
CHAPTER VIDYNAMICAL SYSTEMS WITHHYDRODYNAMICAL BACKGROUNDThis chapter is a survey of several relevant systems to which the group-theoreticscheme of the preceding chapters or its modi�cations can be applied. The choice oftopics for this chapter was intended to show di�erent (but nevertheless, \hydrody-namical") features of a variety of dynamical systems and to emphasize suggestivepoints for further study and future results.x1. The Korteweg{de Vries equation as an Euler equationIn Chapter I we discussed the common Eulerian nature of the equations of athree-dimensional rigid body and of an ideal incompressible uid. The �rst equationis related to the Lie group SO(3), while the second is related to the huge in�nite-dimensional Lie group SDi�(M) of volume-preserving di�eomorphisms of M .In this section we shall deal with an intermediate case: the Lie group of alldi�eomorphisms of a one-dimensional object, the circle, or rather, with the one-dimensional extension of this group called the Virasoro group. In a sense it is the\simplest possible" example of an in�nite-dimensional Lie group. It turns out thatthe corresponding Euler equation for the geodesic ow on the Virasoro group is wellknown in mathematical physics as the Korteweg{de Vries equation. This equationis widely regarded as a canonical example of an integrable Hamiltonian system withan in�nite number of degrees of freedom.1.A. Virasoro algebra. The Virasoro algebra is an object that is only onedimension larger than the Lie algebra Vect(S1) of all smooth vector �elds on thecircle S1 (in the physics literature, these vector �elds are usually assumed to betrigonometric polynomials).Definition 1.1. The Virasoro algebra (denoted by vir) is the vector spaceTypeset by AMS-TEX321



322 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDVect(S1)� R equipped with the following commutation operation:[(f(x) @@x ; a); (g(x) @@x ; b)] = �(f 0(x)g(x) � f(x)g0(x)) @@x ; ZS1 f 0(x)g00(x) dx� ;for any two elements (f(x)@=@x; a) and (g(x)@=@x; b) in vir.The commutator is a pair consisting of a vector �eld and a number. The vec-tor �eld is minus the Poisson bracket of the two given vector �elds on the circle:ff @=@x; g @=@xg = (fg0 � f 0g) @=@x. The bilinear skew-symmetric expressionc(f; g) := RS1 f 0(x)g00(x)dx is called the Gelfand{Fuchs 2-cocycle; see [GFu].Definition 1.2. A real-valued two-cocycle on an arbitrary Lie algebra g is abilinear skew-symmetric form c(�; �) on the algebra satisfying the following identity:X(f;g;h) c([f; g]; h) = 0; for any three elements f; g; h 2 g;where the sum is considered over the three cyclic permutations of the elements(f; g; h).The cocycle identity means that the extended space ĝ := g � R with the com-mutator de�ned by(1.1) [(f; a); (g; b)] = ([f; g]; c(f; g))obeys the Jacobi identity of a Lie algebra. One can de�ne c(f; g) in (1.1) by settingc(f; g) = 0 for all pairs f; g and get a trivial extension of the Lie algebra g. Anextension of the algebra g is called nontrivial (or the corresponding 2-cocycle is nota 2-coboundary) if it cannot be reduced to the extension by means of zero cocyclevia a linear change of coordinates in ĝ. We discuss cocycles on Lie algebras, as wellas the geometric meaning of the Gelfand{Fuchs cocycle, in more detail in Section1.DThe Virasoro algebra is the unique nontrivial one-dimensional central extensionof the Lie algebra Vect(S1) of vector �elds on the circle. There exists a Virasorogroup whose Lie algebra is the Virasoro algebra vir; see, e.g., [Ner1].Definition 1.3. The Virasoro (or Virasoro{Bott) group is the set of pairs('(x); a) 2 Di�(S1)�R with the multiplication law('(x); a) � ( (x); b) = �'( (x)); a+ b+ ZS1 log(' �  (x))0 d log 0(x)� :



x1. THE KORTEWEG{DE VRIES EQUATION AS AN EULER EQUATION 323Applying the general constructions of Chapter I to the Virasoro group, we equipthis group with a (right-invariant) Riemannian metric. For this purpose we �x theenergy-like quadratic form in the Lie algebra vir, i.e., on the tangent space to thegroup identity: H(f(x) @@x ; a) = 12 �ZS1 f2(x) dx + a2� :Consider the corresponding Euler equation, i.e., the equation of the geodesic owgenerated by this metric on the Virasoro group.Definition 1.4. The Korteweg{de Vries (KdV) equation on the circle is theevolution equation @tu+ uu0 + u000 = 0on a time-dependent function u on S1, where 0 = @=@x and @t = @=@t; see [KdV].Theorem 1.5 [OK1]. The Euler equation corresponding to the geodesic ow (forthe above right-invariant metric) on the Virasoro group is a one-parameter familyof KdV equations.Proof. The equation for the geodesic ow on the Virasoro group correspondsto the Hamiltonian equation on the dual Virasoro algebra vir�, with the linearLie{Poisson bracket and the Hamiltonian function �H.The space vir� can be identi�ed with the set of pairs�(u(x)(dx)2 ; c)j u(x) is a smooth function on S1; c 2 R	 :Indeed, it is natural to contract the quadratic di�erentials u(x)(dx)2 with vector�elds on the circle, while the constants are to be paired between themselves:h(v(x) @@x ; a); (u(x)(dx)2 ; c)i = ZS1 v(x) � u(x) dx+ a � c:The coadjoint action of a Lie algebra element (f @=@x; a) 2 vir on an element(u(x)(dx)2 ; c) of the dual space vir� is(1.2) ad�(f @=@x;a)(u(dx)2; c) = (2f 0u+ fu0 + cf 000; 0);where 0 stands for the x-derivative. It is obtained from the identityh[(f @@x; a); (g @@x; b)]; (u(dx)2; c)i = h(g @@x ; b); ad�(f @@x ; a)(u(dx)2; c)i;which holds for every pair (g @@x ; b) 2 vir.



324 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDThe quadratic energy functional H on the Virasoro algebra determines the \tau-tological" inertia operator A : vir ! vir�, which sends a pair (u(x)@=@x; c) 2 virto (u(x)(dx)2; c) 2 vir�.In particular, it de�nes the quadratic Hamiltonian on the dual space vir�,H(u(dx)2; c) =12(Z u2 dx + c2)=12h(u @@x ; c); (u(dx)2; c)i = 12 h(u @@x ; c); A(u @@x ; c)i:The corresponding Euler equation for the right-invariant metric on the group (ac-cording to the general formula (I.6.4), Theorem I.6.15) is given by@@t (u(dx)2; c) = �ad�A�1(u(dx)2;c)(u(dx)2; c):Making use of the explicit formula for the coadjoint action (1.2) with(f @=@x; a) = A�1(u(dx)2; c) = (u@=@x; c);we get the required Euler equation:� @tu = �2u0u� uu0 � cu000 = �3uu0 � cu000;@tc = 0:The coe�cient c is preserved in time, and the function u satis�es the KdV equation(with di�erent coe�cients). �Remark 1.6. Without the central extension, the Euler equation on the groupof di�eomorphisms of the circle has the form@tu = �3uu0:(called a nonviscous Burgers equation). Rescaling time, this equation can be re-duced to the equation on the velocity distribution u of freely moving noninteractingparticles on the circle. It develops completely di�erent properties as compared tothe KdV equation (see, e.g., [Arn15]).If u(x; t) is the velocity of a particle x at moment t, then the substantial derivativeof u is equal to zero: @tu+ uu0 = 0. In Fig.71 one sees a typical perestroika of thevelocity �eld u in time. Since every particle keeps its own velocity, fast particlespass by slow ones. Every point of inection in the initial velocity pro�le u(x; 0)generates a shock wave.Thus, in �nite time, solutions of the corresponding Euler equation de�ne a multi-valued, rather than univalued, vector �eld of the circle. In other words, the geodesic



x1. THE KORTEWEG{DE VRIES EQUATION AS AN EULER EQUATION 325
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Figure 71. The shock wave generated by freely moving noninteractingparticles.ow on the group Di�(S1), with respect to the right-invariant metric generated bythe quadratic form R u2dx on the Lie algebra, is incomplete.Note also that in the case of the Burgers equation with small viscosity, shockwaves appear as well. Initial series of typical bifurcations of shock waves weredescribed in [Bog] (see also [SAF, Si2]). Typical singularities of projections of thesolutions on the plane of independent variables for 2 � 2 quasilinear systems areclassi�ed in [Ra].On the other hand, the solutions of the KdV equation exist and remain smoothfor all t, and do not develop shock waves. In the interpretation of the KdV as theshallow water equation, the parameter c measures dispersion of the medium.Remark 1.7. Di�erential geometry of the Virasoro group with respect to theabove right-invariant metric is discussed in [Mis3]. In particular, the sectionalcurvatures in the two-dimensional directions containing the central direction arenonnegative (cf. Remark IV.2.4). For the relation between the geometry of theKdV equation and the K�ahler geometry of the Virasoro coadjoint orbits see [Seg,STZ].One can extend this Eulerian viewpoint to the super-KdV equation (introducedin [Kup]) and describe the latter as the equation of geodesics on the super-analoguesof the Virasoro group, corresponding to the Neveu{Schwarz and Ramond super-algebras; see [OK1]. Another elaboration of this viewpoint is the passage from theL2-metric on the Virasoro algebra to another one, say, the H1-metric:k(f(x) @@x ; a)k2H1 = 12 �ZS1 f2(x) dx + ZS1 (f 0(x))2 dx + a2� :Proposition 1.8 [Mis4]. The H1-metric on the central extension of the Lie



