
CHAPTER VKINEMATIC FAST DYNAMO PROBLEMSStars and planets possess magnetic �elds that permanently change. Earth, forinstance, mysteriously interchanges its north and south magnetic poles, so that thetime pattern of the switches forms a Cantor-type set on the time scale (see [AnS]).The mechanism of generation of magnetic �elds in astrophysical objects (or inelectrically conducting 
uids) constitutes the subject of dynamo theory. Kinematicdynamo theory studies what kind of 
uid motion can induce exponential growth ofa magnetic �eld for small magnetic di�usivity. Avoiding analytical and numericalresults (though crucial for this �eld), we address below the topological side of thetheory. x1. Dynamo and particle stretching1.A. Fast and slow kinematic dynamos.Definition 1.1. The kinematic dynamo equation is the equation(1.1) � @B@t = �fv;Bg+ ��B;div B = 0(for a suitable choice of units).It assumes that the velocity �eld v of an incompressible 
uid �lling a certaindomainM is known. The unknownmagnetic �eldB(t) is stretched by the 
uid 
ow,while a low di�usion dissipates the magnetic energy. Here � is a small dimensionlessparameter (representing magnetic di�usivity), which is reciprocal to the so-calledmagnetic Reynolds number Rm = 1=�. The bracket fv;Bg is the Poisson bracketof two vector �elds (for divergence-free �elds v and B in Euclidean 3-space, thelatter expression can be rewritten as �fv;Bg = curl (v � B)). The vector �eldv is supposed to be tangent to the boundary of the domain M at any time. Theboundary conditions for B are di�erent in various physical situations. For instance,the magnetic �eld of the Sun extends out into space, forming loops based on theTypeset by AMS-TEX275



276 V. KINEMATIC FAST DYNAMO PROBLEMSSun's surface and seen as protuberances. This magnetic �eld is not tangent to theboundary.Alternatively, one can suppose that the boundary conditions are periodic (the\star" or \planet" is being replaced by the three-dimensional torus R3=(2�Z)3) or,more generally, that M is an arbitrary Riemannian manifold of �nite volume and� is the Laplace{Beltrami operator on M .The linear dynamo equation is obtained from the full nonlinear system of mag-netohydrodynamics by neglecting the feedback action of the magnetic �eld on thevelocity �eld due to the Lorentz force. This is physically motivated when the mag-netic �eld is small. The latter corresponds to the initial stage of the ampli�cationof a \seed" magnetic �eld by the di�erential rotation.The following question has been formulated by Ya.B. Zeldovich and A.D. Sakharov[Zel2, Sakh]:Problem 1.2. Does there exist a divergence-free velocity �eld v in a domain Msuch that the energy E(t) = kB(t)k2L2(M) of the magnetic �eld B(t) grows exponen-tially in time for some initial �eld B(0) = B0 and for arbitrarily low di�usivity?Consider solutions of the dynamo equation (1.1) of the form B = e�tB0(x). Sucha �eld B0 must be an eigenfunction for the (non-self-adjoint) operator Lv;� : B0 7!�fv;B0g + ��B0 with eigenvalue �C = �C (v; �). The eigenparameter �C is thecomplex growth rate of the magnetic �eld.Definition 1.3. A �eld v is called a kinematic dynamo if the increment �(�) :=Re �C (�) of the magnetic energy of the �eld B(t) is positive for all su�ciently largemagnetic Reynolds numbers Rm = 1=�. The dynamo is fast if there exists a positiveconstant �0 such that �(�) > �0 > 0 for all su�ciently large Reynolds numbers. Adynamo that is not fast is called slow.There exist many possibilities for the dynamo e�ect in some \windows" in therange of the Reynolds numbers. In our formalized terminology, we shall not callsuch vector �elds dynamos.Remark 1.4. The existence of an exponentially growingmode of B is a propertyof the operator Lv;�, and this is why we call the velocity �eld v, rather than thepair (v; B), a dynamo. Kinematic dynamo theory neglects the reciprocal in
uenceof the magnetic �eld B on the conducting 
uid itself (i.e., the velocity �eld v issupposed to be una�ected by B). This assumption is justi�ed when the magnetic�eld is small. The theory describes the generation of a considerable magnetic �eldfrom a very small \seed" �eld. Whenever the growing �eld gets large, one should



x1. DYNAMO AND PARTICLE STRETCHING 277take into account the feedback that is described by a complete system of MHDequations involving the Lorentz forces and the hydrodynamical viscosity.The above question is reformulated now as the followingProblem 1.20. Does there exist a divergence-free �eld on a manifold M that isa fast kinematic dynamo?Our main interest is related to stationary velocity �elds v in 2- and 3-dimensionaldomains M . There are several (mostly simplifying) modi�cations of the problemat hand. We shall split the consideration of the dissipative (realistic, � ! +0)and nondissipative (idealized, or perfect, � = 0) cases. In the idealized nondissipa-tive case the magnetic �eld is frozen into the 
uid 
ow, and we are concerned withthe exponential growth of its energy.In a discrete (in time) version of the question, one keeps track of the magnetic en-ergy at moments t = 1; 2; : : : . Instead of the transport by a 
ow and the continuousdi�usion of the magnetic �eld, one has a composition of the corresponding two dis-crete processes at each step. Namely, given a (volume-preserving) di�eomorphismg :M !M and the Laplace{Beltrami operator �� on a Riemannian manifold M ,the magnetic �eld B is �rst transported by the di�eomorphism to B0 := g�B, andthen it dissipates as a solution of the di�usion equation @B0=@t = ��B0:B0 7! B00 := exp(��)B0:Problem 1.5. Does there exist a discrete fast kinematic dynamo, i.e., does thereexist a volume-preserving di�eomorphism g : M ! M such that the energy of themagnetic �eld B grows exponentially with the number n of iterations of the mapB 7! exp(��)(g�B);as n ! 1 (provided that � is close enough to 0)? The question is whether theenergy of the nth iteration of B is minorated by exp(�n) with a certain � > 0independent of � within an interval 0 < � < �0 for some �0?Other modi�cations of interest include chaotic 
ows, \periodic" versions of thedynamo problem (in which the �eld v on a 2- or 3-dimensionalmanifold is supposedto be periodic in time rather than stationary), as well as 
ows with various spacesymmetries (see [Bra, Bay1,2, Chi2,3, AZRS2, Sow2, Gil1, PPS, Rob]). In thesequel, we describe in detail certain sample dynamo constructions and the principalantidynamo theorems, along with their natural higher-dimensional generalizations.We shall see that the topology of the underlying manifold M enters unavoidablyinto our considerations.



278 V. KINEMATIC FAST DYNAMO PROBLEMSThe following remark of Childress shows that the di�erence between fast andslow dynamos is rather academic. Suppose that the dynamo increment �(�) decaysextremely slowly, say, at the rate of 1=(ln j ln �j), as the di�usivity � goes to zero.(This is the case for a steady 
ow with saddle stagnation points, considered in[Sow1].) Though theoretically this provides the existence of only a slow dynamo,in practice, the dynamo is de�nitely fast: For instance, for � = 1=(ee3) < 10�8 theincrement �(�) is of order 1=3, noticeably above zero.Remark 1.6. A more general (and much less developed) dynamo setting isthe so-called fully self-consistent theory. It seeks to determine both the magnetic�eld B and the (time-dependent) velocity �eld v from the complete system of themagnetohydrodynamics equations:8><>: @B@t = �fv;Bg+ ��B;@v@t = �(v;r) v + (curl B) �B + ��v �rp;div B = div v = 0;for the �elds B and v in a Euclidean domain (with standard necessary changes ofsymbolsr;�; �, and curl for a three-dimensional Riemannian manifold). We referto Section I.10 and to [HMRW] for a group-theoretical treatment of magnetohy-drodynamics, and to the interesting and substantial reviews [R-S, Chi2] for recentdevelopments in both the kinematic and the fully self-consistent theories. Herewe are solely concerned with the topological side of the fast kinematic dynamomechanism.1.B. Nondissipative dynamos on arbitrary manifolds. Unlike the dis-sipative (\realistic") dynamo problem, which is still unsolved in full generality,nondissipative (� = 0) dynamos are easy to construct on any manifold. First lookat the case of a two-dimensional disk.At �rst sight, a nondissipative continuous-time fast dynamo on a disk (or on asimply connected two-dimensional manifold) is impossible.Pseudo-proof. Every area-preserving velocity �eld v on a simply connectedtwo-dimensionalmanifold is Hamiltonian and can be described by the correspondingHamiltonian function. All the orbits of the �eld v that are noncritical level curvesof such a function are closed (Fig.58).Consider the linearized Poincar�e map along every closed orbit. The derivativegT� of the 
ow map gT at a point of an orbit of period T is generically a Jordan2 � 2 block with units on the diagonal. Indeed, the tangent vector to the orbit ismapped to itself under the Poincar�e map, and hence it is eigen with eigenvalue 1.



x1. DYNAMO AND PARTICLE STRETCHING 279
Figure 58. A typical Hamiltonian velocity �eld on a disk. Almost allorbits of the �eld are closed.Then the Jordan block structure immediately follows from the incompressibility ofthe 
ow v, provided that it has a nondegenerate shear along the orbit (the orbitperiods change with the value of the Hamiltonian).Such a Jordan operator stretches the transported vectors of a magnetic �eld Blinearly with the number of iterations of the Poincar�e map (see Section II.5). Thelinear growth of the norm of B on a set of full measure implies the existence of acertain linear majorant for the increase of the energetic norm pE over time. �However, one cannot neglect the contribution of the singular level sets to themagnetic energy. The following statement is folklore that directly or indirectly isassumed in any study on dynamos (see [VshM, Gil2, Koz1]).Theorem 1.7. On an arbitrary n-dimensional manifold any divergence-free vec-tor �eld having a stagnation point with a unique positive eigenvalue (of the linearized�eld at the stagnation point) is a nondissipative dynamo.Proof. The main point of the proof is that the energy of the evolved mag-netic �eld inside a small neighborhood of the stagnation point is already growingexponentially in time.Consider the following special case: The manifold is a two-dimensional planeM = R2 with coordinates (x; y), while the velocity v on M is the standard linearhyperbolic �eld v(x; y) = (��x; �y) with � > 0. Specify the magnetic �eld B tobe the vertical constant �eld B = (0; b) with support in a rectangle R := fjxj �p=2; jyj � q=2g, see Fig.59.At the initial moment the magnetic energy, i.e., the square of the L2-norm ofthe �eld B, is E2(B) = ZRB2 � = pq � b2:
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Rt=gtRFigure 59. A nondissipative dynamo arising from a hyperbolic stag-nation point.After a time period t, the image Rt of the rectangle R is squeezed in the horizontaldirection by the factor e�t and is stretched along the vertical by the same factor(as is the �eld B as well). Then the magnetic energy of the �eld Bt := gt�B isminorated by the �eld restriction to the initial rectangle:E2(Bt) =ZRt B2t � > ZRt\R B2t �=(area of Rt \ R) � (e�t b)2 = (pqe��t) � (e�t b)2 = e�t �E2(B):In turn, the latter expression e�t �E2(B) grows exponentially with time.The same argument applies to an arbitrary manifoldM and an arbitrary velocity�eld v having a stagnation point with only one positive eigenvalue. One can alwaysdirect the initial magnetic �eld along the stretching eigenvector in some neighbor-hood of the stagnation point. In a cylindrical neighborhood of the stagnation pointone obtainsE2(Bt) = kBtk2L2(M) � kBtk2L2(R) �e�t � kBk2L2(R)� C�e�t � kBk2L2(M) = C � e�t �E2(B);where Bt := gt�B is the image of the �eld B under the phase 
ow of the vector �eldv, and C is some positive constant. �Remark 1.8. This gives the exponential growth of B in any Ld-norm withd > 1. An exponential stretching of particles (being the key idea of the above



x2. DISCRETE DYNAMOS IN TWO DIMENSIONS 281construction) will be observed in all dynamo variations below. The result is stilltrue if the stagnation point has several positive eigenvalues, say, for a point witheigenvalues �1 � �2 � � � � � �k � 0 � �k+1 � � � � � �n, provided that d � �1 +�k+1+� � �+�n > 0, or even if the same inequality holds for the real parts of complexeigenvalues.Even for the L1-norm, one can provide such growth of the E1-magnetic energyif the number of connected components of the intersection Rt \ R increases ex-ponentially with time t. We shall observe it in the next section for the Anosovdi�eomorphism of the two-torus and for any map with a Smale horseshoe.x2. Discrete dynamos in two dimensions2.A. Dynamo from the cat map on a torus. The main features of diversi�eddynamo schemes can be traced back to the following simple example (see [Arn8,AZRS1]).Let the underlying manifoldM be a two-dimensional torusT2 = R2=Z2 endowedwith the standard Euclidean metric. De�ne a linear map A : T2 ! T2 to be thecat map �x1x2� 7! � 2 11 1��x1x2 � mod 1:
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Figure 60. The cat map.The stretching (respectively, contracting) directions at all points of the torus aregiven by the eigenvector u1 2 R2 (respectively, u2 2 R2) of A, corresponding to theeigenvalue �1 = (3 +p5)=2 > 1 (respectively, �2 = (3 �p5)=2 < 1; see Fig.60).



