years”, whatever definition
one is using for that purpose. His 1966 paper in
the Annales de l’Institut Fourier had the effect of
a bombshell. Now, over forty years later, virtually
every paper related to the geometry of the hy-
drodynamical Euler equation or diffeomorphism
groups cites Arnold’s work on the starting pages.
In the next four or five years Arnold laid out
the foundations for the study of hydrodynamical
stability and for the use of Hamiltonian methods
there, described the topology of steady flows, etc.

New Haven, 1993.

Apparently Arnold’s interest in hydrodynam-
ics is rooted in Kolmogorov’s turbulence study
and started with the program outlined by Kol-
mogorov for his seminar in 1958-59. Kolmogorov
conjectured stochastization in dynamical sys-
tems related to hydrodynamical PDEs as viscosity
vanishes, which would imply the practical impos-
sibility of long-term weather forecasts. Arnold’s
take on hydrodynamics was, however, completely
different from Kolmogorov’s and involved groups
and topology.

The Euler equation of an ideal incompressible
fluid filling a domain M in Rn is the evolution
equation

∂tv + (v,∇)v = −∇p

on the fluid velocity field v , where this field is
assumed to be divergence-free and tangent to the
boundary of M (while the pressure p is defined
uniquely modulo an additive constant by these
conditions on v). In 1966 Arnold showed that this
Euler equation can be regarded as the equation of
the geodesic flow on the group SDiff(M) of volume-
preserving diffeomorphisms of the domainM . The
corresponding metric on this infinite-dimensional
group is the right-invariant L2 metric defined
by the kinetic energy E(v) =

1
2‖v‖

2
L2(M) of the

fluid. (The analysis of Sobolev spaces related to
this group-theoretic framework in incompressible
fluid dynamics was later furnished by D. Ebin and
J. Marsden.) Arnold’s geometric view on hydrody-
namics opened a multitude of different research
directions:

Other groups and metrics. Many other evolution
equations turned out to fit this universal approach
suggested by Arnold, as they were found to de-
scribe geodesic flows on appropriate Lie groups
with respect to one-sided invariant metrics. This
shed new light on the corresponding configuration
spaces and symmetries behind the relevant physi-
cal systems, and such geodesic equations are now
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Vladimir Arnold with his wife, Elya, 1997.

called the Euler-Arnold equations. Here are several
examples developed by many authors. The group
SO(3) with a left-invariant metric corresponds to
the Euler top (this example appeared in the original
paper by Arnold along with the hydrodynamical
Euler equation). Similarly, the Kirchhoff equations
for a rigid body dynamics in a fluid describe
geodesics on the group E(3) = SO(3) ⋉R3 of Eu-
clidean motions of R3. In infinite dimensions, the
group of circle diffeomorphisms Diff(S1) with the
right-invariant L2-metric gives the inviscid Burg-
ers equation, while the Virasoro group for three
different metrics, L2, H1, and Ḣ1, produces re-
spectively the Korteweg-de Vries, Camassa-Holm,
and Hunter-Saxton equations, which are differ-
ent integrable hydrodynamical approximations.
The self-consistent magnetohydrodynamics de-
scribing simultaneous evolution of the fluid and
magnetic field corresponds to dynamics on the
semidirect product group SDiff(M) ⋉ SVect(M)
equipped with an L2-type metric. Yet another in-
teresting example, known as the Heisenberg chain
or Landau–Lifschitz equation, corresponds to the
gauge transformation group C∞(S1, SO(3)) and
H−1-type metric. Teasing physicists, Arnold used
to say that their gauge groups are too simple to
serve as a model for hydrodynamics.

Arnold’s stability and Hamiltonian methods in

hydrodynamics. The geodesic property of the Eu-
ler hydrodynamical equation implied that it is
Hamiltonian when considered on the dual of the
Lie algebra of divergence-free vector fields. Arnold
proposed using the corresponding Casimir func-
tions, which are invariants of the flow vorticity,
to study stability of steady fluid flows. Arnold’s
stability is now the main tool in the study of non-
linear stability of fluid motions and MHD flows.
In particular, he proved that planar parallel flows
with no inflection points in their velocity profiles
are stable. (One should note that, for Hamiltonian
systems, stability in linear approximation is al-
ways neutral and inconclusive about the stability
in the corresponding nonlinear problem, so the

result on a genuine Lyapunov stability of certain
fluid flows was particularly rare and valuable.)