326 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDalgebra Vect(S1) of vector �elds on the circle given by the (trivial) 2-cocyclec(f; g) := ZS1 f 0(x)g(x) dxgenerates the shallow water equation� @tu� @tu00 = uu000 + 2u0u00 � 3uu0 � cu0;@tc = 0(introduced in [C-H]). Here the prime 0 stands for @@x , and @t denotes @@t .1.B. The translation argument principle and integrability of the high-dimensional rigid body.Definitions 1.9. A function F on a symplectic manifold is a �rst integral ofa Hamiltonian system with Hamiltonian H if and only if the Poisson bracket of Hwith F is equal to zero. Functions whose Poisson bracket is equal to zero are saidto be in involution with respect to this bracket.A Hamiltonian system on a symplectic 2n-dimensional manifold M2n is calledcompletely integrable if it has n integrals in involution that are functionally inde-pendent almost everywhere on M2n.A theorem attributed to Liouville states that connected components of non-critical common level sets of n �rst integrals on a compact manifold are the n-dimensional tori. The Hamiltonian system de�nes a quasiperiodic motion _� =const in appropriate angular coordinates � = (�1; : : : ; �n) on each of the tori; see[Arn16].Example 1.10. Every Hamiltonian system with one degree of freedom is com-pletely integrable, since it always possesses one �rst integral, the Hamiltonian func-tion itself.In particular, the Euler equation of a three-dimensional rigid body is a completelyintegrable Hamiltonian system on the coadjoint orbits of the Lie group SO(3).These orbits are the two-dimensional spheres centered at the origin and the originitself, while the Hamiltonian function is given by the kinetic energy of the system.Example 1.11. A consideration of dimensions is not enough to argue the com-plete integrability of the equation of an n-dimensional rigid body for n > 3. Freemotions of a body with a �xed point are described by the geodesic ow on thegroup SO(n) of all rotations of Euclidean space Rn.The group SO(n) is equipped with a particular left-invariant Riemannian metricde�ned by the inertia quadratic form in the body's internal coordinates. On the



x1. THE KORTEWEG{DE VRIES EQUATION AS AN EULER EQUATION 327Lie algebra so(n) of skew-symmetric n�n matrices this quadratic form is given by�tr(!D!), where! 2 so(n); D = diag(d1; : : : ; dn); dk = 12 Z �(x)x2k dnx;and where �(x) is the density of the body at the point x = (x1; : : : ; xn). The inertiaoperator A : so(n) ! so(n)� de�ning this quadratic form sends a matrix ! to thematrix A(!) = D! + !D.Remark 1.12. For n = 3 this formula implies the triangle inequality for theprincipal momenta dk. Operators satisfying these inequalities form an open set inthe space of symmetric 3� 3 matrices. In higher dimension (n > 3) the symmetricmatrices representing the inertia operators of the rigid bodies are very special. Theyform a variety of dimension n in the n(n � 1)=2-dimensional space of equivalenceclasses of symmetric matrices on the Lie algebra.Theorem 1.13 ([Mish] for n = 4, [Man] for all n). The Euler equation_m = ad�!m of an n-dimensional rigid body, where ! = A�1m and the inertiaoperator A is de�ned above, is completely integrable. The functions(1.3) H�;� = det(m + �D2 + �E)on the dual space so(n)� provide a complete family of integrals in involution.The involutivity of the quantities H�;� can be proved by the method of Poissonpairs and translation of the argument, which we discuss below (see [Man]). Notethat the physically meaningful inertia operators A(!) = D! +!D (i.e., those withentries aij = di + dj) form a very special subset in the space of all symmetricoperators A : so(n) ! so(n)�. According to Manakov, a su�cient condition forintegrability is that aij = pi � pjqi � qj(which for pi = q2i becomes the physical case above). The limit n ! 1 of theintegrable cases on SO(n) was considered in [War].The geodesic ow on the group SO(n) equipped with an arbitrary left-invariantRiemannian metric is, in general, nonintegrable.Usually, integrability of an in�nite-dimensional Hamiltonian system is relatedto the existence of two independent Poisson structures forming a so-called Poissonpair, such that the system is Hamiltonian with respect to both structures.



328 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDDefinitions 1.14. Assume that a manifold M is equipped with two Poissonstructures f:; :g0 and f:; :g1. They are said to form a Poisson pair (or to be compat-ible) if all of their linear combinations �f:; :g0+ �f:; :g1 are also Poisson structures.A dynamical system _x = v(x) on M is called bi-Hamiltonian if the vector �eldv is Hamiltonian with respect to both structures f:; :g0 and f:; :g1.Remark 1.15. The condition on f:; :g0 and f:; :g1 to form a Poisson pair isequivalent to the identity(1.4) X(f;g;h)fff; gg0; hg1 + fff; gg1; hg0 = 0for any triple of smooth functions f; g; h on M , where the sum is taken over allthree cyclic permutations of the triple.In the next theorem we assume, for the sake of simplicity, that M is simplyconnected and that the Poisson structures f:; :g0 and f:; :g1 are everywhere nonde-generate, i.e., they are inverses of some symplectic structures on M .Theorem 1.16 [GDo]. Let v be a bi-Hamiltonian vector �eld with respect to thestructures of a Poisson pair f:; :g0; f:; :g1. Then there exists a sequence of smoothfunctions Hk; k = 0; 1; : : : , on M such that(1) H0 is a Hamiltonian of the �eld v0 := v with respect to the structure f:; :g0;(2) the �eld vk of the 0-Hamiltonian Hk coincides with the �eld of the 1-Hamiltonian Hk+1;(3) the functions Hk; k = 0; 1; : : : , are in involution with respect to both Poissonbrackets.The algorithm for generating the Hamiltonians Hk is called the Lenard schemeand is shown in Fig.72.
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x1. THE KORTEWEG{DE VRIES EQUATION AS AN EULER EQUATION 329Although this theorem is formulated and proven for the case of nondegeneratebrackets only, the procedure is usually applied in a more general context. Namely,let the �eld v0 := v be Hamiltonian with Hamiltonian functions H0 and H1 relativeto the structures f:; :g0 and f:; :g1, respectively. Consider the function H1 as theHamiltonian with respect to the bracket f:; :g0 and generate the next Hamiltonian�eld v1. One readily shows that the �eld v1 preserves the Poisson bracket f:; :g0,provided that the two brackets form a Poisson pair (a formal application of the iden-tity (1.4)). However, this does not imply, in general, that the �eld v1 is Hamiltonianwith respect to the bracket f:; :g0. (Example: The vertical �eld @=@z preserves thePoisson structure in R3x;y;z given by the bivector �eld @=@x ^ @=@y, but it is notde�ned by any Hamiltonian function. Every Hamiltonian �eld for this structurewould be horizontal.) If we are lucky, and the �eld v1 is indeed Hamiltonian, wecontinue the process to the next step, and so on.To apply the technique of Poisson pairs in the Lie-algebraic situation, recall thaton the dual space g� to any Lie algebra g there exists a natural linear Lie{Poissonstructure (see Section I.6) ff; gg(m) := h[df; dg];mifor any two smooth functions f; g on g�, and m 2 g�. In other words, the Poissonbracket of two linear functions on g� is equal to their commutator in the Lie algebrag itself. The symplectic leaves of this Poisson structure are the coadjoint orbits ofthe group action on g�, while the Casimir functions are invariant under the coadjointaction. The following method of constructing functions in involution on the orbitsis called the method of translation of the argument, and originally appeared inManakov's paper [Man] to describe the integrable cases of higher-dimensional rigidbodies (see further generalizations in, e.g., [A-G, T-F]).Fix a point m0 in the dual space to a Lie algebra. One can associate to thiselement a new Poisson bracket on g�.Definition 1.17. The constant Poisson bracket associated to a point m0 2 g�is the bracket f:; :g0 on the dual space g� de�ned byff; gg0(m) := h[df; dg];m0ifor any two smooth functions f; g on the dual space, and any m 2 g�. The di�er-entials df; dg of the functions f; g are taken at a current point m, and, as above,are regarded as elements of the Lie algebra itself.The brackets f:; :g and f:; :g0 coincide at the point m0 itself. Moreover, thebivector de�ning the constant bracket f:; :g0 does not depend on the current point.



330 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDThe symplectic leaves of the bracket are the tangent plane to the group coadjointorbit at the point m0, as well as all the planes in g� parallel to this tangent plane(Fig.73).
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Figure 73. Symplectic leaves of the constant bracket are the planesparallel to the tangent plane to the coadjoint orbit at m0.Proposition 1.18. The brackets f:; :g and f:; :g0 form a Poisson pair for every�xed point m0.Proof. The linear combination f:; :g� := f:; :g + �f:; :g0 is a Poisson bracket,being the linear Lie{Poisson structure f:; :g translated from the origin to the point��m0. �Corollary 1.19. Let f; g : g� ! R be invariants of the group coadjoint action,and let m0 2 g�. Then the functions f(m+�m0); g(m+ �m0) of the point m 2 g�are in involution for any �; � 2 R on each coadjoint orbit.Proof. This is an immediate consequence of the fact that Casimir functions forall linear combinations of compatible Poisson brackets are in involution with eachother. The latter holds by virtue of the de�nition of a Poisson pair. �We leave it to the reader to adjust this Corollary to produce the family (1.3) of�rst integrals providing the integrability of the higher-dimensional rigid body (see[Man]). Below, we show how this scheme works for the KdV equation.



x1. THE KORTEWEG{DE VRIES EQUATION AS AN EULER EQUATION 331Remark 1.20. A Hamiltonian function f and the Poisson structure f:; :g0 gen-erate the following Hamiltonian vector �eld on the dual space g�:(1.5) v(m) = ad�df m0;where the di�erential df is taken at the point m. Indeed, for an arbitrary functiong one has ff; gg0(m) = haddf (dg);m0i = h(dg); ad�df m0i;and the latter pairing is the Lie derivative Lvg (at the pointm 2 g�) of the functiong along the �eld v de�ned by (1.5). Hence, this vector �eld v is Hamiltonian withHamiltonian function f .1.C. Integrability of the KdV equation. The existence of an in�nite numberof conserved charges for the ow determined by the KdV equation was discoveredin the late 1960s, and in a sense this discovery launched the modern theory ofin�nite-dimensional integrable Hamiltonian systems (see [Ma, Miu] for an intriguinghistorical survey).The �rst of the KdV conservation laws were found via calculations with undeter-mined coe�cients, but this method stopped at the 9th invariant. Miura describesin [Miu] how, in the summer of 1966, a rumor circulated that there were exactly9 conservation laws in this case. Miura spent a week of his summer vacation andsucceeded in �nding the 10th one. Later code was written computing the 11th law.After that the specialists were convinced that there should be an in�nite series ofconservation laws.In this section, we shall see how these laws can be extracted via the recursiveLenard scheme, or equivalently, via Manakov's method of the translation of argu-ment from the preceding section.The KdV equation is an example of a bi-Hamiltonian system. First, as wediscussed in Section 1.A, it is Hamiltonian on the dual space vir� = f(u(dx)2; c)gof the Virasoro algebra with the quadratic Hamiltonian function�H(u(dx)2; c) = �12 �Z u2 dx + c2�relative to the linear Poisson structure. This Poisson structure is called the secondKdV Hamiltonian structure and is sometimes referred to as the Magri bracket; see[Mag].Moreover, one can specify a point in the space vir� such that the KdV equationwill also be Hamiltonian with respect to the constant Poisson structure associated tothis point. Namely, let the pair (u0(x)(dx)2; c0) consist of the function u0(x) � 1=2and c0 = 0.



