CHAPTER VI

DYNAMICAL SYSTEMS WITH
HYDRODYNAMICAL BACKGROUND

This chapter is a survey of several relevant systems to which the group-theoretic
scheme of the preceding chapters or its modifications can be applied. The choice of
topics for this chapter was intended to show different (but nevertheless, “hydrody-
namical”) features of a variety of dynamical systems and to emphasize suggestive

points for further study and future results.

§1. The Korteweg—de Vries equation as an Euler equation

In Chapter I we discussed the common Eulerian nature of the equations of a
three-dimensional rigid body and of an ideal incompressible fluid. The first equation
is related to the Lie group SO(3), while the second is related to the huge infinite-
dimensional Lie group SDiff( M) of volume-preserving diffeomorphisms of M.

In this section we shall deal with an intermediate case: the Lie group of all
diffeomorphisms of a one-dimensional object, the circle, or rather, with the one-
dimensional extension of this group called the Virasoro group. In a sense it is the
“simplest possible” example of an infinite-dimensional Lie group. It turns out that
the corresponding Euler equation for the geodesic flow on the Virasoro group is well
known in mathematical physics as the Korteweg—de Vries equation. This equation
is widely regarded as a canonical example of an integrable Hamiltonian system with

an infinite number of degrees of freedom.

1.A. Virasoro algebra. The Virasoro algebra is an object that is only one
dimension larger than the Lie algebra Vect(S!) of all smooth vector fields on the
circle S (in the physics literature, these vector fields are usually assumed to be

trigonometric polynomials).

DEFINITION 1.1. The Virasoro algebra (denoted by wvir) is the vector space
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Vect(S1) & R equipped with the following commutation operation:

()50 an (sl)g-. 0] = (o)~ '@, [ Flag ).

for any two elements (f(x)0/0x, a) and (g(x)0/0x, b) in vir.

The commutator is a pair consisting of a vector field and a number. The vec-
tor field is minus the Poisson bracket of the two given vector fields on the circle:
{f0/0x, g0/0x} = (fg' — f'g)0/0x. The bilinear skew-symmetric expression
c(f,g9) = [o f'(x)g"(x)dx is called the Gelfand—Fuchs 2-cocycle; see [GFul.

DEFINITION 1.2. A real-valued two-cocycle on an arbitrary Lie algebra g is a

bilinear skew-symmetric form ¢(-, -) on the algebra satisfying the following identity:

Z c([f,g],h) =0, for any three elements f,¢,h € g,
(f,9,h)

where the sum is considered over the three cyclic permutations of the elements

(f,9,h).

The cocycle identity means that the extended space g := g & R with the com-
mutator defined by

(1.1) [(f,a), (g,0)] = ([f, 9], e(f,9))

obeys the Jacobi identity of a Lie algebra. One can define ¢(f, g) in (1.1) by setting
c(f,g) = 0 for all pairs f,¢ and get a trivial extension of the Lie algebra g. An
extension of the algebra g is called nontrivial (or the corresponding 2-cocycle is not
a 2-coboundary) if it cannot be reduced to the extension by means of zero cocycle
via a linear change of coordinates in g. We discuss cocycles on Lie algebras, as well

as the geometric meaning of the Gelfand—Fuchs cocycle, in more detail in Section

1.D

The Virasoro algebra is the unique nontrivial one-dimensional central extension
of the Lie algebra Vect(S') of vector fields on the circle. There exists a Virasoro

group whose Lie algebra is the Virasoro algebra vir; see, e.g., [Nerl].

DEFINITION 1.3. The Virasoro (or Virasoro—Bott) group is the set of pairs
(p(2),a) € Diff(S') & R with the multiplication law

(o), a) o ((x), B) = (sow(x)), vt |

Sl

log(> 2 (2)) dlogw(x)) |
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Applying the general constructions of Chapter I to the Virasoro group, we equip
this group with a (right-invariant) Riemannian metric. For this purpose we fix the
energy-like quadratic form in the Lie algebra vir, i.e., on the tangent space to the

group identity:
0 1 9 9
H(f(:z;)a—x, a) = 5 ( slf () dx+a )

Consider the corresponding Fuler equation, i.e., the equation of the geodesic flow

generated by this metric on the Virasoro group.

DEFINITION 1.4. The Korteweg—de Vries (KdV) equation on the circle is the
evolution equation

O +uu' +u"" =0
on a time-dependent function u on S', where ' = 3/0x and 9; = 9/0t; see [KdV].

THEOREM 1.5 [OK1]. The Euler equation corresponding to the geodesic flow (for

the above right-invariant metric) on the Virasoro group is a one-parameter family

of KdV equations.

PRrROOF. The equation for the geodesic flow on the Virasoro group corresponds
to the Hamiltonian equation on the dual Virasoro algebra vir*, with the linear
Lie—Poisson bracket and the Hamiltonian function —H.

The space vir* can be identified with the set of pairs
{(u(:z;)(d:z;)z,cﬂ u(z) is a smooth function on S*, ¢ € R}.

Indeed, it is natural to contract the quadratic differentials u(z)(dz)* with vector

fields on the circle, while the constants are to be paired between themselves:

<(v(:1;)a%, a), (u(x)(dz)?,e)) = /51 v(a) -u(z) de+a-ec.

The coadjoint action of a Lie algebra element (f0/0x,a) € vir on an element
(u(z)(dz)?, ¢) of the dual space vir* is

(1.2) adzﬁf a/axm(u(d:p)z,@ = (2f'u + fu' 4+ cf", 0),

where ’ stands for the z-derivative. It is obtained from the identity

((F s @) (9500 D (2,00 = (g ooy oy (u(de)?, ),

which holds for every pair (g%, b) € vir.
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The quadratic energy functional H on the Virasoro algebra determines the “tau-
tological” inertia operator A : vir — vir®, which sends a pair (u(x)9/0x,c) € vir
to (u(a)(dx)?,c) € vir*.

In particular, it defines the quadratic Hamiltonian on the dual space vir*,

H(u(d:z;)z,c) :%(/ u? dr + cz)
L 0), (uldr) o)) = S c), Al o).

2 x x x

The corresponding Euler equation for the right-invariant metric on the group (ac-

cording to the general formula (1.6.4), Theorem 1.6.15) is given by

9 "
a(u(dl')zac) = _adA—l(u(dx)2,c)(u(dx)27c)'

Making use of the explicit formula for the coadjoint action (1.2) with
(f0/0x,a) = A7 (u(dx)?,¢) = (u D]z, c),

we get the required Euler equation:

{ Oru = —2u'u — uu' — cu” = —3uu’ — cu’’,

8,50 =0.

The coefficient ¢ is preserved in time, and the function u satisfies the KdV equation

(with different coefficients). O

REMARK 1.6. Without the central extension, the Euler equation on the group

of diffeomorphisms of the circle has the form
Oyu = —3uu’.

(called a nonviscous Burgers equation). Rescaling time, this equation can be re-
duced to the equation on the velocity distribution u of freely moving noninteracting
particles on the circle. It develops completely different properties as compared to
the KdV equation (see, e.g., [Arnl5]).

If u(x,t) is the velocity of a particle & at moment ¢, then the substantial derivative
of u is equal to zero: Jyu + uu’ = 0. In Fig.71 one sees a typical perestroika of the
velocity field w in time. Since every particle keeps its own velocity, fast particles
pass by slow ones. Every point of inflection in the initial velocity profile u(z,0)
generates a shock wave.

Thus, in finite time, solutions of the corresponding Euler equation define a multi-

valued, rather than univalued, vector field of the circle. In other words, the geodesic
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FIGURE 71. The shock wave generated by freely moving noninteracting

particles.

flow on the group Diff(S'), with respect to the right-invariant metric generated by
the quadratic form [ wu?dz on the Lie algebra, is incomplete.

Note also that in the case of the Burgers equation with small viscosity, shock
waves appear as well. Initial series of typical bifurcations of shock waves were
described in [Bog]| (see also [SAF, Si2]). Typical singularities of projections of the
solutions on the plane of independent variables for 2 x 2 quasilinear systems are

classified in [Ra].

On the other hand, the solutions of the KdV equation exist and remain smooth
for all ¢, and do not develop shock waves. In the interpretation of the KdV as the

shallow water equation, the parameter ¢ measures dispersion of the medium.

REMARK 1.7. Differential geometry of the Virasoro group with respect to the
above right-invariant metric is discussed in [Mis3]. In particular, the sectional
curvatures in the two-dimensional directions containing the central direction are
nonnegative (cf. Remark IV.2.4). For the relation between the geometry of the
KdV equation and the Kéhler geometry of the Virasoro coadjoint orbits see [Seg,
STZ].

One can extend this Eulerian viewpoint to the super-KdV equation (introduced
in [Kup]) and describe the latter as the equation of geodesics on the super-analogues
of the Virasoro group, corresponding to the Neveu-Schwarz and Ramond super-
algebras; see [OK1]. Another elaboration of this viewpoint is the passage from the

L?-metric on the Virasoro algebra to another one, say, the H'-metric:

g @l =5 ([ 2@ s [ (rp aee).

PROPOSITION 1.8 [Mis4]. The H'-metric on the central extension of the Lie
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algebra Vect(S') of vector fields on the circle given by the (trivial) 2-cocycle

of,9) = . f(x)g(x) da

generates the shallow water equation

Oiu — Oy’ = uu" + 2u'u" — Buu’ — cu’,
8tc: 0

(introduced in [C-H]). Here the prime ' stands for %, and Oy denotes %.

1.B. The translation argument principle and integrability of the high-

dimensional rigid body.

DEFINITIONS 1.9. A function F' on a symplectic manifold is a first integral of
a Hamaltonian system with Hamiltonian H if and only if the Poisson bracket of H
with F' is equal to zero. Functions whose Poisson bracket is equal to zero are said
to be in involution with respect to this bracket.

A Hamiltonian system on a symplectic 2n-dimensional manifold M?™ is called
completely integrable if it has n integrals in involution that are functionally inde-

pendent almost everywhere on M?".

A theorem attributed to Liouville states that connected components of non-
critical common level sets of n first integrals on a compact manifold are the n-
dimensional tori. The Hamiltonian system defines a quasiperiodic motion qb =

const in appropriate angular coordinates ¢ = (¢1,...,¢,) on each of the tori; see

[Arnl6].

ExXAaMPLE 1.10. Every Hamiltonian system with one degree of freedom is com-
pletely integrable, since it always possesses one first integral, the Hamiltonian func-
tion itself.

In particular, the Euler equation of a three-dimensional rigid body is a completely
integrable Hamiltonian system on the coadjoint orbits of the Lie group SO(3).
These orbits are the two-dimensional spheres centered at the origin and the origin

itself, while the Hamiltonian function is given by the kinetic energy of the system.

EXAMPLE 1.11. A consideration of dimensions is not enough to argue the com-
plete integrability of the equation of an n-dimensional rigid body for n > 3. Free
motions of a body with a fixed point are described by the geodesic flow on the
group SO(n) of all rotations of Euclidean space R™.