282 V. KINEMATIC FAST DYNAMO PROBLEMSThe constant magnetic �eld B0, assuming the value u1 = � 1 +p52 � at everypoint of T2, is stretched by the factor �1 with every iteration of A.A di�eomorphism A : M ! M of a compact manifold M is called an Anosovmap ifM carries two invariant continuous �elds of planes of complementary dimen-sions such that the �rst one is uniformly stretched and the second one is uniformlycontracted. The cat map is a basic example of an Anosov map.Remark 2.1. Taking the magnetic di�usion into account does not spoil theexample of the cat dynamo. The iterations Bn+1 = exp (��) [A (Bn)] with B0 = B(and � 6= 0) give the same exponential growth in spite of the di�usion. Indeed, the�eldB is constant, and hence the di�usion does not change the �eld or its iterations:kBnkL2 = �n1kB0kL2 :Furthermore, one can pass from a linear automorphism of the two-torus to anarbitrary smooth di�eomorphism g : T2! T2 ([Ose3]; see Section 2.C below).Remark 2.2. The cat map A : T2 ! T2 provides an example of a nondissipa-tive L1-dynamo. It provides the exponential growth of the number of connectedcomponents in the intersection RTAn(R) of the rectangle R (from Theorem 1.7)with its iterations.The cat map on the two-torus can be adjusted to produce a nondissipative dy-namo action on a two-dimensional disk. The idea is the use of a rami�ed two-sheetcovering T2 ! S2, along with an Anosov automorphism of T2; see Fig.61. Thecentral symmetry of the plane R2 provides an involution on the torus, and its orbitspace is homeomorphic to the sphere S2. The automorphismA3 = � 2 11 1�3 = � 13 88 5�ofR2 has four �xed points onT2 = R2=Z2, the points with integral and semi-integralcoordinates on R2, and therefore it descends to the quotient space T2=Z2 = S2.This idea was explored as early as in 1918 by Lattes [Lat], and is rather popularnow in models of ergodic theory and holomorphic dynamics [Lyub, Kat1].In the context of dynamo theory, constructions exploiting the maps on the (non-smooth) quotient T2=Z2 appeared in [Gil2], along with results of numerical simula-tions. A substantial analysis given there shows that for the Lattes map of the diskany magnetic �eld after several iterations has a �ne structure in which oppositelyoriented vectors appear arbitrarily close to each other (Fig.62). In the presence of
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12Figure 61. The covering of the sphere by a torus rami�ed at fourpoints. The torus w = pz3 � z in CP 2 maps to the sphere S2 = CP 1by the projection (z;w) 7! z.

Figure 62. Cancellations in the magnetic �eld under iterations (from[Gil2]).di�usion the dissipation action, large at these places, inevitably prevents the rapidgrowth of magnetic energy.The trick to overcoming this di�culty in three-dimensional dynamo models isto include a nontrivial shear of \di�erent pieces" of the manifold into an iterationprocedure such that di�usion averaging mostly a�ects the parts with the samedirection of the magnetic �eld (see [Gil2, B-C, ChG]).There remains a possibility that a dissipative fast dynamo action in domains inR3 can be produced analytically, starting with the construction, known in ergodictheory, of a Bernoulli di�eomorphism on the disk.Definition 2.3. The Lyapunov exponent of a map g at a point x in the directionof a tangent vector B is the growth rate of the image length of B under the iterations



284 V. KINEMATIC FAST DYNAMO PROBLEMSof g measured by �(x;B) := lim infn!1 ln kgn�Bkn :The Lyapunov exponents of the Lattes type di�eomorphismof the two-dimensionaldisk D2 can be made positive almost everywhere (see [Kat2]). The �elds of stretch-ing directions are, in general, nonsmooth. The di�usion term of a dissipative dy-namo should correspond to \random jumps of particles," in addition to the smoothevolution along the 
ow of v (in the spirit of [K-Y]).2.B. Horseshoes and multiple foldings in dynamo constructions.Definition 2.4. A phase point of a (discrete or continuous) dynamical systemis said to be homoclinic if its trajectory has as its limits as t ! �1 one and thesame stationary point of the system (Fig.63).
Figure 63. A homoclinic point and its bifurcation.Proposition 2.5 [Koz1]. Any area-preserving map of a surface having a ho-moclinic point can serve as a nondissipative two-dimensional L1-dynamo.Proof. Assume that g : D2 ! D2 is a (volume-preserving) map of a two-dimensional disk to itself having a Smale horseshoe. This means that there is arectangle R � D2 on which the map g is a composition of the following two steps.First, the rectangle is squeezed in the horizontal direction by the factor e� andstretched in the vertical direction by the same factor, keeping its area the same(Fig.64).Then the rectangle obtained is bent in such a way that it intersects the originalrectangle twice (see Fig.64).



x2. DISCRETE DYNAMOS IN TWO DIMENSIONS 285
Figure 64. Smale's horseshoe.Under the iterations of the procedure described, the number of connected com-ponents of the intersections (gnR) \ R grows as 2n, where n is the number ofiterations. The argument of the preceding theorem now applies to the L1-norm ofthe magnetic �eld B. Hence, kBnkL1 � C � 2nkB0kL1 .In a neighborhood of a homoclinic point a generic map admits a Smale horseshoe.The L1-norm of the restriction of the �eld to this horseshoe grows exponentially.This completes the proof. �Remark 2.6. The dynamics of points in the invariant set of the horseshoe isdescribed by means of Bernoulli sequences of two symbols. We put the label 0 or 1at position n if the point gnx belongs, respectively, to the left or to the right leg ofthe Smale horseshoe. The invariant sets of all C2-horseshoes in a disk have measurezero [BoR]. The condition on smoothness is essential here: There is an example ofa C1-horseshoe of positive measure (see [Bow]).We have here the same di�culty that is well known in the theory of stochastiza-tion of analytical Hamiltonian dynamical systems in a neighborhood of a periodicorbit that is the limit of the trajectory of a homoclinic point. Bifurcations of non-transversal intersections of stable and unstable manifolds of such a periodic orbitleads to the appearance of the so-called invariant set of nonwandering points. (Apoint a of a dynamical system gt is called wandering if there exists a neighborhoodU(a) such that U(a) \ gtU(a) = ; for all su�ciently large t.) Though the exis-tence of Bernoulli-type chaos on this set has been known since the classical workof Alekseev [Al], it is still unknown whether the corresponding invariant set of thephase space has positive or zero measure. The \multiple folding" occurring in sucha system is basically of the same nature as the folding in nondissipative dynamomodels.



286 V. KINEMATIC FAST DYNAMO PROBLEMSWe observed such a folding of the evolved magnetic �eld in both the horseshoeand Lattes constructions. The following theorem shows that it is unavoidable in alldynamo constructions on the disk.Proposition 2.7 [Koz1]. Let g : D2 ! D2 be a smooth volume-preservingdi�eomorphism of the two-dimensional disk with the following properties. Thereexist an open subset U � D2 invariant for g and a continuous oriented line �eldthat is de�ned on U and invariant for g. Then the Lyapunov exponents of g vanishalmost everywhere on U .Notice that the Lattes map allows one to construct a di�eomorphism of thedisk such that the invariant set U is this disk with 3 small disks removed and theLyapunov exponents are positive (and equal to ln�1 = ln(3 + p5)=2 > 0) on U .However, the �eld of the stretching directions is not oriented. This is the majorobstacle to constructing a realistic dynamo on a disk: A nonzero di�usion mixes upthe vectors of the magnetic �eld B that are oppositely oriented and hence preventsexponential growth of the �eld energy.Proof of Proposition. Assume the contrary, i.e., that the Lyapunov expo-nents do not vanish on a set U1 that has positive measure. It is shown in [Kat2] thatperiodic points of g with homoclinic intersections of their stable and unstable man-ifolds are dense in the closure of U1. Consider such a point x0 and orient upwardsthe unstable direction at this point (Fig.65). Then all lines de�ned on the unstablemanifold Wu of x0 are tangent to it and have a compatible orientation. However,if the unstable manifold Wu meets the stable manifold W s in one direction, thenit intersects W s roughly in the opposite direction the next time, by virtue of thesimple-connectedness of the disk. (On the other hand, for instance on the torus,the unstable manifold can intersect the stable manifold at two consecutive pointsin the same direction.) Thus, the orientation of the lines oscillates and cannot beextended continuously to the point x0. �In order to take into account this \mixing up" e�ect in the nondissipative case(Rm =1), we introduce the following de�nition.Definition 2.8. A volume-preserving di�eomorphism g :M !M of a manifoldM is called a nondissipative mean dynamo if there exist a divergence-free vector�eld B and a 1-form ! such that the integral of the contraction of the form ! withthe �eld gn�B grows exponentially as n tends to in�nity. Denote by �m the maximalincrement of the growth:�m = sup!;B lim supn!1 1n ln ����ZM !(gn�B)����� :
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Figure 65. Oriented linear elements on the unstable manifold.A similar de�nition can be introduced in the case of a vector �eld in place of thedi�eomorphism g. The notion of a mean dynamo is stronger than that of a nondis-sipative Ld-dynamo (d � 1): Any mean dynamo is a nondissipative Ld-dynamo.Another important distinction between these two concepts is the following. A suf-�cient condition for a nondissipative dynamo is provided by the special behaviorof the di�eomorphism g in a neighborhood of a �xed point (Theorem 1.7). Thesituation in cases of a mean dynamo or dissipative dynamo is di�erent. Knowingonly the local behavior of g is not enough to determine whether g is a mean or adissipative fast dynamo.If the dimension of the manifold equals 2, a di�eomorphism g is a fast dissipativedynamo if and only if it is a mean nondissipative dynamo. In this case (dimM = 2)the growth rate �m is determined by the operator g�1 : H1(M) ! H1(M), theaction of g on the �rst homology group of the surface M , just as in the case of thedynamo increment.Theorem 2.9 [Koz1]. An area-preserving di�eomorphism g of a surface M is amean nondissipative dynamo if and only if the linear operator g�1 has the eigenvalue� with j�j > 1. The mean dynamo increment �m is equal to ln j�j.2.C. Dissipative dynamos on surfaces. Now suppose that there is a nonzerodissipation in the system. In the case of a torus, an arbitrary di�eomorphism g canbe described as g(x) = �x+ (x); ( x mod 1), the sum of a linear transformation� 2 SL(2;Z) and a doubly periodic function  . In [Ose3] it is shown that for