332 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDDefinition 1.21. Let F be a function on the dual space g� of a Lie algebra gand m 2 g�. In the case of an in�nite-dimensional space g�, the di�erential dF jm(regarded as a vector of the Lie algebra itself) is called the variational derivative�F�m , and it is de�ned by the relationdd�F (m+ �w)���=0 = h �F�m; w i:For instance, in the case of the Virasoro algebra, a functional F is de�ned onthe set of pairs (u(x)(dx)2 ; c). The variational derivative���F�u� @@x ; �F�c �is the pair consisting of a vector �eld and a number such thatdd�F ((u+ �w)(dx)2; c+ �b)���=0 = h ���F�u� @@x ; �F�c � ; (w(dx)2; b) i= Z ��F�u (x) � w(x)� dx+ �F�c � b:(To specify the class of functionals, one usually considers di�erential polynomialson vir�, i.e., integrals of polynomials in u and in its derivatives; see [GDo]).Proposition 1.22. (i) The Poisson structure f:; :g0 associated to the point�12(dx)2; 0� 2 vir�sends every Hamiltonian function F on the dual space vir� to the Hamiltonianvector �eld on vir� whose value at a point (u(dx)2; c) is the pair ��F�u�0 (x)(dx)2 ; 0! :(ii) The Korteweg{de Vries equation is Hamiltonian with respect to the constantPoisson structure f:; :g0 with the Hamiltonian function(1.6) Q(u(dx)2; c) = 12 ZS1 ��u3(x) + c(u0)2(x)� dx:The Poisson structure f:; :g0 is called the �rst KdV Hamiltonian structure; see,e.g., [LeM]. The Hamiltonians H2 = H and H3 = Q of the KdV equation withrespect to the Poisson pair f:; :g and f:; :g0 start the series of conservation lawsgenerated by the Lenard iteration scheme. One readily shows that at each step



x1. THE KORTEWEG{DE VRIES EQUATION AS AN EULER EQUATION 333the Hamiltonian functional Hk is a di�erential polynomial of order k in u(x). Usu-ally, this series of �rst integrals for the KdV starts with the Hamiltonian functionH1(u) := R u(x) dx.Proof. Item (i) is a straightforward application of the notion of variationalderivative to formula (1.5). Indeed, one obtains the Hamiltonian vector �eld for afunctional F on the space vir� by freezing the values of u(x) and c as u0(x) � 1=2and c0 = 0 in (1.2):ad�(f @=@x;a)(u0(dx)2; c0) = �(2f 0u0 + fu00 + c0f 000)(dx)2; 0� = (f 0(dx)2; 0);where f := � �F�u �, and a := ��F�c �.(ii) The variational derivative of the functional Q given by (1.6) is(1.7) ��Q�u � = �32u2 � cu00:Indeed, this follows from the equalitydd� 12 ZS1 ��(u+ �w)3 + c ((u+ �w)0)2� dx = �ZS1 �32u2 + cu00� � w dx:Then, substituting the variational derivative f = �Q=�u from (1.7) into (1.2),we get the following Hamiltonian vector �eld on the dual space vir�:� @tu = f 0 = �(32u2 + cu00)0 = �3uu0 � cu000;@tc = 0;that is, the KdV equation. �Remark 1.23. The KdV ow is tangent to the coadjoint orbits of the Virasoroalgebra (as is the ow of every Euler equation on the dual space to any Lie algebra).Note that none of the above �rst integrals of the KdV equation are invariants ofthe Virasoro coadjoint action, and therefore their meaning is completely di�erentfrom the Casimir functions of two-dimensional hydrodynamics (cf. Remark I.9.8).The description of the Virasoro orbits (or Casimir functions), besides being evidentinformation on the behavior of KdV solutions, is an interesting question in its ownright.The classi�cation problem for the Virasoro coadjoint orbits is also known as theclassi�cation of Hill's operators� d2dx2 + u(x) �� u 2 C1(S1)� ;



334 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDor of projective structures on the circle, and it has been solved independently indi�erent terms and at di�erent times (see [Kui, LPa, Seg, Ki2]). The orbits areenumerated by one discrete parameter and one continuous parameter. General-ization of this problem to the classi�cation of symplectic leaves of the so-calledGelfand{Dickey brackets, which are certain natural Poisson brackets on di�eren-tial operators of higher order on the circle, as well as the relation of this problemto enumeration of homotopy types of nonattening curves on spheres, is given in[OK2] (see also [KhS, Sha, E-K] for relevant problems).The Lenard scheme generates a series of Hamiltonian equations called the KdVhierarchy. A similar construction exists for higher KdV hierarchies, which areHamiltonian ows on coe�cients of di�erential operators of higher order on thecircle; see [Adl, GDi, SeW, PrS].1.D. Digression on Lie algebra cohomology and the Gelfand{Fuchscocycle. The theory of Lie algebra cohomology is an algebraic generalization ofthe following geometric construction from Lie group theory.Let G be a compact connected simply connected Lie group equipped with a two-sided invariant metric (a typical example: the group of unit quaternions SU(2) � S3or the group SU(n) of unitary matrices with unit determinant).One can calculate the cohomology groups and, furthermore, their exterior algebrafor the group G as follows.Theorem 1.24. The exterior algebra of two-sided invariant di�erential formson G is isomorphic to the cohomology exterior algebra of the manifold G. Theisomorphism is de�ned by assigning to each di�erential form its cohomology class.The proof is based on two facts: i) every two-sided invariant form is closed (see(1.8) below); ii) every closed 2-form is cohomologous to a two-sided invariant form,namely, to the average value of all its shifts.This classical theorem reduces all calculations to a purely algebraic considerationin terms of the commutator of the Lie algebra. Indeed, any one-sided invariant formis determined by its value on the Lie algebra. The exterior di�erential of this formis also an invariant form, and hence it is also determined by its value on the Liealgebra.Given an invariant 1-form !, its di�erential is a 2-form de�ned at the identityby the following Maurer{Cartan formula:(d!)(�; �) = �!([�; �])(the sign is de�ned by whether the form is left- or right-invariant). This formulaallows one to write algebraically the closedness condition (and to verify that it



x1. THE KORTEWEG{DE VRIES EQUATION AS AN EULER EQUATION 335coincides with the condition of two-sided invariance). More generally, one has thefollowingTheorem 1.25. Given a one-sided invariant n-form ! whose value on the Liealgebra g is !(�1; : : : ; �n); �i 2 g, its exterior di�erential is the invariant (n + 1)-form d! whose value on the Lie algebra is(1.8) d!(�0; : : : ; �n) = � X0�i<j�n(�1)i+j!([�i; �j ]; �0; : : : ; �̂i; : : : ; �̂j ; : : : ; �n);where the sign is determined by whether the form ! is left- or right-invariant, andthe hat ^ means that the corresponding vector is missing.Example 1.26. For a 1-form ! we have �(d!)(�; �) = !([�; �]). The di�erentialof a 2-form ! is given by the formula�d!(�; �; �) = !([�; �]; �) + !([�; �]; �) + !([�; �]; �):The algebraic generalization mentioned above, which allows one to avoid calcu-lations on the Lie group, proceeds as follows.Definition 1.27. The cohomology complex of a Lie algebra g is the complex
0 d0�! 
1 d1�! 
2 d2�! : : : ;where 
n is a vector space of exterior n-forms on the Lie algebra g, and the di�er-ential dn is given by formula (1.8).The nth-cohomology group (or space) of the Lie algebra g is the vector spaceKer dn : 
n ! 
n+1Im dn�1 : 
n�1 ! 
n ;that is, the quotient of the space of all closed n-forms over the subspace of all exactforms. The elements of the space Kerdn : 
n ! 
n+1 are called n-cocycles, whilethe elements of the subspace Im dn�1 : 
n�1 ! 
n are n-coboundaries, or thecocycles cohomologous to zero.Remark 1.28. The fact that dndn�1 = 0 readily follows from formula (1.8)and the Jacobi identity. Geometrically, it means that the boundary of any simplexboundary (say, for a triangle or a tetrahedron) is zero.Example 1.29. Let a 2 g� be any element of the dual space to the Lie algebrag and set !(�; �) := a([�; �]):



336 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDThis function is a 2-cocycle, and even a 2-coboundary, on g.For instance, for the Lie algebra g = Vect(S1) of vector �elds on the circle, andthe point a = (dx)2=2 2 Vect�, we get the following 2-cocycle cohomologous tozero: !(g(x) @@x ; h(x) @@x ) = 12 ZS1(g0h� gh0) dx = ZS1 g0h dx:Remark 1.30. The 2-cocycle on Vect(S1) de�ning the Virasoro algebra is ofa more subtle nature, and is related to the projective structures on the circle (wefollow [Tab3] below).Note that every 2-cocycle on a Lie algebra is a linear map from this Lie algebrato its dual. We construct a natural map from the Lie algebra Vect(S1) of vector�elds on the circle to its dual, the space of quadratic di�erentials Vect(S1)� =fu(x)(dx)2g, �xing �rst a projective structure on S1.Consider four points x; x+ t; x+2t; x+3t in an a�ne coordinate system, wheret is very small. A di�eomorphism f : S1 ! S1 sends them to four points whosecross ratio is of order t2 (not of order t!). The principal part of this cross ratioat the point x is (up to a constant factor) the Schwarzian derivative S(x) of thedi�eomorphism f : S(x) = f 000f 0 � 32 �f 00f 0 �2 :The corresponding quadratic di�erential S(x)(dx)2 is independent of the (pro-jective) choice of the coordinate x and measures the \nonprojectivity" of the map f .It is a cocycle of the di�eomorphism group of the circle with values in the quadraticdi�erentials.Now consider the Lie algebra of vector �elds. Let f be a di�eomorphism of S1close to the identity, f(x) = x + sv(x), where s is small, and let v(x)d=dx be avector �eld of the algebra Vect(S1). Then S(x) is sv000(x) +O(s2), where 0 standsfor d=dx. Neglecting higher-order terms, we get the desired mapping, which sendsthe �eld v(x) d=dx to the quadratic di�erential v000(x)(dx)2.For the angular coordinate q on the circle, the �eldw(q)@=@q is sent to (d3w=dq3+dw=dq)(dq)2. This can be deduced with virtually no calculations from the de-scription of the Lie algebra spanned by the generators of the projective group:@=@q; (cos q)@=@q; (sin q)@=@q (accompanied by the change of variables normalizingthe �rst coe�cient).We have now obtained the cocycle whose value on two vector �elds v(q)@=@qand w(q)@=@q is given by the expressionZS1 (vw000 + vw0)dq;



x2. EQUATIONS OF GAS DYNAMICS AND COMPRESSIBLE FLUIDS 337where 0 is the derivative d=dq along the angular coordinate. The second term iscohomologous to zero, as we have seen above (see Example 1.29). Integrating byparts the �rst monomial, we obtain the Gelfand{Fuchs cocycle. Thus the Gelfand{Fuchs cocycle (and hence, the Virasoro algebra) measures the deformation of theprojective structure on S1 = RP 1 by di�eomorphisms.x2. Equations of gas dynamics and compressible uidsThe evolution of a compressible uid naturally extends the motion of an idealincompressible uid: Instead of the incompressibility condition, one assumes nowthat the pressure term of the Euler equation is determined by the intrinsic degrees offreedom of the uid. Usually these internal parameters are the density and entropyof the uid.2.A. Barotropic uids and gas dynamics. Barotropic uids (or gas dynam-ics) are simpli�ed models of compressible uids in which the only intrinsic degreeof freedom is the density of the uid or of the gas.Definition 2.1. A (compressible) uid is barotropic (or isentropic) if the pres-sure term in the evolution equation is de�ned solely by the uid's density. The uidmotion is described by the following system of equations:(2.1) � � _v = �� (v;r)v �rh(�);_�+ div(�v) = 0;where v and � are respectively the velocity vector �eld and the density functionof the uid. The pressure function h(�) depends on the physical properties of theuid, and is assumed to be given. For instance, the equation of gas dynamics on aline corresponds to the choice h(�) = �� (for the motion of air � � 1:4).Equations (2.1) make sense for an arbitrary Riemannian manifold M , providedthat (v;r) stands for the covariant derivative along the �eld v (see Chapter I) andthe divergence is taken with respect to the volume form induced by the metric. The�rst equation is similar to the Euler dynamics of an incompressible uid, but thevelocity �eld v 2 Vect(M) is no longer divergence-free. The second equation is thecontinuity equation for the function �. Thus the phase space of the system consistsof all pairs f(v; �) �� v 2 Vect(M); � 2 C1(M)g.The con�guration space of the barotropic uid on a manifold M is the groupP := Di� M nC1(M);