Study of fluid Lagrangian instability and curva-
tures of diffeomorphism groups. Negative sectional
curvature on manifolds implies exponential diver-
gence of geodesics on them. In the 1966 Ann. Inst.
Fourier paper Arnold launched the first compu-
tations of curvatures for diffeomorphism groups.
Negativity of most of such curvatures for the
groups of volume diffeomorphisms suggested La-
grangian instability of the corresponding fluid
flows. By applying this to the the atmospheric
flows, he gave a qualitative explanation of un-
reliability of long-term weather forecasts (thus
answering in his own way the problem posed by
Kolmogorov in the 1950s). In particular, Arnold
estimated that, due to exponential divergence of
geodesics, in order to predict the weather two
months in advance one must have initial data
on the state of the Earth’s atmosphere with five
more digits of accuracy than that of the expected
prediction. In practical terms this means that a
dynamical weather forecast for such a long period
is impossible.

The hydrodynamical Appendix 2 in the famous
Classical Mechanics by Arnold,8 where one can
find the details of the above-mentioned calcula-
tion for the Earth’s atmosphere, also contains one
of Arnold’s widely cited phrases: “We agree on
a simplifying assumption that the earth has the
shape of a torus,” which is followed by his cal-
culations for the group of area-preserving torus
diffeomorphisms. It is remarkable that the later
curvature calculations for the group of sphere
diffeomorphisms (performed by A. Lukatskii) gave
exactly the same order of magnitude and quan-
titative estimates for the curvature, and hence
for the atmospheric flows, as Arnold’s original
computations for the torus!

Topology of steady flows. One of the most
beautiful observations of Arnold (and one of
the simplest —it could have belonged to Eu-
ler!) was the description of topology of stationary
solutions of the 3D Euler equation. It turns out
that for a “generic” steady solution the flow do-
main is fibered (away from a certain hypersurface)
into invariant tori or annuli. The corresponding
fluid motion on each torus is either periodic or
quasiperiodic, while on each annulus it is periodic.
This way a steady 3D flow looks like a completely

8Speaking of writing, once I asked Arnold how he man-

aged to make his books so easy to read. He replied: “To

make sure that your books are read fast, you have to

write them fast.” His own writing speed was legendary.

His book on invariants of plane curves in the AMS Univer-

sity Lecture series was reportedly written in less than two

days. Once he pretended to complain: “I tried, but failed,

to write more than 30 pages a day.…I mean to write in

English; of course, in Russian, I can write much more!”
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integrable Hamiltonian system with two degrees
of freedom.

The nongeneric steady flows include Beltrami
fields (those collinear with their vorticity) and, in
particular, the eigenfields for the cur l operator
on manifolds. The latter include the so-called ABC
flows (for Arnold–Beltrami–Childress), the curl
eigenfields on the 3D torus, which happen to have
become a great model for various fast dynamo
constructions.

Fast dynamo and magnetohydrodymanics.
Arnold’s interest in magnetohydrodynamics was
to a large extent related to his acquaintance
with Ya. Zeldovich and A. Sakharov. One of the
results of their interaction at the seminars was
the Arnold-Ruzmaikin-Sokolov-Zeldovich model
of the fast dynamo on a 3D Riemannian manifold
constructed from Arnold’s cat map on a 2D
torus. For a long time this was the only dynamo
construction allowing complete analytical study
for both zero and positive magnetic dissipation.

The asymptotic Hopf invariant. Finally, one of
the gems of topological hydrodynamics is Arnold’s
1974 study of the asymptotic Hopf invariant for a
vector field. He proved that, for a divergence-free
vector field v in a 3D simply connected manifold
M , the field’s helicity, H(v) :=

∫
M(cur l

−1v, v)d3x,
is equal to the average linking number of all pairs
of trajectories of v . This theorem simultaneously
generalized the Hopf invariant from maps S3 → S2

to arbitrary divergence-free vector fields in S3,
enriched K. Moffatt’s result on the helicity of
linked solid tori, described the topology behind
the conservation law of the 3D Euler equation, and
provided the topological obstruction to the energy
relaxation of magnetic vector fields. This elegant
theorem stimulated a tide of generalizations to
higher-dimensional manifolds, to linking of folia-
tions, to higher linkings, and to energy estimates
via crossing numbers. In particular, there was sub-
stantial progress in the two directions suggested
in the original 1974 paper: the topological invari-
ance of the asymptotic Hopf numbers for a large
class of systems was proved by J.-M. Gambaudo
and É. Ghys, while the Sakharov–Zeldovich prob-
lem on whether one can make arbitrarily small
the energy of the rotation field in a 3D ball by
a volume-preserving diffeomorphism action was
affirmatively solved by M. Freedman.

Virtually single-handedly Arnold spawned a
new domain, now called topological fluid dynam-
ics. His contribution to this area changed the
whole paradigm of theoretical hydrodynamics by
employing groups to study fluid flows. What dou-
bles the awe is that this gem appeared almost
at the same time with two other Arnold’s foun-
dational contributions—the KAM and singularity
theories.