The group SO(n) is equipped with a particular left-invariant Riemannian metric

defined by the inertia quadratic form in the body’s internal coordinates. On the
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Lie algebra so(n) of skew-symmetric n X n matrices this quadratic form is given by

—tr(wDw), where

1
weso(n), D=diag(dy,...,d,), dp= 5 /,0(:1;):1;% d"z,
and where p(z) is the density of the body at the point « = (21,...,2,). The inertia

operator A : so(n) — so(n)* defining this quadratic form sends a matrix w to the

matrix A(w) = Dw + wD.

REMARK 1.12. For n = 3 this formula implies the triangle inequality for the
principal momenta d;. Operators satisfying these inequalities form an open set in
the space of symmetric 3 x 3 matrices. In higher dimension (n > 3) the symmetric
matrices representing the inertia operators of the rigid bodies are very special. They
form a variety of dimension n in the n(n — 1)/2-dimensional space of equivalence

classes of symmetric matrices on the Lie algebra.

THEOREM 1.13 ([Mish] FOR n = 4, [Man] FOR ALL n). The Euler equation
m = ad’m of an n-dimensional rigid body, where w = A"'m and the inertia

operator A 1s defined above, 1s completely integrable. The functions
(1.3) H)y , = det(m + AD? + vE)

on the dual space so(n)* provide a complete family of integrals in involution.

The involutivity of the quantities H , can be proved by the method of Poisson
pairs and translation of the argument, which we discuss below (see [Man]). Note
that the physically meaningful inertia operators A(w) = Dw 4+ wD (i.e., those with
entries a;; = d; + d;) form a very special subset in the space of all symmetric
operators A : so(n) — so(n)*. According to Manakov, a sufficient condition for
integrability is that

Pi— Py
qi — 4,

ajj =

(which for p; = ¢? becomes the physical case above). The limit n — oo of the
integrable cases on SO(n) was considered in [War].
The geodesic flow on the group SO(n) equipped with an arbitrary left-invariant

Riemannian metric is, in general, nonintegrable.

Usually, integrability of an infinite-dimensional Hamiltonian system is related
to the existence of two independent Poisson structures forming a so-called Poisson

pair, such that the system is Hamiltonian with respect to both structures.
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DEFINITIONS 1.14. Assume that a manifold M is equipped with two Poisson
structures {.,.}o and {.,.}1. They are said to form a Poisson pair (or to be compat-
ible) if all of their linear combinations A{.,.}o + v{.,.}1 are also Poisson structures.

A dynamical system @ = v(x) on M is called bi- Hamiltonian if the vector field

v is Hamiltonian with respect to both structures {.,.} and {.,.};.

REMARK 1.15. The condition on {.,.}o and {.,.}1 to form a Poisson pair is
equivalent to the identity

(1.4) Z {{f.9}o,h}1 + {{f,9}1,h}o =0

(f,9,h)

for any triple of smooth functions f,g,h on M, where the sum is taken over all
three cyclic permutations of the triple.

In the next theorem we assume, for the sake of simplicity, that M is simply
connected and that the Poisson structures {.,.}, and {.,.}; are everywhere nonde-

generate, i.e., they are inverses of some symplectic structures on M.

THEOREM 1.16 [GDo]. Let v be a bi-Hamiltonian vector field with respect to the
structures of a Poisson pair {.,.}o, {.,.}1. Then there exists a sequence of smooth
functions Hy, k=0,1,..., on M such that

(1) Hy is a Hamiltonian of the field vy := v with respect to the structure {.,.}o;

(2) the field vy of the 0-Hamiltonian Hy coincides with the field of the I1-
Hamaltonran Hyqq;

(3) the functions Hi, k =0,1,..., are in involution with respect to both Poisson

brackets.

The algorithm for generating the Hamiltonians Hy is called the Lenard scheme

and is shown in Fig.72.

{, },— Hamiltonians IO H, 32
vector fields l\)l(/) v\l/1 \12 ......
{ , }; — Hamiltonians H, H, H,

FIGURE 72. Generation of a sequence of the Hamiltonians Hy for a

bi-Hamiltonian vector field.



§1. THE KORTEWEG-DE VRIES EQUATION AS AN EULER EQUATION 329

Although this theorem is formulated and proven for the case of nondegenerate
brackets only, the procedure is usually applied in a more general context. Namely,
let the field vg := v be Hamiltonian with Hamiltonian functions Hy and H; relative
to the structures {.,.}o and {.,.}1, respectively. Consider the function H; as the
Hamiltonian with respect to the bracket {.,.}¢ and generate the next Hamiltonian
field vy. One readily shows that the field vy preserves the Poisson bracket {.,.}o,
provided that the two brackets form a Poisson pair (a formal application of the iden-
tity (1.4)). However, this does not imply, in general, that the field vy is Hamiltonian
with respect to the bracket {.,.}o. (Example: The vertical field 9/9z preserves the
Poisson structure in R?%Z given by the bivector field 8/0x A /0y, but it is not
defined by any Hamiltonian function. Every Hamiltonian field for this structure

would be horizontal.) If we are lucky, and the field vy is indeed Hamiltonian, we

continue the process to the next step, and so on.

To apply the technique of Poisson pairs in the Lie-algebraic situation, recall that
on the dual space g* to any Lie algebra g there exists a natural linear Lie—Poisson

structure (see Section 1.6)

{f,93(m) := ([df, dg], m)

for any two smooth functions f,g on g*, and m € g*. In other words, the Poisson
bracket of two linear functions on g* is equal to their commutator in the Lie algebra
g itself. The symplectic leaves of this Poisson structure are the coadjoint orbits of
the group action on g*, while the Casimir functions are invariant under the coadjoint
action. The following method of constructing functions in involution on the orbits
is called the method of translation of the argument, and originally appeared in
Manakov’s paper [Man] to describe the integrable cases of higher-dimensional rigid
bodies (see further generalizations in, e.g., [A-G, T-F]).

Fix a point mg in the dual space to a Lie algebra. One can associate to this

element a new Poisson bracket on g*.

DEFINITION 1.17. The constant Poisson bracket associated to a point mg € g*
is the bracket {.,.}o on the dual space g* defined by

{f:930(m) := ([df, dg], mo)

for any two smooth functions f,¢ on the dual space, and any m € g*. The differ-
entials df,dg of the functions f, ¢ are taken at a current point m, and, as above,

are regarded as elements of the Lie algebra itself.

The brackets {.,.} and {.,.}¢ coincide at the point mg itself. Moreover, the

bivector defining the constant bracket {.,.}y does not depend on the current point.
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The symplectic leaves of the bracket are the tangent plane to the group coadjoint

orbit at the point mg, as well as all the planes in g* parallel to this tangent plane

(Fig.73).

FIGURE 73. Symplectic leaves of the constant bracket are the planes

parallel to the tangent plane to the coadjoint orbit at my.

PROPOSITION 1.18. The brackets {.,.} and {.,.}¢ form a Poisson pair for every
fized point my.

PROOF. The linear combination {.,.}x := {.,.} + A{.,.}o is a Poisson bracket,
being the linear Lie-Poisson structure {.,.} translated from the origin to the point
—/\mo. O

COROLLARY 1.19. Let f,g : g* — R be invariants of the group coadjoint action,
and let mg € g*. Then the functions f(m+ Amg), g(m+vmg) of the point m € g*

are in involution for any \,v € R on each coadjoint orbit.

PRrOOF. This is an immediate consequence of the fact that Casimir functions for
all linear combinations of compatible Poisson brackets are in involution with each

other. The latter holds by virtue of the definition of a Poisson pair. O

We leave it to the reader to adjust this Corollary to produce the family (1.3) of
first integrals providing the integrability of the higher-dimensional rigid body (see
[Man]). Below, we show how this scheme works for the KdV equation.
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REMARK 1.20. A Hamiltonian function f and the Poisson structure {.,.}o gen-

erate the following Hamiltonian vector field on the dual space g*:
(1.5) v(m) = adg; mo,

where the differential df is taken at the point m. Indeed, for an arbitrary function

g one has

{f.9}o(m) = (adap(dg),mo) = ((dg),adgs mo),
and the latter pairing is the Lie derivative L,g (at the point m € g*) of the function
g along the field v defined by (1.5). Hence, this vector field v is Hamiltonian with

Hamiltonian function f.

1.C. Integrability of the KdV equation. The existence of an infinite number
of conserved charges for the flow determined by the KdV equation was discovered
in the late 1960s, and in a sense this discovery launched the modern theory of
infinite-dimensional integrable Hamiltonian systems (see [Ma, Miu] for an intriguing
historical survey).

The first of the KdV conservation laws were found via calculations with undeter-
mined coefficients, but this method stopped at the 9" invariant. Miura describes
in [Miu] how, in the summer of 1966, a rumor circulated that there were exactly
9 conservation laws in this case. Miura spent a week of his summer vacation and
succeeded in finding the 10'" one. Later code was written computing the 11'" law.
After that the specialists were convinced that there should be an infinite series of
conservation laws.

In this section, we shall see how these laws can be extracted via the recursive
Lenard scheme, or equivalently, via Manakov’s method of the translation of argu-

ment from the preceding section.

The KdV equation is an example of a bi-Hamiltonian system. First, as we
discussed in Section 1.A, it is Hamiltonian on the dual space vir* = {(u(dz)*,¢)}

of the Virasoro algebra with the quadratic Hamiltonian function

—H(u(dz)?,¢) = _% (/ u? do + c2>

relative to the linear Poisson structure. This Poisson structure is called the second
KdV Hamiltonian structure and is sometimes referred to as the Magri bracket; see
[Mag].

Moreover, one can specify a point in the space vir* such that the KdV equation
will also be Hamiltonian with respect to the constant Poisson structure associated to
this point. Namely, let the pair (uo(x)(dx)?, co) consist of the function ug(z) = 1/2

and ¢g = 0.
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DEFINITION 1.21. Let F' be a function on the dual space g* of a Lie algebra g
and m € g*. In the case of an infinite-dimensional space g*, the differential dF,,
(regarded as a vector of the Lie algebra itself) is called the variational derivative

2_517 and it is defined by the relation

oF

om’

d
aF(m—l— ew)‘ezo = (

w ).

For instance, in the case of the Virasoro algebra, a functional F' is defined on

the set of pairs (u(x)(dz)?,¢). The variational derivative

oFY O o
Su ) Oz~ be

is the pair consisting of a vector field and a number such that

Lo e et ], = (((5) 20 50). wiaern)

_ / <((55—1;(:1;) - w(:z;)) de + ‘;—ZZ b,

(To specify the class of functionals, one usually considers differential polynomials

on vir®, i.e., integrals of polynomials in v and in its derivatives; see [GDo]).

PROPOSITION 1.22. (i) The Poisson structure {.,.}o associated to the point

1
<§(d:1;)2, 0) € vir®

sends every Hamiltonian function F on the dual space vir* to the Hamiltonian

vector field on vir* whose value at a point (u(dx)?,c) is the pair

((%)l(x)(dx)z,O) .