338 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDde�ned as the semidirect product of the group of all di�eomorphisms of M and thespace C1(M) of all smooth functions on the manifold considered (see [HMRW] fora derivation of the equation via reduction in the Lagrangian representation).Recall (cf. Section I.10 on the magnetic extension of a group) that the groupstructure on the semidirect product P is de�ned by the formula('; a) � ( ; b) = (' �  ; �a+ b);where  �a is the natural action of the di�eomorphism  on the function a:  �a =a( �1(x)). The commutator in the corresponding Lie algebrap = Vect(M) nC1(M)is also de�ned via the semidirect product of the Lie algebras involved:[(v; a); (w; b)] = ([v;w]; Lwa � Lvb);where '; 2 Di�(M); a; b 2 C1(M); v;w 2 Vect(M); and [v;w] denotes thecommutator, i.e., minus the Poisson bracket, of the two vector �elds onM ([v;w] =�fv;wg); see Section I.2.Remark 2.2. The Lie algebra p = Vect (M)nC1(M) has a simple geometricmeaning: It is the Lie algebra of di�erential operators of the �rst order onM . Suchan operator is always the sum Lv+�, where Lv is the operator of the Lie derivativealong the �eld v on M , and � is regarded as the operator of the 0th order, namelythe operator of multiplication by the function �.Proposition 2.3 [GS1, MRW, Nov2]. The equation of a barotropic uid is aHamiltonian equation on p� with respect to the linear Poisson{Lie structure andHamiltonian function H(v; �) = �ZM �12�v2 +�(�)� �;where dd��(�) = h(�).Remark 2.4. In contrast with the Euler dynamics (both of the rigid body andthe ideal uid), the total energy of a barotropic uid is not a quadratic form, andit no longer has the meaning of a Riemannian metric on an appropriate group.However, one still has a variational problem on the cotangent space T �P of theLie group P , such that its extremals are the solutions of Equations (2.1). Thegroup-theoretical interpretation and all the Hamiltonian properties of the equations



x2. EQUATIONS OF GAS DYNAMICS AND COMPRESSIBLE FLUIDS 339described earlier will be valid for the barotropic uid (or gas dynamics) with merelycosmetic changes.Note that for the one-dimensional manifold M = R or S1 the equations of gasdynamics (2.1) for the algebra p = Vect (M)nC1(M) are integrable (see Section3.B). Note that this Lie algebra has three independent nontrivial 2-cocycles (one ofthem being the Gelfand{Fuchs cocycle of the Virasoro algebra).Proof sketch of Proposition 2.3. One readily veri�es the followingProposition 2.5. The dual to the space of vector �elds Vect(M) on an n-dimensional manifold M is the space 
1(M) 
f 
n(M), where 
f means that thetensor product is taken over functions on M .In other words, elements of 
1(M)
f 
n(M) are pairs � 
 �; � 2 
1; � 2 
n,and we do not distinguish between the pairs f� 
 � or � 
 f� for all functions f .The pairing between v 2 Vect(M) and �� = � 
f � 2 
1(M) 
f 
n(M) is asfollows: hv; � 
 �i = ZM (iv�) �(the vector �eld v is contracted with the 1-form �, and the obtained n-form (iv�)�is integrated overM). That this choice of dual space is natural is due to the (readilyveri�ed) fact that the coadjoint action of the Lie algebra Vect(M) is geometric:(2.2) Ad�'(� 
f �) = '�� 
f '��;i.e., it is given by a change of coordinates in both of the 1-form � and the n-form�. In case of the Lie algebra p� = Vect (M)nC1(M), elements of the correspondingdual space p� are pairs ( ��; �), where �� 2 
1(M) 
 
n(M) and � 2 
n(M). Weleave it to the reader to check that the coadjoint action of an element ('; a) 2Di� (M) n C1(M) is Ad�(';a)( ��; �) = ('� �� + da
 '��; '��)(see, e.g., [MRW]).Once the coadjoint action is known, it is routine to �nd the variational deriva-tive of the Hamiltonian function (see De�nition 1.21) and the corresponding Eulerequation, according to the general rule_m = ad��H=�mm: �



340 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDIt turns out that the equations of barotropic uid or gas dynamics have plentyof similarities with the incompressible case (e.g., the structure of conservation lawsin even and odd dimensions is the same). This phenomenon is due to \incompress-ibility" of the barotropic uid in coordinates moving with density.Namely, let � be the volume form on M induced by the Riemannian metric.Assign to the density function � the density n-form � := �� 2 
n(M).Theorem 2.6 [KhC]. The barotropic uid equations (2.1) admit �rst integralsI(v) := ZM u ^ (du)m and If (v) := ZM f �(du)m� � �according to the parity of n = dim(M) (n = 2m + 1 and n = 2m, respectively),where the vector �eld v and the 1-form u are related by means of the metric, andf : R! R is an arbitrary function.The integrals above can be read o� from (I.9.2) if one replaces the n-form � bythe density form � = �� 2 
n(M), with � being the density function. We shall showthat these invariants are Casimir functions on the dual space to the Lie algebra p.Another (though trivial) conservation law of the same nature is given by the totalmass of the uid, that is, by the integral of the density form � over the manifoldM . The Hamiltonian function H is also a �rst integral of the equation, but it isnot a Casimir function.Remark 2.7. The equations of a barotropic uid with a nearly constant density� approximate the Euler equation of an incompressible uid [Eb]. One can thinkof the condition of incompressibility within the general framework of systems withconstraints (see [Arn16]). A dynamical system con�ned to a submanifold can beregarded as a subsystem in an ambient manifold with a strong \returning force"directed towards the submanifold.For instance, consider a point mass that is constrained to move in the unit circlein the plane without forces. It can be thought of as a point attached to the centerby a rigid rod. The latter is the limiting case of a point attached to the centerby an elastic spring, where the elasticity coe�cient of the spring tends to in�nity,and in equilibrium the spring has length 1. While a point on a rod is con�ned to acircle, a point on a spring oscillates out from this circle. In the limit, the positionand velocity of the \elastic pendulum" tend to those of the \rigid pendulum," butthe acceleration does not.Similarly, for the group of all di�eomorphisms of a manifold, one can introduce a\returning force" directed towards the subgroup of all volume-preserving di�eomor-phisms (see [Eb]). Then the velocity and its �rst partial derivatives of a barotropic



x2. EQUATIONS OF GAS DYNAMICS AND COMPRESSIBLE FLUIDS 341(weakly compressible) uid tend to those of an ideal uid. In particular, the aboveconservation laws for a barotropic uid become the conserved charges (I.9.2) for anideal uid as � ! 1. Indeed, their explicit form involves only the uid velocity vand its �rst derivatives @v=@x (or the corresponding 1-form u and its di�erentialdu, where u is related to v by means of the Riemannian metric, i.e., without anydi�erentiation). The conservation laws do not contain time derivatives of the ve-locity (i.e., do not contain the acceleration), and hence the limiting procedure isharmless for them.Proof of Theorem 2.6. A heuristic argument is based on the fact that thedensity � is transported by the ow and the uid is incompressible with respect tothe new volume form � (depending on time and on the initial conditions). Thus,we can apply Theorem I.9.2, whose assumptions require no relation between themetric and the volume form.More precisely, the trajectories of the barotropic uid equations are tangent tothe orbits of the coadjoint representation of the group P = Di� M nC1(M), andthe statement follows fromProposition 2.8. The functionalI( ��; �) = ZM u ^ (du)min the case of an odd n = 2m+ 1 and the functionalsIf ( ��; �) = Z f � (du)m� � �in the case of an even n = 2m (where the 1-form u is de�ned by u := ��=� 2 
1(M))are invariant under the coadjoint action of the group P on the dual space p�.Proof. Note that the ratio u = ��=� has the geometric meaning of a di�erential1-form (see (2.2)). Explicitly, one has the following action on this form:Ad�(';a)u = Ad�(';a)� ���� = '� �� + da
 '��'��= '�� ����+ da = '�u+ da;i.e., the 1-form u is transported by the ow modulo da, the di�erential of a function.Hence, the P -action on the coset [u] 2 
1=d
0 of 1-forms onM , as well as on the n-form � 2 
n, is geometric: It is nothing but a change of variables. Now Proposition



342 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUND2.7 (as well as Proposition I.9.3) follows from the coordinate-free de�nition of thefunctionals I and If . �To complete the proof of the theorem, recall that the inertia operator ~A : p! p�de�ned by the Riemannian metric on the manifoldM is the map (v; �) 7! (u
�; �),where � = �� is the density form on M , and the 1-form u is obtained from thevelocity v by the metric \lifting indices." Theorem 2.6 follows. �2.B. Other conservative uid systems. We refer to the surveys [GS2, HMRW,MRW, Nov2, DKN, VlM] for extended treatments of the Hamiltonian formalismrelated to the variety of di�erent types of uids, and in particular for applicationsof the techniques of semidirect products and Hamiltonian reductions.We mention just a few examples:| A general inviscid compressible uid is regarded as having two internaldegrees of freedom: The pressure term is de�ned by both the mass densityand the entropy (unlike the barotropic case with density only); see [Nov2].The corresponding Euler equation is related to the semidirect product Liealgebra ~p := Vect (M) n [C1� (M) �C1� (M)]:| Anisotropic liquids (say, superuid 4He) require the introduction of a vector�eld for the internal degrees of freedom [Nov2, KhL].| Magnetohydrodynamics in a compressible perfectly conducting uid is con-structed as the semidirect product of the magnetic extension of the dif-feomorphism group (considered in Section I.10) with the space of smoothfunctions on the manifold M ; see [MRW].| The motion of an ideal incompressible uid with a free boundary does nothave an explicit group structure: One cannot compose two ow transforma-tions with di�erent shapes of the boundary. The Hamiltonian formalism forthis problem, as well as the Hamiltonian form for the equations of a liquiddrop with surface tension, is presented in [LMMR].| A rigid body in a uid is described by the Kirchho� equations inR6 (see Sec-tion I.10). However, the whole \body{uid" system is already an in�nite-dimensional system. The body oating in the uid is described by itsimpulse and angular momentum, while the uid can be regarded as anin�nite-dimensional system of the above type (having one �xed boundarycomponent and the other a \free" one). A uid �lling a cavity M in a bodyis another, similar, system. Its dynamics is associated to the semidirectproduct of the group E(3) (the motion of the body) and SDi�(M) (the