288 V. KINEMATIC FAST DYNAMO PROBLEMSa dissipative dynamo, as � ! 0, the energy growth of a magnetic �eld on T2 iscontrolled solely by the matrix �. This matrix represents the action of g on thehomology group H1(T2;R).Theorem 2.10 [Ose3]. Let g(x) = �x +  (x) be a di�eomorphism (not neces-sarily area-preserving) of the two-dimensional torus T2. Then g is a fast dissipativedynamo as � ! 0 if and only if the matrix � has the eigenvalue � with j�j > 1.The dynamo increment �0 = lim�!0�� is equal to the eigenvalue ln j�j:�(�) = limn!1 ln kBnkn ! ln j�j as �! 0;for almost every initial vector �eld B0.Here Bn+1 = exp(��) [g�Bn] ; n = 0; 1; : : : ;in the area-preserving case, andBn+1 = exp(��) �(g�Bn)=j@g@x j� ;where j @g@x j is the Jacobian of the map g in the non-area-preserving case. The normk:k is the L2-norm of a vector �eld.It turns out that the dynamo increment is determined exclusively by the actionof g on the �rst homology group in the much more general situation of an arbitrarytwo-dimensional manifoldM . For anyM , each di�eomorphism g :M !M inducesthe linear operator g�i in every vector space Hi(M;R), the ith homology group ofM , i = 0; : : : ;dim M . The following statement generalizes Theorem 2.10 (and issimilar to the discrete dynamos considered in Theorem 3.20).Theorem 2.11 [Koz1]. Let g : M ! M be an area-preserving di�eomorphismof the two-dimensional compact Riemannian manifold M . Then g is a dissipativefast dynamo if and only if the linear operator g�1 has an eigenvalue � with j�j > 1.The dynamo increment �(�) is equal to ln j�j and hence is independent of �:limn!1 ln kBnkn = ln j�jfor almost every initial vector �eld B0. (Bn+1 = exp(��) [g�Bn], n = 0; 1; : : : , and� is the Laplace{Beltrami operator on M .)Remark 2.12. An eigenvalue � with j�j > 1 exists for \most" of the di�eo-morphisms of the surfaces di�erent from the 2-sphere. Indeed, the determinant ofg�1 : H1(M;R)! H1(M;R) is equal to 1, since g is a di�eomorphism.



x2. DISCRETE DYNAMOS IN TWO DIMENSIONS 289Proof of Theorem 2.11. First show thatlimn!1 ln kBnkn � ln j�j:Indeed, consider the operator A� = g� � exp(��) in the space of 1-forms that isL2-conjugate to the operator A = exp(��)�g�. Let ! be its (complex) eigenvector,i.e., A�! = � ! with ln j�j = �(�). Such an ! exists because the norm of theconjugate operator A� equals the norm of the operator A, and A� is a compactoperator. Note that j�j � 1, since det jg�1j = 1. Assume that j�j > 1 (otherwisethe statement is evident).The exterior derivative operator d commutes with g� and with �. Therefore,g� exp(��)d! = �d!, where g� and � now act in the space of 2-forms. Thepullback operator g� : 
2(M; C ) ! 
2(M; C ) preserves the L2-norm, while theLaplace{Beltrami operator � does not increase it. Hence, if j�j > 1, it follows thatthe form ! is closed, d! = 0 (cf. Theorem 3.6 below).Furthermore, the Laplace{Beltrami operator � does not a�ect the cohomologyclass [!] of the closed form !, so g�1[!] = �[!], where g�1 is an action of g on the�rst cohomology group H1(M; C ) containing [!].Therefore, either [!] 6= 0 and hence j�j � j�j (i.e., �(�) � ln j�j), or [!] = 0. Inthe latter case there is a function � such that d� = ! and g� exp(��)� = ��. Thesame argument as before shows that � = 0, which contradicts the assumption that! is an eigenvector. Thus, there remains only the possibility that �(�) � ln j�j.To show that �(�) � ln j�j, we consider a cohomological class that is an eigen-vector of g�1 with eigenvalue �. Such a class is invariant under A� and there is aneigenvector of A�, with eigenvalue �, so �(�) = ln j�j. �Theorem 2.11 holds also if g is not area preservingBn+1 = exp(��) �(g�Bn)=j@g@x j� :It is easy to see that the conjugate operator has the same form as before: A� =g� exp(��).2.D. Asymptotic Lefschetz number. The dynamo increment �(�) can alsobe viewed as an asymptotic version of the Lefschetz number of the di�eomorphismg (see [Ose3]).Definitions 2.13. Let g :M !M be a generic di�eomorphism of an orientedcompact connected manifoldM . The Lefschetz number L(g) of the di�eomorphismg is the following sum over all �xed points fxig of g:L(g) =Xxi signdet �@g@x (xi)� Id� ;



290 V. KINEMATIC FAST DYNAMO PROBLEMSwhere @g@x is the Jacobi matrix of the di�eomorphism at a �xed point and Id is theidentity matrix. The asymptotic Lefschetz number Las(g) isLas(g) = lim supn!1 1n ln jL(gn)j(in our example the lim sup is simply lim, as we shall see).The Lefschetz formula relates the contribution of �xed points of the di�eomor-phism g to its action on the homology groups:L(g) =Xi (�1)i Trace (g�i);where the linear operators g�i in the vector spaces Hi(M;R), the ith homologygroup of M , are induced by the di�eomorphism g :M !M .Now the visualization of the dynamo increment ln j�j as the asymptotic Lefschetznumber Las(g) for g : T2 ! T2 (and more generally, for any g : M ! M) is animmediate consequence of the following rewriting of the Lefschetz formula:L(gn) =Xi (�1)i Trace ((gn)�i) = 1� Trace (�n) + 1= (1� �n)(1 � ��n) = ��n +O(1) for j�j > 1; n!1:Here we used that for i = 0; 2 the maps g�i act identically on Hi(M;R) = R. Theautomorphism g�1 : H1(M;R) ! H1(M;R) can be nontrivial, and it is given bythe matrix � in the case of a torus M = T2.x3. Main antidynamo theorems3.A. Cowling's and Zeldovich's theorems. Traditionally, necessary condi-tions on the mechanism of a dynamo are formulated in the form of antidynamotheorems. These theorems specify (usually, geometrical) conditions on the manifoldM and on the velocity vector �eld v under which exponential growth of the L2-normof a magnetic vector �eld (or, more generally, of any tensor �eld) on the manifoldis impossible. In this section, the magnetic di�usivity � is assumed to be nonzero.This direction of dynamo theory began with the following theorem of Cowling[Cow]: A steady magnetic �eld in R3 that is symmetric with respect to rotations



x3. MAIN ANTIDYNAMO THEOREMS 291about a given axis cannot be maintained by a steady velocity �eld that is alsosymmetric with respect to rotations about the same axis. This theorem stimulatednumerous generalizations (see [Zel1, K-R, R-S]). These works show that the sym-metry properties of the velocity �eld are irrelevant. The symmetry of the magnetic�eld alone prevents its growth:Theorem 3.1. A translationally, helically, or axially symmetric magnetic �eldin R3 cannot be maintained by a dissipative dynamo action.In what follows we shall be concerned mostly with a somewhat dual problem, inwhich one studies restrictions on the geometry of velocity �elds that cannot produceexponential growth of any magnetic �eld.Consider a domain in three-dimensional Euclidean space that is invariant undertranslations along some axis (say, the vertical z-axis). A two-dimensional motion inthis three-dimensional domain is a (divergence-free) horizontal vector �eld (vz = 0)invariant under translations along the vertical axis.Ya.B. Zeldovich considered the case where the projection of the domain to thehorizontal (x; y)-plane along the vertical z-axis is bounded and simply connected.Theorem 3.2 [Zel1]. Suppose that the initial magnetic �eld has �nite energy.Then, under the action of the transport in a two-dimensional motion and of themagnetic di�usion, such a �eld decays as t!1.In short, \there is no fast kinematic dynamo in two dimensions."We put this consideration into a general framework of the transport{di�usionequation for tensor densities on a (possibly non-simply connected) manifold.3.B. Antidynamo theorems for tensor densities. Here we discuss to whatextent the antidynamo theorems can be transferred to a multiconnected situation.It happens that in the nonsimply connected case, instead of the decay of the mag-netic �eld, one observes the approach of a stationary (in time) regime.The assumption that the medium is incompressible turns out to be super
uous.In the compressible case we need merely consider the evolution of tensor densitiesinstead of that of vector �elds. The condition on the evolving velocity �eld v to bedivergence-free can be omitted as well: We shall see that the evolution automaticallyleads, in the end, to a solenoidal density for an arbitrary initial condition. Whatreally matters is the dimension of the underlying manifold.Throughout this section we follow the paper [Arn10], to which we refer for furtherdetails.Now we deal with an evolution of di�erential k-forms on a compact n-dimensionalconnected Riemannian manifold M without boundary. A di�erential k-form ! on



292 V. KINEMATIC FAST DYNAMO PROBLEMSM evolves under transport by the 
ow with velocity �eld v and under di�usionwith coe�cient � > 0 according to the law(3.1) @!@t +Lv! = ��!:The Lie derivative operator Lv is de�ned by the condition that the form is frozeninto the medium. In other words, draw vectors on the particles of the medium andon their images as the particles move with the velocity �eld v to a new place. Thenthe value of the form carried over by the action (3.1) with � = 0 does not changewith time when the form is evaluated on the vectors drawn.The linear operator Lv is expressed in terms of the operator iv (substitution ofthe �eld v into a form as the �rst argument) and the external derivative operatord via the homotopy formula Lv = iv � d+ d � iv. The Laplace{Beltrami operator �on k-forms is de�ned by the formula � = d� + �d, where � = �d� is the operatorconjugate to d by means of the Riemannian metric on M . The metric operator� : 
k ! 
n�k (pointwise) identi�es the k-forms on the n-dimensional Riemannianmanifold with (n� k)-forms.In the case of a manifold M with boundary, one usually needs speci�cation ofvanishing boundary conditions for the forms and �elds.Examples 3.3. A) Suppose M = E3 , Euclidean space with the metric ds2 =dx2+ dy2+ dz2. Specify a 2-form ! = Pdy ^ dz+Qdz ^ dx+Rdx^ dy by choosingthe vector �eld B with components P;Q;R; i.e., ! = iB�, where � = dx ^ dy ^ dzis the volume element. For solenoidal �elds v and B, Equation (3.1) on ! resultsin Equation (1.1) on the evolution of the magnetic �eld B.B) For functions onM = R3 (the case of (k = 0)-forms), Equation (3.1) becomesthe heat equation with transport:(3.2) @f@t = �(v;r)f + ��f:C) For a scalar density g (i.e., for k = n and ! = g � �, where � is the volumeelement on a Riemannian n-dimensional manifold), Equation (3.1) has the form(3.3) @g@t = �div (g � v) + ��g;where the relation d(i��) = (div �) � � is used.Definition 3.4. A closed k-form ! on M is called stationary if it obeys theequation(3.4) �Lv! + ��! = 0:



x3. MAIN ANTIDYNAMO THEOREMS 293Theorem 3.5 [Arn10]. The number of linearly independent stationary k-formsis not less than the kth Betti number bk of the manifold M .Recall, that the kth Betti number of M is bk = dim Hk(M;Z). Examples inwhich the number of stationary forms is strictly larger than bk are given below.Theorem 3.6 [Arn10]. If the di�usion coe�cient � is large enough, then thenumber of linearly independent stationary k-forms is equal to the kth Betti number,and a) In each cohomology class of closed k-forms there is a stationary form.b) There is exactly one such form.c) Any closed k-form evolved according to Equation (3.1) tends as t!1 to astationary form belonging to the same cohomology class, i.e., to a stationaryform with the same integrals over every k-dimensional cycle.d) The evolution de�ned by Equation (3.1) with any initial conditions leads inthe limit to a closed form.e) All solutions of Equation (3.4) are closed forms.Remark 3.7. Examples below show that items b) and c) are no longer true ifthe viscosity is su�ciently low (except for the cases k = 0; 1 or n). Exponentiallygrowing solutions are observed for the case k = 2; n = 3 (which is most interestingphysically, see, e.g., [AKo]) on a RiemannianmanifoldM , where for small di�usivity� the dimension of the space of stationary solutions is at least 2 > b2(M) = 1. Thegeneral Theorem 3.6 admits the following special cases:Theorem 3.8 (k = 0). For the heat equation (3.2) with transport for scalarsat every positive value of the di�usion coe�cient �: a) every stationary solutionis constant and b) the solution with any initial condition tends to a constant ast!1.Theorem 3.9 (k = n). For the heat equation (3.3) with transport for scalardensities at every positive value of �:a) The dimension of the space of stationary solutions of Equation (3.3) is equalto 1.b) There exists a unique stationary solution with any value of the integral overthe entire manifold.c) The solution with any initial conditions tends as t ! 1 to a stationarysolution with the same integral.d) In particular, the solution with initial conditions g = divB converges to 0as t!1 regardless of the �eld B.



294 V. KINEMATIC FAST DYNAMO PROBLEMSRemark 3.10. The dynamo problem for scalar densities retains many featuresof the vector dynamo problem. The discussion and numerical evidence in [Bay2]show that the eigenfunctions develop a singular structure as di�usivity tends tozero.On the other hand, the study of scalar densities (or more generally, of di�er-ential k-forms) and of their asymptotic eigenvalues allows one to prove the Morseinequalities and their generalizations by means of the method of short-wave (\quasi-classical") asymptotics [Wit1].Theorem 3.11 (k = 1). For any positive value of � in Equation (3.1) for closed1-forms:a) The dimension of the space of stationary solutions is equal to b1(M), theone-dimensional Betti number of the manifold.b) There exists a unique stationary solution with any given values of the inte-grals over independent 1-cycles.c) The solution with any initial conditions tends as t ! 1 to a stationarysolution with the same integrals.The dynamo problem for a magnetic vector �eld on a compact n-dimensionalRiemannian manifold is described by Equation (3.3) for an (n � 1)-form !. Thecorresponding evolution of the vector density B where ! = iB� is given by the law@B@t = �fv;Bg �B div v + ��B:Theorem 3.12 (k = n � 1). The divergence of the evolved density B tends tozero for every value of the di�usion coe�cient � > 0. In particular, every stationarysolution of Equation (3.3) for (n � 1)-forms is closed.Corollary 3.13. Every solution of Equation (3.1) for 1-forms on a compacttwo-dimensional manifold tends to a stationary closed 1-form as t ! 1. For asimply connected two-dimensional manifold, every solution of Equation (3.1) tendsto zero (cf. Theorem 3.2).3.C. Digression on the Fokker{Planck equation. A problem of large-timeasymptotics for scalar density transport with di�usion is already interesting in theone-dimensional case, and it arises in the study of the Fokker{Planck equationut + (uv)x = �uxx:It describes the transport of a density form u(x)dx by the 
ow of a vector �eldv(x)@=@x accompanied by small di�usion with di�usion coe�cient �.



x3. MAIN ANTIDYNAMO THEOREMS 295Suppose, for instance, that the system is periodic in x and that the velocity �eldv is potential. Introduce the potential U for which v = �grad U (the attractors ofv are then the minima of U).The stationary Gibbs solution of the equation has the form�u(x) = exp(�U(x)=�);and is sketched in Fig.66. It means that if the di�usion coe�cient � is small, thedensity distribution is concentrated near the minima of the potential. These minimaare the attractors of the velocity �eld v. The mass is (asymptotically) concentratedin the vicinity of the attractor, corresponding to the lowest level of the potential.(Note that the total mass is preserved by the equation: R u(x; t) dx = const.) In thesequel, we suppose that the potential is generic and has only one global minimum.
0

u(x) = exp(-U(x)/ )

U(x)=min 2Figure 66. The stationary solution of the Fokker-Planck equation.Suppose we start with a uniformly distributed density, say, u = 1 everywhere.The evolution will immediately make it nonuniform, and we shall see Gauss-typemaxima near all the attractors of v.At the beginning the attractor that produces the most pronounced maximumwill be the one for which the contraction coe�cient (the modulus of the eigenvalueof the derivative of v at its zero point) assumes the maximal value.Later, however, after some �nite time (independent of �), the distribution willbe similar to a �nite set of point masses at the attractors. At this stage the mostpronounced attractor will be the one collecting the largest mass. This mass, at thebeginning, will be the initial mass in the basin of the attractor. Hence, in general,this attractor will be di�erent from the one that appeared �rst.The next step will consist in (slow) competition between di�erent attractors forthe masses of particles kept in their neighborhoods. This competition is (asymp-totically) described by a system _m = Am of linear ordinary di�erential equations



296 V. KINEMATIC FAST DYNAMO PROBLEMSwith constant coe�cients. The elements of the corresponding matrix A are theso-called tunneling coe�cients. They are exponentially small in �, and hence thetunneling phase of the relaxation process is exponentially long (t s exp(const =�)).In practice, this means that in most numerical simulations one observes, insteadof the limiting (Gibbs) distribution (where almost all the mass is concentrated inone place), an intermediate distribution (concentrated at several points). This in-termediate distribution evolves so slowly that one does not observe this evolutionin numerical simulations.At the end (t ! 1), one of the attractors will win and attract almost all themass. This attractor is given by the Gibbs solution, and it is somewhat unexpected:It is neither the one with the maximal initial growth of density, nor the one con-taining initially the most mass. In Russian, it was called the \general attractor,"or the \Attractor General" (since it is as di�cult to predict as it was to predictwho would become the next \Secretary General").Consider an evolution of the density (i.e., of a di�erential n-form) u� on a con-nected compact n-dimensional Riemannian manifold with Riemannian volume ele-ment �. The evolution under the action of a gradient velocity �eld v = �grad Uand of the di�usion is described by the equationut + div (uv) = ��u:(Note that (div (uv))� = d(iv(u�)) = Lv(u�) and (�u)� = (div grad u)� =d�(u�), since u� is a di�erential n-form, and hence it is closed.)The spectrum of the evolution operator u 7! �div (uv) + ��u consists of apoint 0 (corresponding to the Gibbs distribution), accompanied by a �nite set ofeigenvalues very close to 0 as �! 0. The number of such eigenvalues is equal to thenumber of attracting basins of the �eld v, and it is de�ned by the Morse complex ofthe potential U . There is a \spectral gap" between these \topologically necessary"eigenvalues and the rest of the spectrum (which remains at a �nite distance to theleft of the origin as �! 0).The tunneling linear ordinary di�erential equation is the asymptotic (� ! 0)description of what is happening in the �nite-dimensional space spanned by theeigenvectors corresponding to the eigenvalues close to 0. The eigenvalues are oforder at most exp(�const=�) as � ! 0, while the characteristic tunneling time isof order exp(const=�). This explains the slow decay of the modes corresponding tothe nongeneral attractors.Remark 3.14. In spite of the evident importance of the problem, the descriptionof the events given above does not seem to be presented in the literature (cf., e.g.,



x3. MAIN ANTIDYNAMO THEOREMS 297[F-W]). The above description is based on an unpublished paper by V.V. Fock [Fock]and on the work of Witten [Wit1] and Hel�er [Helf].1 Fock also observed that theasymptotics of the density at a generic point of the border between the basinsof two competing attractors involve a universal (erf) function in the transversaldirection to the boundary hypersurface. Here, time is supposed to be large but�xed while � ! 0. The density is asymptotically given by an almost eigenfunction(quasimode) concentrated in one basin from one side of the boundary, and by thequasimode corresponding to the other basin from the other side. The transitionfrom one asymptotics to the other at the boundary is, according to Fock, describedby the step-like \erf."The preceding theory has an extension to the case of k-forms, where the smalleigenvalues correspond to the critical points of the potential of index k (see [Wit1]).Remark 3.15 (C. King). In the potential (one- and higher-dimensional) case,the operator Lv � �� is conjugate to a nonnegative self-adjoint operator. It showsthat the spectrum is real and nonnegative.Namely, the change of variables ~u(x) = eU(x)=2�u(x) sends the one-dimensionaloperator Lv � �� to the operator �D��D�, whereD� := ddx + v(x)2� = eU(x)=2� ddxe�U(x)=2�:The latter is known as the Witten deformation of the gradient (see its spectralproperties in [Helf]).Semiclassical asymptotics of spectra of a very general type of elliptic self-adjointoperators are treated in [Sh1] (see also [Sh2]) .Remark 3.16. The case where the velocity �eld is locally (but not globally)gradient is very interesting. This may already happen on the circle. In that case,the Gibbs formula �u(x) = exp(�U(x)=�) is meaningful only on the covering line.The potential function is no longer a periodic function, but a pseudoperiodic one(the sum of linear and periodic functions).For every local minimum of the potential, we de�ne the threshold as the minimalheight one has to overcome to escape out of the well to in�nity, Fig.67. The generalattractor is the one for which the threshold is maximal.Many facts described above admit generalizations to the case of a pseudoperiodicpotential in higher dimensions. In particular, the number of decaying eigenvalues isequal to the number of the �eld's critical points of the corresponding index [Fock].1We thank M.A. Shubin and C. King for the adaptation of the general theory to our situation.
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U

x

thresholdFigure 67. The threshold for a local minimum of the potential is theminimal height one has to overcome to escape to in�nity.Note that the description of the topology of pseudoperiodic functions is a richand interesting question by itself already in two dimensions (see [Arn19, Nov3, SiK,GZ, Zor, Dyn, Pan]), where much remains to be done.Remark 3.17. B. Fiedler and C. Rocha developed in [F-R] an interesting topo-logical theory of the attractors of nonlinear PDEs of the typeut = f(x; u; ux) + �a(x)uxx:They computed the Morse complex de�ned by the heteroclinic connections betweenstationary solutions in terms of some permutations and meanders. A meanderis formed by a plane curve and a straight line. The corresponding permutationtransforms the order of the intersection points along the straight line into theirorder along the curve.3.D. Proofs of the antidynamo theorems.Proof of Theorem 3.5 (according to E.I. Korkina). The operator A = �Lv+�� acts on the space H of closed k-forms on M . Denote by Ker A the set ofsolutions of the homogeneous equation A! = 0, and by Im A the image of A inthe space H. The index ind A = dim Ker A � dim Coker A, where Coker A =H=Im A. The index of the Laplace operator � is zero and so is the index ofA (whichdi�ers from �� only in lower-order terms: Lv is of the �rst order). This meansthat dim Ker A = dim Coker A. But Im A � Im d (since A! = d(�iv!+ � � �!) ifd! = 0). It follows thatdim (H=AH) � dim (H=fd!k�1g) = bk