(it) The Korteweg—de Vries equation is Hamiltonian with respect to the constant

Poisson structure {.,.}o with the Hamiltonian function

1

(1.6) Qu(dz)?, c) = 5 /S1 (—u3(:1;) + c(u’)z(:zj)> dz.

The Poisson structure {.,.}o is called the first KdV Hamailtonian structure; see,
e.g., [LeM]. The Hamiltonians Hy = H and Hz = @ of the KdV equation with
respect to the Poisson pair {.,.} and {.,.}o start the series of conservation laws

generated by the Lenard iteration scheme. One readily shows that at each step



§1. THE KORTEWEG-DE VRIES EQUATION AS AN EULER EQUATION 333

the Hamiltonian functional Hy is a differential polynomial of order k in u(x). Usu-

ally, this series of first integrals for the KdV starts with the Hamiltonian function
Hi(u):= [u(z) d.

PROOF. Item (¢) is a straightforward application of the notion of variational
derivative to formula (1.5). Indeed, one obtains the Hamiltonian vector field for a
functional F on the space vir® by freezing the values of u(x) and ¢ as ug(x) = 1/2

and ¢g = 0 in (1.2):

ad{} 500,y (to(de)?, co) = ((2f"uo + fug + co f")(dx)*, 0) = (f'(dz)*, 0),

where f := (‘;—f), and a := (%—f).

(72) The variational derivative of the functional @) given by (1.6) is

) 3
(1.7) (%) = —§u2 —cu”.

Indeed, this follows from the equality

d 1
de 2 /S1 <_(u + ew)3 + C((u + ew)/)2> dx = _/sl (;uz —|—cu"> ~w de.

Then, substituting the variational derivative f = 6Q/éu from (1.7) into (1.2),

we get the following Hamiltonian vector field on the dual space vir*:

{ O = ' = —(%u2 + cu') = —=3uu’ — eu’,
8,50 = 0,

that is, the KdV equation. g

REMARK 1.23. The KdV flow is tangent to the coadjoint orbits of the Virasoro
algebra (as is the flow of every Euler equation on the dual space to any Lie algebra).
Note that none of the above first integrals of the KdV equation are invariants of
the Virasoro coadjoint action, and therefore their meaning is completely different
from the Casimir functions of two-dimensional hydrodynamics (cf. Remark 1.9.8).
The description of the Virasoro orbits (or Casimir functions), besides being evident
information on the behavior of KdV solutions, is an interesting question in its own
right.

The classification problem for the Virasoro coadjoint orbits is also known as the

classification of Hill’s operators

{% tu(z) | ue 000(51)} ,



334 VI. DYNAMICAL SYSTEMS WITH HYDRODYNAMICAL BACKGROUND

or of projective structures on the circle, and it has been solved independently in
different terms and at different times (see [Kui, LPa, Seg, Ki2]). The orbits are
enumerated by one discrete parameter and one continuous parameter. General-
ization of this problem to the classification of symplectic leaves of the so-called
Gelfand—Dickey brackets, which are certain natural Poisson brackets on differen-
tial operators of higher order on the circle, as well as the relation of this problem
to enumeration of homotopy types of nonflattening curves on spheres, is given in
[OK2] (see also [KhS, Sha, E-K] for relevant problems).

The Lenard scheme generates a series of Hamiltonian equations called the KdV
hierarchy. A similar construction exists for higher KdV hierarchies, which are

Hamiltonian flows on coefficients of differential operators of higher order on the

circle; see [Adl, GDi, SeW, PrS].

1.D. Digression on Lie algebra cohomology and the Gelfand—Fuchs
cocycle. The theory of Lie algebra cohomology is an algebraic generalization of
the following geometric construction from Lie group theory.

Let G be a compact connected simply connected Lie group equipped with a two-
sided invariant metric (a typical example: the group of unit quaternions SU(2) ~ S$3
or the group SU(n) of unitary matrices with unit determinant).

One can calculate the cohomology groups and, furthermore, their exterior algebra

for the group G as follows.

THEOREM 1.24. The exterior algebra of two-sided invariant differential forms
on G s 1somorphic to the cohomology exterior algebra of the manifold G. The

wsomorphism 1s defined by assigning to each differential form its cohomology class.

The proof is based on two facts: ¢) every two-sided invariant form is closed (see
(1.8) below); 72) every closed 2-form is cohomologous to a two-sided invariant form,
namely, to the average value of all its shifts.

This classical theorem reduces all calculations to a purely algebraic consideration
in terms of the commutator of the Lie algebra. Indeed, any one-sided invariant form
is determined by its value on the Lie algebra. The exterior differential of this form
is also an invariant form, and hence it is also determined by its value on the Lie
algebra.

Given an invariant 1-form w, its differential is a 2-form defined at the identity

by the following Maurer—Cartan formula:

(dw)(&m) = Fe([€,n])
(the sign is defined by whether the form is left- or right-invariant). This formula

allows one to write algebraically the closedness condition (and to verify that it
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coincides with the condition of two-sided invariance). More generally, one has the
following

THEOREM 1.25. Given a one-sided invariant n-form w whose value on the Lie
algebra g 1s w(&y,....&n), & € g, its exterior differential is the invariant (n + 1)-

form dw whose value on the Lie algebra 1s

(1.8)  dw(o,. . bn) =% Y (=16 60 i & En)s

0<1<y<n

where the sign 18 determined by whether the form w s left- or right-invariant, and

the hat = means that the corresponding vector 1s missing.

EXAMPLE 1.26. For a 1-form w we have F(dw)(&,n) = w([£,n]). The differential

of a 2-form w is given by the formula

Fdw(&5m,C) = w([&;nl O) + wlln, ¢1,6) + (¢, & n).

The algebraic generalization mentioned above, which allows one to avoid calcu-

lations on the Lie group, proceeds as follows.

DEFINITION 1.27. The cohomology complex of a Lie algebra g is the complex
Q0 Lo, ot D, g2 O

where Q" is a vector space of exterior n-forms on the Lie algebra g, and the differ-
ential d,, is given by formula (1.8).
The n'*-cohomology group (or space) of the Lie algebra g is the vector space

Kerd, : Q" — Qnt!
Imd,_1:Qr"1 - Qnr’

that is, the quotient of the space of all closed n-forms over the subspace of all exact
forms. The elements of the space Kerd,, : Q" — Q" are called n-cocycles, while
the elements of the subspace Imd,_; : Q"' — Q" are n-coboundaries, or the

cocycles cohomologous to zero.

REMARK 1.28. The fact that d,d,—; = 0 readily follows from formula (1.8)
and the Jacobi identity. Geometrically, it means that the boundary of any simplex

boundary (say, for a triangle or a tetrahedron) is zero.

EXAMPLE 1.29. Let a € g* be any element of the dual space to the Lie algebra
g and set

w(& ) = a([&,n]).
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This function is a 2-cocycle, and even a 2-coboundary, on g.
For instance, for the Lie algebra g = Vect(S"!) of vector fields on the circle, and
the point a = (dz)*/2 € Vect*, we get the following 2-cocycle cohomologous to

ZeTo: 5 5
w(g(:z;)a—x,h(x)a—x) = %/51(9% —gh') da = /S1 g'h dzx.

REMARK 1.30. The 2-cocycle on Vect(S!) defining the Virasoro algebra is of
a more subtle nature, and is related to the projective structures on the circle (we
follow [Tab3] below).

Note that every 2-cocycle on a Lie algebra is a linear map from this Lie algebra
to its dual. We construct a natural map from the Lie algebra Vect(S!) of vector
fields on the circle to its dual, the space of quadratic differentials Vect(S!)* =
{u(z)(dz)*}, fixing first a projective structure on S*.

Consider four points x,x +¢,x + 2¢, 2 + 3¢t in an affine coordinate system, where
t is very small. A diffeomorphism f : S! — S! sends them to four points whose
cross ratio is of order t? (not of order t!). The principal part of this cross ratio

at the point x is (up to a constant factor) the Schwarzian derivative S(x) of the

m 3 my 2
=55 (5)

The corresponding quadratic differential S(x)(dx)? is independent of the (pro-

diffeomorphism f:

jective) choice of the coordinate x and measures the “nonprojectivity” of the map f.
It is a cocycle of the diffeomorphism group of the circle with values in the quadratic
differentials.

Now consider the Lie algebra of vector fields. Let f be a diffeomorphism of S*
close to the identity, f(x) = = 4 sv(x), where s is small, and let v(z)d/dx be a
vector field of the algebra Vect(Sl). Then S(z) is sv"'(z) + 0(32), where ’ stands
for d/dxz. Neglecting higher-order terms, we get the desired mapping, which sends
the field v(x)d/dx to the quadratic differential v"'(z)(dz)?.

For the angular coordinate ¢ on the circle, the field w(q)d/dq is sent to (d*w/dq*+
dw/dgq)(dg)*. This can be deduced with virtually no calculations from the de-
scription of the Lie algebra spanned by the generators of the projective group:
0/0q, (cos q)0/0q, (sin ¢)0/q (accompanied by the change of variables normalizing
the first coefficient).

We have now obtained the cocycle whose value on two vector fields v(¢)0/0dq

and w(q)0/0q is given by the expression

/ (vw" + vw')dq,
S1
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where '

is the derivative d/dq along the angular coordinate. The second term is
cohomologous to zero, as we have seen above (see Example 1.29). Integrating by
parts the first monomial, we obtain the Gelfand—Fuchs cocycle. Thus the Gelfand—
Fuchs cocycle (and hence, the Virasoro algebra) measures the deformation of the

projective structure on S! = RP! by diffeomorphisms.
62. Equations of gas dynamics and compressible fluids

The evolution of a compressible fluid naturally extends the motion of an ideal
incompressible fluid: Instead of the incompressibility condition, one assumes now
that the pressure term of the Euler equation is determined by the intrinsic degrees of

freedom of the fluid. Usually these internal parameters are the density and entropy

of the fluid.

2.A. Barotropic fluids and gas dynamics. Barotropic fluids (or gas dynam-
ics) are simplified models of compressible fluids in which the only intrinsic degree

of freedom is the density of the fluid or of the gas.

DEFINITION 2.1. A (compressible) fluid is barotropic (or isentropic) if the pres-
sure term in the evolution equation is defined solely by the fluid’s density. The fluid

motion is described by the following system of equations:

(2.1) {pbz—MwVW—VMm,

b+ div(pv) =0,

where v and p are respectively the velocity vector field and the density function
of the fluid. The pressure function h(p) depends on the physical properties of the
fluid, and is assumed to be given. For instance, the equation of gas dynamics on a

line corresponds to the choice h(p) = p” (for the motion of air v ~ 1.4).

