CHAPTER V

KINEMATIC FAST DYNAMO PROBLEMS

Stars and planets possess magnetic fields that permanently change. Earth, for
instance, mysteriously interchanges its north and south magnetic poles, so that the
time pattern of the switches forms a Cantor-type set on the time scale (see [AnS]).
The mechanism of generation of magnetic fields in astrophysical objects (or in
electrically conducting fluids) constitutes the subject of dynamo theory. Kinematic
dynamo theory studies what kind of fluid motion can induce exponential growth of
a magnetic field for small magnetic diffusivity. Avoiding analytical and numerical
results (though crucial for this field), we address below the topological side of the
theory.

§1. Dynamo and particle stretching
1.A. Fast and slow kinematic dynamos.

DEFINITION 1.1. The kinematic dynamo equation is the equation

(1.1) { o = —{v.B+uAb,

div B=0

(for a suitable choice of units).

It assumes that the velocity field v of an incompressible fluid filling a certain
domain M is known. The unknown magnetic field B(t) is stretched by the fluid flow,
while a low diffusion dissipates the magnetic energy. Here n is a small dimensionless
parameter (representing magnetic diffusivity), which is reciprocal to the so-called
magnetic Reynolds number R,, = 1/n. The bracket {v, B} is the Poisson bracket
of two vector fields (for divergence-free fields v and B in Euclidean 3-space, the
latter expression can be rewritten as —{v, B} = curl (v x B)). The vector field
v 1s supposed to be tangent to the boundary of the domain M at any time. The
boundary conditions for B are different in various physical situations. For instance,

the magnetic field of the Sun extends out into space, forming loops based on the
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276 V. KINEMATIC FAST DYNAMO PROBLEMS

Sun’s surface and seen as protuberances. This magnetic field is not tangent to the
boundary.

Alternatively, one can suppose that the boundary conditions are periodic (the
“star” or “planet” is being replaced by the three-dimensional torus R*/(27Z)?) or,
more generally, that M is an arbitrary Riemannian manifold of finite volume and

A is the Laplace—Beltrami operator on M.

The linear dynamo equation is obtained from the full nonlinear system of mag-
netohydrodynamics by neglecting the feedback action of the magnetic field on the
velocity field due to the Lorentz force. This is physically motivated when the mag-
netic field is small. The latter corresponds to the initial stage of the amplification

of a “seed” magnetic field by the differential rotation.

The following question has been formulated by Ya.B. Zeldovich and A.D. Sakharov
[Zel2, Sakh]:

PROBLEM 1.2. Does there exist a divergence-free velocity field v in a domain M
such that the energy E(t) = HB(t)Hzp(M) of the magnetic field B(t) grows exponen-
tially in time for some wnitial field B(0) = By and for arbitrarily low diffusivity?

Consider solutions of the dynamo equation (1.1) of the form B = e*Bg(x). Such
a field By must be an eigenfunction for the (non-self-adjoint) operator L, , : By —
—{v, By} + nABy with eigenvalue \* = A\%(v. 7). The eigenparameter A\© is the

complex growth rate of the magnetic field.

DEFINITION 1.3. A field v is called a kinematic dynamo if the increment A(n) :=
Re A®(n) of the magnetic energy of the field B(t) is positive for all sufficiently large
magnetic Reynolds numbers R, = 1/n. The dynamo is fast if there exists a positive
constant Ag such that A(n) > A\g > 0 for all sufficiently large Reynolds numbers. A

dynamo that is not fast is called slow.

There exist many possibilities for the dynamo effect in some “windows” in the
range of the Reynolds numbers. In our formalized terminology, we shall not call

such vector fields dynamos.

REMARK 1.4. The existence of an exponentially growing mode of B is a property
of the operator L, ,, and this is why we call the velocity field v, rather than the
pair (v, B), a dynamo. Kinematic dynamo theory neglects the reciprocal influence
of the magnetic field B on the conducting fluid itself (i.e., the velocity field v is
supposed to be unaffected by B). This assumption is justified when the magnetic
field is small. The theory describes the generation of a considerable magnetic field

from a very small “seed” field. Whenever the growing field gets large, one should
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take into account the feedback that is described by a complete system of MHD
equations involving the Lorentz forces and the hydrodynamical viscosity.

The above question is reformulated now as the following

PROBLEM 1.2'. Does there exist a divergence-free field on a manifold M that 1s

a fast kinematic dynamo?

Our main interest is related to stationary velocity fields v in 2- and 3-dimensional
domains M. There are several (mostly simplifying) modifications of the problem
at hand. We shall split the consideration of the dissipative (realistic, n — +0)
and nondissipative (idealized, or perfect, n = 0) cases. In the idealized nondissipa-
tive case the magnetic field is frozen into the fluid flow, and we are concerned with
the exponential growth of its energy.

In a discrete (in time) version of the question, one keeps track of the magnetic en-
ergy at momentst = 1,2,... . Instead of the transport by a flow and the continuous
diffusion of the magnetic field, one has a composition of the corresponding two dis-
crete processes at each step. Namely, given a (volume-preserving) diffeomorphism
g : M — M and the Laplace-Beltrami operator nA on a Riemannian manifold M,
the magnetic field B is first transported by the diffeomorphism to B’ := ¢, B, and
then it dissipates as a solution of the diffusion equation dB’/dt = nAB':

B’ +— B" :=exp(nA)B’.

PROBLEM 1.5. Does there exist a discrete fast kinematic dynamo, i.e., does there
exist a volume-preserving diffeomorphism g : M — M such that the energy of the

magnetic field B grows exponentially with the number n of iterations of the map
B — exp(nA)(g«B),

as n — oo (provided that n is close enough to 0)¢ The question is whether the

th

energy of the n'™ iteration of B is minorated by exp(An) with a certain X > 0

independent of n within an nterval 0 < n < ng for some ny?

Other modifications of interest include chaotic flows, “periodic” versions of the
dynamo problem (in which the field v on a 2- or 3-dimensional manifold is supposed
to be periodic in time rather than stationary), as well as flows with various space
symmetries (see [Bra, Bayl,2, Chi2,3, AZRS2, Sow2, Gill, PPS, Rob]). In the
sequel, we describe in detail certain sample dynamo constructions and the principal
antidynamo theorems, along with their natural higher-dimensional generalizations.
We shall see that the topology of the underlying manifold M enters unavoidably

into our considerations.
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The following remark of Childress shows that the difference between fast and
slow dynamos is rather academic. Suppose that the dynamo increment A(7) decays
extremely slowly, say, at the rate of 1/(In|Inn|), as the diffusivity n goes to zero.
(This is the case for a steady flow with saddle stagnation points, considered in
[Sowl].) Though theoretically this provides the existence of only a slow dynamo,
in practice, the dynamo is definitely fast: For instance, for n = 1/(663) < 1078 the

increment A(7n) is of order 1/3, noticeably above zero.

REMARK 1.6. A more general (and much less developed) dynamo setting is
the so-called fully self-consistent theory. It seeks to determine both the magnetic
field B and the (time-dependent) velocity field v from the complete system of the

magnetohydrodynamics equations:

% = —{v,B} + nAB,
% =—(v,V) v+ (curl B) x B+ vAv — Vp,
div B = div v =0,

for the fields B and v in a Euclidean domain (with standard necessary changes of
symbols V, A, x, and curl for a three-dimensional Riemannian manifold). We refer
to Section 1.10 and to [HMRW] for a group-theoretical treatment of magnetohy-
drodynamics, and to the interesting and substantial reviews [R-S, Chi2] for recent
developments in both the kinematic and the fully self-consistent theories. Here
we are solely concerned with the topological side of the fast kinematic dynamo

mechanism.

1.B. Nondissipative dynamos on arbitrary manifolds. Unlike the dis-
sipative (“realistic”) dynamo problem, which is still unsolved in full generality,
nondissipative (n = 0) dynamos are easy to construct on any manifold. First look
at the case of a two-dimensional disk.

At first sight, a nondissipative continuous-time fast dynamo on a disk (or on a

simply connected two-dimensional manifold) is impossible.

PSEUDO-PROOF. Every area-preserving velocity field v on a simply connected
two-dimensional manifold is Hamiltonian and can be described by the corresponding
Hamiltonian function. All the orbits of the field v that are noncritical level curves
of such a function are closed (Fig.58).

Consider the linearized Poincaré map along every closed orbit. The derivative
g7 of the flow map ¢ at a point of an orbit of period T is generically a Jordan
2 x 2 block with units on the diagonal. Indeed, the tangent vector to the orbit is

mapped to itself under the Poincaré map, and hence it is eigen with eigenvalue 1.
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FIGURE 58. A typical Hamiltonian velocity field on a disk. Almost all
orbits of the field are closed.

Then the Jordan block structure immediately follows from the incompressibility of
the flow v, provided that it has a nondegenerate shear along the orbit (the orbit
periods change with the value of the Hamiltonian).

Such a Jordan operator stretches the transported vectors of a magnetic field B
linearly with the number of iterations of the Poincaré map (see Section II.5). The
linear growth of the norm of B on a set of full measure implies the existence of a

certain linear majorant for the increase of the energetic norm v E over time. O

However, one cannot neglect the contribution of the singular level sets to the
magnetic energy. The following statement is folklore that directly or indirectly is

assumed in any study on dynamos (see [VshM, Gil2, Kozl]).

THEOREM 1.7. On an arbitrary n-dimensional manifold any divergence-free vec-
tor field having a stagnation point with a unique positive eigenvalue (of the linearized

field at the stagnation point) is @ nondissipative dynamo.

PrROOF. The main point of the proof is that the energy of the evolved mag-
netic field inside a small neighborhood of the stagnation point is already growing
exponentially in time.

Consider the following special case: The manifold is a two-dimensional plane
M = R? with coordinates (z,y), while the velocity v on M is the standard linear
hyperbolic field v(x,y) = (—Ax, Ay) with A > 0. Specify the magnetic field B to
be the vertical constant field B = (0,b) with support in a rectangle R := {|z| <
/2, ly| < ¢q/2}, see Fig.59.

At the initial moment the magnetic energy, i.e., the square of the L%*-norm of

the field B, is
EQ(B):/BZILLZPQ‘Z)Z.
R
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FIGURE 59. A nondissipative dynamo arising from a hyperbolic stag-

nation point.

After a time period ¢, the image R, of the rectangle R is squeezed in the horizontal
direction by the factor e and is stretched along the vertical by the same factor
(as is the field B as well). Then the magnetic energy of the field B; := ¢! B is

minorated by the field restriction to the initial rectangle:

EoB) = [Bip> [ Biy
R; R:NR
—(area of Ry N R) - (e b)? = (pge™™) - (e b)? = M - Ey(B).

In turn, the latter expression e* - Ey(B) grows exponentially with time.

The same argument applies to an arbitrary manifold M and an arbitrary velocity
field v having a stagnation point with only one positive eigenvalue. One can always
direct the initial magnetic field along the stretching eigenvector in some neighbor-
hood of the stagnation point. In a cylindrical neighborhood of the stagnation point

one obtains
Ey(By) = ||Bill7,an) = IIBill7,ry =€ - I1BI7,m)
> CN By = C- N Ea(B),
where By := ¢! B is the image of the field B under the phase flow of the vector field

v, and (' is some positive constant. O

REMARK 1.8. This gives the exponential growth of B in any L%norm with
d > 1. An exponential stretching of particles (being the key idea of the above
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construction) will be observed in all dynamo variations below. The result is still
true if the stagnation point has several positive eigenvalues, say, for a point with
eigenvalues \y > Ay > -+ > A\ > 0 > Agg1 > --- > Ay, provided that d- A\ +
A+1+- -+ A, > 0, or even if the same inequality holds for the real parts of complex
eigenvalues.