Vladimir Arnold lecturing.

Victor Vassiliev

Topology in Arnold’s Work
Arnold worked comparatively little on topology
for topology’s sake. His topological studies were
usually motivated by specific problems from other
areas of mathematics and physics: algebraic ge-
ometry, dynamical systems, symplectic geometry,
hydrodynamics, geometric and quantum optics. So
the (very significant) place of topological studies
in his work is well balanced with the (equally very
significant) place and applications of topology in
the entirety of contemporary mathematics.

The main achievement in a number of his
works is a proper recognition and formulation of
a topological result, allowing topologists to enter
the area with their strong methods. A huge part of
Arnold’s work is contained not in his own articles
but in well-formulated problems and hints that
he gave to his students and other researchers; see
especially [13]. So I will discuss below such Arnold
hints as well and what followed from them.

Superpositions of Functions

The case of real functions: Kolmogorov-Arnold’s
theorem and Hilbert’s 13th problem. This theorem
states that every continuous function of n > 2
variables can be represented by a superposition
of functions in 2 variables (and the superposition
can be taken in a particular form). The first
approach to this problem (based on the notion
of the Kronrod tree of connected components
of level sets) was found by Kolmogorov (1956),
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who did not, however, overcome some technical
low-dimensional difficulties and proved only the
same theorem with 2 replaced by 3. The final
effort was made by (then-19-year-old) Arnold.

This theorem gives a negative solution to (prob-
ably the most natural exact understanding of) the
following Hilbert 13th problem:

…it is probable that the root of the
equation of the seventh degree is
a function of its coefficients which
does not belong to this class of
functions capable of nomographic
construction, i.e., that it cannot
be constructed by a finite number
of insertions of functions of two
arguments. In order to prove this,
the proof would be necessary that
the equation of the seventh degree

(1) t7 + xt3 + yt2 + zt + 1 = 0

is not solvable with the help of any
continuous functions of only two
arguments.

A widespread belief concerning this problem
is as follows: “with the help of functions” in its
last sentence means that a continuous solution
t(x, y, z)of (1) should indeed be given by a function
of the form described in the first one, i.e., by a
superposition of continuous functions of two
arguments. In this case the Kolmogorov-Arnold
theorem would give a direct negative answer to
this problem. Nevertheless, this understanding of
Hilbert’s question is probably erroneous, because
(1) does not define any continuous function at
all: the multivalued function t(x, y, z) defined by

(1) does not have any continuous cross-section on

the whole of R3
(x,y,z) . Indeed, such negative-valued

cross-sections do not already exist in a small

neighborhood of the polynomial

t7 − 14t3 − 21t2 − 7t + 1

≡ (t + 1)3(t4 − 3t3 + 6t2 − 10t + 1).

Such a neighborhood admits two positive-valued

cross-sections, but they obviously cannot be con-
tinued to the polynomial t7 + 1. So this direct
understanding of the Hilbert problem could be
correct only under the (quite improbable) con-
jecture that Hilbert has included in this problem
the question whether (or was confident that) (1)
defines a continuous function on the entire R3;
in this case the problem would have a positive
solution.

A more realistic assumption is that “with the
help of continuous functions of two variables”
means something more flexible, for example, that
we can consider a triple of functions (χ, g1, g2)

in x, y, z, defined by such superpositions, and
represent our function t(x, y, z) by g1 in the area
where χ > 0 and by g2 where χ ≤ 0. However, in
this case it is unclear why Hilbert did not believe
that the desired representation (maybe with more
functions χk and gi) does exist for his particular
function, which is piecewise analytic and certainly
can be stratified by easy conditions into pieces with
very simple behavior. The most realistic conjecture
is that (like for many other problems) Hilbert
wrote a slightly obscure sentence specifically to
let the readers themselves formulate (and solve)
the most interesting and actual exact statements:
it is exactly what Kolmogorov and Arnold actually
did.

Complex algebraic functions and braid cohomol-

ogy. Hilbert’s 13th problem, formally asking
something about real continuous functions, is
nevertheless evidently motivated by the study of
superpositions of multivalued algebraic functions
in complex variables. A dream problem in this area
is to solve literally the same problem concerning
such functions. Moreover, this problem was ex-
plicitly formulated in one of Hilbert’s consequent
works.