x2. EQUATIONS OF GAS DYNAMICS AND COMPRESSIBLE FLUIDS 343motion of the uid �lling the cavity). See [VlI] for the stability analysiscorresponding to the systems of both types.| Various equations related to two-dimensional hydrodynamics manifest somefeatures of integrability. For instance, the Kadomtsev{Petviashvili equation(ut +6uux+uxxx)x+3uyy = 0 is an integrable in�nite-dimensional Hamil-tonian system related to shallow water.| The equations of in�nite conductivity (or those of the �-plane in meteorol-ogy: � t+� x+f ;� g = 0) di�er from the standard incompressible 2Dor 3D hydrodynamics by a Coriolis-type term; see [Fey].| The equation f s + cy;� s+ �yg = 0 for steady waves in two dimensions,which is obtained from the �-plane equation by substituting  (x; y; t) = s(x�ct; y), admits interesting solutions of steadily traveling dipole vortices[LaR] (see Section I.11.A for � = 0).| Many dynamical systems on the sine-algebra, being the \quantum" versionof the algebra of Hamiltonian �elds on the two-torus (see Remark I.11.6),are described in [HOT].| General Poisson brackets of hydrodynamic type [D-N, DKN] provide a gen-eral Hamiltonian formalism for �rst-order quasilinear equations on mani-folds. The properties of these brackets impose very restrictive conditionson the Riemannian structure of the underlying manifold.One more advantage of the Hamiltonian approach is a simple geometric inter-pretation of the so-called Clebsch variables in many physically interesting systems.These variables appeared in a hydrodynamical setting as a set of an excessive num-ber of coordinates (with additional constraints between them) in which the Eulerequation acquires the canonical Hamiltonian form; see [Lam]. A general frameworkfor symplectic (or \Clebsch") variables from the Poisson point of view can be foundin [M-W] (see also [Zak, MRW]).Definition 2.9 [M-W, MRW]. If P is a Poisson manifold, then symplectic vari-ables for P is a map J :M ! P of a symplectic manifold M into P that respectsthe Poisson brackets (i.e., the pullback of the Poisson bracket of two functions f; gon P is the Poisson bracket on M of their pullbacks f � J; g � J). Any canonicalsymplectic coordinates on M are said to be canonical coordinates on the Poissonmanifold P .A Hamiltonian functionH : P ! R determines a Hamiltonian function onM byHM := H �J , and the integral curves of the \canonical" Hamiltonian system on Mwith the Hamiltonian HM cover those for the Poisson \noncanonical" Hamiltoniansystem on P .



344 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDExample 2.10. The construction of the manifoldM and the map J in the caseof the dual space P = g� to an arbitrary Lie algebra g equipped with the Lie{Poisson bracket is very explicit. The symplectic manifold becomes the cotangentbundle M = T �G to the Lie group G, while the map J is the left shift L�g of anycovector � 2 T �gG at a point g 2 G to the cotangent space at the identity: T �eG = g�.The natural coordinates (p; q) in the cotangent bundle T �G are canonical for g�,since the symplectic structure has the form dp ^ dq.A linear version of the variables on T �G is the set of canonical coordinates on�M = g� � g with the map �J : g� � g! g�such that (p; q) 7! ad�q p. We refer to [M-W, MRW, Zak] for a detailed descriptionand numerous applications of this construction of Clebsch variables to dynamicalsystems and their conservation laws.2.C. In�nite conductivity equation. The in�nite conductivity equation pos-sesses many properties inherent in ideal hydrodynamics. Its relationship to theequation of an incompressible uid is due to the fact that at a high density, an elec-tron gas is similar to a uid. Indeed, the repelling of particles in electron clustersmakes the gas incompressible.Definition 2.11 (see, e.g., [Fey]). The equation of (nonrelativistic) in�niteconductivity in a domain of R3 is(2.3) _v = �(v;r)v � v �B�rp;where v denotes a divergence-free velocity �eld of the electron gas, B is a constantin time (but not in space) external divergence-free magnetic �eld, and the symbol� stands for the cross product in R3. One can de�ne an analogue of this equationon an arbitrary Riemannian manifold M with volume form �.Proposition 2.12 [KhC]. The in�nite conductivity Equation (2.3) is equiv-alent to the following Hamiltonian equation on the dual space SVect (M)� =
1(M)=d
0(M) to the Lie algebra of divergence-free vector �elds SVect (M):(2.4) @[u]@t = �Lv[u+ �]:Here the 1-form u is related to the vector �eld v by means of the metric inertiaoperator, [u] 2 
1(M)=d
0(M) is the coset of the 1-form u, and � is a 1-formwhose di�erential d� obeys the identity d� = �iB�.Proof. The proof follows just as in the ideal incompressible case considered inChapter I (see Equation (I.7.11)). The form � de�ned by d� = �iB� (up to the



x3. DYNAMICAL SYSTEMS ON THE SPACE OF KNOTS 345di�erential of a function) is precisely chosen to �t the term v �B with the crossproduct in (2.3).The in�nite conductivity Equation (2.3) is Hamiltonian, with the Hamiltonianfunction being (minus) the quadratic energy form shifted away from the origin ofSVect(M)�: �H([u]) = �12 ZM (u+ �; u+ �) �:The Euler equation corresponding to the latter function has the form@[u+ �]@t = �Lv[u+ �];which is equivalent to (2.4). Indeed, the �eld B is constant in time, and hence@B@t = @�@t = 0: �Corollary 2.13. The in�nite conductivity Equation (2.3) has either at leastone or in�nitely many �rst integrals, according to the parity of n = dim(M). Theintegrals are given by I(v) and If (v) in formula (I.9.2) with u replaced by u + �and where the 1-form � is as de�ned above.Remark 2.14. The equation of in�nite conductivity (and its generalization toan n-dimensional manifoldM) can be regarded as the Euler equation on the centralextension of the Lie algebra of divergence-free vector �elds on M [Rog, Ze2]. Thecorresponding two-cocycle, extending the Lie algebra of divergence-free vector �eldsSVect(M), is the Lichnerowicz 2-cocycle [Lich]: For any closed 2-form � on M ,c�(v;w) = ZM (iwiv�)�;cf. Remark I.11.6 on the extension of the sine-algebra and the algebra of Hamil-tonian vector �elds on a two-dimensional torus.x3. K�ahler geometry and dynamical systems on the space of knotsIn�nite-dimensional spaces of curves appear in the hydrodynamical setting ascertain special \low-dimensional" coadjoint orbits of the di�eomorphism group ofR3. This point of view connects many seemingly unrelated symplectic and Poissonvarieties and dynamical systems on them.



346 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUND3.A. Geometric structures on the set of embedded curves. Consider thespace C of smooth embedded nonparametrized oriented closed curves (or the spaceof knots) in Euclidean three-dimensional space R3. It can be thought of as the setof all smooth maps  : S1 ! R3 of the circle into R3 such that  is an immersion(0(x) 6= 0 for all x 2 S1),  has no double points, and where any two maps withthe same image are indistinguishable:C = f : S1 ! R3 j 0(x) 6= 0 8x 2 S1; (x) = (y) i� x = yg= � ( � �):Here � runs over all di�eomorphisms of the circle S1.Connected components of C are the classes of equivalent (oriented) knots. Wewill call two knots equivalent if there is an isotopy of the ambient space R3 sendingone of the knots into the other. Locally constant functions on C are called the knotinvariants.The space of knots C can be equipped with a natural symplectic structure. Con-sider an embedded curve  = (S1) � R3. A tangent vector v to C at  is anin�nitesimal variation of the curve , that is, a normal vector �eld attached to(S1). In parametrized form the vector v(x) is orthogonal to 0(x) in R3 for allx 2 S1.Definition 3.1. The (Marsden{Weinstein) symplectic structure on the spaceof knots is the 2-form � on C whose value on the pair of elements u; v 2 TC is theoriented volume of the following collar along the curve . At every point (x) thevectors u(x) and v(x) span a parallelogram, and the collar is the union of theseparallelograms along  � R3; see Fig.74.For a chosen parameter x 2 S1 one has�(v;w) = ZS1 vol (0(x); v(x); w(x)) dx;where vol is the volume of the parallelepiped spanned by the three vectors. Theintegral clearly does not depend on the parametrization.Note that we do not need the Euclidean structure but only the volume formin R3. The de�nition can be easily generalized to an arbitrary three-dimensionalmanifold with a volume form. Moreover, for manifolds of any dimension n � 2the same de�nition gives the symplectic structure on the space of submanifolds ofcodimension 2 (i.e., of dimension n� 2).The symplectic structure described above has a hydrodynamical meaning. Itis based on the fact that every connected component of the space C (i.e., every



x3. DYNAMICAL SYSTEMS ON THE SPACE OF KNOTS 347
u

v

u

vFigure 74. The value of the symplectic structure on two variations ofa knot is the volume of the collar spanned by the variations.isotopy class of knots) can be viewed as a special coadjoint orbit of the group ofvolume-preserving di�eomorphisms of R3.Definition 3.2. Let  be a knot in R3. Then it de�nes the functional ` ondivergence-free vector �elds in the space: The value of ` on a �eld v is the uxof the �eld v across any oriented surface in R3 bounded by the contour  (such anembedded surface � is called a Seifert surface).Proposition 3.3. The knot functional ` is well-de�ned on divergence-free vec-tor �elds; i.e., its value does not depend on the choice of the surface � such that@� = .Proof. The di�erence between the uxes of a �eld v through two surfaces withthe same boundary  is the ux of v across a closed surface. The latter vanishesby virtue of the divergence-free property of the �eld v. �Remark 3.4. We now relate the functional ` 2 SVect(R3)� to another descrip-tion of the dual space as the quotient SVect(R3)� = 
1(R3)=d
0(R3) = Z2(R3) ofall 1-forms on R3 modulo exact 1-forms, or as the space of all closed 2-forms. Theexterior derivative d takes a coset of 1-forms (an element of 
1=d
0) to a closed2-form (an element of Z2) without any loss of information, since H1(R3) = 0; seeCorollary I.7.9.The curve  is identi�ed with a singular 2-form ! in R3 supported on . It isa �-type form whose integrals over any piece of a two-dimensional surface vanish,unless the piece intersects the curve. In the latter case, the integral equals the



348 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDalgebraic number of the intersection points, where the points are counted accordingto orientation determined by the orientation of the curve  and the orientation ofthe piece at every point of intersection.The 2-form ! is closed, which corresponds to the closedness of the curve  itself.Thus ! belongs to Z2(R3) (more precisely, it is a so-called De Rham current, andit belongs to a certain closure of the space of smooth closed 2-forms; see [DeR]).To represent the closed (and hence, exact) 2-form ! on R3 as an element of thequotient 
1=d
0, we have to take d�1 of it. A 1-form d�1! is not uniquely de�ned,and it can be thought of as the �-type 1-form supported on a Seifert surface � ofthe curve  (Fig.75). The coset of such a 1-form u� belongs to (a certain closureof) the space 
1=d
0.
Figure 75. The 2-form ! is supported on the curve . The 1-formd�1! is supported on a Seifert surface �.Proposition 3.5. The pairing of the 1-form u� with a divergence-free vector�eld v, according to the rules of Chapter I (see formula (I.7.7)), coincides with theux of the �eld v across the surface �.Proof. Let � be a volume form in the space R3. Then the pairing of the (cosetof the) 1-form u� and a divergence-free �eld v ish[u�]; vi = ZR3 (ivu�) � = ZR3 u� ^ iv� = Z� iv�:The last integral is a coordinate-free expression for the ux of v across �. �We have identi�ed knots with certain points in the dual space SVect(R3)�. Thecoadjoint action of volume-preserving di�eomorphisms on knots is geometric, andhence all knots isotopic to a given one constitute a coadjoint orbit. The same con-sideration is applicable to links as well. Thus, the classi�cation of knot invariants,though di�cult enough by itself, becomes part of a much more complicated ques-tion on classi�cation of all Casimir functions for the group of volume-preservingdi�eomorphisms of the space R3 (or of the three-dimensional sphere S3).