x3. MAIN ANTIDYNAMO THEOREMS 299(De Rham's theorem). �Proof of Theorem 3.6. (i) The evolution de�ned by Equation (3.1) does nota�ect the cohomology class of the closed form !, since A! = d(�iv!+ � � �!) is anexact form.(ii) For forms ! from the orthogonal complement to the subspace of harmonicforms in the space of closed forms H the following relations hold:(!;!) � �(�!; �!);(3.5a) j(!;Lv!)j � �(�!; �!);(3.5b)where � and � are positive constants independent of !.Indeed, (3.5a) is the Poincar�e inequality (or it can be viewed as the compactnessof the inverse Laplace{Beltrami operator):(!;!) � �j(�!;!)j = �(�!; �!):The inequality (3.5b) is a combination of the Schwarz and Poincar�e inequalities.First note that Lv! = d iv! by virtue of the homotopy formula Lv = ivd + d ivand since the form ! is closed. Then (!;Lv!) = (!; d iv!) = �(�!; iv!), whenceapplying the Schwarz inequality to the latter inner product, we getj(�!; iv!)j2 � (�!; �!)(iv!; iv!):Now the required inequality (3.5b) follows from the above and (3.5a) in the form(iv!; iv!) � const � (�!; �!):(iii) From (i) and (ii) it follows that in the space of exact forms the evolutionde�ned by Equation (3.1) contracts everything to the origin if � is su�ciently large:ddt (!;!) = �2(!;Lv!) + 2�(!; d�!) � 2(� � �)(�!; �!) � �2
(!;!);if � � � + �
.(iv) From (i) and (ii) it also follows that in an a�ne space of closed formslying in one and the same cohomological class, Equation (3.1) de�nes the 
ow ofcontracting transformations (in the Hilbert metric of H), and hence, it has a �xedpoint. This proves assertions a)-c).(v) Both Lv and � commute with d, and therefore d! satis�es Equation (3.1)as well as !. But the form d! is exact, and therefore, in accordance with (iii), ittends exponentially to zero as t ! 1. Thus the distance between !(t) and thespace of closed forms tends exponentially to zero as t!1.



300 V. KINEMATIC FAST DYNAMO PROBLEMSMoreover, the same contraction to zero is observed in H1-type metrics that takeinto account the derivative, provided that the di�usion coe�cient � is su�cientlylarge (it is proved similarly to (iii) by using inequalities of the type(�!;Lv�!) � �(�!;�2!)for exact forms).We now denote by ! = p + h + q the orthogonal decomposition of the initialform ! into exact, harmonic, and coexact (i.e., lying in the image of the operator�) terms. Equation (3.1) assumes the form of the system_p = A1p+A2h+A3q; _h = A4q; _q = A5q;since for q(0) = 0 the form remains closed (i.e., q(t) � 0), and a closed form retainsits cohomology class (i.e., _h = 0 for q = 0).Now, since q(t) ! 0 (in metrics with derivatives) exponentially, h(t) tends toa �nite limit (also in metrics with derivatives). But in accordance with (iii), thetransformation exp(A1t) is contracting, and hence p(t) also tends to a �nite limit.Therefore, !(t) converges to a �nite limit p(1) + h(1), which is a closed form.This completes the proof of assertions d) and e). �Proof of Theorem 3.8 (according to Yu.S. Ilyashenko and E.M. Landis). Ifthe stationary solution were at any point larger than its minimum, it would imme-diately increase everywhere (since heat is propagated instantaneously) and wouldnot be stationary (the so-called strengthened maximum principle). Consequently,it must be everywhere equal to its minimum, i.e., it must be constant.The same reasoning shows that a time-periodic solution of Equation (3.2) mustalso be a constant. Hence, the operator A = �Lv + �� on functions has no pureimaginary eigenvalues and has a single eigenvector with eigenvalue zero (by themaximum principle); this means that zero is an eigenvalue of multiplicity one andall other eigenvalues lie strictly in the left half-plane.SinceA is the sum of an elliptic operator ��and the operator�Lv of lower order,we can derive by standard arguments (from the information we have obtained aboutthe spectrum) the convergence of all solutions to constants (even in metrics withderivatives). �Proof of Theorem 3.9. The operator A = �Lv + �� on the right-hand sideof Equation (3.3), which sends a density g to �div (g � v) + ��g, is conjugate tothe operator A� = Lv + �� on functions.



x3. MAIN ANTIDYNAMO THEOREMS 301The eigenvalues of the operatorsA and A� coincide, and therefore the dimensionsof the spaces of stationary solutions of Equations (3.3) and (3.2) are identical. Thesedimensions are equal to 1, by Theorem 3.8. Assertions b) and c) of Theorem 3.9follow from the information on the spectrum of the operator A� that we obtainedin proving Theorem 3.8. Assertion d) follows from c) since R (div B)� = 0. �Proof of Theorem 3.11. The operator�Lv+�� commutes with d. It followsthat the solution with initial conditions !0 = df0 evolves under Equation (3.1) inthe same way as the derivative df of the solution f of Equation (3.2) with initialcondition f0. From Theorem 3.8, it follows that f ! const (with derivatives).This means that df ! 0; i.e., the exact 1-form degenerates over time. Thus thesole stationary solution that is an exact form is zero. But by Theorem 3.5, thedimension of the space of solutions of the stationary equation is not less than the�rst Betti number b1, i.e., than the codimension of the subspace of exact 1-formsin the space of closed forms. Since the space of stationary solutions intersects thesubspace of exact forms only at zero, its dimension is exactly equal to the Bettinumber b1, and its projection onto the space of cosets of closed forms modulo exactforms is an isomorphism. This proves assertions a) and b). Assertion c) followsfrom the fact that the exact 1-forms have vanishing integrals over all 1-cycles. �Proof of Theorem 3.12. Since d and �Lv + �� commute, the n-form d! =g � � evolves according to the law (3.3). By Theorem 3.9d), the density g tends tozero as t!1 (the condition d! = g �� means that g is the divergence of the vector�eld � that speci�es the (n � 1)-form ! = i��). �Proof of Corollary 3.13. For n = 2, the 1-form ! is an (n � 1)-form. ByTheorem 3.12, it becomes closed (d! ! 0) as t ! 1. (Here the convergence tozero is exponential even in a metric with derivatives.) Using the same reasoningas in the proof of Theorem 3.6(v), and using Theorem 3.11 to study the behaviorof the exact forms, we arrive at the conclusion that the limit of ! as t!1 existsand is closed. �3.E. Discrete versions of antidynamo theorems. Suppose that g :M !Mis a di�eomorphism of a compact Riemannian manifold, g? = (g�)�1 is its action ondi�erential forms (by forward translation), and h� is the evolution of forms duringsome �xed time � under the action of the di�usion equation:h� := exp(��); f� := h� � g?:Denote by G? the action of g? in the cohomology groups, G? : H�(M;R) !H�(M;R).



302 V. KINEMATIC FAST DYNAMO PROBLEMSTheorem 3.18 [Arn10]. i) The cohomology class of the closed form f�! is ob-tained from the class of the closed form ! by the action of G?.ii) If t is chosen su�ciently large and G? is the identity transformation, thena) for any closed form ! the limit limn!1fn� ! exists;b) this limit is a unique closed form cohomological to !, and it is �xed underthe action of f�;c) if the form ! is exact, then fn� ! ! 0 as n!1;d) for any form ! (not necessarily closed), the sequence of forms fn� ! is con-vergent as n!1, and the limit is a closed form.Theorem 3.19 [Arn10]. Let M be a two-dimensional manifold and G? = Id;then assertions a)-d) of Theorem 3.18 are true for all � > 0 (not only for su�-ciently large values of �).These discrete versions of Theorem 3.12 and Corollary 3.13 (and counterparts ofother theorems) are proved in the same way as the original statements themselves.Moreover, one can give up the identity condition on G?. To obtain the discreteanalogues of Theorems 3.6-3.12 with G? 6= Id, one should not con�ne oneself tothe stationary forms but consider the eigenvectors of the map f� with eigenvalues�; j�j > 1. Denote by G?k the action of a di�eomorphism g (by forward translation)on the cohomology group Hk(M;R) and let � be an eigenvalue of G?k of maximalmagnitude.Theorem 3.20 [Koz1]. For su�ciently large �,a) and any exact form !, the image under iterations fn� ! tends to zero asn!1;b) every eigenvector of f� is a closed form;c) and a closed k-form !, the norm kfn� !k grows with the same increment ask(G?k)n[!]k; i.e., for all k-forms from the same cohomology class, the growthrate coincides with the growth rate of this class under the action of G?k;d) if a cohomology class 
 is an eigenvector for the operator G?k with the eigen-value �, G?k
 = �
, then there is a form-representative ! 2 
 such thatf�! = �!;e) one has for any k-form !limn!1 1n ln kfn� !k � ln j�j;while for a generic k-form ! the inequality becomes equality:limn!1 1n ln kfn� !k = ln j�j:



x4. THREE-DIMENSIONAL DYNAMO MODELS 303Proof. a) can be proved using the same estimates as in the proof of Theorem3.6(ii). For b)-e), note that the operator f� is compact, so for any value in itsspectrum there is an eigenvector. Let � be in the spectrum and j�j > 1. Thenthere is an ! such that f�! = � !. The exterior derivative d commutes with f�, sof�d! = � d!, and a) implies that d! = 0. The \di�usion" operator exp(��) doesnot change the cohomological class, so the condition G?k
 = � 
 implies f�
 2 
.If there is a k-form ! 2 
 such that f�! = � !, then either � = �, or [!] = 0 andj�j = 1. �The same method can be used to prove, for example, that if M = T2 andG? = � 1 10 1�, then fn� ! increases no more rapidly than the �rst power of n.Remark 3.21. The case of G? = � 2 11 1� is used in [Arn8, AZRS1] to constructa fast kinematic dynamo on a three-dimensional compact Riemannian manifold; seethe next section.To the best of our knowledge, the preceding theory has not been settled formanifolds with boundary, though it certainly deserves to be.x4. Three-dimensional dynamo models4.A. \Rope dynamo" mechanism. The topological essence of contemporarydynamo constructions goes back to the following scheme proposed by Sakharov andZeldovich (see [V-Z, ChG]) and depicted in Fig.68.
fold

stretch

twistFigure 68. Rope dynamo: the stretch{twist{fold mechanism.