Arnold worked much on this problem, revising
and reformulating the proof of the Ruffini-Abel
theorem in topological terms of ramified cover-
ings and their topological invariants and trying to
extend it to superpositions of functions in more
variables. Although the exact desired theorem was
not proved, a byproduct of this attack was huge:
among other topics, it contains the topological
theory of generalized discriminants, homologi-
cal theory of braid groups, and theory of plane
arrangements. A particular result, the topologi-
cal obstruction to the representation by complete

superpositions of functions depending on few
variables, was expressed in [5] in the terms of
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cohomology of braid groups. Indeed, the d-valued
algebraic function t(x1, . . . , xd) given by

(2) td + x1t
d−1 + · · · + xd−1t + xd = 0

defines a d-fold covering over the set Cd \ Σ of
nondiscriminant points (x1, . . . , xd) (i.e., of polyno-
mials (2) for which all d values t(x) are different).
This covering defines (up to homotopy) a map from
its base Cd \ Σ to the classifying space K(S(d),1)
of all d-fold coverings, thus also a canonical map

(3) H∗(K(S(d),1) → H∗(Cd \ Σ).
If our algebraic function (2) is induced from
another one, as in the definition of complete
superpositions, then this cohomology map factor-
izes through the cohomology ring of some subset
of the argument space of this new algebraic func-
tion. Hence the dimension of this space cannot be
smaller than the highest dimension in which the
map (3) is nontrivial.

This approach has strongly motivated the study
of the cohomology ring of the space Cd \ Σ (which
is the classifying space of the d-braid group) and,
much more generally, of the following objects.

Discriminants and Their Complements

Given a space of geometric objects (say, func-
tions, varieties, subvarieties, matrices, algebras,
etc.), the discriminant subset in it consists of all
degenerate (in some precise sense) objects: it
may be the set of non-Morse functions or self-
intersecting spatial curves, or degenerate (another
version: having multiple eigenvalues) operators.
Usually one studies the complementary space of
nonsingular objects. However, Arnold’s seminal
reduction replaces the homological part of this
study by that of discriminant spaces. Namely, in
[4], Arnold exploits the Alexander isomorphism

(4) H i(Cd \ Σ) ≡ H̄2d−i−1(Σ),
where H̄∗ means the homology of the one-point
compactification and Cd is considered to be the
space of all complex polynomials (2) in one vari-
able t . This reduction turned out to be extremely
fruitful, because the set of nonsingular objects is
usually open and does not carry any natural geo-
metric structure. To study its topology, we often
need to introduce some artificial structures on it,
such as Morse functions, connections, families of
vector fields or plane distributions, etc., which can
have singularities helping us to calculate some
topological invariants. On the other hand, the dis-
criminant varieties are genuinely stratified sets
(whose stratification corresponds to the hierarchy
of singularity types); this stratification allows one
to calculate various topological properties of these
varieties and hence also of their complementary
sets of generic objects. Already in [4] this approach
has brought some progress, although the complete
calculation of the group (4) was done only later by

Figure 1. Stabilization of unfoldings.

D. Fuchs for Z2-cohomology [14] and by F. Cohen
and F. Vainshtein for integral cohomology.

Using the same approach, Arnold studied later
many other spaces of nondegenerate objects,
namely, spaces Pd \ Σk of real degree d poly-
nomials R1 → R1 without roots of multiplicity ≥ k,
k ≥ 3, spaces of functions R1 → R1 (with a fixed
behavior at infinity) also having no zeros of multi-
plicity ≥ k (1989), spaces of Hermitian operators
with simple spectra (1995), spaces of generic (or
generic Legendrian) plane curves (1994), etc.

Another very important idea of Arnold’s in this
area was his favorite stabilization problem, pub-
lished first in 1976 and repeated many times in
seminars; see problems 1975-19, 1980-15, 1985-7,
1985-22 in [13]. Formally speaking, the Alexander
duality theorem is a finite-dimensional result. Also,
all spaces of objects in which Arnold’s approach
originally led to more or less explicit results were
finite-dimensional spaces considered as unfold-
ings of some particular objects. For example, the
spaceCd of complex polynomials (2) can be consid-
ered as an unfolding of the monomial td . When the
degree d grows, the cohomology groups of spaces
Cd \ Σ of nondiscriminant polynomials stabilize
(to the cohomology of the infinite braid group),
but it was quite difficult to trace the stabiliza-
tion process in terms of the original calculations.
Moreover, it was unclear what happens with sim-
ilar stabilizations for objects more complex than
just polynomials in one variable, how to deal with
similar infinite-dimensional problems, and what is
“the mother of all unfoldings”. To attack this set of
philosophical problems, Arnold formulated a very
explicit sample problem. First, he noticed that the
stabilization of cohomology groups such as (2) is
natural: if we have two singular objects, one of
which is “more singular” than the other, then the
parameter space of the unfolding of the simpler
object can be embedded into that of the more
complicated one. This map sends one discrimi-
nant into the other, thus inducing the pull-back
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map of cohomology groups of their complements.
(For real polynomials t3 and t4 this embedding of
parameter spaces of their unfoldings t3 + at + b
and t4 + αt2 + βt + γ is shown in Figure 1. The
discriminants drawn in this picture are the sets of
polynomials having multiple roots.)