Even for the L'-norm, one can provide such growth of the E;-magnetic energy
if the number of connected components of the intersection R, N R increases ex-
ponentially with time t. We shall observe it in the next section for the Anosov

diffeomorphism of the two-torus and for any map with a Smale horseshoe.

§2. Discrete dynamos in two dimensions

2.A. Dynamo from the cat map on a torus. The main features of diversified
dynamo schemes can be traced back to the following simple example (see [ArnS,
AZRS1]).

Let the underlying manifold M be a two-dimensional torus T? = R?/Z? endowed
with the standard Euclidean metric. Define a linear map A : T2 — T2 to be the

cat map
1 2 1 1
<x2>|—><1 1) <x2> mod 1.

FIGURE 60. The cat map.

The stretching (respectively, contracting) directions at all points of the torus are
given by the eigenvector u; € R? (respectively, uy € R?) of A, corresponding to the
eigenvalue y; = (3 +/5)/2 > 1 (respectively, y2 = (3 —/5)/2 < 1; see Fig.60).
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The constant magnetic field By, assuming the value vy = (1 +2\/5

) at every

point of T2, is stretched by the factor y; with every iteration of A.

A diffeomorphism A : M — M of a compact manifold M is called an Anosov
map if M carries two invariant continuous fields of planes of complementary dimen-
sions such that the first one is uniformly stretched and the second one is uniformly

contracted. The cat map is a basic example of an Anosov map.

REMARK 2.1. Taking the magnetic diffusion into account does not spoil the
example of the cat dynamo. The iterations B,41 = exp (nA) [A (B,)] with By = B
(and n # 0) give the same exponential growth in spite of the diffusion. Indeed, the

field B is constant, and hence the diffusion does not change the field or its iterations:

Bz, = xT1|Bol| .-

Furthermore, one can pass from a linear automorphism of the two-torus to an

arbitrary smooth diffeomorphism ¢ : T? — T? ([Ose3]; see Section 2.C below).

REMARK 2.2. The cat map A : T? — T? provides an example of a nondissipa-
tive L'-dynamo. It provides the exponential growth of the number of connected
components in the intersection R A™(R) of the rectangle R (from Theorem 1.7)
with its iterations.

The cat map on the two-torus can be adjusted to produce a nondissipative dy-
namo action on a two-dimensional disk. The idea is the use of a ramified two-sheet
covering T? — S?, along with an Anosov automorphism of T?; see Fig.61. The
central symmetry of the plane R? provides an involution on the torus, and its orbit

space is homeomorphic to the sphere S?. The automorphism

o (2 1)3 _ (13 8)
1 1 8 5

of R? has four fixed points on T? = R?/Z?, the points with integral and semi-integral
coordinates on R?, and therefore it descends to the quotient space T?/Z, = S2.

This idea was explored as early as in 1918 by Lattes [Lat], and is rather popular
now in models of ergodic theory and holomorphic dynamics [Lyub, Katl].

In the context of dynamo theory, constructions exploiting the maps on the (non-
smooth) quotient T?/Zy appeared in [Gil2], along with results of numerical simula-
tions. A substantial analysis given there shows that for the Lattes map of the disk

any magnetic field after several iterations has a fine structure in which oppositely

oriented vectors appear arbitrarily close to each other (Fig.62). In the presence of
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FiGURE 61. The covering of the sphere by a torus ramified at four
points. The torus w = /23 — z in CP? maps to the sphere $? = CP!

by the projection (z,w) +— z.

FIGURE 62. Cancellations in the magnetic field under iterations (from
[Gil2]).

diffusion the dissipation action, large at these places, inevitably prevents the rapid
growth of magnetic energy.

The trick to overcoming this difficulty in three-dimensional dynamo models is
to include a nontrivial shear of “different pieces” of the manifold into an iteration
procedure such that diffusion averaging mostly affects the parts with the same
direction of the magnetic field (see [Gil2, B-C, ChG]).

There remains a possibility that a dissipative fast dynamo action in domains in
R? can be produced analytically, starting with the construction, known in ergodic

theory, of a Bernoulli diffeomorphism on the disk.

DEFINITION 2.3. The Lyapunov exponent of a map ¢ at a point = in the direction

of a tangent vector B is the growth rate of the image length of B under the iterations
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of ¢ measured by
x(x, B) := l%rr_l)ioréf IHHiﬂ
The Lyapunov exponents of the Lattes type diffeomorphism of the two-dimensional
disk D? can be made positive almost everywhere (see [Kat2]). The fields of stretch-
ing directions are, in general, nonsmooth. The diffusion term of a dissipative dy-

Y

namo should correspond to “random jumps of particles,” in addition to the smooth

evolution along the flow of v (in the spirit of [K-Y]).
2.B. Horseshoes and multiple foldings in dynamo constructions.

DEFINITION 2.4. A phase point of a (discrete or continuous) dynamical system
is said to be homoclinic if its trajectory has as its limits as ¢ — $o0o one and the

same stationary point of the system (Fig.63).

FIGURE 63. A homoclinic point and its bifurcation.

PROPOSITION 2.5 [Kozl]|. Any area-preserving map of a surface having a ho-

moclinic point can serve as a nondissipative two-dimensional L'-dynamo.

PROOF. Assume that ¢ : D* — D? is a (volume-preserving) map of a two-
dimensional disk to itself having a Smale horseshoe. This means that there is a
rectangle R C D? on which the map ¢ is a composition of the following two steps.
First, the rectangle is squeezed in the horizontal direction by the factor e and
stretched in the vertical direction by the same factor, keeping its area the same
(Fig.64).

Then the rectangle obtained is bent in such a way that it intersects the original

rectangle twice (see Fig.64).
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FIGURE 64. Smale’s horseshoe.

Under the iterations of the procedure described, the number of connected com-
ponents of the intersections (¢"R) N R grows as 2", where n is the number of
iterations. The argument of the preceding theorem now applies to the L'-norm of
the magnetic field B. Hence, ||B,||: > C - 2"||Bo||1:.

In a neighborhood of a homoclinic point a generic map admits a Smale horseshoe.
The L!'-norm of the restriction of the field to this horseshoe grows exponentially.

This completes the proof. O

REMARK 2.6. The dynamics of points in the invariant set of the horseshoe is
described by means of Bernoulli sequences of two symbols. We put the label 0 or 1
at position n if the point ¢z belongs, respectively, to the left or to the right leg of
the Smale horseshoe. The invariant sets of all C'*-horseshoes in a disk have measure
zero [BoR]. The condition on smoothness is essential here: There is an example of
a C''-horseshoe of positive measure (see [Bow]).

We have here the same difficulty that is well known in the theory of stochastiza-
tion of analytical Hamiltonian dynamical systems in a neighborhood of a periodic
orbit that is the limit of the trajectory of a homoclinic point. Bifurcations of non-
transversal intersections of stable and unstable manifolds of such a periodic orbit
leads to the appearance of the so-called invariant set of nonwandering points. (A
point a of a dynamical system ¢ is called wandering if there exists a neighborhood
U(a) such that U(a) N ¢'U(a) = O for all sufficiently large ¢.) Though the exis-
tence of Bernoulli-type chaos on this set has been known since the classical work
of Alekseev [Al], it is still unknown whether the corresponding invariant set of the
phase space has positive or zero measure. The “multiple folding” occurring in such
a system is basically of the same nature as the folding in nondissipative dynamo

models.
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We observed such a folding of the evolved magnetic field in both the horseshoe
and Lattes constructions. The following theorem shows that it is unavoidable in all

dynamo constructions on the disk.

PROPOSITION 2.7 [Kozl]. Let ¢ : D?* — D?* be a smooth volume-preserving
diffeomorphism of the two-dimensional disk with the following properties. There
exist an open subset U C D? invariant for g and a continuous oriented line field
that 1s defined on U and invariant for g. Then the Lyapunov exponents of g vanish

almost everywhere on U.

Notice that the Lattes map allows one to construct a diffeomorphism of the
disk such that the invariant set U is this disk with 3 small disks removed and the
Lyapunov exponents are positive (and equal to Iny; = In(3 + v/5)/2 > 0) on U.
However, the field of the stretching directions is not oriented. This is the major
obstacle to constructing a realistic dynamo on a disk: A nonzero diffusion mixes up
the vectors of the magnetic field B that are oppositely oriented and hence prevents

exponential growth of the field energy.

PROOF OF PROPOSITION. Assume the contrary, i.e., that the Lyapunov expo-
nents do not vanish on a set Uy that has positive measure. It is shown in [Kat2] that
periodic points of ¢ with homoclinic intersections of their stable and unstable man-
ifolds are dense in the closure of U;. Consider such a point ¢ and orient upwards
the unstable direction at this point (Fig.65). Then all lines defined on the unstable
manifold W* of zy are tangent to it and have a compatible orientation. However,
if the unstable manifold W* meets the stable manifold W* in one direction, then
it intersects W?° roughly in the opposite direction the next time, by virtue of the
simple-connectedness of the disk. (On the other hand, for instance on the torus,
the unstable manifold can intersect the stable manifold at two consecutive points
in the same direction.) Thus, the orientation of the lines oscillates and cannot be

extended continuously to the point xg. O

In order to take into account this “mixing up” effect in the nondissipative case

(Rm = o0), we introduce the following definition.

DEFINITION 2.8. A volume-preserving diffeomorphism g : M — M of a manifold
M is called a nondissipative mean dynamo if there exist a divergence-free vector
field B and a 1-form w such that the integral of the contraction of the form w with
the field ¢g}' B grows exponentially as n tends to infinity. Denote by A,, the maximal

increment of the growth:

1
Am = suplimsup — In
w,B n—oo N

/Mw(gifB)/w‘-
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FIGURE 65. Oriented linear elements on the unstable manifold.

A similar definition can be introduced in the case of a vector field in place of the
diffeomorphism ¢g. The notion of a mean dynamo is stronger than that of a nondis-
sipative Le-dynamo (d > 1): Any mean dynamo is a nondissipative LI-dynamo.
Another important distinction between these two concepts is the following. A suf-
ficient condition for a nondissipative dynamo is provided by the special behavior
of the diffeomorphism ¢ in a neighborhood of a fixed point (Theorem 1.7). The
situation in cases of a mean dynamo or dissipative dynamo is different. Knowing
only the local behavior of ¢ is not enough to determine whether ¢ is a mean or a
dissipative fast dynamo.

If the dimension of the manifold equals 2, a diffeomorphism ¢ is a fast dissipative
dynamo if and only if it is a mean nondissipative dynamo. In this case (dim M = 2)
the growth rate \,, is determined by the operator ¢g.; : Hi(M) — Hi(M), the
action of ¢ on the first homology group of the surface M, just as in the case of the

dynamo increment.

THEOREM 2.9 [Kozl]|. An area-preserving diffeomorphism ¢ of a surface M is a
mean nondissipative dynamo if and only if the linear operator g.1 has the eigenvalue

X with |x| > 1. The mean dynamo increment Ay, is equal to In|x|.