304 V. KINEMATIC FAST DYNAMO PROBLEMSThe rapid growth of magnetic energy is achieved by iterations of the three-steptransformation of a solid torus: stretch{twist{fold (STF).We start with a solid torus S1 �D2 embedded in a three-ball. Take it out andstretch S1 twice, while shrinkingD2 in such a way that the volume element remainspreserved. Then we twist and fold the new solid torus in such a way as to obtaina twofold covering of the middle circle, and �nally we put the resulting solitorus inits initial place (Fig.68).The energy of the longitudinal �eld in the solid torus (directed along the S1component) grows exponentially under iterations of the construction above, sincethe �eld is stretched by a factor of 2 along with the longitudinal elongation of themagnetic lines.Though this construction is not a di�eomorphism of the solid torus onto itself,one can make it smooth, sacri�cing control over stretching in a small portion of thesolid torus. The loss of information about stretching of the 
ow in a small part ofthe manifold, though irrelevant for an idealized nondissipative dynamo, is essentialwhen viscosity is taken into account.4.B. Numerical evidence of the dynamo e�ect. The presence of chaos inABC 
ows (see Chapter II) makes them extremely attractive for dynamo modeling.We con�ne ourselves to mentioning only the extensive studies in this �eld. Thenumerical and scale evidence for fast dynamo action in ABC and, more generally,in chaotic steady 
ows, can be found in, e.g., [Hen, G-F, AKo, Chi3, Bay1, Gil1,PPS] (see also [Zhel] for analogues of ABC 
ows in a three-dimensional ball).The most extensive studies on ABC 
ows dealt with the case A = B = C withthe velocity �eldv = (cos y + sin z) @@x + (cos z + sinx) @@y + (cosx + siny) @@z :One of the main problems in such a modeling is to estimate the increment �(�)of the fastest growing mode of the magnetic �eld B as a function of the magneticdi�usivity �, or of the magnetic Reynolds number Rm = 1=�. In other words, oneis looking for the eigenvalue of the operator LRm : B 7! �Rmfv; Bg + �B withthe largest real part. The �rst computations of E.I. Korkina (see [AKo]), by meansof Galerkin's approximations, covered the segment of Reynolds numbers Rm � 19.For small Reynolds numbers (i.e., for a large di�usivity �), every solution ofthe dynamo Equation (1.1) tends to a stationary �eld that is determined by thecohomology class of the initial �eld B0; see Theorem 3.6. Hence, for such Reynoldsnumbers the eigenvalue of LRm is zero independent of Rm.



x4. THREE-DIMENSIONAL DYNAMO MODELS 305When con�ned to the case of the �elds B0 with zero average, the largest eigen-value of the operator LRm becomes �1 for all numbers Rm less than the criticalvalue Rm � 2:3. The reason for this phenomenon is that �v = �v (and of course,fv;vg = 0), and therefore the �eld v is eigen for LRm with eigenvalue �1.As the Reynolds number grows, there appears a pair of complex conjugate eigen-values with Re� = �1. The pair of eigenvalues moves to the right and crosses the\dynamo border" Re� = 0 at Rm � 9:0. The increment Re� stays in the righthalf-plane until Rm � 17:5, when it becomes negative again.Thus the �eld v is the dynamo for 9 < Rm < 17:5. D.J. Galloway and U. Frisch[G-F] have discovered the dynamo in this problem for 30 < Rm < 100. It is still un-known whether this �eld is a fast kinematic dynamo, e.g., whether an exponentiallygrowing mode of B survives as Rm !1.Numerically, the kinematic fast dynamo problem is the �rst eigenvalue problemfor matrices of the order of many million, even for reasonable Reynolds numbers (ofthe order of hundreds). The physically meaningful magnetic Reynolds numbersRmare of order of magnitude 108. The corresponding matrices are (and will remain)beyond the reach of any computer.Symmetry reasoning (involving, in particular, representation theory of the groupof all rotations of the cube) allows one to speed up the computations signi�cantly.In particular, the �rst harmonic of some actual eigen�eld for any Reynolds numbercan be found explicitly [Arn13]. This mode is the fastest growing for Rm � 19 asnumerical experiments show.Computer computations also suggest that the growing mode is con�ned to asmall neighborhood of the invariant manifolds of the stagnation points, at leastfor A = B = C. There still exists a hope that this observation might lead tosome rigorous asymptotic results. The asymptotic solution constructed in [DoM]manifests concentration near the separatrices for a very long time, but not forever.No mode with such concentration was found as t!1!4.C. A dissipative dynamo model on a three-dimensional Riemannianmanifold. In this section we consider an arti�cial example of a 
ow with exponen-tial stretching of particles that provides the fast dynamo e�ect in spite of a nonzerodi�usion (see [Arn8, AZRS1,2]). In this example, everything can be computed ex-plicitly. Its disadvantage, however, is the unrealistic uniformity of stretching andthe absence of places where the directions of the growing �eld are opposite.The construction is based upon the cat map of a torus, discussed above, and canbe thought of as a simpli�ed version of the model of Section II.5. In that sectionwe considered exponential stretching of particles according to the same equations.



306 V. KINEMATIC FAST DYNAMO PROBLEMSHowever, unlike the magnetic �eld evolution in the kinematic dynamo problem, inideal hydrodynamics the transported (vorticity) �eld is functionally dependent onthe velocity �eld that is evolving it.The domain of the 
ow is a three-dimensional compact manifold M that inCartesian coordinates can be constructed as the product T2 � [0; 1] of the two-dimensional torus T2 with the segment 0 � z � 1, for which the end-tori areidenti�ed by means of the transformationA = � 2 11 1� : T2! T2(i.e., according to the law (x; y; 0) = (2x + y; x + y; 1), or equivalently, (x; y; 1) =(x � y; 2y � x; 0) with x mod 1; y mod 1).To introduce a Riemannian metric on this manifold we �rst pass from the Carte-sian coordinates x; y; z to the Cartesian coordinates p; q; z, where p has the directionof the eigenvector of A with the eigenvalue �1 = (3 +p5)=2 > 1, and q is directedalong the eigenvector with the eigenvalue �2 = (3 �p5)=2 < 1. Then the metricgiven by the line elementds2 = e�2�zdp2 + e2�zdq2 + dz2; � = ln�1 � 0:75is invariant with respect to the transformation A, and therefore de�nes an analyticRiemannian structure on the compact three-dimensional manifold M . We choosethe eigenvector directions in such a way that the (p; q; z)- and (x; y; z)-orientationsof R3 coincide.Further, on this manifold we consider a 
ow with the stationary velocity �eldv = (0; 0; v) in (p; q; z)-coordinates, where v =const, so that divv = 0 and curlv =0. Each 
uid particle moving along this �eld is exponentially stretched in the q-direction and exponentially contracted along the p-axis when regarded as a particleon M . If the magnetic Reynolds number is small (the di�usivity is large), themagnetic �eld growth is damped by the magnetic di�usion, and there is no dynamoe�ect (cf. Theorem 3.6). For small magnetic di�usivity the situation is di�erent.Theorem 4.1 [AZRS1]. The vector �eld v de�nes a fast dynamo on the Rie-mannian manifold M for an arbitrarily small di�usivity � and in the limit � ! 0.For a given initial magnetic vector �eld, only its Fourier harmonic independent ofp and q survives and grows exponentially as t!1.Proof. Consider the following three vector �elds in R3:ep = e�z@=@p; eq = e��z@=@q; ez = @=@z:



x4. THREE-DIMENSIONAL DYNAMO MODELS 307These �elds are A-invariant, and hence they descend to three vector �elds on M3,for which we shall keep the same notations ep; eq; ez . Those �elds are orthogonalat every point in the sense of the above metric. Let f be a function on M , i.e.,it is a function f : R3 ! R, 1-periodic in x and y, and satisfying f(x; y; z + 1) =f(x�y; 2y�x; z). Similarly, suppose that B = Bpep+Bqeq+Bzez is a (magnetic)vector �eld on M . Direct calculation leads to the followingProposition 4.2. The vector calculus formulas on M arerf = (e�z @f@p ) ep + (e��z @f@q ) eq + (@f@z ) ez;div (Bpep +Bqeq +Bzez) = e�z @Bp@p + e��z @Bq@q + @Bz@z(in particular, div ep = div eq = div ez = 0);curl (Bpep +Bqeq +Bzez)= (curlpB) ep + (curlqB) eq + (curlzB) ez;where curl pB = e��z(@Bz@q � @e�zBq@z );curl qB = e�z(@e��zBp@z � @Bz@p );curl zB = e�z @Bq@p � e��z @Bp@q(in particular, curl ep = ��eq; curl eq = ��ep; curl ez = 0);�f = e2�z @2f@p2 + e�2�z @2f@q2 + @2f@z2 ;�ep := �curl curl ep = ��2ep; �eq = ��2eq; �ez = 0; andfep; eqg = 0; fez; epg = �ep; fez; eqg = ��eq:Proof of Proposition. Denote by �p = e��zdp; �q = e�zdq; �z = dz thedual 1-forms (in R3 and on M). Such a form is dual to the corresponding �eld, inthe sense that, e.g., �pjep = 1; �pjeq = �pjez = 0, etc. Then, the expression for thedi�erentialdf = @f@p dp+ @f@q dq + @f@z dz = e�z @f@p �p + e��z @f@q �q + @f@z �zdirectly implies the gradient formula, etc. �The evolution (1.1) of a magnetic �eld B = Bpep+Bqeq+Bzez onM along the



308 V. KINEMATIC FAST DYNAMO PROBLEMSvelocity �eld v = v@=@z has the following description in components:@Bp@t + v @Bp@z = ��vBp + �[(�� �2)Bp � 2�e�z @Bz@p ];@Bq@t + v @Bq@z = �vBq + �[(�� �2)Bq + 2�e��z @Bz@q ];@Bz@t + v @Bz@z = �(�� 2� @@z )Bz:The equation for the z-component of the �eld splits from the rest. Supposethat the function Bz has zero average. Then, asymptotically as t ! 1, the Bz-component decays (cf. Zeldovich's antidynamo theorem, Section 3.A). Indeed, thelatter is the heat equation in a moving liquid. It is easy to see that Bz diminishes,since each of its maxima tends to disappear (the maximum principle). Formally,one obtainsddt Z B2z � = Z Bz @Bz@t � = � Z Bz(�Bz) � = �� Z (rBz)2 �:Based on this, we assume in the sequel that the component Bz is constant.It su�ces to consider only one component of the vector �eld B, since the equa-tions for the p- and q-components di�er only by the substitution �! ��:(4.1) @B@t + v @B@z = �vB + �(�� �2)B;where B � Bq.To specify the boundary conditions on B, we return to the (x; y; z)-coordinatesystem. Periodicity in x and y allows one to expand B into a Fourier series:B(x; y; z; t) =Xn;mBn;m(z; t)exp [2�i(nx +my)]=b(p; q; z; t) =X�;� b�;�(z; t)exp [i(�p + �q)];where n and m are integers and �; � are related to 2�n; 2�m by a linear transfor-mation corresponding to the passage from the coordinates x; y to p; q.Lemma 4.3. The function b0;0(z; t) is periodic in z. The harmonics b�;�(z; t)with (�; �) 6= (0; 0) decay exponentially in z for analytic functions B.Proof. Restrictions on the Fourier amplitudes come from the symmetry withrespect to a shift along the z-axis: B(x; y; z; t) = B(2x + y; x + y; z + 1; t). Thisidentity is equivalent to that on the Fourier coe�cients that are acted upon by theoperator conjugate to A:(4.2) B(n;m)(z + 1; t) = B(n;m)A�(z; t):



x4. THREE-DIMENSIONAL DYNAMO MODELS 309Here A� is the transpose of the matrix A, and in the case at hand A� = A.Thus the shift along the z-axis is equivalent to the transition from the Fourieramplitudes with indices (n;m) to the Fourier amplitudes with indices (n;m)A.Iterative applications of the matrixA shifts a typical vector (n;m) along a hyperbolain the (n;m) plane (see Fig.69).The only exception is the case n = m = 0, when the magnetic �eld does notdepend on x; y or p; q: (0; 0)A = (0; 0). Here we use that the eigendirections of Ado not contain integral points (n;m) (di�erent from (0,0)), since the eigenvalues ofA are irrational.
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Figure 69. The invariant curves for the orbits f(n;m)Akg are hyper-bolas in the (n;m)- (or (�; �)-) plane.On the other hand, analyticity of B(x; y; z; t) implies that its Fourier harmonicsb�;� must decay exponentially in � and �. It follows that the functions b�;�(z; t)decrease rapidly for �xed (�; �) 6= (0; 0) as jzj ! 1 due to the shift property above.Periodicity in z of the zero harmonic is evident. The Lemma is proved. �To complete the proof of Theorem 4.1 we �rst �x � = 0. Equation (4.1) can besolved explicitly (due to the frozenness property):(4.3) b(p; q; z; t) = e�vtb(p; q; z � vt; 0)(pass to the Lagrangian reference frame, solve the Cauchy problem, and return tothe Eulerian coordinates).Equation (4.1) may be written in the form @b=@t = T�b, where the operator T�(depending on the viscosity �) acts on the functions on M3 (depending in our case