Equations (2.1) make sense for an arbitrary Riemannian manifold M, provided
that (v, V) stands for the covariant derivative along the field v (see Chapter I) and
the divergence is taken with respect to the volume form induced by the metric. The
first equation is similar to the Euler dynamics of an incompressible fluid, but the
velocity field v € Vect(M) is no longer divergence-free. The second equation is the
continuity equation for the function p. Thus the phase space of the system consists
of all pairs {(v, p) ‘ v € Vect(M), p € C®(M)}.

The configuration space of the barotropic fluid on a manifold M is the group

P := Diff M x C™=(M),
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defined as the semidirect product of the group of all diffeomorphisms of M and the

space C>(M) of all smooth functions on the manifold considered (see [HMRW] for

a derivation of the equation via reduction in the Lagrangian representation).
Recall (cf. Section I.10 on the magnetic extension of a group) that the group

structure on the semidirect product P is defined by the formula

(997a) © (¢7 b) = (99 0, hya + b),

where v, a is the natural action of the diffeomorphism ¢ on the function a: Y,a =

a(p~1(z)). The commutator in the corresponding Lie algebra
p = Vect(M) x C>(M)
is also defined via the semidirect product of the Lie algebras involved:
(v, @), (w, b)] = ([v,w], Lwa — Lyb),

where ¢, € Diff(M); a,b € C®(M); v,w € Vect(M); and [v,w] denotes the
commutator, i.e., minus the Poisson bracket, of the two vector fields on M (v, w] =

—{v,w}); see Section 1.2.

REMARK 2.2. The Lie algebra p = Vect (M) x C°°(M) has a simple geometric
meaning: It is the Lie algebra of differential operators of the first order on M. Such
an operator is always the sum L, 4 p, where L, is the operator of the Lie derivative
along the field v on M, and p is regarded as the operator of the 0'* order, namely

the operator of multiplication by the function p.

PROPOSITION 2.3 [GS1, MRW, Nov2|. The equation of a barotropic fluid is a
Hamaltonian equation on p* with respect to the linear Poisson—Lie structure and

Hamaltonian function

H(v,p) = — /M (%pvz + <I>(,0)> i,

where dipq)(p) = h(p).

REMARK 2.4. In contrast with the Euler dynamics (both of the rigid body and
the ideal fluid), the total energy of a barotropic fluid is not a quadratic form, and
it no longer has the meaning of a Riemannian metric on an appropriate group.
However, one still has a variational problem on the cotangent space T*P of the
Lie group P, such that its extremals are the solutions of Equations (2.1). The

group-theoretical interpretation and all the Hamiltonian properties of the equations
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described earlier will be valid for the barotropic fluid (or gas dynamics) with merely
cosmetic changes.

Note that for the one-dimensional manifold M = R or S! the equations of gas
dynamics (2.1) for the algebra p = Vect (M) x C°°(M) are integrable (see Section
3.B). Note that this Lie algebra has three independent nontrivial 2-cocycles (one of
them being the Gelfand—Fuchs cocycle of the Virasoro algebra).

PROOF SKETCH OF PROPOSITION 2.3. One readily verifies the following

PROPOSITION 2.5. The dual to the space of vector fields Vect(M) on an n-
dimensional manifold M is the space QY(M) @5 Q™(M), where @ means that the

tensor product 1s taken over functions on M.

In other words, elements of Q' (M) @y Q"(M) are pairs 3@ u, € Q, pe Q"
and we do not distinguish between the pairs f3 @ p or § @ fu for all functions f.

The pairing between v € Vect(M) and 3 = B @rv € QY M) @y Q*(M) is as
follows:

(0, B& ) = /Mmﬂ) ’

(the vector field v is contracted with the 1-form 3, and the obtained n-form (i, )u
is integrated over M). That this choice of dual space is natural is due to the (readily
verified) fact that the coadjoint action of the Lie algebra Vect(A]) is geometric:

(2.2) AdL(B Oy p) = @B O @up;

l.e., 1t i1s given by a change of coordinates in both of the 1-form § and the n-form
[

In case of the Lie algebra p* = Vect (M)xC>(M), elements of the corresponding
dual space p* are pairs (f3,6), where 8 € QY(M) @ Q*(M) and 8 € Q"(M). We
leave it to the reader to check that the coadjoint action of an element (p,a) €

Diff (M) x C>(M) is
Adz:o,a)(67 9) = (S‘Q*B + da @ 99*97 99*9)

(see, e.g., [MRW]).
Once the coadjoint action is known, it is routine to find the variational deriva-
tive of the Hamiltonian function (see Definition 1.21) and the corresponding Euler

equation, according to the general rule

. _ *
m = ad5H/5mm.
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It turns out that the equations of barotropic fluid or gas dynamics have plenty
of similarities with the incompressible case (e.g., the structure of conservation laws
in even and odd dimensions is the same). This phenomenon is due to “incompress-
ibility” of the barotropic fluid in coordinates moving with density.

Namely, let p be the volume form on M induced by the Riemannian metric.

Assign to the density function p the density n-form 6 := pu € Q"(M).

THEOREM 2.6 [KhC]. The barotropic fluid equations (2.1) admit first integrals

I(v) = /Mu/\(du)m and  Ij(v) = /Mf<(d1;)m>e

according to the parity of n = dim(M) (n = 2m + 1 and n = 2m, respectively),

where the vector field v and the 1-form u are related by means of the metric, and

f R — R is an arbitrary function.

The integrals above can be read off from (1.9.2) if one replaces the n-form u by
the density form 6 = pp € Q" (M ), with p being the density function. We shall show
that these invariants are Casimir functions on the dual space to the Lie algebra p.
Another (though trivial) conservation law of the same nature is given by the total
mass of the fluid, that is, by the integral of the density form 6 over the manifold
M. The Hamiltonian function H is also a first integral of the equation, but it is

not a Casimir function.

REMARK 2.7. The equations of a barotropic fluid with a nearly constant density
p approximate the Euler equation of an incompressible fluid [Eb]. One can think
of the condition of incompressibility within the general framework of systems with
constraints (see [Arnl6]). A dynamical system confined to a submanifold can be
regarded as a subsystem in an ambient manifold with a strong “returning force”
directed towards the submanifold.

For instance, consider a point mass that is constrained to move in the unit circle
in the plane without forces. It can be thought of as a point attached to the center
by a rigid rod. The latter is the limiting case of a point attached to the center
by an elastic spring, where the elasticity coefficient of the spring tends to infinity,
and in equilibrium the spring has length 1. While a point on a rod is confined to a
circle, a point on a spring oscillates out from this circle. In the limit, the position
and velocity of the “elastic pendulum” tend to those of the “rigid pendulum,” but
the acceleration does not.

Similarly, for the group of all diffeomorphisms of a manifold, one can introduce a
“returning force” directed towards the subgroup of all volume-preserving diffeomor-

phisms (see [Eb]). Then the velocity and its first partial derivatives of a barotropic
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(weakly compressible) fluid tend to those of an ideal fluid. In particular, the above
conservation laws for a barotropic fluid become the conserved charges (1.9.2) for an
ideal fluid as p — 1. Indeed, their explicit form involves only the fluid velocity v
and its first derivatives Qv/0x (or the corresponding 1-form u and its differential
du, where u is related to v by means of the Riemannian metric, i.e., without any
differentiation). The conservation laws do not contain time derivatives of the ve-
locity (i.e., do not contain the acceleration), and hence the limiting procedure is

harmless for them.

PROOF OF THEOREM 2.6. A heuristic argument is based on the fact that the
density p is transported by the flow and the fluid is incompressible with respect to
the new volume form 6 (depending on time and on the initial conditions). Thus,
we can apply Theorem 1.9.2, whose assumptions require no relation between the

metric and the volume form.

More precisely, the trajectories of the barotropic fluid equations are tangent to
the orbits of the coadjoint representation of the group P = Diff M x C*°(M), and

the statement follows from

PROPOSITION 2.8. The functional

I(3,0) = /M u A (du)™

in the case of an odd n = 2m + 1 and the functionals

L6 = [ f (%) 0

in the case of an even n = 2m (where the 1-form u is defined by u := 3/6 € QY (M))

are wnvariant under the coadjoint action of the group P on the dual space p*.

PrOOF. Note that the ratio u = 3/6 has the geometric meaning of a differential
1-form (see (2.2)). Explicitly, one has the following action on this form:

Ad{y gu = Adig 4 (5 = .0
_ (B _
= V4 ) + da = pyu + da,

i.e., the 1-form u is transported by the ow modulo da, the differential of a function.
Hence, the P-action on the coset [u] € ! /dQ° of 1-forms on M, as well as on the n-

form 0 € Q7 is geometric: It is nothing but a change of variables. Now Proposition
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2.7 (as well as Proposition 1.9.3) follows from the coordinate-free definition of the

functionals I and Iy. O

To complete the proof of the theorem, recall that the inertia operator A : p — p*
defined by the Riemannian metric on the manifold M is the map (v, p) — (v ®86,6),
where 8 = ppu is the density form on M, and the 1-form u is obtained from the
velocity v by the metric “lifting indices.” Theorem 2.6 follows. g

2.B. Other conservative fluid systems. We refer to the surveys [GS2, HMRW,
MRW, Nov2, DKN, VIM] for extended treatments of the Hamiltonian formalism
related to the variety of different types of fluids, and in particular for applications
of the techniques of semidirect products and Hamiltonian reductions.

We mention just a few examples:

— A general inviscid compressible fluid is regarded as having two internal
degrees of freedom: The pressure term is defined by both the mass density
and the entropy (unlike the barotropic case with density only); see [Nov2].
The corresponding Euler equation is related to the semidirect product Lie

algebra
p:= Vect (M) x [CZ(M) @ CF(M)].

— Anisotropic liquids (say, superfluid *He) require the introduction of a vector
field for the internal degrees of freedom [Nov2, KhL].

— Magnetohydrodynamics in a compressible perfectly conducting fluid is con-
structed as the semidirect product of the magnetic extension of the dif-
feomorphism group (considered in Section 1.10) with the space of smooth
functions on the manifold M; see [MRW].

— The motion of an ideal incompressible fluid with a free boundary does not
have an explicit group structure: One cannot compose two flow transforma-
tions with different shapes of the boundary. The Hamiltonian formalism for
this problem, as well as the Hamiltonian form for the equations of a liquid
drop with surface tension, is presented in [LMMR].

— A rigid body in a fluid is described by the Kirchhoff equations in R® (see Sec-
tion 1.10). However, the whole “body—fluid” system is already an infinite-
dimensional system. The body floating in the fluid is described by its
impulse and angular momentum, while the fluid can be regarded as an
infinite-dimensional system of the above type (having one fixed boundary
component and the other a “free” one). A fluid filling a cavity M in a body
is another, similar, system. Its dynamics is associated to the semidirect

product of the group E(3) (the motion of the body) and S Diff(A) (the
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motion of the fluid filling the cavity). See [V1I] for the stability analysis
corresponding to the systems of both types.

— Various equations related to two-dimensional hydrodynamics manifest some
features of integrability. For instance, the Kadomtsev—Petviashvili equation
(us + 6utiy + Upre)r + 3uyy = 0 is an integrable infinite-dimensional Hamil-
tonian system related to shallow water.