2.C. Dissipative dynamos on surfaces. Now suppose that there is a nonzero
dissipation in the system. In the case of a torus, an arbitrary diffeomorphism ¢ can
be described as g(x) = ®x +(x), (© mod 1), the sum of a linear transformation

® € SL(2,7Z) and a doubly periodic function . In [Ose3] it is shown that for
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a dissipative dynamo, as n — 0, the energy growth of a magnetic field on T? is
controlled solely by the matrix ®. This matrix represents the action of ¢ on the

homology group H;(T? R).

THEOREM 2.10 [Ose3]. Let g(x) = ®x + (x) be a diffeomorphism (not neces-
sarily area-preserving) of the two-dimensional torus T?. Then g 1s a fast dissipative
dynamo as n — 0 if and only if the matriz ® has the eigenvalue y with |x| > 1.

The dynamo increment \g = lin% Ay 18 equal to the eigenvalue In|y|:
n—

In||B,,
A(n) = lim LH |

—ln|y| as n—0,
n—oo

for almost every initial vector field By.

Here

By1 =exp(nA)[g«By], n=0,1,...,

in the area-preserving case, and
99
B = exp(ad) | 0.3/ 1521

where |g—i| is the Jacobian of the map ¢ in the non-area-preserving case. The norm

||| is the L?-norm of a vector field.

It turns out that the dynamo increment is determined exclusively by the action
of g on the first homology group in the much more general situation of an arbitrary
two-dimensional manifold M. For any M, each diffeomorphism ¢ : M — M induces
the linear operator g,; in every vector space H;(M,R), the i*® homology group of
M, ¢ =0,...,dim M. The following statement generalizes Theorem 2.10 (and is

similar to the discrete dynamos considered in Theorem 3.20).

THEOREM 2.11 [Kozl]. Let ¢ : M — M be an area-preserving diffeomorphism
of the two-dimensional compact Riemannian manifold M. Then g s a dissipative
fast dynamo if and only if the linear operator g1 has an eigenvalue x with |x| > 1.
The dynamo increment A(n) is equal to In|x| and hence is independent of n:

In || B,
L 1Bl
n—>00

= In |x|

for almost every initial vector field By. (Bp41 = exp(nA)[g«Brn], n =0,1,..., and
A 1s the Laplace—Beltrami operator on M.)

REMARK 2.12. An eigenvalue y with |y| > 1 exists for “most” of the diffeo-

morphisms of the surfaces different from the 2-sphere. Indeed, the determinant of
g«1 2 Hi(M,R) — Hi(M,R) is equal to 1, since ¢ is a diffeomorphism.
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Proor or THEOREM 2.11. First show that
L In|B

Jim < In x].

Indeed, consider the operator A* = ¢* o exp(nA) in the space of 1-forms that is
L?-conjugate to the operator A = exp(nA)og,. Let w be its (complex) eigenvector,
le., A*w = k w with In|k| = A(n). Such an w exists because the norm of the
conjugate operator A* equals the norm of the operator A, and A* is a compact
operator. Note that |x| > 1, since det |g.1| = 1. Assume that |x| > 1 (otherwise
the statement is evident).

The exterior derivative operator d commutes with ¢* and with A. Therefore,
g*exp(nA)dw = kdw, where ¢g* and A now act in the space of 2-forms. The
pullback operator ¢* : Q?(M,C) — Q*(M,C) preserves the L*norm, while the
Laplace-Beltrami operator A does not increase it. Hence, if |x| > 1, it follows that
the form w is closed, dw = 0 (cf. Theorem 3.6 below).

Furthermore, the Laplace—Beltrami operator A does not affect the cohomology
class [w] of the closed form w, so ¢*![w] = k[w], where ¢g*! is an action of g on the
first cohomology group H'(M,C) containing [w].

Therefore, either [w] # 0 and hence |&| < |x| (i.e., A(n) < lnlx]|), or [w] = 0. In
the latter case there is a function « such that da = w and ¢* exp(nA)a = k . The
same argument as before shows that a = 0, which contradicts the assumption that
w is an eigenvector. Thus, there remains only the possibility that A(n) < In|y|.

To show that A(n) > In|k|, we consider a cohomological class that is an eigen-
vector of ¢*! with eigenvalue y. Such a class is invariant under A* and there is an

eigenvector of A*, with eigenvalue x, so A(n) = In|x|. O

Theorem 2.11 holds also if ¢ is not area preserving

B = exp(n) (.81 521

It is easy to see that the conjugate operator has the same form as before: A* =

g* exp(nA).

2.D. Asymptotic Lefschetz number. The dynamo increment A(n) can also

be viewed as an asymptotic version of the Lefschetz number of the diffeomorphism

g (see [Ose3]).

DEFINITIONS 2.13. Let g : M — M be a generic diffeomorphism of an oriented
compact connected manifold M. The Lefschetz number L(g) of the diffeomorphism

¢ is the following sum over all fixed points {x;} of ¢:

L(g) =) signdet {g—z(:pi) - Id] :

)



290 V. KINEMATIC FAST DYNAMO PROBLEMS

where g—g is the Jacobi matrix of the diffeomorphism at a fixed point and Id is the

identity matrix. The asymptotic Lefschetz number Lys(g) is

1
Las(g) = limsup —In [L(g")]
n—oo N
(in our example the lim sup is simply lim, as we shall see).
The Lefschetz formula relates the contribution of fixed points of the diffeomor-

phism ¢ to its action on the homology groups:

L(g) = Z(—l)i Trace (¢«i),

?

where the linear operators g.; in the vector spaces H;(M,R), the :*® homology
group of M, are induced by the diffeomorphism ¢ : M — M.

Now the visualization of the dynamo increment In |y| as the asymptotic Lefschetz
number Las(g) for g : T? — T? (and more generally, for any ¢ : M — M) is an

immediate consequence of the following rewriting of the Lefschetz formula:

L(g") = Z(—l)i Trace ((¢")si) = 1 — Trace (") +1

=(1=x")1-x"")=-x"4+0() for|x|>1, n— oo

Here we used that for ¢ = 0,2 the maps g,; act identically on H;(M,R) = R. The
automorphism ¢.; : Hi(M,R) — Hy(M,R) can be nontrivial, and it is given by

the matrix ® in the case of a torus M = T2.

63. Main antidynamo theorems

3.A. Cowling’s and Zeldovich’s theorems. Traditionally, necessary condi-
tions on the mechanism of a dynamo are formulated in the form of antidynamo
theorems. These theorems specify (usually, geometrical) conditions on the manifold
M and on the velocity vector field v under which exponential growth of the L?-norm
of a magnetic vector field (or, more generally, of any tensor field) on the manifold
is impossible. In this section, the magnetic diffusivity n is assumed to be nonzero.

This direction of dynamo theory began with the following theorem of Cowling

[Cow]: A steady magnetic field in R? that is symmetric with respect to rotations
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about a given axis cannot be maintained by a steady velocity field that is also
symmetric with respect to rotations about the same axis. This theorem stimulated
numerous generalizations (see [Zell, K-R, R-S]). These works show that the sym-
metry properties of the velocity field are irrelevant. The symmetry of the magnetic

field alone prevents its growth:

THEOREM 3.1. A translationally, helically, or azially symmetric magnetic field

in R? cannot be maintained by a dissipative dynamo action.

In what follows we shall be concerned mostly with a somewhat dual problem, in
which one studies restrictions on the geometry of velocity fields that cannot produce
exponential growth of any magnetic field.

Consider a domain in three-dimensional Euclidean space that is invariant under
translations along some axis (say, the vertical z-axis). A two-dimensional motion in
this three-dimensional domain is a (divergence-free) horizontal vector field (v, = 0)
invariant under translations along the vertical axis.

Ya.B. Zeldovich considered the case where the projection of the domain to the

horizontal (x,y)-plane along the vertical z-axis is bounded and simply connected.

THEOREM 3.2 [Zell]. Suppose that the initial magnetic field has finite energy.
Then, under the action of the transport in a two-dimensional motion and of the

magnetic diffusion, such a field decays as t — oo.

In short, “there is no fast kinematic dynamo in two dimensions.”
We put this consideration into a general framework of the transport—diffusion

equation for tensor densities on a (possibly non-simply connected) manifold.

3.B. Antidynamo theorems for tensor densities. Here we discuss to what
extent the antidynamo theorems can be transferred to a multiconnected situation.
It happens that in the nonsimply connected case, instead of the decay of the mag-
netic field, one observes the approach of a stationary (in time) regime.

The assumption that the medium is incompressible turns out to be superfluous.
In the compressible case we need merely consider the evolution of tensor densities
instead of that of vector fields. The condition on the evolving velocity field v to be
divergence-free can be omitted as well: We shall see that the evolution automatically
leads, in the end, to a solenoidal density for an arbitrary initial condition. What
really matters is the dimension of the underlying manifold.

Throughout this section we follow the paper [Arn10], to which we refer for further
details.

Now we deal with an evolution of differential k-forms on a compact n-dimensional

connected Riemannian manifold M without boundary. A differential k-form w on



292 V. KINEMATIC FAST DYNAMO PROBLEMS

M evolves under transport by the flow with velocity field v and under diffusion

with coefficient n > 0 according to the law

(3.1) aa—j + L,w = nAw.

The Lie derivative operator L, is defined by the condition that the form is frozen
into the medium. In other words, draw vectors on the particles of the medium and
on their images as the particles move with the velocity field v to a new place. Then
the value of the form carried over by the action (3.1) with n = 0 does not change
with time when the form is evaluated on the vectors drawn.

The linear operator L, is expressed in terms of the operator ¢, (substitution of
the field v into a form as the first argument) and the external derivative operator
d via the homotopy formula L, = 1, od+ do,. The Laplace-Beltrami operator A
on k-forms is defined by the formula A = dé + 6d, where é = *d* is the operator
conjugate to d by means of the Riemannian metric on M. The metric operator
*: QF — Qn=F (pointwise) identifies the k-forms on the n-dimensional Riemannian
manifold with (n — k)-forms.

In the case of a manifold M with boundary, one usually needs specification of

vanishing boundary conditions for the forms and fields.

EXAMPLES 3.3. A) Suppose M = E*, Euclidean space with the metric ds* =
dx? + dy? 4 dz?. Specify a 2-form w = Pdy A dz + Qdz A dx + Rdz A dy by choosing
the vector field B with components P, Q, R; i.e., w = tgu, where pp = dz A dy N dz
is the volume element. For solenoidal fields v and B, Equation (3.1) on w results

in Equation (1.1) on the evolution of the magnetic field B.

B) For functions on M = R? (the case of (k = 0)-forms), Equation (3.1) becomes
the heat equation with transport:

of _

(3.2) =

—(v, V)f +nAf.

C) For a scalar density ¢ (i.e., for k = n and w = ¢ - u, where p is the volume

element on a Riemannian n-dimensional manifold), Equation (3.1) has the form

0
(3.3) a_z = —div (g -v) + nAg,

where the relation d(zgp) = (div £) - p is used.

DEFINITION 3.4. A closed k-form w on M 1is called stationary if it obeys the

equation

(3.4) —L,w 4+ nAw = 0.
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THEOREM 3.5 [Arnl0]. The number of linearly independent stationary k-forms
is not less than the k'™ Betti number by of the manifold M.