x3. DYNAMICAL SYSTEMS ON THE SPACE OF KNOTS 349Proposition 3.6 [M-W]. Identify the set of isotopic knots with a coadjointorbit of the group of volume-preserving di�eomorphisms of R3. Then the Kirillov{Kostant symplectic structure on this set coincides with the Marsden{Weinstein sym-plectic structure.Proof. Assume that two �elds v and w in R3 de�ne two variations of a curve. Then the Kirillov{Kostant symplectic structure on the coadjoint orbit at thepoint ! associates to these variations the numberh! ; [v;w]i := hd�1!; [v;w]i = hu�; �fv;wgi= �ZR3 (ifv;wgu�)� = �ZR3 u� ^ (ifv;wg�):Here we have used the fact that the commutator in the Lie algebra of vector �eldsis equal to minus their Poisson bracket. Since fv;wg = � curl(v � w), we have,according to the de�nition of curl(v �w),�ifv;wg� = icurl(v�w)� = d�:Here � is the 1-form related to the vector �eld (v�w) by means of the Riemannianmetric: �(�) = (v � w; �) for any vector �eld �. Thenh! ; [v;w]i = ZR3 u� ^ d� = ZR3 du� ^ � = ZR3 ! ^ �:The last integral, by de�nition of the 1-form �, is the circulation of the �eld v �walong , or, equivalently, the volume of the collar spanned by the variations v andw of the curve : ZR3 ! ^ � = ZS1 vol (0; v; w) dx = �(v;w):This is the symplectic structure given in De�nition 3.1. �Remark 3.7. Note that the coadjoint orbits corresponding to knots satisfy akind of \quantization" condition. Associate to every knot a narrow current sup-ported in a tubular neighborhood of the knot and whose ux across any transverseto the neighborhood is equal to 1. The ux of this current across a Seifert surfaceof any other knot is an integer.Ifm is a point of such a \quantized" orbit, then the orbit of the point �m (� 2 R)for a nonintegral � does not correspond, in general, to a (nonparametrized) knot.It follows from the description of the coadjoint orbits as of the cosets [�] of 1-formsmodulo di�erentials: The form � �� corresponds to the orbit �m. These knot-type



350 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDorbits of the coadjoint representation depend on the form period H � as a parameter.The orbits of nonparametrized knots correspond to the 1-forms of period 1 in thedescription via cosets.Consider the coadjoint orbit of one such link or knot. The considerations aboveimply that this \manifold" has the following peculiar property: The values of the\coordinates" of its points, equal to the linking numbers with other knots, arealways integers, except for those knots that intersect the given one. In this sensethe orbit is similar to a polyhedron whose faces are parallel to the coordinatesubspaces and have integer-valued projections along these subspaces. The simplestexample of a polyhedron of this type is a broken line on a chessboard consisting ofparts of the square boundaries.In general, one can think of these elements as a certain subset of the dual space,somewhat similar to the set of those points in a vector space with at least onecoordinate being an integer. Presumably, replacing the integral coe�cients of theknots forming the links by the rational ones, one obtains a set that is dense in somereasonable topology.Remark 3.8. The space C can also be endowed with a natural almost complexstructure: a continuous operator �eld J : TC ! TC such that J2 = �1 for all 2 C . This operator has a simple geometric meaning: Every variation �eld valong the curve  is sent to another �eld Jv along  whose vectors Jv(x) at eachpoint are obtained from v(x) through a rotation by �=2 in the positive direction inthe plane normal to 0(x) (see Fig.76).It turns out that the curvature tensor of this structure vanishes [PeS, Bry1]. In�nite dimensions, this condition would be enough to introduce complex coordinateson the manifold (using the Newlander{Nirenberg theorem, [N-N]). However, theconstruction of complex coordinates does not carry over without restrictions toarbitrary in�nite-dimensionalmanifolds. Here we deal with the in�nite-dimensionalmanifold of all C1-curves, and one can show that it does not admit a complexstructure [Lem, Wan]. According to V. Drinfeld and C. LeBrun, the situation isdi�erent in the category of analytic knots in an analytic manifold, see the discussionin [Bry1]. (We refer to [PeS] for a discussion of geometric quantization for vortexcon�gurations.)Note also that the moduli space of isometric maps of a circle into Euclidean spaceR3 (modulo orientation-preserving Euclidean motions) admits a complex structure[MiZ]. Another example of an in�nite-dimensional complex manifold is given by atypical Virasoro coadjoint orbit; see [Ki3].Remark 3.9. The above structures, as well as most of the dynamical systems
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Figure 76. A singular knot and the almost complex structure in thespace of knots.we discuss below, can be de�ned on a bigger set �C of immersed knots, which has anicer topology; see [Bry1]. The latter set is obtained by allowing the immersions to have self-intersections in a �nite number of points and of �nite multiplicity(Fig.76). The extension of the invariants of knots from the set C to the space ofimmersed knots �C is a cornerstone of the Vassiliev theory of knot invariants of �niteorder [VasV].At �rst glance it seems that the space of singular knots with one self-intersectionhas (in�nite) dimension that is one less than that of the symplectic space (thecoadjoint orbit) of regular knots in the space of all circle immersions, and hence,it cannot carry a symplectic structure. This is, however, not the case. The cor-responding coadjoint orbit has dimension two less than that of the regular knot:The singular knots with one double point (of a given topological type) form a two-parameter family of orbits (since the integral of the corresponding 1-form alongeach of the two loops is an invariant), while the regular knot orbits of a given topo-logical type form a one-parameter family (the invariant being the integral along thewhole knot).3.B. Filament-, Nonlinear Schr�odinger-, and Heisenberg chain equa-tions. To de�ne a dynamical system on the (symplectic) space of nonparametrized(immersed) oriented knots �C (the closure of the set of embedded curves C), we needa Hamiltonian function. A natural choice of the function H is the length functional



352 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDon curves: H() := length of  = ZS1p(0(x); 0(x)) dx:Note that just as in ideal hydrodynamics, to de�ne the motion we need to specifythe Riemannian metric, in addition to the volume form on the manifold.Definition 3.10. The evolution equation for the length Hamiltonian functionH, with respect to the symplectic Marsden{Weinstein structure, is called the �la-ment equation.The time evolution (x; t) of the curve (x; 0); x 2 S1, according to the �lamentequation, is(3.1) @@t = k(x; t)@@x � @2@x2 ;where k(x; t) is the curvature of the curve at the point x at time t.Indeed, the variational derivative �H� is�(length of )�1 d2dx2for (a multiple of) arc-length parametrization x. Then, the corresponding Hamil-tonian �eld can be found, say, by using the almost complex structure J:sgrad H = �(length of )�1 J ��H� � = (length of )�2 J �d2dx2�= (length of )�2�ddx � d2dx2� :(3.10)The return from the arc-parametrization to an arbitrary one results in the curvaturefactor k(x; t) in Equation (3.1).Remark 3.11. Hasimoto noticed in [Has] that the �lament equation (3.1) isequivalent to the nonlinear Schr�odinger equation(3.2) �i@ @t = @2 @x2 + 12 j j2 for a complex-valued wave function  : S1 ! C . This equation is known to be acompletely integrable in�nite-dimensional system and to possess soliton solutions(see, e.g., [DKN]).The transformation reducing one of the equations to the other is called theHasimoto transformation: (x; t) = k(x; t) exp�i � Z x0 � (u; t) du� ;



x3. DYNAMICAL SYSTEMS ON THE SPACE OF KNOTS 353where � (u; t) is the torsion of the curve  at the point u and time t.The paper [LaP] shows that the Hasimoto transformation respects the Hamilton-ian property of the equations: It sends the Marsden{Weinstein structure on curvesto a certain (nonconstant) Poisson structure on wave functions.Remark 3.12. Another equivalent form of the �lament equation is the equationof gas dynamics we dealt with in Section 2. Rewriting Equation (3.1) in the Frenetframe of , one obtains the evolution equations on the curvature k(x; t) and thetorsion � (x; t), which in the coordinates � := k2 (\energy density" of the curve)and � are � @t�+ @x(�� ) = 0;@t� + �@x� = @x � 14�+ 12��1=2@2x�1=2� ;where @x := @=@x and @t := @=@t; see [Tur]. Thus � and � become the velocity anddensity �elds for a one-dimensional uid.Remark 3.13. The Heisenberg magnetic chain provides one more version ofthe �lament equation. This equation describes the dynamics of the vector functionL(x) 2 R3; x 2 S1:(3.3) @L@t = L� @2L@x2 :One immediately obtains this equation from (3.1) by using the arc-parametrizationx along the curve . Indeed, the �lament equation (3.1-3.10) assumes the form@@t = @@x � @2@x2 ;equivalent to Equation (3.3) for the corresponding tangent vector L := @=@x.The vector L(x) 2 R3 can also be regarded as an element of the three-dimensionalLie algebra so(3). From this point of view Equation (3.3) is a particular caseof the Landau{Lifschitz equation, which can be associated to an arbitrary �nite-dimensional Lie group, or rather to the corresponding gauge group.Remark 3.14. The �lament equation can be regarded as an \approximation"of the Euler{Helmholtz equation for the vorticity concentrated on a curve if oneconsiders the contribution of the local terms only; cf. Section I.11.C. The integrabledynamics in this case is a consequence of the approximation. The inclusion of thenext (nonlocal) term into the picture makes the dynamics much more complicated;see [KlM].