— The equations of infinite conductivity (or those of the 3-plane in meteorol-
ogy: Aoy + By + {1, A} = 0) differ from the standard incompressible 2D
or 3D hydrodynamics by a Coriolis-type term; see [Fey].

— The equation {¢° + cy, Ap® + By} = 0 for steady waves in two dimensions,
which is obtained from the f-plane equation by substituting ¢ (x,y,t) =
Y*(x—ct,y), admits interesting solutions of steadily traveling dipole vortices
[LaR] (see Section I.11.A for 3 = 0).

— Many dynamical systems on the sine-algebra, being the “quantum” version
of the algebra of Hamiltonian fields on the two-torus (see Remark 1.11.6),
are described in [HOT].

— General Poisson brackets of hydrodynamic type [D-N, DKN] provide a gen-
eral Hamiltonian formalism for first-order quasilinear equations on mani-
folds. The properties of these brackets impose very restrictive conditions

on the Riemannian structure of the underlying manifold.

One more advantage of the Hamiltonian approach is a simple geometric inter-
pretation of the so-called Clebsch variables in many physically interesting systems.
These variables appeared in a hydrodynamical setting as a set of an excessive num-
ber of coordinates (with additional constraints between them) in which the Euler
equation acquires the canonical Hamiltonian form; see [Lam]. A general framework

for symplectic (or “Clebsch”) variables from the Poisson point of view can be found

in [M-W] (see also [Zak, MRW]).

DEFINITION 2.9 [M-W, MRW]. If P is a Poisson manifold, then symplectic vari-
ables for P is a map J : M — P of a symplectic manifold M into P that respects
the Poisson brackets (i.e., the pullback of the Poisson bracket of two functions f, g
on P is the Poisson bracket on M of their pullbacks f o J, g o J). Any canonical
symplectic coordinates on M are said to be canonical coordinates on the Poisson
manifold P.

A Hamiltonian function H : P — R determines a Hamiltonian function on M by

Hy; := HoJ, and the integral curves of the “canonical” Hamiltonian system on M
with the Hamiltonian H s cover those for the Poisson “noncanonical” Hamiltonian

system on P.
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EXAMPLE 2.10. The construction of the manifold M and the map J in the case
of the dual space P = g* to an arbitrary Lie algebra g equipped with the Lie—
Poisson bracket is very explicit. The symplectic manifold becomes the cotangent
bundle M = T*G to the Lie group G, while the map .J is the left shift L} of any
covector { € TG at a point g € G to the cotangent space at the identity: TG = g*.
The natural coordinates (p,¢) in the cotangent bundle T*G are canonical for g*,
since the symplectic structure has the form dp A dg.

A linear version of the variables on T*(G is the set of canonical coordinates on
M = g* @ g with the map

J: g dg—g"
such that (p,¢) = ad; p. We refer to [M-W, MRW, Zak] for a detailed description
and numerous applications of this construction of Clebsch variables to dynamical

systems and their conservation laws.

2.C. Infinite conductivity equation. The infinite conductivity equation pos-
sesses many properties inherent in ideal hydrodynamics. Its relationship to the
equation of an incompressible fluid is due to the fact that at a high density, an elec-
tron gas is similar to a fluid. Indeed, the repelling of particles in electron clusters

makes the gas incompressible.

DEFINITION 2.11 (SEE, E.G., [Fey]). The equation of (nonrelativistic) infinite

conductivity in a domain of R is
(2.3) v=—(v,V)v—vxB—-Vp,

where v denotes a divergence-free velocity field of the electron gas, B is a constant
in time (but not in space) external divergence-free magnetic field, and the symbol
x stands for the cross product in R3. One can define an analogue of this equation

on an arbitrary Riemannian manifold M with volume form px.

PROPOSITION 2.12 [KhC]. The wnfinite conductivity Equation (2.5) is equiv-
alent to the following Hamiltonian equation on the dual space SVect (M)* =
QY M) /dQ° (M) to the Lie algebra of divergence-free vector fields S Vect (M):
Iu]
ot
Here the 1-form u 1s related to the vector field v by means of the metric inertia
operator, [u] € QY (M)/dQ°(M) is the coset of the I-form u, and « is a I-form
whose differential da obeys the identity do = —igp.

(2.4) = —L,[u+ «l.

PROOF. The proof follows just as in the ideal incompressible case considered in
Chapter I (see Equation (1.7.11)). The form « defined by da = —igp (up to the
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differential of a function) is precisely chosen to fit the term v x B with the cross
product in (2.3).
The infinite conductivity Equation (2.3) is Hamiltonian, with the Hamiltonian

function being (minus) the quadratic energy form shifted away from the origin of

S Vect(M)*:

() == [ (oo

The Euler equation corresponding to the latter function has the form

Olu + «]

T = —L,[u+ «l,

which is equivalent to (2.4). Indeed, the field B is constant in time, and hence

0B _ o0 _
o ot
O

COROLLARY 2.13. The infinite conductivity Equation (2.5) has either at least
one or infinitely many first integrals, according to the parity of n = dim(M). The
integrals are given by I(v) and If(v) in formule (1.9.2) with u replaced by u + «

and where the 1-form « s as defined above.

REMARK 2.14. The equation of infinite conductivity (and its generalization to
an n-dimensional manifold M) can be regarded as the Euler equation on the central
extension of the Lie algebra of divergence-free vector fields on M [Rog, Ze2]. The
corresponding two-cocycle, extending the Lie algebra of divergence-free vector fields
S Vect(M), is the Lichnerowicz 2-cocycle [Lich]: For any closed 2-form 3 on M,

cs(v,w) = /M(iwivﬂ)/w,

cf. Remark 1.11.6 on the extension of the sine-algebra and the algebra of Hamil-

tonian vector fields on a two-dimensional torus.
63. Kahler geometry and dynamical systems on the space of knots

Infinite-dimensional spaces of curves appear in the hydrodynamical setting as
certain special “low-dimensional” coadjoint orbits of the diffeomorphism group of
R3. This point of view connects many seemingly unrelated symplectic and Poisson

varieties and dynamical systems on them.
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3.A. Geometric structures on the set of embedded curves. Consider the
space C of smooth embedded nonparametrized oriented closed curves (or the space
of knots) in Euclidean three-dimensional space R®. It can be thought of as the set
of all smooth maps v : S — R3 of the circle into R® such that ~ is an immersion
(4'(z) # 0 for all z € S'), 4 has no double points, and where any two maps with

the same image are indistinguishable:

C={y:5" =R |y(2) #0 Ve e S', y(x) =1(y) iff e =y} /v~ (y09).

Here ¢ runs over all diffeomorphisms of the circle S?.

Connected components of C are the classes of equivalent (oriented) knots. We
will call two knots equivalent if there is an isotopy of the ambient space R? sending
one of the knots into the other. Locally constant functions on C are called the knot

IMVATIANLS.

The space of knots C can be equipped with a natural symplectic structure. Con-
sider an embedded curve v = ~(S') C R3 A tangent vector v to C at 7 is an
infinitesimal variation of the curve ~, that is, a normal vector field attached to
v(S1). In parametrized form the vector v(x) is orthogonal to +/(z) in R? for all
r e St

DEFINITION 3.1. The (Marsden—Weinstein) symplectic structure on the space
of knots is the 2-form 3 on C whose value on the pair of elements u,v € T.,C is the
oriented volume of the following collar along the curve v. At every point v(x) the
vectors u(x) and v(x) span a parallelogram, and the collar is the union of these
parallelograms along v C R?; see Fig.74.

For a chosen parameter + € S' one has

o) = [ vl (e, ola), wlo))do.

where vol is the volume of the parallelepiped spanned by the three vectors. The

integral clearly does not depend on the parametrization.

Note that we do not need the Euclidean structure but only the volume form
in R3. The definition can be easily generalized to an arbitrary three-dimensional
manifold with a volume form. Moreover, for manifolds of any dimension n > 2
the same definition gives the symplectic structure on the space of submanifolds of

codimension 2 (i.e., of dimension n — 2).

The symplectic structure described above has a hydrodynamical meaning. It

is based on the fact that every connected component of the space C (i.e., every
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FIGURE 74. The value of the symplectic structure on two variations of

a knot is the volume of the collar spanned by the variations.

isotopy class of knots) can be viewed as a special coadjoint orbit of the group of

volume-preserving diffeomorphisms of R3.

DEFINITION 3.2. Let v be a knot in R®. Then it defines the functional (., on
divergence-free vector fields in the space: The value of ¢, on a field v is the flux
of the field v across any oriented surface in R® bounded by the contour v (such an

embedded surface o is called a Seifert surface).

PROPOSITION 3.3. The knot functional (-, 1s well-defined on divergence-free vec-
tor fields; i.e., 1ts value does not depend on the choice of the surface o such that

Jo = 7.

PRrROOF. The difference between the fluxes of a field v through two surfaces with
the same boundary ~ is the flux of v across a closed surface. The latter vanishes

by virtue of the divergence-free property of the field v. O

REMARK 3.4. We now relate the functional (., € S Vect(R?)* to another descrip-
tion of the dual space as the quotient S Vect(R?*)* = Q1(R?)/dQ°(R?) = Z*(R?) of
all 1-forms on R?® modulo exact 1-forms, or as the space of all closed 2-forms. The
exterior derivative d takes a coset of 1-forms (an element of Q!/dQ°) to a closed
2-form (an element of Z?) without any loss of information, since H'(R?) = 0; see
Corollary 1.7.9.

The curve v is identified with a singular 2-form w., in R? supported on 7. It is
a 0-type form whose integrals over any piece of a two-dimensional surface vanish,

unless the piece intersects the curve. In the latter case, the integral equals the
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algebraic number of the intersection points, where the points are counted according
to orientation determined by the orientation of the curve 4 and the orientation of
the piece at every point of intersection.

The 2-form w is closed, which corresponds to the closedness of the curve + itself.
Thus w-, belongs to Z?(R?) (more precisely, it is a so-called De Rham current, and
it belongs to a certain closure of the space of smooth closed 2-forms; see [DeR]).
To represent the closed (and hence, exact) 2-form w. on R? as an element of the
quotient Q' /dQ°, we have to take d~! of it. A 1-form d~'w, is not uniquely defined,
and i1t can be thought of as the 6-type 1-form supported on a Seifert surface o of
the curve v (Fig.75). The coset of such a 1-form u, belongs to (a certain closure

of ) the space Q'/dQ°.

FIGURE 75. The 2-form w- is supported on the curve . The 1-form

d~'w, is supported on a Seifert surface o.

PROPOSITION 3.5. The pairing of the 1-form u, with a divergence-free vector
field v, according to the rules of Chapter I (see formula (1.7.7)), coincides with the
fluz of the field v across the surface o.

PROOF. Let u be a volume form in the space R®. Then the pairing of the (coset

of the) 1-form u, and a divergence-free field v is

(o), @:/RS(@'UUU),,L:/RS uamv,l:/aiv,,b.