Recall, that the k" Betti number of M is by = dim Hy(M,Z). Examples in

which the number of stationary forms is strictly larger than by are given below.

THEOREM 3.6 [Arnl0]. If the diffusion coefficient n is large enough, then the
number of linearly independent stationary k-forms is equal to the k' Betti number,

and

a) In each cohomology class of closed k-forms there is a stationary form.

b) There us exactly one such form.

c) Any closed k-form evolved according to Equation (3.1) tends ast — oo to a
stationary form belonging to the same cohomology class, i.e., to a stationary
form with the same integrals over every k-dimensional cycle.

d) The evolution defined by Equation (3.1) with any initial conditions leads in
the limit to a closed form.

e) All solutions of Equation (5.4) are closed forms.

REMARK 3.7. Examples below show that items b) and ¢) are no longer true if
the viscosity is sufficiently low (except for the cases k = 0,1 or n). Exponentially
growing solutions are observed for the case k = 2,n = 3 (which is most interesting
physically, see, e.g., [AKo]) on a Riemannian manifold M, where for small diffusivity
n the dimension of the space of stationary solutions is at least 2 > by(M) = 1. The

general Theorem 3.6 admits the following special cases:

THEOREM 3.8 (k = 0). For the heat equation (3.2) with transport for scalars
at every positive value of the diffusion coefficient n: a) every stationary solution
is constant and b) the solution with any initial condition tends to a constant as

t — oo.

THEOREM 3.9 (k = n). For the heat equation (3.3) with transport for scalar

densities at every positive value of n:

a) The dimension of the space of stationary solutions of Equation (3.3) is equal
to 1.

b) There exists a unique stationary solution with any value of the integral over
the entire manifold.

c) The solution with any initial conditions tends as t — oo to a stationary
solution with the same integral.

d) In particular, the solution with initial conditions g = div B converges to 0
as t — oo regardless of the field B.
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REMARK 3.10. The dynamo problem for scalar densities retains many features
of the vector dynamo problem. The discussion and numerical evidence in [Bay?2]
show that the eigenfunctions develop a singular structure as diffusivity tends to
ZeTo.

On the other hand, the study of scalar densities (or more generally, of differ-
ential k-forms) and of their asymptotic eigenvalues allows one to prove the Morse
inequalities and their generalizations by means of the method of short-wave (“quasi-

classical”) asymptotics [Wit1].

THEOREM 3.11 (k =1). For any positive value of n in Equation (5.1) for closed
1-forms:
a) The dimension of the space of stationary solutions is equal to by (M), the
one-dimensional Betti number of the manifold.
b) There exists a unique stationary solution with any given values of the inte-
grals over independent 1-cycles.
c) The solution with any initial conditions tends as t — oo to a stationary

solution with the same integrals.

The dynamo problem for a magnetic vector field on a compact n-dimensional
Riemannian manifold is described by Equation (3.3) for an (n — 1)-form w. The
corresponding evolution of the vector density B where w = tgu is given by the law

0B
ot

THEOREM 3.12 (k =n —1). The divergence of the evolved density B tends to
zero for every value of the diffusion coeffictent n > 0. In particular, every stationary

solution of Equation (3.3) for (n — 1)-forms is closed.

= —{v,B} — B div v+ nAB.

COROLLARY 3.13. Every solution of Equation (3.1) for 1-forms on a compact
two-dimensional manifold tends to a stationary closed 1-form as t — oo. For a

simply connected two-dimensional manifold, every solution of Equation (3.1) tends

to zero (cf. Theorem 3.2).

3.C. Digression on the Fokker—Planck equation. A problem of large-time
asymptotics for scalar density transport with diffusion is already interesting in the

one-dimensional case, and it arises in the study of the Fokker—Planck equation
g+ (Uv)y = Ngy.

It describes the transport of a density form wu(a)dx by the flow of a vector field
v(x)0/0x accompanied by small diffusion with diffusion coefficient 7.
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Suppose, for instance, that the system is periodic in = and that the velocity field
v is potential. Introduce the potential U for which v = —grad U (the attractors of
v are then the minima of U).

The stationary Gibbs solution of the equation has the form

u(w) = exp(=U(z)/n),

and 1s sketched in Fig.66. It means that if the diffusion coefficient 7 is small, the
density distribution is concentrated near the minima of the potential. These minima
are the attractors of the velocity field v. The mass is (asymptotically) concentrated
in the vicinity of the attractor, corresponding to the lowest level of the potential.
(Note that the total mass is preserved by the equation: [ u(z,t) dx = const.) In the

sequel, we suppose that the potential is generic and has only one global minimum.

ulx) = exp(-U(x)/ )

0 Ul)=min 2z

FIGURE 66. The stationary solution of the Fokker-Planck equation.

Suppose we start with a uniformly distributed density, say, u = 1 everywhere.
The evolution will immediately make it nonuniform, and we shall see Gauss-type
maxima near all the attractors of v.

At the beginning the attractor that produces the most pronounced maximum
will be the one for which the contraction coefficient (the modulus of the eigenvalue
of the derivative of v at its zero point) assumes the maximal value.

Later, however, after some finite time (independent of 1), the distribution will
be similar to a finite set of point masses at the attractors. At this stage the most
pronounced attractor will be the one collecting the largest mass. This mass, at the
beginning, will be the initial mass in the basin of the attractor. Hence, in general,
this attractor will be different from the one that appeared first.

The next step will consist in (slow) competition between different attractors for
the masses of particles kept in their neighborhoods. This competition is (asymp-

totically) described by a system 1 = Am of linear ordinary differential equations
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with constant coefficients. The elements of the corresponding matrix A are the
so-called tunneling coefficients. They are exponentially small in 7, and hence the
tunneling phase of the relaxation process is exponentially long (¢ ~ exp(const /7n)).
In practice, this means that in most numerical simulations one observes, instead
of the limiting (Gibbs) distribution (where almost all the mass is concentrated in
one place), an intermediate distribution (concentrated at several points). This in-
termediate distribution evolves so slowly that one does not observe this evolution
in numerical simulations.

At the end (f — o), one of the attractors will win and attract almost all the
mass. This attractor is given by the Gibbs solution, and it is somewhat unexpected:
It is neither the one with the maximal initial growth of density, nor the one con-
taining initially the most mass. In Russian, it was called the “general attractor,”
or the “Attractor General” (since it is as difficult to predict as it was to predict

who would become the next “Secretary General”).

Consider an evolution of the density (i.e., of a differential n-form) uy on a con-
nected compact n-dimensional Riemannian manifold with Riemannian volume ele-
ment p. The evolution under the action of a gradient velocity field v = —grad U

and of the diffusion is described by the equation
uy + div (uv) = nAu.

(Note that (div (wv))p = d(iy(up)) = Ly(up) and (Au)p = (div grad u)p =
do(up), since up is a differential n-form, and hence it is closed.)

The spectrum of the evolution operator u — —div (uv) + nAu consists of a
point 0 (corresponding to the Gibbs distribution), accompanied by a finite set of
eigenvalues very close to 0 as n — 0. The number of such eigenvalues is equal to the
number of attracting basins of the field v, and it 1s defined by the Morse complex of
the potential U. There is a “spectral gap” between these “topologically necessary”
eigenvalues and the rest of the spectrum (which remains at a finite distance to the
left of the origin as n — 0).

The tunneling linear ordinary differential equation is the asymptotic (n — 0)
description of what is happening in the finite-dimensional space spanned by the
eigenvectors corresponding to the eigenvalues close to 0. The eigenvalues are of
order at most exp(—const/n) as n — 0, while the characteristic tunneling time is
of order exp(const/n). This explains the slow decay of the modes corresponding to

the nongeneral attractors.

REMARK 3.14. In spite of the evident importance of the problem, the description

of the events given above does not seem to be presented in the literature (cf., e.g.,
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[F-W]). The above description is based on an unpublished paper by V.V. Fock [Fock]
and on the work of Witten [Wit1] and Helffer [Helf].! Fock also observed that the
asymptotics of the density at a generic point of the border between the basins
of two competing attractors involve a universal (erf) function in the transversal
direction to the boundary hypersurface. Here, time is supposed to be large but
fixed while  — 0. The density is asymptotically given by an almost eigenfunction
(quasimode) concentrated in one basin from one side of the boundary, and by the
quasimode corresponding to the other basin from the other side. The transition
from one asymptotics to the other at the boundary is, according to Fock, described
by the step-like “erf.”

The preceding theory has an extension to the case of k-forms, where the small

eigenvalues correspond to the critical points of the potential of index & (see [Wit1]).

REMARK 3.15 (C. KING). In the potential (one- and higher-dimensional) case,
the operator L, — nA is conjugate to a nonnegative self-adjoint operator. It shows
that the spectrum is real and nonnegative.

Namely, the change of variables a(z) = eV(®)/2"y(z) sends the one-dimensional
operator L, —nA to the operator nD; Dy, where

D, =L 2@ vy d vy

dz 2n dz

The latter is known as the Witten deformation of the gradient (see its spectral
properties in [Helf]).
Semiclassical asymptotics of spectra of a very general type of elliptic self-adjoint

operators are treated in [Shl] (see also [Sh2]) .

REMARK 3.16. The case where the velocity field is locally (but not globally)
gradient is very interesting. This may already happen on the circle. In that case,
the Gibbs formula u(z) = exp(—U(«)/n) is meaningful only on the covering line.
The potential function is no longer a periodic function, but a pseudoperiodic one
(the sum of linear and periodic functions).

For every local minimum of the potential, we define the threshold as the minimal
height one has to overcome to escape out of the well to infinity, Fig.67. The general
attractor is the one for which the threshold is maximal.

Many facts described above admit generalizations to the case of a pseudoperiodic
potential in higher dimensions. In particular, the number of decaying eigenvalues is

equal to the number of the field’s critical points of the corresponding index [Fock].

We thank M.A. Shubin and C. King for the adaptation of the general theory to our situation.
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Uy

/\/\/ \‘ threshold

FIGURE 67. The threshold for a local minimum of the potential is the

minimal height one has to overcome to escape to infinity.

Note that the description of the topology of pseudoperiodic functions is a rich
and interesting question by itself already in two dimensions (see [Arnl9, Nov3, SiK,

GZ, Zor, Dyn, Pan]), where much remains to be done.

REMARK 3.17. B. Fiedler and C. Rocha developed in [F-R] an interesting topo-
logical theory of the attractors of nonlinear PDEs of the type

up = fla,u,uy )+ nal@)ug,.

They computed the Morse complex defined by the heteroclinic connections between
stationary solutions in terms of some permutations and meanders. A meander
is formed by a plane curve and a straight line. The corresponding permutation
transforms the order of the intersection points along the straight line into their

order along the curve.

3.D. Proofs of the antidynamo theorems.

PROOF OF THEOREM 3.5 (according to E.I. Korkina). The operator A = —L, +
nA acts on the space H of closed k-forms on M. Denote by Ker A the set of
solutions of the homogeneous equation Aw = 0, and by Im A the image of A in
the space H. The index ind A = dim Ker A — dim Coker A, where Coker A =
H/Im A. The index of the Laplace operator A is zero and so is the index of A (which
differs from nA only in lower-order terms: L, is of the first order). This means
that dim Ker A = dim Coker A. But Im A C Im d (since Aw = d(—iyw + 1 - éw) if
dw = 0). It follows that

dim (H/AH) > dim (H/{dw*"1}) = b,
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(De Rham’s theorem). O

PROOF OF THEOREM 3.6. (i) The evolution defined by Equation (3.1) does not
affect the cohomology class of the closed form w, since Aw = d(—i,w + 1 - 6w) is an
exact form.