354 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUND3.C. Loop groups and the general Landau{Lifschitz equation. Let Gbe a �nite-dimensional matrix group with a nondegenerate Killing form hA;Bi =tr(AB) for A;B 2 G, i.e., a reductive group (one can think of SO(3) in the ex-ample above, or the group of all nondegenerate matrices GL(n)), and let g be thecorresponding Lie algebra.Definition 3.15. The loop group ~G (or the gauge group) is the group of G-valued functions on the circle ~G = C1(S1; G) with pointwise multiplication. Thecorresponding loop Lie algebra ~g is the Lie algebra of g-valued functions on thecircle with pointwise commutator.Definition 3.16. The Landau{Lifschitz equation is the evolution equation@tL = L� @2xLfor a vector-valued function x 7! L(x) 2 R3 on the circle x 2 S1, and @2x := @2@x2 .More generally, the Landau{Lifschitz equation associated to a Lie algebra g isthe following evolution equation:(3.4) @tm = [m ; @2xm];where m is a g-valued function on S1.According to the latter de�nition, the classical Landau{Lifschitz equation (3.3)is associated to the Lie group so(3) upon the identi�cation of the vectors in R3 withangular velocities, the elements in so(3):L = (v1; v2; v3) 7!0@ 0 v3 �v2�v3 0 v1v2 �v1 0 1A :Theorem 3.17. The Landau{Lifschitz equation associated to a Lie algebra g isthe Euler equation corresponding to the loop group ~G with the quadratic Hamiltonianfunction H(m) = 12 ZS1 tr (@xm)2 dxon the dual space ~g�, where @xm is the g-valued function, and tr stands for thetrace in the matrix algebra g.Proof. The inverse inertia operator A�1 : ~g� ! ~g corresponding to this Hamil-tonian sends a (g�-valued) function m to the (g-valued) function �@2xm. Then theEuler equation assumes the form@tm = ad�A�1mm = �[@2xm ; m];equivalent to (3.4). �



x4. SOBOLEV'S EQUATION 355Corollary 3.18 (see, e.g.,[A-L]). The classical Landau{Lifschitz equation(3.3) is the Hamiltonian equation on the dual space ~so(3)� with the Hamiltonianfunction H(L) = �ZS1 (@xv1)2 + (@xv2)2 + (@xv3)2 dx(here L(x) = (v1(x); v2(x); v3(x)) 2 R3 = so(3)�).The paper [A-L] also contains the calculation of the sectional curvatures of theloop group gSO(3) with respect to the right-invariant Riemannian metric inducedby the Hamiltonian function H(L).x4. Sobolev's equationStudying uid oscillations in a fast rotating tank, and starting with the corre-sponding approximating equation(4.1) @v@t � k(v � ez) + grad p = F; div v = 0(with unknowns v and p), S.L. Sobolev obtained an equation of unusual type, nownamed after him.Definition 4.1. The Sobolev equation is the equation(4.2) @2�u@t2 + @2u@z2 = 0for the unknown function u.Remark 4.2. Equation (4.1) is the the linearization of the Navier{Stokes equa-tion in a rotating domain. Typical examples are atmospheres of planets and fueltanks of rotating projectiles. Poincar�e [Poi2] reduced the linear system (4.1) to oneequation (4.2). The latter equation was named after Sobolev, who rediscovered itin the forties and studied the corresponding boundary problems.Sobolev's work was declassi�ed and published in [Sob2]. This paper was infact written in Kazan', perhaps in 1942. Sobolev's neighbor was Pontriagin andthey discussed many relevant problems in functional analysis. In particular, theyconsidered the \pseudo-Hilbert" spaces with one (studied by Sobolev) or a �nitenumber (studied by Pontriagin) of negative squares in the metric. These spaces arenow called Pontriagin spaces. Very few people know that the theory of these spacesoriginated in the classi�ed hydrodynamical work of Sobolev.The work of Poincar�e and of Sobolev was continued by Babin, Mahalov, andNicolaenko, who extended the equation to the case of fast rotation and shallow



356 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDdomains, and considered nonlinear dynamics of the Navier{Stokes equation. Manyfeatures of Sobolev's study of the linear problem, such as the small denominatorsand the Diophantine incommensurability conditions on the domains' geometricalparameters, reappear in [BMN]. It is shown in [BMN] that solutions of the 3DEuler and Navier{Stokes equations of uniformly rotating uids can be decomposedinto the sum of the following terms: a solution of the 2D Euler (or Navier{Stokes)system with vertically averaged initial data, a vector �eld explicitly expressed interms of the phases, and a small remainder.Remark 4.3. To derive the Sobolev equation from the system (4.1) with F = 0(see [GaS] for details) we take the curl of both sides of the �rst equation. Sincecurl (a � b) = �fa; bg, this gives(4.3) @!@t + 2k @u@z = 0; where curl u = !:Take the curl once more, � @@t�u+ 2k @!@z = 0;and di�erentiate it in t to get� @2@t2�u+ 2k @@z @!@t = 0:Finally, substitute @!=@t = �2k @u=@z from Equation (4.3) to obtain the Sobolevequation �@2�u@t2 � 4k2 @2u@z2 = 0:A study of the spectral problems for the linear Sobolev equation showed a strongdependence of the eigen oscillations on the tank shape. Namely, after some trans-formations, Sobolev found it necessary to investigate the two-dimensional spectralproblem @2u@x2 � �@2u@y2 = 0; uj� = g(as well as the corresponding homogeneous problem uj� = 0) in a plane domainbounded by a curve �.For a given value of the spectral parameter �, the equation above is the Dirichletproblem for the one-dimensional wave equation. Solving it by the method of char-acteristics, one immediately encounters the strong dependence of the results on thedomain shape.



x4. SOBOLEV'S EQUATION 357As we shall see below, on the boundary of the domain there appears a dynam-ical system. The ergodic properties of this system have a strong impact on theoscillation character.Consider the case of a convex domain. Two families of characteristic lines coverthe domain. Each of these two families de�nes the di�eomorphism of the boundary� into itself that is the involution exchanging the points of intersection of eachcharacteristic with the boundary. The above-mentioned dynamical system on theboundary curve is the di�eomorphism of the curve � that is the composition of twoinvolutions corresponding to the two families of characteristics.In terms of this di�eomorphism T : � ! �, the solution of the above Dirichletproblem (for a �xed �) is constructed as follows. First, by a linear change ofvariables, we transform the characteristics into the straight lines x = const andy = const. Our problem assumes the form@2u@x@y = 0; uj� = g:The solution u is the sum of two functions f(x)+h(y), one of which depends onlyon x and the other only on y. To look for these functions, we �x some boundarypoint A and choose the value of one of the functions at this point (e.g., f(A))arbitrarily. Then the value of the second function is determined by the boundarycondition (i.e., h(A) = g(A) � f(A)).Let B be the intersection of the characteristic line of the �rst family (x = const)passing through A and the boundary �. At the point B we already know thevalue of the �rst function (it is the same as at the point A, i.e., f(B) = f(A)).Then the value of the second function h at B is determined by their sum g(B)(namely, h(B) = g(B) � f(B) = g(B) � f(A)). Further, the characteristic of thesecond family (y = const) passing through B intersects the boundary � at the pointA0 = TA (Fig.77). We already know the value of the second function along thisline (which is the same as that at B: h(A0) = h(B)). Given the sum g(A0), we �ndthe value of the �rst function at A0 (here f(A0) = g(A0)� h(A0) = g(A0)� h(B) =g(A0) � g(B) + f(A)) and so on.The in�nite process of constructing the solution is described by a piecewise-linear trajectory. This trajectory is constituted by the intermittent segments ofthe characteristics joining the points A(n) = TnA. The solution is the sum of theinitial value and the alternating sum of the boundary values at the vertices of thepiecewise-linear trajectory.The properties of the dynamical system T : �! � have the following impact onthe solutions of our Dirichlet problem. Suppose that T has a periodic trajectory,
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Figure 77. Constructing the solution of the Dirichlet problem for thewave equation from two families of characteristics.TnA = A. Then the alternating sum of values of the boundary function g atthe vertices of the corresponding piecewise-linear trajectory ABA0B0 : : : A mustbe equal to zero. Hence, each periodic trajectory of the map T corresponds to asolvability condition for the Dirichlet problem (and therefore, to a certain nontrivial\distributional solution" of the corresponding homogeneous equation, \supportednear" this periodic trajectory).There are more subtle properties of the dynamics of T that also a�ect the solv-ability of the Dirichlet problem (see details, e.g., in [Arn2]).Consider �rst an elliptic domain. In this case, the di�eomorphism T becomesa rotation after an appropriate choice of the angle coordinate on the boundary.Indeed, an ellipse can be turned into a circle by an a�ne transformation of theplane. The characteristics of both families will turn into two families of parallellines forming an angle � with each other. The map T will become the circle rotationby the angle 2� (by virtue of the \inscribed angle" theorem).Depending on whether the angle � is commensurable with 2� or not, the orbits ofthe rotation T either consist each of a �nite number of points (repeating periodicallywith the same period for all initial points) or are everywhere dense on the circle.In the �rst (\resonance") case, the solution of the nonhomogeneous equationexists if and only if the function g satis�es an in�nite number of independent con-ditions. The corresponding homogeneous problem has an in�nite-dimensional spaceof solutions.When the angle � is not commensurable with 2�, any T -orbit is everywhere dense(it is the second, \ergodic" case). Here the situation is more complicated. Formally,



x4. SOBOLEV'S EQUATION 359one can �nd the solution as a Fourier series. However, its convergence relies on thearithmetic Diophantine properties of the irrational number �=2� (as well as in whatfunctional space the problem is considered). For almost all (in the sense of Lebesguemeasure) irrational numbers�=2�, the corresponding homogeneous problem has theunique solution u = 0. The nonhomogeneous problem has, in this case, a (smooth)solution for every su�ciently smooth right-hand side g (the necessary smoothnessof g increases as the required smoothness of the solution increases; for an analyticsolution the analyticity of the right-hand side is su�cient).The case of an ellipse, discussed above, is not generic, since the dynamics of thecorresponding di�eomorphism T is integrable. (According to Yurkin [Yur] a domainbounded by ellipses is the only type of cavity in a rotating symmetric top for whichthe study of oscillations described by the Sobolev equation can be reduced to a�nite-dimensional problem.) For a typical boundary curve the di�eomorphism Tcannot, in general, be reduced to a rotation, no matter what angle coordinate onthe curve is chosen.In the space of all di�eomorphisms (and hence, in the space of curves �), thestructurally stable di�eomorphisms form an open and everywhere dense set. Suchdi�eomorphisms are of \resonance type" with a �nite number of periodic orbits (allof which have the same period) and alternating attractors and repulsers.People working in the axiomatic theory of dynamical systems usually assumethat \generic" events are those occurring on an everywhere dense open set in thespace of systems. From this viewpoint \generic" circle di�eomorphisms are thestructurally stable ones.However, from the physics point of view, these structurally stable systems arenot the most widespread. Consider, for instance, a family of circle di�eomorphismsx ! x + a + b sinx (mod 2�), where a and b are parameters. For most of thepoints (a; b) in the rectangle 0 � a � 2�; 0 � b � � of a su�ciently small height�, the di�eomorphism does not have periodic points at all, and one can make itinto a rotation by choosing an appropriate coordinate on the circle. (This willbe the rotation by an angle incommensurable with 2�.) Every orbit of such adi�eomorphism is everywhere dense on the circle. For almost all values of therotation angle, the solvability question for the Dirichlet problem, corresponding tosuch a di�eomorphism T , turns out to be the same as that for the integrable caseof an elliptic boundary.For instance, for the near-elliptic domains the \ergodic" situations are encoun-tered in an overwhelming majority of cases, while the \resonance" ones are rare(but form an open and everywhere dense set) in the space of ellipse deformations;