Arnold’s respective problem was to deter-
mine the stable (under all such pull-back maps)
cohomology groups of such complements of dis-
criminants of isolated singularities of holomorphic
functions in Cn (and to prove that they actually
do stabilize; i.e., these stable cohomology groups
are realized by such groups for some sufficiently
complicated singularities). Solving this problem,
I found in 1985 a method of calculating homol-
ogy groups of discriminants that behaves nicely
under the embeddings of unfoldings and thus
gives an effective calculation of stable groups.
Some elaborations and byproducts of this calcu-
lation method constitute a majority of my results
on topology of discriminants, including my first
works on knot theory. In the original problem on
stable cohomology of complements of discrimi-
nants of holomorphic functions, this calculation
gives us the following formula: the desired stable
cohomology ring for singularities in n complex
variables is equal to H∗(Ω2nS2n+1), where Ωk is
the k-fold loop space.

Moreover, this Arnold problem not only
dealt with the stabilization of particular finite-
dimensional objects, but it also gave an approach
to the study of actual infinite-dimensional function
spaces.

Topology of Pure Braid Groups and Plane
Arrangements

Together with the cohomology of the usual braid
groups (2), Arnold also investigated the pure braid
group, i.e., the fundamental group of the set of
ordered collections of d distinct points in C1. The
classifying space of this group is just the space Cd

with all diagonal hyperplanes {xi = xj for i ≠ j}
removed. Arnold’s calculation of its cohomology
group [2] became a sample and a starting point
of numerous generalizations and initiated the so-
called theory of plane arrangements. The Arnold
identity

ωij ∧ωjk +ωjk ∧ωki +ωki ∧ωij = 0

for basic classes of this cohomology ring later
became one of the main ingredients of Kont-
sevich’s construction of the universal finite-type
knot invariant.

Maslov Index, Lagrange and Legendre Cobor-
dism

Lagrange manifolds are specific n-dimensional
submanifolds of the symplectic spaceR2n (or, more
generally, of the cotangent bundle of an arbitrary
manifoldMn). They occur in problemsof geometric
optics as the manifolds into which all rays of light
considered in such a problem can be lifted without
intersections, and in quantum optics as a first
step in obtaining an asymptotic approximation
of light diffusion. However, further steps of this
asymptotic description impose some consistency
condition: the composition of transition functions
relating their expressions in neighboring local
charts should define the identity operator when
we go along a closed chain of such charts. This
condition is best formulated in terms of a certain
1-cohomology class of the Lagrange manifold, its
Maslov index. If the Lagrange manifold Ln ⊂ T∗Rn

is generic, then this index can be defined as the
intersection index with the singular locus of the
projection Ln → Rn to the “physical” configuration
space. It is important for this definition that, for
genericLagrangianmanifolds, this locus has a well-
defined transversal orientation (so that crossing
it, we can always say whether we are going to
the positive or the negative side) and its singular
points form a subset of dimension at most n−3 in
Ln (so that all homologous curves have one and the
same Maslov index). If Ln is orientable, then this
index is even; the above self-consistency condition
requires that the value of this index on any closed
curve should be a multiple of 4. Arnold [1] related
this index with the topology of the Lagrange
Grassmann manifold of all Lagrangian planes in
the symplecticR2n-space, i.e., of all planes that can
be tangent to some Lagrange submanifolds in this
space. This settles immediately various problems
related to the invariance of the definition of the
Maslov index, as well as to its stability under
deformations of the Lagrange manifold.

In 1980 Arnold initiated the theory of Lagrange
and Legendre cobordisms [11]. Light distribution
in the area defines light distribution on its border:
for instance, the reflected light on the wall is
defined by the light in the entire room. This means
that a Lagrange manifold in the cotangent bundle
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of the room defines its Lagrange boundary, which
is a Lagrange manifold in the cotangent bundle
of the wall. The Legendre manifolds are known to
us mainly as resolutions of wave fronts. The wave
front evolving in space defines a wave front of
bigger dimension in the space-time. The fronts in
Mn corresponding to some instants T1 and T2 are
obviously defined by the big front inMn× [T1, T2];
the way in which they are obtained from this
big front can be generalized to the notion of the
Legendre boundary. Notice that both Lagrange and
Legendre boundaries of manifolds are not their
boundaries and not even the subsets in the usual
sense: they are obtained from these boundaries by
symplectic and contact reductions.