(i2) For forms w from the orthogonal complement to the subspace of harmonic

forms in the space of closed forms H the following relations hold:

(3.5a) (w,w) < a(bw, dw),
(3.5b) |(w, Lyw)| < B(ow, bw),

where a and 3 are positive constants independent of w.
Indeed, (3.5a) is the Poincaré inequality (or it can be viewed as the compactness

of the inverse Laplace—Beltrami operator):
(w,w) < af(Aw,w)| = a(bw, dw).

The inequality (3.5b) is a combination of the Schwarz and Poincaré inequalities.
First note that L,w = di,w by virtue of the homotopy formula L, = 2,d + d1,
and since the form w is closed. Then (w,L,w) = (w,dt,w) = —(éw,i,w), whence

applying the Schwarz inequality to the latter inner product, we get
(8w, 1,w)|* < (8w, 8w )(iyw,i,w).

Now the required inequality (3.5b) follows from the above and (3.5a) in the form

(1pw, tyw) < const - (dw, dw).

(i¢) From (¢) and (¢¢) it follows that in the space of exact forms the evolution

defined by Equation (3.1) contracts everything to the origin if n is sufficiently large:

d
%(wvw) = —Q(M,va) + 277(%0[5@) < 2(6 - 77)(5%&”) < _27((“)7(“1)7

if n >3+ ay.

(iv) From (¢) and (1) it also follows that in an affine space of closed forms
lying in one and the same cohomological class, Equation (3.1) defines the flow of
contracting transformations (in the Hilbert metric of H), and hence, it has a fixed
point. This proves assertions a)-c).

(v) Both L, and A commute with d, and therefore dw satisfies Equation (3.1)
as well as w. But the form dw is exact, and therefore, in accordance with (7¢7), it
tends exponentially to zero as t — oo. Thus the distance between w(t) and the

space of closed forms tends exponentially to zero as t — oc.
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Moreover, the same contraction to zero is observed in H'-type metrics that take
into account the derivative, provided that the diffusion coefficient 7 is sufficiently

large (it is proved similarly to (¢¢¢) by using inequalities of the type
(Aw, L,Aw) < B(Aw, A%w)

for exact forms).
We now denote by w = p + h + ¢ the orthogonal decomposition of the initial
form w into exact, harmonic, and coexact (i.e., lying in the image of the operator

6) terms. Equation (3.1) assumes the form of the system
b= A+ Ash + Asq, h = Aag, § = Asg,

since for ¢(0) = 0 the form remains closed (i.e., ¢(t) = 0), and a closed form retains
its cohomology class (i.e., h =0 for ¢ = 0).
Now, since ¢(t) — 0 (in metrics with derivatives) exponentially, h(t) tends to
a finite limit (also in metrics with derivatives). But in accordance with (7:7), the
transformation exp(A;t) is contracting, and hence p(t) also tends to a finite limit.
Therefore, w(t) converges to a finite limit p(oo) 4 h(oo), which is a closed form.

This completes the proof of assertions d) and e). O

PROOF OF THEOREM 3.8 (according to Yu.S. Ilyashenko and E.M. Landis). If
the stationary solution were at any point larger than its minimum, it would imme-
diately increase everywhere (since heat is propagated instantaneously) and would
not be stationary (the so-called strengthened maximum principle). Consequently,
it must be everywhere equal to its minimum, i.e., it must be constant.

The same reasoning shows that a time-periodic solution of Equation (3.2) must
also be a constant. Hence, the operator A = —L, + nA on functions has no pure
imaginary eigenvalues and has a single eigenvector with eigenvalue zero (by the
maximum principle); this means that zero is an eigenvalue of multiplicity one and
all other eigenvalues lie strictly in the left half-plane.

Since A is the sum of an elliptic operator nA and the operator — L, of lower order,
we can derive by standard arguments (from the information we have obtained about
the spectrum) the convergence of all solutions to constants (even in metrics with

derivatives). O

PrOOF OF THEOREM 3.9. The operator A = —L, + nA on the right-hand side
of Equation (3.3), which sends a density ¢ to —div (¢ - v) + nAyg, is conjugate to
the operator A* = L, + nA on functions.
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The eigenvalues of the operators A and A* coincide, and therefore the dimensions
of the spaces of stationary solutions of Equations (3.3) and (3.2) are identical. These
dimensions are equal to 1, by Theorem 3.8. Assertions b) and ¢) of Theorem 3.9
follow from the information on the spectrum of the operator A* that we obtained

in proving Theorem 3.8. Assertion d) follows from c) since [(div B)u = 0. O

ProOOF OF THEOREM 3.11. The operator —L,+nA commutes with d. It follows
that the solution with initial conditions wy = dfy evolves under Equation (3.1) in
the same way as the derivative df of the solution f of Equation (3.2) with initial
condition fo. From Theorem 3.8, it follows that f — const (with derivatives).
This means that df — 0; i.e., the exact 1-form degenerates over time. Thus the
sole stationary solution that is an exact form is zero. But by Theorem 3.5, the
dimension of the space of solutions of the stationary equation is not less than the
first Betti number by, i.e., than the codimension of the subspace of exact 1-forms
in the space of closed forms. Since the space of stationary solutions intersects the
subspace of exact forms only at zero, its dimension is exactly equal to the Betti
number by, and its projection onto the space of cosets of closed forms modulo exact
forms is an isomorphism. This proves assertions a) and b). Assertion c) follows

from the fact that the exact 1-forms have vanishing integrals over all 1-cycles. O

PrOOF OF THEOREM 3.12. Since d and —L, + nA commute, the n-form dw =
g - i evolves according to the law (3.3). By Theorem 3.9d), the density ¢ tends to

zero as t — oo (the condition dw = ¢ - means that ¢ is the divergence of the vector
field € that specifies the (n — 1)-form w = i¢p). O

PROOF OF COROLLARY 3.13. For n = 2, the 1-form w is an (n — 1)-form. By
Theorem 3.12, it becomes closed (dw — 0) as t — oo. (Here the convergence to
zero is exponential even in a metric with derivatives.) Using the same reasoning
as in the proof of Theorem 3.6(v), and using Theorem 3.11 to study the behavior
of the exact forms, we arrive at the conclusion that the limit of w as t — oo exists
and 1s closed. O

3.E. Discrete versions of antidynamo theorems. Supposethat g : M — M
is a diffeomorphism of a compact Riemannian manifold, ¢* = (¢*)~! is its action on
differential forms (by forward translation), and h,, is the evolution of forms during

some fixed time n under the action of the diffusion equation:

hy :=exp(nA), f,:=hy,og™
Denote by G* the action of ¢* in the cohomology groups, G* : H*(M,R) —
H*(M,R).
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THEOREM 3.18 [Arnl0]. ¢) The cohomology class of the closed form fhw 1s 0b-
tained from the class of the closed form w by the action of G*.
it) If t 1s chosen sufficiently large and G* is the identity transformation, then

a) for any closed form w the limit nh_)rrolo fyw exists;

b) this limit 1s a unique closed form cohomological to w, and it is fived under
the action of f,;

c) if the form w is exact, then frw — 0 as n — oo;

d) for any form w (not necessarily closed), the sequence of forms frpw 18 con-

vergent as n — oo, and the limit s a closed form.

THEOREM 3.19 [Arnl0]. Let M be a two-dimensional manifold and G* = 1d;
then assertions a)-d) of Theorem 3.18 are true for all n > 0 (not only for suffi-
ciently large values of ).

These discrete versions of Theorem 3.12 and Corollary 3.13 (and counterparts of
other theorems) are proved in the same way as the original statements themselves.
Moreover, one can give up the identity condition on G*. To obtain the discrete
analogues of Theorems 3.6-3.12 with G* # Id, one should not confine oneself to
the stationary forms but consider the eigenvectors of the map f, with eigenvalues
A, |A] > 1. Denote by G} the action of a diffeomorphism ¢ (by forward translation)
on the cohomology group H*(M,R) and let y be an eigenvalue of G of maximal

magnitude.

THEOREM 3.20 [Kozl]. For sufficiently large n,

a) and any ezact form w, the image under iterations fy'w tends to zero as
n — oo;

b) every eigenvector of f, 1s a closed form;

¢) and a closed k-form w, the norm || fyw|| grows with the same increment as
(G [wlll; t-e., for all k-forms from the same cohomology class, the growth
rate coincides with the growth rate of this class under the action of G ;

d) if @ cohomology class S is an eigenvector for the operator G, with the eigen-
value x, GEQ = xQ, then there is a form-representative w € Q such that
fopw = xw;

e) one has for any k-form w

1
lim Lin | frw] <oy,
n—oo N
while for a generic k-form w the inequality becomes equality:

1 n
lim —In|[fyw]l = In |x|.
n—oco N
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PROOF. a) can be proved using the same estimates as in the proof of Theorem
3.6(u2). For b)-e), note that the operator f, is compact, so for any value in its
spectrum there is an eigenvector. Let A be in the spectrum and |A| > 1. Then
there is an w such that f,w = A w. The exterior derivative d commutes with f,, so
frdw = X dw, and a) implies that dw = 0. The “diffusion” operator exp(nA) does
not change the cohomological class, so the condition G} = y © implies f,Q € Q.
If there is a k-form w € Q such that f,w = A w, then either A = x, or [w] = 0 and
Al = 1. O

The same method can be used to prove, for example, that if M = T? and

1 1
* n M M
G = (0 1 ), then ’7) W 11creases 110 1mmore rapldly than the first power of n.

2 1
1 1

a fast kinematic dynamo on a three-dimensional compact Riemannian manifold; see

REMARK 3.21. The case of G* = ( is used in [Arn8, AZRS1] to construct

the next section.
To the best of our knowledge, the preceding theory has not been settled for

manifolds with boundary, though it certainly deserves to be.

64. Three-dimensional dynamo models

4.A. “Rope dynamo” mechanism. The topological essence of contemporary

dynamo constructions goes back to the following scheme proposed by Sakharov and

Zeldovich (see [V-Z, ChG]|) and depicted in Fig.68.

FIGURE 68. Rope dynamo: the stretch—twist—fold mechanism.
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The rapid growth of magnetic energy is achieved by iterations of the three-step
transformation of a solid torus: stretch—twist—fold (STF).

We start with a solid torus S! x D? embedded in a three-ball. Take it out and
stretch S! twice, while shrinking D? in such a way that the volume element remains
preserved. Then we twist and fold the new solid torus in such a way as to obtain
a twofold covering of the middle circle, and finally we put the resulting solitorus in
its initial place (Fig.68).

The energy of the longitudinal field in the solid torus (directed along the S!
component ) grows exponentially under iterations of the construction above, since
the field is stretched by a factor of 2 along with the longitudinal elongation of the
magnetic lines.

Though this construction is not a diffeomorphism of the solid torus onto itself,
one can make it smooth, sacrificing control over stretching in a small portion of the
solid torus. The loss of information about stretching of the flow in a small part of
the manifold, though irrelevant for an idealized nondissipative dynamo, is essential

when viscosity is taken into account.