The last integral is a coordinate-free expression for the flux of v across o. O

We have identified knots with certain points in the dual space S Vect(R?)*. The
coadjoint action of volume-preserving diffeomorphisms on knots is geometric, and
hence all knots isotopic to a given one constitute a coadjoint orbit. The same con-
sideration is applicable to links as well. Thus, the classification of knot invariants,
though difficult enough by itself, becomes part of a much more complicated ques-
tion on classification of all Casimir functions for the group of volume-preserving

diffeomorphisms of the space R? (or of the three-dimensional sphere S?).
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PROPOSITION 3.6 [M-W]. Identify the set of isotopic knots with a coadjoint
orbit of the group of volume-preserving diffeomorphisms of R3. Then the Kirillov—
Kostant symplectic structure on this set coincides with the Marsden—Weinstein sym-

plectic structure.

PROOF. Assume that two fields v and w in R?® define two variations of a curve
~. Then the Kirillov-Kostant symplectic structure on the coadjoint orbit at the

point w~ associates to these variations the number
<w77 [vva = <d_1w77 [vva = <u07 _{vvw}>

= —/ (i{mw}ua)/,L = —/ Uy N (i{mw}/,L).
R3 R3

Here we have used the fact that the commutator in the Lie algebra of vector fields
is equal to minus their Poisson bracket. Since {v,w} = —curl(v x w), we have,

according to the definition of curl(v x w),

_i{v7w}/“L - icurl(vxw)/l = da.

Here « is the 1-form related to the vector field (v x w) by means of the Riemannian

metric: a(€) = (v x w, &) for any vector field £. Then

(W, [v,w]>:/ ua/\doz:/ dua/\oz:/ wy A .
R3 R3 R3

The last integral, by definition of the 1-form «, is the circulation of the field v x w
along v, or, equivalently, the volume of the collar spanned by the variations v and

w of the curve ~:

/ wy N = / vol (7', v, w)dx = B(v,w).
R3 St
This is the symplectic structure given in Definition 3.1. g

REMARK 3.7. Note that the coadjoint orbits corresponding to knots satisfy a
kind of “quantization” condition. Associate to every knot a narrow current sup-
ported in a tubular neighborhood of the knot and whose flux across any transverse
to the neighborhood is equal to 1. The flux of this current across a Seifert surface
of any other knot is an integer.

If m is a point of such a “quantized” orbit, then the orbit of the point Am (A € R)
for a nonintegral A does not correspond, in general, to a (nonparametrized) knot.
It follows from the description of the coadjoint orbits as of the cosets [a] of 1-forms

modulo differentials: The form A -« corresponds to the orbit Am. These knot-type
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orbits of the coadjoint representation depend on the form period § o as a parameter.
The orbits of nonparametrized knots correspond to the 1-forms of period 1 in the
description via cosets.

Consider the coadjoint orbit of one such link or knot. The considerations above
imply that this “manifold” has the following peculiar property: The values of the
“coordinates” of its points, equal to the linking numbers with other knots, are
always integers, except for those knots that intersect the given one. In this sense
the orbit is similar to a polyhedron whose faces are parallel to the coordinate
subspaces and have integer-valued projections along these subspaces. The simplest
example of a polyhedron of this type is a broken line on a chessboard consisting of
parts of the square boundaries.

In general, one can think of these elements as a certain subset of the dual space,
somewhat similar to the set of those points in a vector space with at least one
coordinate being an integer. Presumably, replacing the integral coefficients of the
knots forming the links by the rational ones, one obtains a set that is dense in some

reasonable topology.

REMARK 3.8. The space C can also be endowed with a natural almost complex
structure: a continuous operator field J, : T,C — T,C such that Jg = —1 for all
~ € C . This operator has a simple geometric meaning: Every variation field v
along the curve v is sent to another field Jv along v whose vectors Juv(x) at each
point are obtained from v(x) through a rotation by 7/2 in the positive direction in
the plane normal to v/(x) (see Fig.76).

It turns out that the curvature tensor of this structure vanishes [PeS, Bryl]. In
finite dimensions, this condition would be enough to introduce complex coordinates
on the manifold (using the Newlander—Nirenberg theorem, [N-N]). However, the
construction of complex coordinates does not carry over without restrictions to
arbitrary infinite-dimensional manifolds. Here we deal with the infinite-dimensional
manifold of all C'"*°-curves, and one can show that it does not admit a complex
structure [Lem, Wan]. According to V. Drinfeld and C. LeBrun, the situation is
different in the category of analytic knots in an analytic manifold, see the discussion
in [Bryl]. (We refer to [PeS] for a discussion of geometric quantization for vortex
configurations.)

Note also that the moduli space of isometric maps of a circle into Euclidean space
R? (modulo orientation-preserving Euclidean motions) admits a complex structure
[MiZ]. Another example of an infinite-dimensional complex manifold is given by a

typical Virasoro coadjoint orbit; see [Ki3].

REMARK 3.9. The above structures, as well as most of the dynamical systems
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FIGURE 76. A singular knot and the almost complex structure in the

space of knots.

we discuss below, can be defined on a bigger set C of immersed knots, which has a
nicer topology; see [Bryl]. The latter set is obtained by allowing the immersions
~ to have self-intersections in a finite number of points and of finite multiplicity
(Fig.76). The extension of the invariants of knots from the set C to the space of
immersed knots C is a cornerstone of the Vassiliev theory of knot invariants of finite
order [VasV].

At first glance it seems that the space of singular knots with one self-intersection
has (infinite) dimension that is one less than that of the symplectic space (the
coadjoint orbit) of regular knots in the space of all circle immersions, and hence,
it cannot carry a symplectic structure. This is, however, not the case. The cor-
responding coadjoint orbit has dimension two less than that of the regular knot:
The singular knots with one double point (of a given topological type) form a two-
parameter family of orbits (since the integral of the corresponding 1-form along
each of the two loops is an invariant), while the regular knot orbits of a given topo-
logical type form a one-parameter family (the invariant being the integral along the
whole knot).

3.B. Filament-, Nonlinear Schrodinger-, and Heisenberg chain equa-
tions. To define a dynamical system on the (symplectic) space of nonparametrized
(immersed) oriented knots C (the closure of the set of embedded curves C), we need

a Hamiltonian function. A natural choice of the function H is the length functional
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OIl curves:
HG) = lengthof 5 = [ /30 77(2)) do.
Sl

Note that just as in ideal hydrodynamics, to define the motion we need to specify

the Riemannian metric, in addition to the volume form on the manifold.

DEFINITION 3.10. The evolution equation for the length Hamiltonian function
H, with respect to the symplectic Marsden—Weinstein structure, is called the fila-

ment equation.

The time evolution y(z,t) of the curve 7(z,0), z € S, according to the filament

equation, is

0, 0

oy
(3.1) —L k(:z;,t)ax X L

ot
where k(x,t) is the curvature of the curve at the point = at time ¢.

Indeed, the variational derivative 55—5 is

d2
—(length of )™* ﬁ

for (a multiple of) arc-length parametrization x. Then, the corresponding Hamil-

tonian field can be found, say, by using the almost complex structure J.:

oH d?
sgrad H = —(length of 7)_1 J ((5—> = (length of 7)_2 J (d—z>
v T
o (dy d*y
17 = (length of 2L =1L,
1) (ensth o ) (1 27

The return from the arc-parametrization to an arbitrary one results in the curvature
factor k(x,t) in Equation (3.1).

REMARK 3.11. Hasimoto noticed in [Has] that the filament equation (3.1) is

equivalent to the nonlinear Schrodinger equation

.0 02 1
(32) %= T Ll

for a complex-valued wave function 1 : S' — C. This equation is known to be a
completely integrable infinite-dimensional system and to possess soliton solutions
(see, e.g., [DKN]).

The transformation reducing one of the equations to the other is called the

Hasimoto transformation:

bz, t) = k(z, ) exp <@ : /O r(u,t) du) ,
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where 7(u,t) is the torsion of the curve v at the point u and time ¢.
The paper [LaP] shows that the Hasimoto transformation respects the Hamilton-
ian property of the equations: It sends the Marsden—Weinstein structure on curves

to a certaln (nonconstant) Poisson structure on wave functions.

REMARK 3.12. Another equivalent form of the filament equation is the equation
of gas dynamics we dealt with in Section 2. Rewriting Equation (3.1) in the Frenet
frame of v, one obtains the evolution equations on the curvature k(x,t) and the
torsion 7(x,t), which in the coordinates p := k% (“energy density” of the curve)

and 7 are
{ Orp + 0u(pT) = 0,
Oy + 70T = Oy (ip + %,0_1/28%,01/2) ,

where 0, := 0/0x and 0; := 0/0t; see [Tur]. Thus p and 7 become the velocity and

density fields for a one-dimensional fluid.

REMARK 3.13. The Heisenberg magnetic chain provides one more version of

the filament equation. This equation describes the dynamics of the vector function

L(z) e R z € St

oL 0?L
_ 2=

(3.3) Fri 902"

One immediately obtains this equation from (3.1) by using the arc-parametrization
x along the curve 4. Indeed, the filament equation (3.1-3.1") assumes the form

Oy _ 0y 0%y

— = X —
ot  Ox  Oa?%’
equivalent to Equation (3.3) for the corresponding tangent vector L := 0v/0x.
The vector L(z) € R? can also be regarded as an element of the three-dimensional
Lie algebra so(3). From this point of view Equation (3.3) is a particular case
of the Landau—Lifschitz equation, which can be associated to an arbitrary finite-

dimensional Lie group, or rather to the corresponding gauge group.

REMARK 3.14. The filament equation can be regarded as an “approximation”
of the Euler-Helmholtz equation for the vorticity concentrated on a curve if one
considers the contribution of the local terms only; c¢f. Section I.11.C. The integrable
dynamics in this case is a consequence of the approximation. The inclusion of the

next (nonlocal) term into the picture makes the dynamics much more complicated;

see [KIM].
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3.C. Loop groups and the general Landau—Lifschitz equation. Let G
be a finite-dimensional matrix group with a nondegenerate Killing form (A, B) =
tr(AB) for A,B € G, i.e., a reductive group (one can think of SO(3) in the ex-
ample above, or the group of all nondegenerate matrices GL(n)), and let g be the

corresponding Lie algebra.

DEFINITION 3.15. The loop group G (or the gauge group) is the group of G-
valued functions on the circle G = C*>(S', G) with pointwise multiplication. The
corresponding loop Lie algebra g is the Lie algebra of g-valued functions on the
circle with pointwise commutator.

DEFINITION 3.16. The Landau—Lifschitz equation is the evolution equation

0L =L x 0L
for a vector-valued function  — L(z) € R? on the circle € S', and 92 := ;—;.
More generally, the Landau—Lifschitz equation associated to a Lie algebra g is

the following evolution equation:
(3.4) Oym = [m , 9*m],
where m is a g-valued function on S*.