Arnold introduced cobordism theories based
on these boundary notions and calculated the
1-dimensional Lagrange and Legendre cobordism
groups: they turned out to be isomorphic to Z⊕R
and Z, respectively. The Z-term in both answers
is defined by the Maslov index, the R-invariant of
the Lagrange cobordism is given by

∫
pdq. Later,

Ya. Eliashberg and M. Audin, using the Gromov-
Lees version of the Smale-Hirsch h-principle for
Lagrange manifolds, reduced the calculation of Le-
gendre cobordism groups in any dimension to the
standard objects of the cobordism theory, namely,
to homotopy groups of appropriate Thom spaces
(over the stable Lagrange Grassmann manifold).

At the same time, in the beginning of 1980,
Arnold asked me whether it is possible to extend
the construction of the Maslov index to cohomol-
ogy classes of higher dimensions, dual to more
degenerate singular loci of the Lagrangian pro-
jection Ln → Rn than just the entire singular set.
The resulting cohomology classes were expected
to be closely related to the higher cohomology
classes of Lagrange Grassmannians and to give
invariants of Lagrange and Legendre cobordisms.
The answer was found soon: I managed to con-
struct the desired characteristic classes in terms of
the universal complex of singularity types. Later,

this theory was nicely and strongly extended by
M. Kazarian in terms of equivariant homology.

On the other hand, the work with 1-dimensional
wave fronts led Arnold to many essential problems
of contact geometry, such as the 4-cusps problem
(see the photograph above). Solutions of these
problems by Chekanov, Eliashberg, Pushkar′and
others resulted in significant development of
this area.

There are many other topological results in
Arnold’s works, including major breakthroughs in
real algebraic geometry [7], [10]; Arnold’s conjec-
ture in symplectic topology; the asymptotic Hopf
invariant; and the vanishing homology theory of
boundary singularities. These topics are covered
in other articles in this collection.

Helmut Hofer

Arnold and Symplectic Geometry
V. I. Arnold was a character and a larger-than-life
figure. I never knew him extremely well, but we
became closer over the years, and I learned to
know him a little bit more from the private side.
He could be very charming.

As a student I read Arnold’s wonderful book
Mathematical Methods of Classical Mechanics and
was impressed by the ease with which he was able
to bring across important ideas. I never expected
to meet him in real life.

I met him for the first time when I was a tenure-
track professor at Rutgers University and was
visiting the Courant Institute. This was between
1986 and 1987, so around three years before the
Berlin Wall and the iron curtain came down. The
Courant Institute had worked hard to make it
possible for Arnold to visit. I attended one of
Arnold’s lectures, which was remarkable in two
ways: there was great mathematics and something
one would not expect in a mathematics lecture.
At some point he went into a tirade about how
Western mathematicians were not giving proper
credit to Russian mathematicians. Most people in
the audience took it with some kind of amusement,
but not all. Somebody sitting beside me mumbled
something along the lines that we should have left
him in Moscow.

A year or so later he attended parts of the
symplectic year (1988) at MSRI in Berkeley. What
I remember from his visit was that at some point
he decided to swim in San Francisco Bay. One
has to know that the locals do not consider
this the best idea, since the currents are quite
unpredictable. The story which was told at that
time was that he almost drowned fighting the
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currents. I thought to myself, “That is a really
interesting multidimensional character pushing
the envelope.” I recently asked about this of
Richard Montgomery, who had an account of this
story from Arnold himself. He had concluded from
the description that Arnold had tried to swim from
Marina Green to Marin (linked by the Golden Gate
Bridge) during ebb tide and at some point, in his
own words, “It felt like I hit a wall of current”
and “had to turn back.” The maximum ebb out
of the San Francisco Bay can be over six knots. If
he hadn’t returned, he would have been swept at
least a mile out to sea. Talking to Richard I also
learned about another story. He and Arnold went
kayaking in the bay. After an involuntary Eskimo
roll, Arnold insisted on entering orthogonally into
the path of an ongoing yacht race, with 40-foot
yachts going full speed being unable to dodge a
kayak. Richard still remembers his fear of going
down in mathematical infamy as the guy who
killed Arnold. As I said before, Arnold pushed the
envelope in real life as he did in mathematics.

One year later, in 1989, I became a full pro-
fessor at the Ruhr-Universität Bochum. Shortly
afterwards the Berlin Wall came down, with dra-
matic changes in Eastern Europe. Soon a complete
brain drain of the Soviet Union became a concern,
and one day I found myself, together with my
colleagues A. Huckleberry and V. Arnold, presid-
ing over some research funding to allow Russian
mathematicians to spend longer periods with a
decent pay at Bochum. Arnold was very concerned,
and I got to know him somewhat better. Professor
Arnold became Dima.