4.B. Numerical evidence of the dynamo effect. The presence of chaos in
ABC flows (see Chapter IT) makes them extremely attractive for dynamo modeling.
We confine ourselves to mentioning only the extensive studies in this field. The
numerical and scale evidence for fast dynamo action in ABC and, more generally,
in chaotic steady flows, can be found in, e.g., [Hen, G-F, AKo, Chi3, Bayl, Gill,
PPS] (see also [Zhel] for analogues of ABC flows in a three-dimensional ball).

The most extensive studies on ABC flows dealt with the case A = B = C with
the velocity field

: 0 . 3, . 3,
v = (cosy + sz)a_x + (cos z + sm:z;)a—y + (cosx + smy)@.

One of the main problems in such a modeling is to estimate the increment A(7)
of the fastest growing mode of the magnetic field B as a function of the magnetic
diffusivity 7, or of the magnetic Reynolds number R,, = 1/n. In other words, one
is looking for the eigenvalue of the operator Lp  : B — —R,{v,B} 4+ AB with
the largest real part. The first computations of E.I. Korkina (see [AKo]), by means
of Galerkin’s approximations, covered the segment of Reynolds numbers R, < 19.

For small Reynolds numbers (i.e., for a large diffusivity 7), every solution of
the dynamo Equation (1.1) tends to a stationary field that is determined by the
cohomology class of the initial field By; see Theorem 3.6. Hence, for such Reynolds

numbers the eigenvalue of Lr  1s zero independent of R,,.
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When confined to the case of the fields By with zero average, the largest eigen-
value of the operator Lr _ becomes —1 for all numbers R,, less than the critical
value Ry, ~ 2.3. The reason for this phenomenon is that Av = —v (and of course,
{v,v} =0), and therefore the field v is eigen for Lg, with eigenvalue —1.

As the Reynolds number grows, there appears a pair of complex conjugate eigen-
values with Re A = —1. The pair of eigenvalues moves to the right and crosses the
“dynamo border” ReA = 0 at R,, & 9.0. The increment Re A stays in the right
half-plane until R, ~ 17.5, when 1t becomes negative again.

Thus the field v is the dynamo for 9 < R,,, < 17.5. D.J. Galloway and U. Frisch
[G-F] have discovered the dynamo in this problem for 30 < R,, < 100. It is still un-
known whether this field is a fast kinematic dynamo, e.g., whether an exponentially

growing mode of B survives as R,, — o0.

Numerically, the kinematic fast dynamo problem is the first eigenvalue problem
for matrices of the order of many million, even for reasonable Reynolds numbers (of
the order of hundreds). The physically meaningful magnetic Reynolds numbers R,
are of order of magnitude 10®. The corresponding matrices are (and will remain)
beyond the reach of any computer.

Symmetry reasoning (involving, in particular, representation theory of the group
of all rotations of the cube) allows one to speed up the computations significantly.
In particular, the first harmonic of some actual eigenfield for any Reynolds number
can be found explicitly [Arnl3]. This mode is the fastest growing for R,, < 19 as
numerical experiments show.

Computer computations also suggest that the growing mode is confined to a
small neighborhood of the invariant manifolds of the stagnation points, at least
for A = B = C. There still exists a hope that this observation might lead to
some rigorous asymptotic results. The asymptotic solution constructed in [DoM]
manifests concentration near the separatrices for a very long time, but not forever.

No mode with such concentration was found as t — oo!

4.C. A dissipative dynamo model on a three-dimensional Riemannian
manifold. In this section we consider an artificial example of a flow with exponen-
tial stretching of particles that provides the fast dynamo effect in spite of a nonzero
diffusion (see [Arn8, AZRS1,2]). In this example, everything can be computed ex-
plicitly. Its disadvantage, however, is the unrealistic uniformity of stretching and
the absence of places where the directions of the growing field are opposite.

The construction is based upon the cat map of a torus, discussed above, and can
be thought of as a simplified version of the model of Section II.5. In that section

we considered exponential stretching of particles according to the same equations.
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However, unlike the magnetic field evolution in the kinematic dynamo problem, in
ideal hydrodynamics the transported (vorticity) field is functionally dependent on
the velocity field that is evolving it.

The domain of the flow is a three-dimensional compact manifold M that in
Cartesian coordinates can be constructed as the product T? x [0,1] of the two-
dimensional torus T? with the segment 0 < z < 1, for which the end-tori are

identified by means of the transformation

(2 1Y\ e 9
A_<1 1>.T - T

(i.e., according to the law (x,y,0) = (22 + y,x + y, 1), or equivalently, (z,y,1) =
(r —y,2y —x,0) with « mod 1, y mod 1).

To introduce a Riemannian metric on this manifold we first pass from the Carte-
sian coordinates z, y, z to the Cartesian coordinates p, ¢, z, where p has the direction
of the eigenvector of A with the eigenvalue y; = (3 4 v/5)/2 > 1, and ¢ is directed
along the eigenvector with the eigenvalue y2 = (3 — v/5)/2 < 1. Then the metric

given by the line element
ds? = e 2N dp? + M dg? + d2%, A =1lny, = 0.75

is invariant with respect to the transformation A, and therefore defines an analytic
Riemannian structure on the compact three-dimensional manifold M. We choose
the eigenvector directions in such a way that the (p, ¢, z)- and (z, y, z)-orientations
of R? coincide.

Further, on this manifold we consider a flow with the stationary velocity field
v =(0,0,v) in (p, ¢, z)-coordinates, where v =const, so that divv = 0 and curlv =
0. Each fluid particle moving along this field is exponentially stretched in the ¢-
direction and exponentially contracted along the p-axis when regarded as a particle
on M. If the magnetic Reynolds number is small (the diffusivity is large), the
magnetic field growth is damped by the magnetic diffusion, and there is no dynamo

effect (cf. Theorem 3.6). For small magnetic diffusivity the situation is different.

THEOREM 4.1 [AZRS1]. The vector field v defines a fast dynamo on the Rie-
mannian manifold M for an arbitrariy small diffusivity n and in the limit n — 0.
For a giwen initial magnetic vector field, only 1ts Fourier harmonic independent of

p and q survives and grows erponentially as t — oo.

PRrROOF. Consider the following three vector fields in R?:

e, = ¢*°0/dp, e, = e *70/dq, e. = /0.
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These fields are A-invariant, and hence they descend to three vector fields on A3,
for which we shall keep the same notations e,,e,, e.. Those fields are orthogonal
at every point in the sense of the above metric. Let f be a function on M, i.e.,
it is a function f : R* — R, 1-periodic in z and y, and satisfying f(z,y,z +1) =
flz—y,2y —x,z). Similarly, suppose that B = B,e, + B,e,+ B.e. is a (magnetic)

vector field on M. Direct calculation leads to the following

PROPOSITION 4.2. The vector calculus formulas on M are

0B,  _,.0B, 0B.
dp ‘ dq + 0z

(in particular, div e, = div e, = dive, =0),

curl (Bpe, + B,e, + B.e.)
= (curl,B) e, + (curl,B) e, + (curl.B) e.,

dB. 0e¢B
where curl ,B = e ( 9 682 4,
. Je=* B 0B.
curl (B = e ( P P o ),
B B
curl .B = e)‘z—a 4 _ e_)‘z—a P
dp Jq
(in particular, curl e, = —Xey, curle, = —Xe,, curle. =0),

o*f oL O F O*f
_ 2XzY ) 2xzY S Y S
Af=e Op? Te 0¢? —I_az:?’

Ae, 1= —curl curl e, = —/\26p, Ae, = —/\2eq7 Ae, =0, and

{ep.e,} =0, {e.,ep} = Ae,, {e.,e,} = —Ne,.

PROOF OF PROPOSITION. Denote by ¢, = e *dp, ¢, = e dq, ¢, = dz the
dual 1-forms (in R® and on M). Such a form is dual to the corresponding field, in
the sense that, e.g., ¢ple, = 1, dple, = ¢ple. = 0, etc. Then, the expression for the
differential

af af af x:9Of 2 9f af
df = —dp+ —dg+ =—dz =" — = — ¢,
! dp p+8q q—l_azz ¢ 8p¢p+e Jq ¢q+8z¢
directly implies the gradient formula, etc. O

The evolution (1.1) of a magnetic field B = B,e, + B,e,+ B.e. on M along the
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velocity field v = v0/Jz has the following description in components:

aa%—l—vaaﬂ:—/\vB + (A — /\2)B — 2Xe )‘ZaaB ],
< P
0B 0B, 0B.
a_tq + ot = AoBy + (A - A)B, + er—*Za—q],
0B. oB. 0

i + o P —U(A—Q/\g)Bz-

The equation for the z-component of the field splits from the rest. Suppose
that the function B, has zero average. Then, asymptotically as t — oo, the B,-
component decays (cf. Zeldovich’s antidynamo theorem, Section 3.A). Indeed, the
latter is the heat equation in a moving liquid. It is easy to see that B, diminishes,
since each of its maxima tends to disappear (the maximum principle). Formally,

one obtains

d 9 oB. B 9
= | B: /BZW p= n/BZ(ABz) po=-1n /(VBZ)

Based on this, we assume in the sequel that the component B, is constant.
It suffices to consider only one component of the vector field B, since the equa-
tions for the p- and g-components differ only by the substitution A — —A:

0B 0B

sl _ 2
(4.1) 5 + o 5 = AwB+n(A—-\)B,

where B = B,,.
To specify the boundary conditions on B, we return to the (x,y, z)-coordinate

system. Periodicity in x and y allows one to expand B into a Fourier series:

B(x,y,z,t) = ZB" m(z,t)exp [2mi(nx + my)]
pvazvt ZbaﬁZtexp[(ap—l_ﬂQ)]

where n and m are integers and «, 3 are related to 27n,27m by a linear transfor-

mation corresponding to the passage from the coordinates =,y to p,gq.

LEMMA 4.3. The function by o(z,t) is periodic in z. The harmonics by g(z,1)
with (a, 3) # (0,0) decay exponentially in z for analytic functions B.

PROOF. Restrictions on the Fourier amplitudes come from the symmetry with
respect to a shift along the z-axis: B(x,y,z,t) = B(2x + y,x + y,z + 1,t). This
identity is equivalent to that on the Fourier coefficients that are acted upon by the

operator conjugate to A:

(4.2) B(mm)(z + 1,t) = B(n,m)A* (Z,t).
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Here A* is the transpose of the matrix A, and in the case at hand A* = A.

Thus the shift along the z-axis is equivalent to the transition from the Fourier
amplitudes with indices (n,m) to the Fourier amplitudes with indices (n,m)A.
Iterative applications of the matrix A shifts a typical vector (n, m) along a hyperbola
in the (n,m) plane (see Fig.69).

The only exception is the case n = m = 0, when the magnetic field does not
depend on z,y or p,¢: (0,0) A = (0,0). Here we use that the eigendirections of A
do not contain integral points (n, m) (different from (0,0)), since the eigenvalues of

A are irrational.

B> o,
\ o
\ (n.m) (n,m)A2 //
\ 7~
N\ (n,mA ///
\|/ #
—
-1\ n
i \\
7~
- \

FIGURE 69. The invariant curves for the orbits {(n,m)A*} are hyper-
bolas in the (n,m)- (or (a, #)-) plane.