310 V. KINEMATIC FAST DYNAMO PROBLEMSon t as a parameter): T�b = �vb+ �(�� �2)b � v @b@z :Consider �rst the nonviscous case � = 0. The nonviscous operator T0 has aseries of eigenfunctions bk = exp(2�ikz); k = 0;�1;�2; : : : , with eigenvalues 
k =�v � 2�ikv.Every solution of (4.3) that does not depend on p and q (i.e., that is constanton every 2-torus z = const; t = const) can be represented as a linear combinationof the products bk � exp(
kt) (expand (4.3) into a Fourier series in z).The operator T0 has no other eigenfunctions. Indeed, suppose that b :M3 ! Cwere an eigenfunction of T0 with an eigenvalue 
. The function b � exp(
kt) wouldthen satisfy Equation (4.3). By choosing t = 1=v, we obtain from (4.3)b(p; q; z) = e��
b(p; q; z � 1):Using (4.2) we see that the Fourier coe�cients b�;�(z) along every hyperbola � =�n�0; � = ��n�0 form a geometric series. This contradicts the decay of the Fouriercoe�cients of the smooth function b(�; �; z) on the 2-torus (unless �0 = �0 = 0, inwhich case b does not depend on p and q).The absence of eigenfunctions is explained by the continuity of the spectrum ofT0 (on the orthogonal complement to the space of functions, constant on the toriz = const).Now turn to the general case � 6= 0. As before, Equation (4.1) has a sequence ofsolutions bk � exp(
kt), which are independent of p and q, with eigenvalues
k = �v + �(�4�2k2 � �2) � 2�ikv; k = 0;�1;�2; : : : :If � is small we �nd many (� C��1=2) growing modes. (If � is large, there is nogrowing mode at all, since Re 
k < 0.)However, the behavior of the solutions whose initial �eld depends on p andq di�ers drastically from the behavior given by the frozenness condition (4.3). Toexplain this, consider the time evolution of b as consisting of two intermittent parts:the frozen-in stretching (4.3) (� = 0) and the pure di�usion action (v = 0). If � issmall, the stretching part might be long.The long shift z � vt (vt 2 Z) along the z-axis is equivalent to a translation(along the hyperbola) of the labels (�; �) of the harmonics b�;�(z; t) for �xed z.Hence, any given harmonic will shift with time into the region of large wave num-bers, where dissipation becomes important. Its amplitude will then decay in the



x4. THREE-DIMENSIONAL DYNAMO MODELS 311di�usion part of the evolution. Asymptotically as t ! 1, the evolving �eld willdecay however small the viscosity � is.Thus, we come to the conclusion that, asymptotically for t ! 1, only thesolution independent of p and q survives (see [AZRS1] for details on analysis of thesolution asymptotics). Such a periodic in z solution in R3 grows exponentially inthe metric ds2 as z !1. The increment of the corresponding exponent is boundedaway from 0 by a positive constant independent of � > 0. Finally, due to the linearrelation between shifts in the z and t directions, one obtains the same exponentialgrowth of the solution as t!1. �4.D. Geodesic 
ows and di�erential operations on surfaces of constantnegative curvature. Every compact Riemann surface can be equipped with ametric of constant curvature. This curvature is positive for a sphere, vanishes for atorus, and is negative for any surface with at least two handles (i.e., for any surfaceof genus � 2).In this section we show that the geodesic 
ow on every Riemann surface whosecurvature is constant and negative provides an example of the fast (dissipative)kinematic dynamo. More precisely, letM3 be the bundle of unit vectors over such asurface P : M3 = f� 2 TP j k�k = 1g. The geodesic 
ow de�nes a dynamical systemon this three-dimensional manifold M3 with exponential stretching of particles ofM , similar to the example above. Avoiding repetition, we present here the basicformulas for the key di�erential operations on the bundle of unit vectors over P .First of all, let us pass from the surface P to its universal covering ~P . Everysuch surface of constant negative curvature is covered by the Lobachevsky plane~P = �, where the covering is locally isometric (that is, respecting the metrics onboth spaces).Remark 4.4. Sometimes it is convenient to think of the bundle of unit vectorsV 3 := T1� over the Lobachevsky plane � as the group SL(2;R). Then the spaceM3is the quotient of SL(2;R) (or, more generally, of the universal covering ^SL(2;R))over a discrete uniform subgroup �:M3 = SL(2;R)=�:We will deal with the following three \basic" 
ows on the Lobachevsky plane: thegeodesic 
ow and two horocyclic 
ows. Introduce the natural coordinates (x; y; ') inthe space of line elements (or of unit vectors) V 3 = T1�2, where the Lobachevskyplane is the upper half-plane �2 = f(x; y) j y > 0 g equipped with the metric



312 V. KINEMATIC FAST DYNAMO PROBLEMSds2 = (dx2+dy2)=y2, and ' 2 [0; 2�) is the angle of a line element with the verticalin �2 (see Fig.70a). The x-axis is called the absolute of the Lobachevsky plane.Recall that the geodesics in �2 are all semicircles and straight lines orthogonal tothe absolute (Proposition IV.1.3).
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(a) (b)Figure 70. (a) Coordinates (x; y; ') in the space of line elements alongthe geodesics in the Lobachevsky plane. (b) Two horocycles passingthrough one line element.Definition 4.5. The geodesic 
ow of the Lobachevsky plane is the 
ow in thespace of unit line elements V 3 = T1�2 that sends, for time t, every element l intothe line element on �2 tangent to the same geodesics as l, but at the distance t (inthe Lobachevsky metric) ahead of l.The limit of a sequence of Euclidean circles tangent to each other at a givenpoint and of increasing radius in the Lobachevsky plane is called a horocycle.Proposition 4.6 (see, e.g., [Arn15]). The horocycles in the Lobachevsky planeare exactly the Euclidean circles tangent to the absolute and the straight lines parallelto it.Every line element (point with a speci�ed direction) on �2 belongs to two horo-cycles, \upper" and \lower"; see Fig.70b.Definition 4.50. The �rst (+) and second (�) horocyclic 
ows on �2 are the
ows sending in a time t every line element on the Lobachevsky plane to the lineelement belonging to the same lower and upper horocycles respectively, and lyingon the distance t ahead of it.Explicitly, the 
ows are given by the following vector �elds e (for the geodesic
ow), h� (for the \lower" horocyclic 
ow), and h+ (for the \upper" horocyclic one)



x4. THREE-DIMENSIONAL DYNAMO MODELS 313on V : e =� y sin' @@x + y cos' @@y + sin' @@';h� =� y cos' @@x � y sin' @@y + (cos'� 1) @@';h+ =� y cos' @@x � y sin' @@y + (cos'+ 1) @@':Proposition 4.7. The vector �elds e; h+; h� generate the Lie algebra sl(2;R).Proof. fe; h+g = h+; fe; h�g = �h�; fh+; h�g = 2e, where f ; g means thePoisson bracket of two vector �elds: Lfu;vg = LuLv � LvLu. In coordinates it isfu; vg = (u;r)v � (v;r)u; see Section I.2. �Notice that the di�erence of the horocyclic �elds f := 12 (h��h+) is the rotation�eld f = @@' . Introduce also the sum �eld ~e := 12(h+ + h�). The Poisson bracketsbetween the �elds e; ~e; f are ff; eg = ~e; f~e; eg = f; f~e; fg = e.Now we de�ne in V 3 = T1�2 a one-parameter family of metrics:(4.4) d`2 = dx2 + dy2y2 + �2�d'+ dxy �2 :Proposition 4.8. The above metrics on the space of line elements V 3 = T1�2are singled out by the following three conditions:1) Consider the planes de�ning the standard Riemannian connection in T1�2related to the Lobachevsky metric on �2. The condition on a metric in T1�2 is thatthe �bers of the projection T1�2 ! �2 are orthogonal to those planes;2) The above projection sends the planes to the tangent spaces to �2 isometrically;3) The metrics are invariant with respect to isometries of the Lobachevsky plane.Proof. From 2) one can see thatd`2 = dx2 + dy2y2 + �2(d'+ a dx + b dy)2:Utilize condition 1) in the following form: The coe�cients a and b obey the relationd'+a dx+b dy = 0 along two curves in V = T1�2. One of the curves is the paralleltransport of a line element along its geodesics (i.e., it is the orbit of e), and theother curve is obtained by the parallel transport of the same line element in theperpendicular direction (i.e., along the orbit of ~e). The calculation can be carriedout at x = 0; y = 1; ' = 0, and extended by invariance due to 3). �For each metric of the family (4.4), the basis e; ~e; f is orthogonal: (e; ~e) =(e; f) = (~e; f) = 0, and moreover, (e; e) = (~e; ~e) = 1; (f; f) = �2. In thisnormalization the volume element spanned by the three �elds is � (e; ~e; f) = �.



314 V. KINEMATIC FAST DYNAMO PROBLEMSProposition 4.9. All the �elds e; ~e; f; h+; h� are divergence-free and null-homologous. Their vorticities are as follows:curl e = � e�; curl ~e = � ~e�; curl f = �f; curl h� = � ~e� � �f:The helicities of both of the horocyclic 
ows are zero, while the helicity of the geo-desic 
ow e in the compact manifold M3 = T1P 2 isH(e) = �8�2�2 �(genus of P 2) � 1� :Proof. Introduce 1-forms �; ~�; � dual to the �elds e; ~e; f , respectively (i.e.,�je = 1; �j~e = �jf = 0, etc). Now, the calculation of the vorticity and divergenceis a straightforward application of the formula for the di�erential of a 1-form:d
(v1; v2) = 
(fv2; v1g) + Lv1
(v2)� Lv2
(v1):For instance, combining it with the formulas for Poisson bracketsfe; fg = �~e; fe; ~eg = �f; f~e; fg = e;one obtains d�(e; ~e) = d�(e; f) = 0; d�(~e; f) = �1. Therefore, ��d� = ie� . Byde�nition, this means that div e = 0 and curl e = �e=� (see Section III.1 for moredetail).The helicity expression for the geodesic �eld e on M3 = T1P 2 isH(e) = ZM (e; curl �1e)� = ��ZM � = �2��2 � (area of P 2):Here the volume of the bundle M is the product of the �ber length 2�� and thearea of the surface P 2. The Gauss-Bonnet theorem reduces the area of the surfaceP 2 (with constant curvature) to the number of handles:area of P 2 = 4�(genus of P 2 � 1):We leave to the reader the helicity calculations for horocyclic 
ows h� onM . �Returning to hydrodynamics, we immediately obtain the followingCorollary 4.10. The velocity �elds e; ~e; f , as well as all linear combinationsof e and ~e, are stationary solutions of the Euler equation on M3 = T1P 2. They are



x4. THREE-DIMENSIONAL DYNAMO MODELS 315also the stationary solutions of the corresponding Navier-Stokes equation on M forthe vorticity �eld ! = curl v:@!@t + fcurl�1 !; !g = �� � curl curl! +R;where R (the curl of the external force) is proportional to !.Proof. fe; curl�1 eg = f~e; curl�1 ~eg = ff; curl�1 fg = 0. �The symmetry of this corollary and of the formulas of Proposition 4.9 under theinterchange of e and ~e is not surprising, since the 
ow of the �eld f = @=@' is anisometry of V 3 = T1�2, and it takes the �eld e to the �eld ~e for the time �=2.Proposition 4.11. Every steady solution !0 = Ae + B~e of the Euler equationfor vorticity is unstable in the linear approximation.Proof. The linearized Navier-Stokes equation (cf. the linearized Euler equation(II.5.1)) for variations of velocity v = v0 + v1 and vorticity ! = !0 + !1 is@!1@t + fv0; !1g+ fv1; !0g = �� curl curl !1:For the initial vorticity !0 = Ae +B~e we have v0 = �� !0, and hence(4.5) @!1@t = f!0; v1 + �!1g � � curl curl !1;where v1 = curl�1!1. Consider the three-dimensional space of special (\long-wave")perturbations !1 = a e + b ~e+ c f; v1 = ��a e� �b ~e + c� f:The operator on the right-hand side of formula (4.5) maps this space (with thebasis e; ~e; f) into itself, and it is represented by the matrix0@��=�2 0 B�0 ��=�2 �A�0 0 ���21A ; where � = �+ 1�:Therefore, for nonzero viscosity � the eigenvalues are negative, and the correspond-ing modes decay. However, for � = 0 one has linear growth of the perturbations (inthe direction perpendicular to !0 in the plane (e; ~e)).Remark 4.12. It is natural to conjecture that our linearized equation for � = 0has exponentially growing solutions, and even an in�nite-dimensional space of those(it has not been proved). Indeed, at least for fast-oscillating solutions, one may