According to the latter definition, the classical Landau-Lifschitz equation (3.3)
is associated to the Lie group s0(3) upon the identification of the vectors in R* with

angular velocities, the elements in so(3):

0 Us —V3
L= (vi,v3,03)—~ | —vs 0 vy
V2 —U1 0

THEOREM 3.17. The Landau—Lifschitz equation associated to a Lie algebra g is
the Euler equation corresponding to the loop group G with the quadratic Hamiltonian

function
H(m)= l/ tr (&Em)2 dx
2 Ja

on the dual space g*, where Oym 1s the g-valued function, and tr stands for the

trace in the matriz algebra g.

PROOF. The inverse inertia operator A™! : g* — § corresponding to this Hamil-
tonian sends a (g*-valued) function m to the (g-valued) function —9?m. Then the

Euler equation assumes the form
Oym = ad’y_.,, m = —[0*m , m],

equivalent to (3.4). O
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COROLLARY 3.18 (SEE, E.G.,[A-L]). The classical Landau—Lifschitz equation
(3.3) us the Hamiltonian equation on the dual space s0(3)* with the Hamiltonian

function

H(L)= - /Sl(axvl)z + (81;1)2)2 + (81;1)3)2 dx

(here L(x) = (vi(z),v2(7),v3(x)) € R® = 50(3)*).

The paper [A-L] also contains the calculation of the sectional curvatures of the
loop group 56(3) with respect to the right-invariant Riemannian metric induced

by the Hamiltonian function H(L).
84. Sobolev’s equation

Studying fluid oscillations in a fast rotating tank, and starting with the corre-

sponding approximating equation

(4.1) g—:—k(vxez)—l—gradp:F, dive =0

(with unknowns v and p), S.L. Sobolev obtained an equation of unusual type, now

named after him.

DEFINITION 4.1. The Sobolev equation is the equation

O?’Au  O%u
(4.2) 5+ 55 =0

for the unknown function w.

REMARK 4.2. Equation (4.1) is the the linearization of the Navier—Stokes equa-
tion in a rotating domain. Typical examples are atmospheres of planets and fuel
tanks of rotating projectiles. Poincaré [Poi2] reduced the linear system (4.1) to one
equation (4.2). The latter equation was named after Sobolev, who rediscovered it
in the forties and studied the corresponding boundary problems.

Sobolev’s work was declassified and published in [Sob2]. This paper was in
fact written in Kazan’, perhaps in 1942. Sobolev’s neighbor was Pontriagin and
they discussed many relevant problems in functional analysis. In particular, they
considered the “pseudo-Hilbert” spaces with one (studied by Sobolev) or a finite
number (studied by Pontriagin) of negative squares in the metric. These spaces are
now called Pontriagin spaces. Very few people know that the theory of these spaces
originated in the classified hydrodynamical work of Sobolev.

The work of Poincaré and of Sobolev was continued by Babin, Mahalov, and

Nicolaenko, who extended the equation to the case of fast rotation and shallow
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domains, and considered nonlinear dynamics of the Navier—Stokes equation. Many
features of Sobolev’s study of the linear problem, such as the small denominators
and the Diophantine incommensurability conditions on the domains’ geometrical
parameters, reappear in [BMN]. It is shown in [BMN] that solutions of the 3D
Euler and Navier—Stokes equations of uniformly rotating fluids can be decomposed
into the sum of the following terms: a solution of the 2D Euler (or Navier—Stokes)
system with vertically averaged initial data, a vector field explicitly expressed in

terms of the phases, and a small remainder.

REMARK 4.3. To derive the Sobolev equation from the system (4.1) with 7 =0
(see [GaS] for details) we take the curl of both sides of the first equation. Since
curl (a x b) = —{a, b}, this gives

Ow Ou

(4.3) o + 27{:@ =0, where curl © = w.

Take the curl once more,

0 Ow

and differentiate it in ¢ to get

Finally, substitute w /0t = —2k OJu/0z from Equation (4.3) to obtain the Sobolev

equation

A study of the spectral problems for the linear Sobolev equation showed a strong
dependence of the eigen oscillations on the tank shape. Namely, after some trans-
formations, Sobolev found it necessary to investigate the two-dimensional spectral

problem
0%u \ 0% u

922 wzoa ulp =g

(as well as the corresponding homogeneous problem u|r = 0) in a plane domain
bounded by a curve T.

For a given value of the spectral parameter A, the equation above is the Dirichlet
problem for the one-dimensional wave equation. Solving it by the method of char-
acteristics, one immediately encounters the strong dependence of the results on the

domain shape.
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As we shall see below, on the boundary of the domain there appears a dynam-
ical system. The ergodic properties of this system have a strong impact on the

oscillation character.

Consider the case of a convex domain. Two families of characteristic lines cover
the domain. Each of these two families defines the diffeomorphism of the boundary
I’ into itself that is the involution exchanging the points of intersection of each
characteristic with the boundary. The above-mentioned dynamical system on the
boundary curve is the diffeomorphism of the curve I' that is the composition of two
involutions corresponding to the two families of characteristics.

In terms of this diffeomorphism 7' : I' — T', the solution of the above Dirichlet
problem (for a fixed A) is constructed as follows. First, by a linear change of
variables, we transform the characteristics into the straight lines * = const and
y = const. Our problem assumes the form

0% u
Ox Jy -

0, ulr=g.

The solution u is the sum of two functions f(x)+h(y), one of which depends only
on  and the other only on y. To look for these functions, we fix some boundary
point A and choose the value of one of the functions at this point (e.g., f(A))
arbitrarily. Then the value of the second function is determined by the boundary
condition (i.e., h(A) = g(A) — f(4)).

Let B be the intersection of the characteristic line of the first family (x = const)
passing through A and the boundary I'. At the point B we already know the
value of the first function (it is the same as at the point A, ie., f(B) = f(A)).
Then the value of the second function h at B is determined by their sum ¢(B)
(namely, h(B) = ¢g(B) — f(B) = g(B) — f(A)). Further, the characteristic of the
second family (y = const) passing through B intersects the boundary I' at the point
A" =TA (Fig.77). We already know the value of the second function along this
line (which is the same as that at B: h(A’) = h(B)). Given the sum g(A’), we find
the value of the first function at A’ (here f(A') = g(A") — h(A") = g(A") — h(B) =
g(A") —g(B)+ f(A)) and so on.

The infinite process of constructing the solution is described by a piecewise-
linear trajectory. This trajectory is constituted by the intermittent segments of
the characteristics joining the points A = T™A. The solution is the sum of the
initial value and the alternating sum of the boundary values at the vertices of the
piecewise-linear trajectory.

The properties of the dynamical system 7' : I' — I' have the following impact on
the solutions of our Dirichlet problem. Suppose that T has a periodic trajectory,
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FIGURE 77. Constructing the solution of the Dirichlet problem for the

wave equation from two families of characteristics.

T"A = A. Then the alternating sum of values of the boundary function ¢ at
the vertices of the corresponding piecewise-linear trajectory ABA'B’... A must
be equal to zero. Hence, each periodic trajectory of the map T corresponds to a
solvability condition for the Dirichlet problem (and therefore, to a certain nontrivial
“distributional solution” of the corresponding homogeneous equation, “supported

near” this periodic trajectory).

There are more subtle properties of the dynamics of T that also affect the solv-
ability of the Dirichlet problem (see details, e.g., in [Arn2]).

Consider first an elliptic domain. In this case, the diffeomorphism T becomes
a rotation after an appropriate choice of the angle coordinate on the boundary.
Indeed, an ellipse can be turned into a circle by an affine transformation of the
plane. The characteristics of both families will turn into two families of parallel
lines forming an angle o with each other. The map T will become the circle rotation
by the angle 2a (by virtue of the “inscribed angle” theorem).

Depending on whether the angle « is commensurable with 27 or not, the orbits of
the rotation T either consist each of a finite number of points (repeating periodically
with the same period for all initial points) or are everywhere dense on the circle.

In the first (“resonance”) case, the solution of the nonhomogeneous equation
exists if and only if the function ¢ satisfies an infinite number of independent con-
ditions. The corresponding homogeneous problem has an infinite-dimensional space
of solutions.

When the angle « is not commensurable with 27, any T-orbit is everywhere dense

(it is the second, “ergodic” case). Here the situation is more complicated. Formally,
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one can find the solution as a Fourier series. However, its convergence relies on the
arithmetic Diophantine properties of the irrational number « /27 (as well as in what
functional space the problem is considered). For almost all (in the sense of Lebesgue
measure) irrational numbers « /27, the corresponding homogeneous problem has the
unique solution v = 0. The nonhomogeneous problem has, in this case, a (smooth)
solution for every sufficiently smooth right-hand side ¢ (the necessary smoothness
of ¢ increases as the required smoothness of the solution increases; for an analytic
solution the analyticity of the right-hand side is sufficient).

The case of an ellipse, discussed above, is not generic, since the dynamics of the
corresponding diffeomorphism T is integrable. (According to Yurkin [Yur] a domain
bounded by ellipses is the only type of cavity in a rotating symmetric top for which
the study of oscillations described by the Sobolev equation can be reduced to a
finite-dimensional problem.) For a typical boundary curve the diffeomorphism T
cannot, in general, be reduced to a rotation, no matter what angle coordinate on
the curve is chosen.

In the space of all diffeomorphisms (and hence, in the space of curves I'), the
structurally stable diffeomorphisms form an open and everywhere dense set. Such
diffeomorphisms are of “resonance type” with a finite number of periodic orbits (all

of which have the same period) and alternating attractors and repulsers.

People working in the axiomatic theory of dynamical systems usually assume
that “generic” events are those occurring on an everywhere dense open set in the
space of systems. From this viewpoint “generic” circle diffeomorphisms are the
structurally stable ones.

However, from the physics point of view, these structurally stable systems are
not the most widespread. Consider, for instance, a family of circle diffeomorphisms
r — &+ a+ bsinz (mod 27), where a and b are parameters. For most of the
points (a,b) in the rectangle 0 < a < 27, 0 < b < 8 of a sufficiently small height
3, the diffeomorphism does not have periodic points at all, and one can make it
into a rotation by choosing an appropriate coordinate on the circle. (This will
be the rotation by an angle incommensurable with 27.) Every orbit of such a
diffeomorphism is everywhere dense on the circle. For almost all values of the
rotation angle, the solvability question for the Dirichlet problem, corresponding to
such a diffeomorphism 7', turns out to be the same as that for the integrable case
of an elliptic boundary.

For instance, for the near-elliptic domains the “ergodic” situations are encoun-
tered in an overwhelming majority of cases, while the “resonance” ones are rare

(but form an open and everywhere dense set) in the space of ellipse deformations;
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see [Arn2].

We return now to the initial spectral problem with the parameter A. For a typical
boundary I', the two types of behavior of the dynamical system 7' = T(\) on the
curve [' alternate as A changes. If I' is a typical small perturbation of an ellipse,
then the resonance values of the parameter A (for which nontrivial eigenfunctions
arise) form an infinite everywhere dense set (of small measure) on the axis A\. The
ergodic values of A (i.e., the values A for which T'()\) reduces to the circle rotation
by a smooth coordinate change) form a Cantor-type set of almost full measure (for
small perturbations of an ellipse).