On the other hand, analyticity of B(x,y, z,t) implies that its Fourier harmonics
b3 must decay exponentially in o and . It follows that the functions b, g(z,1)
decrease rapidly for fixed («, 3) # (0,0) as |z| — oo due to the shift property above.

Periodicity in z of the zero harmonic is evident. The Lemma is proved. O

To complete the proof of Theorem 4.1 we first fix n = 0. Equation (4.1) can be
solved explicitly (due to the frozenness property):

(4.3) b(p,q,z,t) = e)‘vtb(p, q,z — vt,0)

(pass to the Lagrangian reference frame, solve the Cauchy problem, and return to
the Eulerian coordinates).
Equation (4.1) may be written in the form 0b/0t = T, b, where the operator T,

(depending on the viscosity 1) acts on the functions on M? (depending in our case
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on t as a parameter):

0b

Tyb = Avb+ n(A — /\2)6 — =,

0z
Consider first the nonviscous case n = 0. The nonviscous operator T has a
series of eigenfunctions by = exp(2mikz), k =0,+1,£2, ..., with eigenvalues v; =

Av — 2meko.

Every solution of (4.3) that does not depend on p and ¢ (i.e., that is constant
on every 2-torus z = const, ¢+ = const) can be represented as a linear combination
of the products by - exp(yxt) (expand (4.3) into a Fourier series in z).

The operator Ty has no other eigenfunctions. Indeed, suppose that b: M3 — C
were an eigenfunction of Ty with an eigenvalue v. The function b - exp(vxt) would

then satisfy Equation (4.3). By choosing t = 1/v, we obtain from (4.3)

b(p,q,2) = ¢ Tb(p, ¢,z — 1).

Using (4.2) we see that the Fourier coeflicients b, g(z) along every hyperbola a =
A, = A""F form a geometric series. This contradicts the decay of the Fourier
coefficients of the smooth function b(-,-, z) on the 2-torus (unless oy = fy = 0, in
which case b does not depend on p and ¢).

The absence of eigenfunctions is explained by the continuity of the spectrum of
Ty (on the orthogonal complement to the space of functions, constant on the tori

z = const).

Now turn to the general case np # 0. As before, Equation (4.1) has a sequence of

solutions by, - exp(7xt), which are independent of p and ¢, with eigenvalues
e = Ao+ n(—4n?k? — N\ = 2miko, k=0,41,42,....

If i is small we find many (~ Cn~'/?) growing modes. (If 7 is large, there is no
growing mode at all, since Re~; < 0.)

However, the behavior of the solutions whose initial field depends on p and
q differs drastically from the behavior given by the frozenness condition (4.3). To
explain this, consider the time evolution of b as consisting of two intermittent parts:
the frozen-in stretching (4.3) (7 = 0) and the pure diffusion action (v = 0). If n is
small, the stretching part might be long.

The long shift z — vt (vt € Z) along the z-axis is equivalent to a translation
(along the hyperbola) of the labels («, ) of the harmonics by g(z,t) for fixed z.
Hence, any given harmonic will shift with time into the region of large wave num-

bers, where dissipation becomes important. Its amplitude will then decay in the
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diffusion part of the evolution. Asymptotically as ¢ — oo, the evolving field will
decay however small the viscosity 7 is.

Thus, we come to the conclusion that, asymptotically for ¢ — oo, only the
solution independent of p and ¢ survives (see [AZRS]1] for details on analysis of the
solution asymptotics). Such a periodic in z solution in R?® grows exponentially in
the metric ds? as z — co. The increment of the corresponding exponent is bounded
away from 0 by a positive constant independent of n > 0. Finally, due to the linear
relation between shifts in the z and ¢ directions, one obtains the same exponential

growth of the solution as t — oo. 4

4.D. Geodesic flows and differential operations on surfaces of constant
negative curvature. Every compact Riemann surface can be equipped with a
metric of constant curvature. This curvature is positive for a sphere, vanishes for a
torus, and is negative for any surface with at least two handles (i.e., for any surface
of genus > 2).

In this section we show that the geodesic flow on every Riemann surface whose
curvature is constant and negative provides an example of the fast (dissipative)
kinematic dynamo. More precisely, let M? be the bundle of unit vectors over such a
surface P : M? = {¢ € TP|||¢]| = 1}. The geodesic flow defines a dynamical system
on this three-dimensional manifold M? with exponential stretching of particles of
M, similar to the example above. Avoiding repetition, we present here the basic

formulas for the key differential operations on the bundle of unit vectors over P.

First of all, let us pass from the surface P to its universal covering P. Every
such surface of constant negative curvature is covered by the Lobachevsky plane
P = A, where the covering is locally isometric (that is, respecting the metrics on

both spaces).

REMARK 4.4. Sometimes it is convenient to think of the bundle of unit vectors
V3 := T1 A over the Lobachevsky plane A as the group SL(2,R). Then the space M?
is the quotient of SL(2,R) (or, more generally, of the universal covering SL(2,R))

over a discrete uniform subgroup I':

M? = SL(2,R)/T.

We will deal with the following three “basic” flows on the Lobachevsky plane: the
geodesic flow and two horocyclic flows. Introduce the natural coordinates (z,y, ¢) in
the space of line elements (or of unit vectors) V? = Ty A%, where the Lobachevsky

plane is the upper half-plane A*> = {(z,y) | ¥ > 0 } equipped with the metric
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ds? = (dz* +dy?)/y*, and ¢ € [0,27) is the angle of a line element with the vertical
in A% (see Fig.70a). The z-axis is called the absolute of the Lobachevsky plane.
Recall that the geodesics in A? are all semicircles and straight lines orthogonal to
the absolute (Proposition IV.1.3).

N

| —O— ~O—
X

><"

(a (b)

FIGURE 70. (a) Coordinates (z,y, ) in the space of line elements along
the geodesics in the Lobachevsky plane. (b) Two horocycles passing

through one line element.

DEFINITION 4.5. The geodesic flow of the Lobachevsky plane is the flow in the
space of unit line elements V? = T} A? that sends, for time ¢, every element [ into
the line element on A? tangent to the same geodesics as [, but at the distance ¢ (in
the Lobachevsky metric) ahead of [.

The limit of a sequence of Fuclidean circles tangent to each other at a given

point and of increasing radius in the Lobachevsky plane is called a horocycle.

PROPOSITION 4.6 (SEE, E.G., [Arnl5]). The horocycles in the Lobachevsky plane
are exactly the Fuclidean circles tangent to the absolute and the straight lines parallel
to .

Every line element (point with a specified direction) on A% belongs to two horo-

cycles, “upper” and “lower”; see Fig.70b.

DEFINITION 4.5'. The first (+) and second (—) horocyclic flows on A? are the
flows sending in a time t every line element on the Lobachevsky plane to the line
element belonging to the same lower and upper horocycles respectively, and lying
on the distance ¢ ahead of it.

Explicitly, the flows are given by the following vector fields e (for the geodesic
flow), h™ (for the “lower” horocyclic flow), and AT (for the “upper” horocyclic one)
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on V:
.0 0 .0
e = —ysmc,oa—x —I—ycosc,oa—y —|—s1n<p%,
0 . 0 0
h™ = —ycosp —ysmc,oa—y + (cos p — 1)%,

0 0 0
+ - : I 7
hT = ycosc,oax ysmc,oay—l—(coscp—l—l)a(p.

PROPOSITION 4.7. The vector fields e, ht, h™ generate the Lie algebra sl(2,R).

PRrROOF. {e,hT} =nh*t, {e,h~} = —h~, {ht ,h™} = 2¢, where { , } means the
Poisson bracket of two vector fields: Liywy = LuLy — LyLy. In coordinates it is

{u,v} = (u, V)v — (v, V)u; see Section 1.2. O

Notice that the difference of the horocyclic fields f := %(h_ — h™T) is the rotation
field f = %. Introduce also the sum field ¢ := %(h"" + h7). The Poisson brackets

between the fields e, €, f are {f,e} =¢, {€,e} =f, {é,f} =e.

Now we define in V? = Ty A? a one-parameter family of metrics:

(4.4) az = Wy <d¢ + d—$>2 .
Y Y

PROPOSITION 4.8. The above metrics on the space of line elements V3 = T} A?
are singled out by the following three conditions:

1) Consider the planes defining the standard Riemannian comnection in TiA*
related to the Lobachevsky metric on A%2. The condition on a metric in Ty A? is that
the fibers of the projection TiA? — A? are orthogonal to those planes;

2) The above projection sends the planes to the tangent spaces to A? isometrically;

3) The metrics are invariant with respect to wsometries of the Lobachevsky plane.
PROOF. From 2) one can see that

B dz? + dy?

2
dt -

+ /\Z(dc,o—l—ad:zj + bdy)z.

Utilize condition 1) in the following form: The coefficients a and b obey the relation
deo+adr+bdy = 0 along two curvesin V =T} A%, One of the curves is the parallel
transport of a line element along its geodesics (i.e., it is the orbit of e), and the
other curve is obtained by the parallel transport of the same line element in the
perpendicular direction (i.e., along the orbit of €). The calculation can be carried

out at =0, y =1, ¢ =0, and extended by invariance due to 3). g

For each metric of the family (4.4), the basis e, €, f is orthogonal: (e, €) =
(e,f) = (&, f) = 0, and moreover, (e,e) = (¢, ¢) = 1, (f,f) = A?. In this

normalization the volume element spanned by the three fields is 7(e, €, f) = A.
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PROPOSITION 4.9. All the fields e, ¢, f, h™, h™ are divergence-free and null-
homologous. Their vorticities are as follows:

e
curl e = ——,

curl é = ——, curl f = Af, curl hi:—g:F/\f.

> | ™2

The helicities of both of the horocyclic flows are zero, while the helicity of the geo-
desic flow e in the compact manifold M?> = T, P? is

H(e) = —8n? )\ ((genus of P*) — 1) .

PROOF. Introduce 1-forms «, &, ( dual to the fields e, €, f, respectively (i.e.,
ale =1, ale = a|f =0, etc). Now, the calculation of the vorticity and divergence

is a straightforward application of the formula for the differential of a 1-form:

dy(vi,v2) = ({2, v1}) + Loy y(v2) — Lo, y(01).

For instance, combining it with the formulas for Poisson brackets

{evf} = —¢, {evé} = -1 {évf} =6

one obtains da(e, €) = da(e, f) = 0, da(é, f) = —1. Therefore, —Ada = i.7. By
definition, this means that div e = 0 and curl e = —e/\ (see Section III.1 for more
detail).

The helicity expression for the geodesic field e on M? = T} P? is

H(e) = /(e,curl _16)7' = —/\/T = —27)\? - (area of PZ).
M M

Here the volume of the bundle M is the product of the fiber length 27\ and the
area of the surface P?. The Gauss-Bonnet theorem reduces the area of the surface

P? (with constant curvature) to the number of handles:
area of P? = 4x(genus of P* —1).
We leave to the reader the helicity calculations for horocyclic flows h*t on M. O

Returning to hydrodynamics, we immediately obtain the following

COROLLARY 4.10. The velocity fields e, €, f, as well as all linear combinations

of e and €, are stationary solutions of the Euler equation on M?> = TyP%. They are
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also the stationary solutions of the corresponding Navier-Stokes equation on M for

the vorticity field w = curl v:

aa_(‘: + {curl_l w, wh=—n-curl curlw+ R,

where R (the curl of the external force) is proportional to w.
ProoF. {e,curl™ e} = {&,curl™ &} = {f,curl ™' f} = 0. O

The symmetry of this corollary and of the formulas of Proposition 4.9 under the
interchange of ¢ and € is not surprising, since the flow of the field f = 9/0¢ is an
isometry of V3 = Ty A%, and it takes the field e to the field ¢ for the time 7/2.