Around 1994 I met him again; this time in Stan-
ford. Dima, Yasha (Eliashberg), and I went looking
for walnuts at the San Andreas Fault. I am sure it
was Dima’s idea. Knowing the “almost drowning
version” of Dima’s swimming expedition in San
Francisco Bay, I had quite high expectations for
the afternoon. However, there was no earthquake.

Around this point we started talking about
mathematics, specifically symplectic topology. His
opening bid was, “Helmut, you are using the
wrong methods,” referring to pseudoholomorphic
curves, and I responded with, “I am sure you know
something better. Make my day!” He liked to probe
and enjoyed seeing people’s reactions. I think I
did well that day.

In 1998 he introduced my plenary lecture at
the ICM in Berlin, and we had a friendly chat
before the talk. The year before I had moved
to the Courant Institute. He said, “Helmut, you
should come back to Europe.” I answered, “No,
Dima, I love New York. But if it makes you feel
better, consider me the agent of European culture
in the U.S.” I saw immediately that he liked this
sentence. We talked about some more things which
I rather thought would stay between us. Of course,
I should have known better! He made it all part of

his introduction and started by introducing me as
the agent of European culture in the U.S., to the
delight of many, but that was only the beginning;
the rest is on video.

Dima had an amazing mathematical intuition
and (which at this point shouldn’t come as a
surprise) was daring enough to make conjectures
when others would not dare to stick their necks
out.

There are quite a number of Arnold conjectures
in symplectic geometry. However, there is one
which even people outside of the field know and
which was the initial driving force behind the
development of symplectic geometry.

Arnold and Weinstein developed the modern
language of symplectic geometry. This could, for
example, be used to prove interesting perturba-
tion results. However, there were no global results.
Arnold was the one who raised these types of ques-
tions, and the Arnold conjecture I describe below
is an example. Surprisingly, the breakthrough due
to Conley and Zehnder came from outside the
field.

In the following, I try to motivate the Arnold
Conjecture. One can understand it as an analogy of
the relationships between the Euler characteristic,
the Hopf index formula, and the Lefschetz fixed
point theorem. I haven’t seen anything in his writ-
ings pointing out this analogy, but added it here as
an intermediate step which helps to understand
the conjecture better. Arnold describes a way of
reasoning in Appendix 9 of his previously men-
tioned book. The Poincaré twist theorem can be
seen as a special case of the two-dimensional torus
case of his conjecture. The general case would be
the generalization of the torus case to arbitrary
closed symplectic manifolds. There is quite often
a difference between the original thought process
and the didactical cleaned version. From that point
of view I regret that I never asked him how he ar-
rived at his conjecture. The discussion below adds
another point of view, constructing an analogy to
a reasoning in topology. I very much believe that
Arnold was aware of this analogy.

We start with a closed oriented manifoldM and
a vector field X. The Euler characteristic χ(M) is
a classical topological invariant, which is a gen-
eralization of the original concept introduced for
polyhedra by Euler and which was fully general-
ized later by Poincaré. If M is a smooth manifold,
Hopf’s index formula establishes a relationship
between the zeros of a vector field assumed to
be transversal to the zero section and the Euler
characteristic of M :

χ(M) =
∑

m

i(X,m),

where i(X,m) = ±1 is the local index at a
zero of X.
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How can we generalize this? First we observe
that a diffeomorphism can be viewed as a gener-
alization of a vector field. Indeed, the collection
of smooth vector fields can be viewed as the Lie
algebra of the (Fréchet)-Lie group Diff(M), so as an
infinitesimal version of the latter. It is, however,
not true that the diffeomorphisms close to the
identity are in the image of the group exponential
map. This is a consequence of being only a Fréchet
Lie group and a universal problem in dealing with
various sorts of diffeomorphism groups. Let us
make a conjecture, which will come out as first
going from the infinitesimal to the local to gain
some confidence. We fix as an auxiliary structure
a Riemannian metric with associated Riemannian
exponential map exp. Assume that Φ is a diffeo-
morphism which is close to the identity. Then we
can write Φ in a unique way in the form

Φ(m) = expm(X(m)),

for a small vector field X. Tranversality of X to the
zero-section is equivalent to Φ not having 1 in the
spectrum of its linearizations at fixed points. Most
importantly, the fixed points for Φ correspond to
the zeros for X. Hence a generic diffeomorphism
which is close to the identity has an algebraic
fixed point count χ(M), where the sign is taken
according toΦ′(m) being orientation preserving or
not. We can now make the “daring conjecture” that
this should hold for all generic diffeomorphims
isotopic to the identity. That turns out to be correct
and is, of course, a special case of the Lefschetz
fixed point formula.