As we can see, all topological subtleties of the nonlinear theory of dynamical
systems (in particular, of their perturbation theory) appear in hydrodynamics in

studying the spectrum of the linear problem of small oscillations of a fluid.

After S.L. Sobolev, the spectral problem was studied by R.A. Alexandryan and
his school (see [Ale]). We mention the series of papers by S.G. Ovsepjan [Ovs], in
which the case of a nonconvex boundary was treated.

In the nonconvex case a new difficulty arises: A characteristic line intersects the
boundary in more than just two points, so that the “dynamics” T turns out to be
multivalued (or branching). The ergodic properties of this branching multivalued
dynamics form an interesting, but an insufficiently explored, part of the theory of
dynamical systems.

Consider, for example, a circle diffeomorphism that becomes a multivalued alge-
braic correspondence of an algebraic curve into itself when the diffeomorphism is
extended into the complex domain. This means that the graph of the diffeomor-
phism is one of the components of a real algebraic curve on the Cartesian square
of another algebraic curve. One believes that the number of attractors of such a
diffeomorphism is bounded by a constant, depending only on the discrete invariants
of the correspondence (the genera of the curves and the degree of the correspon-
dence). However, it has been proved only for the correspondences univalued in one

of the directions (say, for polynomial or rational maps of the Riemann sphere into

itself), see [Jak, Herm].

REMARK 4.4. The Dirichlet problem for the one-dimensional wave equation
is encountered in many problems of different origins. For instance, J.-P. Dufour
[Duf] treated in detail its local analogue for algebraic curves with singularities (say,
2? = y*). This problem arises in the study of the symmetry loss (for example, for
the classification of Morse functions in a neighborhood of the fixed point of the
line involution # — —x, or for the classification of pairs of line involutions in a

neighborhood of the common fixed point); see the survey of S. Voronin [Vor].
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An analogous method was used in [Arnl] in the study of the representations of
functions on trees by the sums of functions of the coordinates, which is related to the
13t Hilbert problem. It is interesting that the main trick in all these problems is
the composition of the alternating sums of values of a known function along a piece-
wise characteristic, and it is exactly the same as the one used in hydrodynamics in

the study of spectral problems for the Sobolev equation.

65. Elliptic coordinates from the hydrodynamical viewpoint

Imagine an electrically charged metallic ellipsoid. A theorem going back to
Newton [Newl] and Ivory [Ivo] states that the potential (of the electrostatic field)
induced by the charges is constant inside the ellipsoid, while outside of it the equipo-
tential surfaces are the ellipsoids confocal to the initial one. As we shall see below
(following [Arnl2, ShV]), this fact, as well as its higher-dimensional generalizations,
has a genuine hydrodynamical flavor: The electromagnetic fields of this type are

generated by incompressible flows of electric charges along quadrics.

5.A. Charges on quadrics in three dimensions. We start with a quadric
surface (say, ellipsoid) @ in three-dimensional space and include it first in the family

of confocal quadrics.

DEFINITION 5.1. For a quadric () defined by the equation

1,2 2 22
__|_y__|__:17

aq ao as
the confocal family of quadrics Qcni(\) is the following family of surfaces:

2}2 y2 22
enf(A) = =1,.
Qf() {a1+/\+a2+/\+a3+/\ }

The quadrics of the family change signature at A\ = —ay, —ag, or —a3. For
instance, for a hyperboloid of one sheet with a; > az > 0 > a3z the family consists
of the hyperboloids of two sheets for —a; < A < —ag, of the hyperboloids of one
sheet for —ay; < A < a3, and of the ellipsoids for a3 < A (Fig.78).

We will also use another family of quadrics containing our initial surface Q:

quadrics homothetic to @ with center at the origin. First let ) be an ellipsoid.

DEFINITION 5.2. A homeoidal density on the surface of an ellipsoid @) is the
density of a layer between () and an infinitely nearby ellipsoid homothetic to ().

Now we can make mathematical sense of the “free distribution of electric charges”

on the surface of an ellipsoid:
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THEOREM 5.3 (IVORY THEOREM, SEE [Ivo, Arnl2]). A finite mass distributed
on the surface of an ellipsord with homeoidal density does not attract any internal
point; it attracts every external point the same way as if the mass were distributed

with homeoidal density on the surface of any smaller confocal ellipsouid.

The attraction of the charges is defined by the Coulomb (or Newton) law: In R”
the force is proportional to r!~" (as prescribed by the fundamental solution of the
Laplace equation).

In the counterparts of Ivory’s theorem for hyperboloids, one replaces the homeoidal
densities on ellipsoids by harmonic forms of different degrees, and the Coulomb po-
tential by the generalized potentials related to the Biot—Savart law.

In the simplest nontrivial case of a hyperboloid H of one sheet in three-dimensional
Euclidean space, the result is as follows. Consider the intersection curves of the hy-
perboloid with other quadrics of the confocal family Hepi(A). We will be referring to
the intersections with confocal ellipsoids (respectively, confocal hyperboloids of two
sheets) as parallels (respectively, meridians) of H. (Notice that the parallels and
meridians are orthogonal to one another at every point of the hyperboloid, Fig.78.
This is the theorem on the existence of an orthogonal eigenbasis for a symmetric

matrix, applied to the Legendre dual family of quadrics; see, e.g., [A-G].)

QL)

QL)

FiGURE 78. Quadrics of the confocal family intersect a hyperboloid

along the orthogonal system of curves.

The hyperboloid H divides the space R? into two parts, “internal” I(H) and
“external” E(H), the latter being non-simply connected. The region inside the
hyperboloidal tube is also smoothly fibered by meridians (orthogonal to the ellip-

soids in the confocal family), while the annular region outside the hyperboloid is
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smoothly fibered by parallels (orthogonal to the hyperboloids of two sheets).

THEOREM 5.4 [Arnl2]. There exists a unique (modulo a constant factor) surface
current flowing along the meridians of the hyperboloid that produces a magnetic field
that vanishes in the inner domain and s directed along parallels in the exterior
domain of the hyperboloid. Similarly, there ezists a unique (modulo a constant
factor) surface current flowing along the parallels of the hyperboloid that produces a
magnetic field that vanishes in the exterior domain and s directed along meridians

in the inner domain of the hyperbolovd.

The magnetic field in the inner domain for the hyperboloid, but outside of a
charged ellipsoid from the same confocal family, coincides modulo sign with the
electrostatic field of the ellipsoid. Furthermore, let us look at the electrostatic field
produced by two charges of opposite signs, “equal in magnitude,” and distributed
with homeoidal density on the surfaces of a conducting hyperboloid of two sheets.
This field between the surfaces coincides (modulo sign) with the magnetic field in
the exterior domain of a confocal hyperboloid of one sheet. The explicit formulas

are given below.

REMARK 5.5. The vector fields given by Theorem 5.4 are exact stationary so-
lutions of the corresponding Euler equations of an incompressible fluid flowing,
respectively, inside or outside of the hyperboloid in R3?. The flow is potential in
the inner domain of a triaxial hyperboloid, and it is vorticity-free in the exterior

domain.

5.B. Charges on higher-dimensional quadrics. Let ) be a nondegenerate
quadric centered at the origin of Euclidean n-dimensional space. Include it in the

family of confocal quadrics

anf(/\) = {Z aix—li— \ - 1} )

=1

as the hypersurface corresponding to A = 0. Let us order the axes as follows:

anp < ...< aj.

DEFINITION 5.6. The elliptic coordinates of a point @ € R™ is the set of n values
of A (in increasing order) for which a quadric of the family Qcn1(A) passes through
x. Note that it is an orthogonal coordinate system, since the confocal quadrics

meet at right angles.

The results formulated above for the three-dimensional case have been extended

by B. Shapiro and A. Vainshtein [ShV] to hyperboloids in Euclidean spaces of
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any number of dimensions. A nonsingular hyperboloid H in R™, diffeomorphic
to S! x R*, divides the space into the exterior region E(H) (diffeomorphic to the
product of S! with a half-space) and the interior I(H).

Let w be a differential form with distribution coefficients (see [DeR]). The form
is said to be harmonic off a hypersurface I' if it is continuous off this hypersurface,
coclosed (i.e., 6w = 0, where ¢ is the operator conjugate to the external derivative
d, see Section V.3.B), and if its exterior derivative is a form (with distribution

coefficients) supported on I'.

THEOREM 5.7 [ShV]. Given a hyperboloid H there exists a unique (modulo a
constant factor) l-form harmonic off H, decomposable in elliptic coordinates, and
vanishing in the interior region I(H), and there exists o unique (modulo a constant

factor) k-form harmonic off H, decomposable in elliptic coordinates, and vanishing

in the exterior E(H).

These forms are induced by certain homeoidal densities on the focal quadrics,
which are the limiting quadrics of the confocal family, when the shortest axis of the
hyperboloids or ellipsoids shrinks to zero. We refer to [ShV] for explicit formulas

and proofs.

For the hyperboloids of indices (1,n—1) and (n—1,1), one can give the following
magnetohydrodynamical meaning to those densities.

Let H' be a nondegenerate quadric with a, < -+ < as < 0 < (and a
quadric H"™1, with a, < 0 < a,—1 < .-+ < aj, respectively). Similar to the
above, the exterior region E(H"~1) for the hyperboloid H"~! is fibered by parallels
(diffeomorphic to a circle) by fixing the values of all n—1 elliptic coordinates positive
in E(H"™1). The inner domain I(H') for the quadric H' is fibered by meridians
(diffeomorphic to a line) by fixing the values of all n —1 elliptic coordinates negative

in I(H").

THEOREM 5.7" [ShV]. There exists o unique (modulo a constant factor) poten-
tial flow of an incompressible fluid in the inner domain I(H') whose trajectories
coincide with the meridians. Similarly, there exists a unique (modulo a constant
factor) flow of an incompressible fluid in the exterior region E(H"1) whose vor-

ticity vanishes and the trajectories of which are the parallels.

By construction, both of the flows are directed along the remaining elliptic co-
ordinate. Say, in the 3-dimensional case, one has the following explicit formulas

for the corresponding vector fields vy and vy in the regions I(H') and E(H?),
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respectively, in the elliptic coordinates Ay > A2 > A3 (see [ShV]):

A2 — A3 0 AL — Ao 0
= and vy =

T 303 (Ns) 0N TO\)@(\z) 0Ny’

where

®(Ai) = /(i + a1 )(Ai + az)(Ai + a3).

Noncomputational proofs of these geometric theorems are unknown, even in the

three-dimensional case.

QUESTION 5.8. The presence of distinguished forms that are harmonic off hyper-
boloids suggests that one might try to find filtrations, analogous to those arising in
the theory of mixed Hodge structures, in spaces of differential forms on noncompact

real algebraic and semialgebraic varieties.