PROPOSITION 4.11. Every steady solution wy = Ae + Bé of the Euler equation

for vorticity 1s unstable in the linear approzimation.

PROOF. The linearized Navier-Stokes equation (cf. the linearized Euler equation

(I1.5.1)) for variations of velocity v = vy + vy and vorticity w = wg + wy is

0
% + {vo, w1} + {v1,wo} = —npeurl curl wy.
For the initial vorticity wy = Ae + Bé we have vy = —\ wyp, and hence
&ul
(4.5) o {wp,v1 + Awy } — peurl curl wy,

where vy = curl~'w;. Consider the three-dimensional space of special (“long-wave”)

perturbations
wy =aec+bé+cf, vlz—/\ae—/\be~+§f.

The operator on the right-hand side of formula (4.5) maps this space (with the

basis e, €, f) into itself, and it is represented by the matrix

_77//\2 0 B‘f 1
0 —n/\? —A¢ |, where & =\ + T
0 0 —nA?

Therefore, for nonzero viscosity 1 the eigenvalues are negative, and the correspond-
ing modes decay. However, for n = 0 one has linear growth of the perturbations (in

the direction perpendicular to wy in the plane (e, €)).

REMARK 4.12. It is natural to conjecture that our linearized equation for n =0
has exponentially growing solutions, and even an infinite-dimensional space of those

(it has not been proved). Indeed, at least for fast-oscillating solutions, one may
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neglect the second term {vy,wp} and take into account only the first one {vg,w; },
since for such solutions v; = curl™!w; is small compared to w;. Then one obtains
the equation of a frozen transported field, and it has exponentially growing solutions
(directions h~ or bt for wy = —e or wy = e, respectively).

One can also argue that for small positive . Equation (4.5) has many exponen-

tially growing solutions.

In a similar way one can study the stationary solution wy = f, vg = f/A. In this
case the first term on the right-hand side of Equation (4.5) has the form {wq,v; —

w1 /A}. The matrix of the evolution operator for the “long-wave” perturbations is

—n/\? 3 0
—& /30
0 0 —nA?

Therefore, the eigenvalues in this case are always negative for n > 0, while for
n = 0 the eigenvalues are purely imaginary, +:£, and 0. The “fluid motion” on M

corresponding to the field f is “rigid” (i.e., an isometry) and apparently stable.

As usual, the problem simplifies as we pass to the dynamo equations, where the
magnetic field is not related to the velocity. Consider, for instance, the velocity
field v = Ae + Bé 4+ C'f, where A, B, C are constants. The three-dimensional
space of “long-wave” magnetic fields B = ae + b€ + ¢f is invariant with respect to
stretching by the flow of v, as well as with respect to “diffusion.” The evolution of

a “long-wave” field is given by the matrix

—n /A2 C —B
-C  —np/N A
-B A —nA\?

Let us confine ourselves to the case B = C' = 0, where the particles are stretched by
the geodesic flow. In this case one readily evaluates the eigenvalues of the matrix

and obtains the following

COROLLARY 4.13. For sufficiently small magnetic diffusion (n < |A|), the ge-
odesic flow 15 a fast dynamo. The growing mode 1s a linear combination of the
horocyclic flows (or of the flows € and f). The growth rate (i.e., the increment of
the growing mode) depends continuously on the magnetic viscosity n and tends to

|A| as n — 0.

The velocity field € (corresponding to A = C' = 0) shares the analogous dynamo

properties.
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Hypothetically, the number of exponentially growing modes in these cases in-

creases without bound as the magnetic viscosity n tends to 0. On the other hand,

for the “rigid” field f (i.e., for A = B = 0) one has the matrix

(T/CAZ —776;V> ’

which indicates the absence of growth of the “long-wave” fields. Furthermore, for
nonzero magnetic viscosity 1 the fields decay, since the matrix eigenvalues have

negative real parts.

4.E. Energy balance and singularities of the Euler equation.
PROPOSITION 4.14. If a vector field wy 18 a solution of the following equation,
(4.6) {curl_1 wo,wo } = const - wy,
then the constant is zero.

ProOF. We look for solutions of the Helmholtz equation w = —{v,w}, v =
curl ™' w in the form w(t) = a(t)wo, where wy satisfies the relation above, and a(t)
depends on t only. Then substitution gives the following equation in a : a =
—a? - const. All nontrivial solutions of the latter equation go to infinity at finite
time if the constant is nonzero. The unbounded growth of w contradicts the energy

conservation law E = 0 for kinetic energy E = % Jv? . 4

Among the “long-wave” vector fields on M = T} P? studied above, only the fields
wp = ae + bé (which commute with curl™'wy) satisfy Equation (4.6). Indeed, for

wo = ae + bé 4 cf one gets from the commutation relations discussed
{eurl ' wy,wo} = acké — bete,

where £ = A+ 1/A. There is no f on the right-hand side, which implies that ¢ = 0.

§5. Dynamo exponents in terms of topological entropy

5.A. Topological entropy of dynamical systems. We have seen in Section
1.B that the exponential growth of the L?*-magnetic energy (and more generally, of
the Li-energy for ¢ > 1) can be easily achieved in a nondissipative dynamo model
whose velocity field has a hyperbolic stagnation point or a hyperbolic limit cycle.
However, the class of nondissipative dynamos providing the exponential growth of
the Ll-energy of a magnetic field is much more subtle. To specify this class, as
well as to formulate the conditions for realistic (dissipative) dynamos, we need the

notion of entropy of a flow or of a diffeomorphism.
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DEFINITION 5.1. Let dist be the metric on a compact metric space M, and let
g : M — M be a continuous map. For each n = 0,1,2,..., define a new metric
dist, , on X by
disty n(2,y) = _Inax ndist(gix,giy).

t=0,1,...,

A set is said to be (n,e€)-spanning if in the dist, ,-metric, the e-balls centered at
the points of the set cover the space M. Let N(n,e, ¢g) be the cardinality of the
minimal (n, €)-spanning set. Then the topological entropy of the map g is defined
by

htop(g) = lim lim sup 1 InN(n,e, g).

=0 psoo N

The topological entropy hiop(v) of @ vector field v is the topological entropy of the

time 1 map of its flow.

One can give such a definition for an arbitrary compact topological space by
replacing e-balls with an open covering and maximizing over all coverings, see, e.g.,
[K-Y].

To visualize this notion, think of the trajectories of two points x and y as being
indistinguishableif the images ¢*(z) and ¢g*(y) are e-close for each ¢ = 0,...,n. Then
N(n,e,¢) measures the number of trajectories of length n for the diffeomorphism
g that are pairwise distinguishable for given e. Intuitively, positivity of entropy

indicates that this number grows exponentially with n.
5.B. Bounds for the exponents in nondissipative dynamo models.

THEOREM 5.2 [Koz2, K-Y]. Let v be a divergence-free C*>-vector field on a
compact Riemannian three-dimensional manifold M, and p the Riemannian volume
form on M. Assume that a magnetic field By 1s transported by the flow ¢! of the
field v : B(t) := g%, By. Then for every continuous field By on M the increment
of the L' -growth rate is majorated by the topological entropy hiop(v) of the field v:

. 1
hmsup; ln/M |B(t)]| 1t < htop(v).

t—o0

Moreover, the increment 18 exactly equal to the topological entropy for any generic
magnetic field By (i.e., for a field from an open and dense subset in the space of
vector fields).

The formulation of Theorem 5.2 allows one to regard it as a naive definition of
topological entropy: Choose a vector field, act on it by the flow, and estimate the
corresponding rate of change of the L'-energy. To be sure that the chosen field By

is “generic,” one can start with a pair of vector fields By and Bj that along with
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the field v form a basis in (almost) every tangent space of M. Then hop(v) is equal

to the biggest rate of L!-energy growth of these two vector fields under iterations:

— 00

1
hiop(v) = max{As, Az}, where A; = limsup ;ln/ | B:(t)|| g
t M

Furthermore, the topological entropy of a smooth map ¢ : M — M is equal to
the maximum of the L!-growth rate under iterations of g of a generic differential
form. More precisely,

Proplv) = lim ~1n [ Dg™ | 1,

n— 00

where Dg"* is a mapping between the full exterior algebras of the tangent spaces
to M, and we integrate with respect to the Lebesgue measure p. The measure p
is not supposed to be invariant under ¢. If ¢ is measure-preserving, then the same
statement holds for k-vector fields; see [Koz2]. The topological entropy also gives a
lower bound for the growth of the magnetic field in any L?-norm (¢ > dim(M)—2),
even in the case of finite smoothness of the diffeomorphism; see [K-Y].

Theorem 5.2 provides a necessary and sufficient condition for the existence of the
exponential growth in a nondissipative L'-dynamo. In order to be a dynamo, the
velocity field v has to have nonzero entropy, i.e., roughly speaking, to admit some
chaos. Positive topological entropy is often related to the presence of horseshoes,
and they essentially exhaust all the entropy for two-dimensional systems ([Kat2],
see the discussion in [K-Y]). For other Lf-norms (¢ > 1), the topological entropy
gives a lower bound for the growth rate of an appropriate magnetic field [Koz2,
K-Y].

The spectrum of the nondissipative kinematic dynamo operator for a continuous

velocity field on a compact Riemannian manifold without boundary is described in

[CLMS] (see also [LL]).

5.C. Upper bounds for dissipative L'-dynamos. Klapper and Young [K-Y]
proved that the same necessary condition is valid for dissipative (realistic) dynamos:
If the topological entropy of the field vanishes (h¢op(v) = 0), then the field v cannot
be a fast dynamo (in other words, the increment A(7) goes to zero as the magnetic
diffusivity 7 tends to zero). Such a bound was proposed by Finn and Ott in 1988,
and the proof was announced in 1992 by M.M. Vishik. The result and proof in
[K-Y] is given in the more general form of finite smoothness of the magnetic and

velocity fields:

THEOREM 5.3 [K-Y]. Let v and By be divergence-free vector fields supported on
a compact domain M C R™. Assume that v is of class C*T1 and By is of class C*
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for some k > 2. Let B,(t) be the solution of the dynamo equation (1.1) with the
inttial condition By (0) = By. Then

Y

1
lim sup lim sup — ln/ | By(n)|| 1t < hiop(v) + @
n—0 n—oo N M k

where g := gl is the time 1 map of the flow defined by the field v, B,(n) is the value
of B,(t) at the moments t = n, and

(o) =t (e 20 o).

n—oo N rEM 8:1;

(Here ag’:) is the Jacobian matriz of the map g™.) This upper bound is also valid

for the vanishing magnetic diffusivity n = 0.
In the case of an idealized nondissipative dynamo n = 0 and a smooth vector

field v (k = oo0) this theorem reduces to Theorem 5.2.

A variety of questions related to the kinematic dynamo are discussed in the
recent book [ChG], which deals particularly with the fast dynamo problem, as well
as in the books and surveys [Mof3, K-R, R-S, Chi2, ZRS, Z-R].