What Arnold did in symplectic geometry is
such a daring conjecture in a more complicated
context. We start with a closed symplectic manifold
(M,ω), and in analogy to the previous discussion
we generalize the theory of functions on M rather
than the theory of vector fields. If f is a smooth

function with all critical points nondegenerate,
then Morse theory says its number of critical
points is at least the sum of the Betti numbers
(for any coefficient field). Morse theory also tells
us that the algebraic count of critical points is
χ(M). Since we have a symplectic structure, we
can associate to f a vector field Xf by the obvious
formula

df = iXfω.

This is the so-called Hamiltonian vector field. Ob-
viously we are now back to the first discussion.
However, with the vector fields being more spe-
cial, one would like a stronger statement for a
certain class of diffeomorphisms. This particular
class of diffeomorphisms should generalize func-
tions as diffeomorphisms isotopic to the identity
generalize vector fields.

Symplectic diffeomorphisms isotopic to the
identity are not a good guess, since for T 2 with
the standard symplectic form a small transla-
tion would give no fixed points at all. We could,
however, look at all symplectic diffeomorphisms
obtained as time-1 maps for the family of vector
fields Xft for a smooth time-dependent family
f : [0,1] × M → R, with ft(x) := f (t, x). This
produces the group of all Hamiltonian diffeo-
morphisms Ham(M,ω). Indeed the collection of
smooth maps can be viewed as the Lie algebra for
Ham(M,ω).

How can we go from the infinitesimal to the
local, as we did in the previous discussion? A
basic and not too difficult symplectic result is that
the neighborhood of a Lagrangian submanifold
of a symplectic manifold is symplectically iso-
morphic to a neighborhood of the zero-section in
its cotangent bundle with the natural symplectic
structure. Now comes a little trick which replaces
the use of the exponential map associated to an
auxiliary metric. We define N = M ×M with the
form τ = ω ⊕ (−ω). Then the diagonal ∆M is a
Lagrange submanifold of N, and an open neigh-
borhood of it looks like an open neighborhood of
∆M in T∗∆M . Every symplectic map that is suf-
ficiently close to the identity has a graph which
when viewed as a subset of T∗∆M is a graph
over the zero-section, i.e., the graph of a one-form
λ. An easy computation shows that the original
diffeomorphism is symplectic if and only if λ is
closed. It is Hamiltonian if and only if λ is exact:

λ = dg

for some smooth function. Hence the fixed points
of a Hamiltonian diffeomorphism Φ correspond
to the intersection of its graph with the zero-
section and hence with the critical points of g.
Now we are in the local situation, similarly as
in the previous case. We conclude that a generic
element in Ham(M,ω) has at least as many fixed
points as a smooth function has critical points if
it is close enough to the identity map.
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Knowing all this, Arnold makes the follow-
ing daring conjecture (nondegenerate case, in my
words).
Arnold Conjecture: A nondegenerate Hamiltonian
diffeomorphism has at least as many fixed points
as a Morse function has critical points.

It wouldn’t be Dima if it actually was that
straightforward. The most prominent statement
“Arnold-style” of this conjecture is in his book
Mathematical Methods of Classical Mechanics. In
the Springer 1978 edition (being a translation of
the 1974 Russian edition) it reads on page 419 (and
this is a restatement of some published version of
the conjecture in 1965):

Thus we come to the following gen-
eralization of Poincaré’s theorem:

Theorem: Every symplectic diffeo-
morphism of a compact symplectic
manifold, homologous to the iden-
tity, has at least as many fixed
points as a smooth function on
this manifold has critical points
(at least if this diffeomorphism is
not too far from the identity).

The symplectic community has been trying
since 1965 to remove the parenthetical part of the
statement. After tough times from 1965 to 1982,
an enormously fruitful period started with the
Conley-Zehnder theorem in 1982–83, proving the
Arnold conjecture for the standard torus in any
(even) dimension using Conley’s index theory (a
powerful version of variational methods). This was
followed by Gromov’s pseudoholomorphic curve
theory coming from a quite different direction. At
this point the highly flexible symplectic language
becomes a real asset in the field. Finally, Floer
combines the Conley-Zehnder viewpoint with that
of Gromov, which is the starting point of Floer
theory in 1987. As far as the Arnold conjecture
is concerned, we understand so far a homological
version of the nondegenerate case. A Luisternik-
Shnirelman case (also conjectured by Arnold) is
still wide open, though some partial results are
known.

The development of symplectic geometry has
been and still is a wonderful journey. Thanks,
Dima!
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