316 V. KINEMATIC FAST DYNAMO PROBLEMSneglect the second term fv1; !0g and take into account only the �rst one fv0; !1g,since for such solutions v1 = curl�1!1 is small compared to !1. Then one obtainsthe equation of a frozen transported �eld, and it has exponentially growing solutions(directions h� or h+ for !0 = �e or !0 = e, respectively).One can also argue that for small positive � Equation (4.5) has many exponen-tially growing solutions.In a similar way one can study the stationary solution !0 = f; v0 = f=�. In thiscase the �rst term on the right-hand side of Equation (4.5) has the form f!0; v1 �!1=�g. The matrix of the evolution operator for the \long-wave" perturbations is0@��=�2 � 0�� ��=�2 00 0 ���21A :Therefore, the eigenvalues in this case are always negative for � > 0, while for� = 0 the eigenvalues are purely imaginary, �i�, and 0. The \
uid motion" on Mcorresponding to the �eld f is \rigid" (i.e., an isometry) and apparently stable.As usual, the problem simpli�es as we pass to the dynamo equations, where themagnetic �eld is not related to the velocity. Consider, for instance, the velocity�eld v = Ae + B~e + Cf , where A; B; C are constants. The three-dimensionalspace of \long-wave" magnetic �elds B = ae+ b~e + cf is invariant with respect tostretching by the 
ow of v, as well as with respect to \di�usion." The evolution ofa \long-wave" �eld is given by the matrix0@��=�2 C �B�C ��=�2 A�B A ���21A :Let us con�ne ourselves to the case B = C = 0, where the particles are stretched bythe geodesic 
ow. In this case one readily evaluates the eigenvalues of the matrixand obtains the followingCorollary 4.13. For su�ciently small magnetic di�usion (� < jAj), the ge-odesic 
ow is a fast dynamo. The growing mode is a linear combination of thehorocyclic 
ows (or of the 
ows ~e and f). The growth rate (i.e., the increment ofthe growing mode) depends continuously on the magnetic viscosity � and tends tojAj as �! 0.The velocity �eld ~e (corresponding to A = C = 0) shares the analogous dynamoproperties.



x5. DYNAMO EXPONENTS IN TERMS OF TOPOLOGICAL ENTROPY 317Hypothetically, the number of exponentially growing modes in these cases in-creases without bound as the magnetic viscosity � tends to 0. On the other hand,for the \rigid" �eld f (i.e., for A = B = 0) one has the matrix���=�2 C�C ��=�2� ;which indicates the absence of growth of the \long-wave" �elds. Furthermore, fornonzero magnetic viscosity � the �elds decay, since the matrix eigenvalues havenegative real parts.4.E. Energy balance and singularities of the Euler equation.Proposition 4.14. If a vector �eld !0 is a solution of the following equation,(4.6) fcurl�1 !0; !0g = const � !0;then the constant is zero.Proof. We look for solutions of the Helmholtz equation _! = �fv; !g; v =curl�1 ! in the form !(t) = a(t)!0, where !0 satis�es the relation above, and a(t)depends on t only. Then substitution gives the following equation in a : _a =�a2 � const. All nontrivial solutions of the latter equation go to in�nity at �nitetime if the constant is nonzero. The unbounded growth of ! contradicts the energyconservation law _E = 0 for kinetic energy E = 12 R v2 �. �Among the \long-wave" vector �elds onM = T1P 2 studied above, only the �elds!0 = ae + b~e (which commute with curl�1!0) satisfy Equation (4.6). Indeed, for!0 = ae+ b~e + cf one gets from the commutation relations discussedfcurl�1 !0; !0g = ac�~e� bc�e;where � = �+1=�. There is no f on the right-hand side, which implies that c = 0.x5. Dynamo exponents in terms of topological entropy5.A. Topological entropy of dynamical systems. We have seen in Section1.B that the exponential growth of the L2-magnetic energy (and more generally, ofthe Lq-energy for q > 1) can be easily achieved in a nondissipative dynamo modelwhose velocity �eld has a hyperbolic stagnation point or a hyperbolic limit cycle.However, the class of nondissipative dynamos providing the exponential growth ofthe L1-energy of a magnetic �eld is much more subtle. To specify this class, aswell as to formulate the conditions for realistic (dissipative) dynamos, we need thenotion of entropy of a 
ow or of a di�eomorphism.



318 V. KINEMATIC FAST DYNAMO PROBLEMSDefinition 5.1. Let dist be the metric on a compact metric space M , and letg : M ! M be a continuous map. For each n = 0; 1; 2; : : : , de�ne a new metricdistg;n on X by distg;n(x; y) = maxi=0;1;:::;ndist(gix; giy):A set is said to be (n; �)-spanning if in the distg;n-metric, the �-balls centered atthe points of the set cover the space M . Let N(n; �; g) be the cardinality of theminimal (n; �)-spanning set. Then the topological entropy of the map g is de�nedby htop(g) = lim�!0 lim supn!1 1n lnN(n; �; g):The topological entropy htop(v) of a vector �eld v is the topological entropy of thetime 1 map of its 
ow.One can give such a de�nition for an arbitrary compact topological space byreplacing �-balls with an open covering and maximizing over all coverings, see, e.g.,[K-Y].To visualize this notion, think of the trajectories of two points x and y as beingindistinguishable if the images gi(x) and gi(y) are �-close for each i = 0; : : : ; n. ThenN(n; �; g) measures the number of trajectories of length n for the di�eomorphismg that are pairwise distinguishable for given �. Intuitively, positivity of entropyindicates that this number grows exponentially with n.5.B. Bounds for the exponents in nondissipative dynamo models.Theorem 5.2 [Koz2, K-Y]. Let v be a divergence-free C1-vector �eld on acompact Riemannian three-dimensional manifold M , and � the Riemannian volumeform on M . Assume that a magnetic �eld B0 is transported by the 
ow gtv of the�eld v : B(t) := gtv�B0. Then for every continuous �eld B0 on M the incrementof the L1-growth rate is majorated by the topological entropy htop(v) of the �eld v:lim supt!1 1t lnZM kB(t)k � � htop(v):Moreover, the increment is exactly equal to the topological entropy for any genericmagnetic �eld B0 (i.e., for a �eld from an open and dense subset in the space ofvector �elds).The formulation of Theorem 5.2 allows one to regard it as a naive de�nition oftopological entropy: Choose a vector �eld, act on it by the 
ow, and estimate thecorresponding rate of change of the L1-energy. To be sure that the chosen �eld B0is \generic," one can start with a pair of vector �elds B1 and B2 that along with



x5. DYNAMO EXPONENTS IN TERMS OF TOPOLOGICAL ENTROPY 319the �eld v form a basis in (almost) every tangent space ofM . Then htop(v) is equalto the biggest rate of L1-energy growth of these two vector �elds under iterations:htop(v) = maxf�1; �2g; where �i = lim supt!1 1t lnZM kBi(t)k �:Furthermore, the topological entropy of a smooth map g : M ! M is equal tothe maximum of the L1-growth rate under iterations of g of a generic di�erentialform. More precisely, htop(v) = limn!1 1n lnZM kDgn�k �;where Dgn� is a mapping between the full exterior algebras of the tangent spacesto M , and we integrate with respect to the Lebesgue measure �. The measure �is not supposed to be invariant under g. If g is measure-preserving, then the samestatement holds for k-vector �elds; see [Koz2]. The topological entropy also gives alower bound for the growth of the magnetic �eld in any Lq-norm (q � dim(M)�2),even in the case of �nite smoothness of the di�eomorphism; see [K-Y].Theorem 5.2 provides a necessary and su�cient condition for the existence of theexponential growth in a nondissipative L1-dynamo. In order to be a dynamo, thevelocity �eld v has to have nonzero entropy, i.e., roughly speaking, to admit somechaos. Positive topological entropy is often related to the presence of horseshoes,and they essentially exhaust all the entropy for two-dimensional systems ([Kat2],see the discussion in [K-Y]). For other Lq-norms (q > 1), the topological entropygives a lower bound for the growth rate of an appropriate magnetic �eld [Koz2,K-Y].The spectrum of the nondissipative kinematic dynamo operator for a continuousvelocity �eld on a compact Riemannian manifold without boundary is described in[CLMS] (see also [LL]).5.C. Upper bounds for dissipative L1-dynamos. Klapper and Young [K-Y]proved that the same necessary condition is valid for dissipative (realistic) dynamos:If the topological entropy of the �eld vanishes (htop(v) = 0), then the �eld v cannotbe a fast dynamo (in other words, the increment �(�) goes to zero as the magneticdi�usivity � tends to zero). Such a bound was proposed by Finn and Ott in 1988,and the proof was announced in 1992 by M.M. Vishik. The result and proof in[K-Y] is given in the more general form of �nite smoothness of the magnetic andvelocity �elds:Theorem 5.3 [K-Y]. Let v and B0 be divergence-free vector �elds supported ona compact domain M � Rn. Assume that v is of class Ck+1 and B0 is of class Ck



320 V. KINEMATIC FAST DYNAMO PROBLEMSfor some k � 2. Let B�(t) be the solution of the dynamo equation (1.1) with theinitial condition B�(0) = B0. Thenlim sup�!0 lim supn!1 1n lnZM kB�(n)k � � htop(v) + r(g)k ;where g := g1v is the time 1 map of the 
ow de�ned by the �eld v, B�(n) is the valueof B�(t) at the moments t = n, andr(g) := limn!1 1n ln�maxx2M k@(gn)@x (x)k� :(Here @(gn)@x is the Jacobian matrix of the map gn.) This upper bound is also validfor the vanishing magnetic di�usivity � = 0.In the case of an idealized nondissipative dynamo � = 0 and a smooth vector�eld v (k =1) this theorem reduces to Theorem 5.2.A variety of questions related to the kinematic dynamo are discussed in therecent book [ChG], which deals particularly with the fast dynamo problem, as wellas in the books and surveys [Mof3, K-R, R-S, Chi2, ZRS, Z-R].