360 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDsee [Arn2].We return now to the initial spectral problemwith the parameter �. For a typicalboundary �, the two types of behavior of the dynamical system T = T (�) on thecurve � alternate as � changes. If � is a typical small perturbation of an ellipse,then the resonance values of the parameter � (for which nontrivial eigenfunctionsarise) form an in�nite everywhere dense set (of small measure) on the axis �. Theergodic values of � (i.e., the values � for which T (�) reduces to the circle rotationby a smooth coordinate change) form a Cantor-type set of almost full measure (forsmall perturbations of an ellipse).As we can see, all topological subtleties of the nonlinear theory of dynamicalsystems (in particular, of their perturbation theory) appear in hydrodynamics instudying the spectrum of the linear problem of small oscillations of a uid.After S.L. Sobolev, the spectral problem was studied by R.A. Alexandryan andhis school (see [Ale]). We mention the series of papers by S.G. Ovsepjan [Ovs], inwhich the case of a nonconvex boundary was treated.In the nonconvex case a new di�culty arises: A characteristic line intersects theboundary in more than just two points, so that the \dynamics" T turns out to bemultivalued (or branching). The ergodic properties of this branching multivalueddynamics form an interesting, but an insu�ciently explored, part of the theory ofdynamical systems.Consider, for example, a circle di�eomorphism that becomes a multivalued alge-braic correspondence of an algebraic curve into itself when the di�eomorphism isextended into the complex domain. This means that the graph of the di�eomor-phism is one of the components of a real algebraic curve on the Cartesian squareof another algebraic curve. One believes that the number of attractors of such adi�eomorphism is bounded by a constant, depending only on the discrete invariantsof the correspondence (the genera of the curves and the degree of the correspon-dence). However, it has been proved only for the correspondences univalued in oneof the directions (say, for polynomial or rational maps of the Riemann sphere intoitself), see [Jak, Herm].Remark 4.4. The Dirichlet problem for the one-dimensional wave equationis encountered in many problems of di�erent origins. For instance, J.-P. Dufour[Duf] treated in detail its local analogue for algebraic curves with singularities (say,x2 = y3). This problem arises in the study of the symmetry loss (for example, forthe classi�cation of Morse functions in a neighborhood of the �xed point of theline involution x ! �x, or for the classi�cation of pairs of line involutions in aneighborhood of the common �xed point); see the survey of S. Voronin [Vor].



x5. ELLIPTIC COORDINATES FROM THE HYDRODYNAMICAL VIEWPOINT 361An analogous method was used in [Arn1] in the study of the representations offunctions on trees by the sums of functions of the coordinates, which is related to the13th Hilbert problem. It is interesting that the main trick in all these problems isthe composition of the alternating sums of values of a known function along a piece-wise characteristic, and it is exactly the same as the one used in hydrodynamics inthe study of spectral problems for the Sobolev equation.x5. Elliptic coordinates from the hydrodynamical viewpointImagine an electrically charged metallic ellipsoid. A theorem going back toNewton [NewI] and Ivory [Ivo] states that the potential (of the electrostatic �eld)induced by the charges is constant inside the ellipsoid, while outside of it the equipo-tential surfaces are the ellipsoids confocal to the initial one. As we shall see below(following [Arn12, ShV]), this fact, as well as its higher-dimensional generalizations,has a genuine hydrodynamical avor: The electromagnetic �elds of this type aregenerated by incompressible ows of electric charges along quadrics.5.A. Charges on quadrics in three dimensions. We start with a quadricsurface (say, ellipsoid)Q in three-dimensional space and include it �rst in the familyof confocal quadrics.Definition 5.1. For a quadric Q de�ned by the equationx2a1 + y2a2 + z2a3 = 1;the confocal family of quadrics Qcnf(�) is the following family of surfaces:Qcnf(�) = � x2a1 + � + y2a2 + � + z2a3 + � = 1� :The quadrics of the family change signature at � = �a1; �a2; or �a3. Forinstance, for a hyperboloid of one sheet with a1 > a2 > 0 > a3 the family consistsof the hyperboloids of two sheets for �a1 < � < �a2, of the hyperboloids of onesheet for �a2 < � < a3, and of the ellipsoids for a3 < � (Fig.78).We will also use another family of quadrics containing our initial surface Q:quadrics homothetic to Q with center at the origin. First let Q be an ellipsoid.Definition 5.2. A homeoidal density on the surface of an ellipsoid Q is thedensity of a layer between Q and an in�nitely nearby ellipsoid homothetic to Q.Now we can make mathematical sense of the \free distribution of electric charges"on the surface of an ellipsoid:



362 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDTheorem 5.3 (Ivory Theorem, see [Ivo, Arn12]). A �nite mass distributedon the surface of an ellipsoid with homeoidal density does not attract any internalpoint; it attracts every external point the same way as if the mass were distributedwith homeoidal density on the surface of any smaller confocal ellipsoid.The attraction of the charges is de�ned by the Coulomb (or Newton) law: In Rnthe force is proportional to r1�n (as prescribed by the fundamental solution of theLaplace equation).In the counterparts of Ivory's theorem for hyperboloids, one replaces the homeoidaldensities on ellipsoids by harmonic forms of di�erent degrees, and the Coulomb po-tential by the generalized potentials related to the Biot{Savart law.In the simplest nontrivial case of a hyperboloidH of one sheet in three-dimensionalEuclidean space, the result is as follows. Consider the intersection curves of the hy-perboloid with other quadrics of the confocal familyHcnf(�). We will be referring tothe intersections with confocal ellipsoids (respectively, confocal hyperboloids of twosheets) as parallels (respectively, meridians) of H. (Notice that the parallels andmeridians are orthogonal to one another at every point of the hyperboloid, Fig.78.This is the theorem on the existence of an orthogonal eigenbasis for a symmetricmatrix, applied to the Legendre dual family of quadrics; see, e.g., [A-G].)
(
1
)

(
2
)Figure 78. Quadrics of the confocal family intersect a hyperboloidalong the orthogonal system of curves.The hyperboloid H divides the space R3 into two parts, \internal" I(H) and\external" E(H), the latter being non-simply connected. The region inside thehyperboloidal tube is also smoothly �bered by meridians (orthogonal to the ellip-soids in the confocal family), while the annular region outside the hyperboloid is



x5. ELLIPTIC COORDINATES FROM THE HYDRODYNAMICAL VIEWPOINT 363smoothly �bered by parallels (orthogonal to the hyperboloids of two sheets).Theorem 5.4 [Arn12]. There exists a unique (modulo a constant factor) surfacecurrent owing along the meridians of the hyperboloid that produces a magnetic �eldthat vanishes in the inner domain and is directed along parallels in the exteriordomain of the hyperboloid. Similarly, there exists a unique (modulo a constantfactor) surface current owing along the parallels of the hyperboloid that produces amagnetic �eld that vanishes in the exterior domain and is directed along meridiansin the inner domain of the hyperboloid.The magnetic �eld in the inner domain for the hyperboloid, but outside of acharged ellipsoid from the same confocal family, coincides modulo sign with theelectrostatic �eld of the ellipsoid. Furthermore, let us look at the electrostatic �eldproduced by two charges of opposite signs, \equal in magnitude," and distributedwith homeoidal density on the surfaces of a conducting hyperboloid of two sheets.This �eld between the surfaces coincides (modulo sign) with the magnetic �eld inthe exterior domain of a confocal hyperboloid of one sheet. The explicit formulasare given below.Remark 5.5. The vector �elds given by Theorem 5.4 are exact stationary so-lutions of the corresponding Euler equations of an incompressible uid owing,respectively, inside or outside of the hyperboloid in R3. The ow is potential inthe inner domain of a triaxial hyperboloid, and it is vorticity-free in the exteriordomain.5.B. Charges on higher-dimensional quadrics. Let Q be a nondegeneratequadric centered at the origin of Euclidean n-dimensional space. Include it in thefamily of confocal quadricsQcnf(�) := ( nXi=1 x2iai + � = 1) ;as the hypersurface corresponding to � = 0. Let us order the axes as follows:an < ::: < a1.Definition 5.6. The elliptic coordinates of a point x 2 Rn is the set of n valuesof � (in increasing order) for which a quadric of the family Qcnf(�) passes throughx. Note that it is an orthogonal coordinate system, since the confocal quadricsmeet at right angles.The results formulated above for the three-dimensional case have been extendedby B. Shapiro and A. Vainshtein [ShV] to hyperboloids in Euclidean spaces of



364 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUNDany number of dimensions. A nonsingular hyperboloid H in Rn, di�eomorphicto Sl �Rk, divides the space into the exterior region E(H) (di�eomorphic to theproduct of Sl with a half-space) and the interior I(H).Let ! be a di�erential form with distribution coe�cients (see [DeR]). The formis said to be harmonic o� a hypersurface � if it is continuous o� this hypersurface,coclosed (i.e., �! = 0, where � is the operator conjugate to the external derivatived, see Section V.3.B), and if its exterior derivative is a form (with distributioncoe�cients) supported on �.Theorem 5.7 [ShV]. Given a hyperboloid H there exists a unique (modulo aconstant factor) l-form harmonic o� H, decomposable in elliptic coordinates, andvanishing in the interior region I(H), and there exists a unique (modulo a constantfactor) k-form harmonic o� H, decomposable in elliptic coordinates, and vanishingin the exterior E(H).These forms are induced by certain homeoidal densities on the focal quadrics,which are the limiting quadrics of the confocal family, when the shortest axis of thehyperboloids or ellipsoids shrinks to zero. We refer to [ShV] for explicit formulasand proofs.For the hyperboloids of indices (1; n�1) and (n�1; 1), one can give the followingmagnetohydrodynamical meaning to those densities.Let H1 be a nondegenerate quadric with an < � � � < a2 < 0 < a1 (and aquadric Hn�1, with an < 0 < an�1 < � � � < a1, respectively). Similar to theabove, the exterior region E(Hn�1) for the hyperboloidHn�1 is �bered by parallels(di�eomorphic to a circle) by �xing the values of all n�1 elliptic coordinates positivein E(Hn�1). The inner domain I(H1) for the quadric H1 is �bered by meridians(di�eomorphic to a line) by �xing the values of all n�1 elliptic coordinates negativein I(H1).Theorem 5.70 [ShV]. There exists a unique (modulo a constant factor) poten-tial ow of an incompressible uid in the inner domain I(H1) whose trajectoriescoincide with the meridians. Similarly, there exists a unique (modulo a constantfactor) ow of an incompressible uid in the exterior region E(Hn�1) whose vor-ticity vanishes and the trajectories of which are the parallels.By construction, both of the ows are directed along the remaining elliptic co-ordinate. Say, in the 3-dimensional case, one has the following explicit formulasfor the corresponding vector �elds v1 and v2 in the regions I(H1) and E(H2),



x5. ELLIPTIC COORDINATES FROM THE HYDRODYNAMICAL VIEWPOINT 365respectively, in the elliptic coordinates �1 > �2 > �3 (see [ShV]):v1 = �2 � �3�(�2)�(�3) @@�1 and v2 = �1 � �2�(�1)�(�2) @@�3 ;where �(�i) =p(�i + a1)(�i + a2)(�i + a3):Noncomputational proofs of these geometric theorems are unknown, even in thethree-dimensional case.Question 5.8. The presence of distinguished forms that are harmonic o� hyper-boloids suggests that one might try to �nd �ltrations, analogous to those arising inthe theory of mixed Hodge structures, in spaces of di�erential forms on noncompactreal algebraic and semialgebraic varieties.


