CHAPTER IV

DIFFERENTIAL GEOMETRY OF
DIFFEOMORPHISM GROUPS

In 1963 E.N. Lorenz stated that a two-week forecast would be the theoretical
bound for predicting the future state of the atmosphere using large-scale numerical
models [Lor]. Modern meteorology has currently reached a good correlation of
the observed versus predicted for roughly seven days in the northern hemisphere,
whereas this period is shortened by half in the southern hemisphere and by two-
thirds in the tropics for the same level of correlation [Kri]. These differences are
due to a very simple factor: the available data density.

The mathematical reason for the differences and for the overall long-term unre-
liability of weather forecasts is the exponential scattering of ideal fluid (or atmo-
spheric) flows with close initial conditions, which in turn is related to the negative
curvatures of the corresponding groups of diffeomorphisms as Riemannian mani-
folds. We will see that the configuration space of an ideal incompressible fluid is
highly “nonflat” and has very peculiar “interior” and “exterior” differential geom-
etry.

“Interior” (or “intrinsic”) characteristics of a Riemannian manifold are those
persisting under any isometry of the manifold. For instance, one can bend (i.e.,
map isometrically) a sheet of paper into a cone or a cylinder but never (without
stretching or cutting) into a piece of a sphere. The invariant that distinguishes
Riemannian metrics is called Riemannian curvature. The Riemannian curvature of
a plane is zero, and the curvature of a sphere of radius R is equal to R™2. If one
Riemannian manifold can be isometrically mapped to another, then the Riemannian
curvature at corresponding points is the same.

The Riemannian curvature of a manifold has a profound impact on the behavior
of geodesics on it. If the Riemannian curvature of a manifold is positive (as for
a sphere or for an ellipsoid), then nearby geodesics oscillate about one another
in most cases, and if the curvature is negative (as on the surface of a one-sheet

hyperboloid), geodesics rapidly diverge from one another.
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208 IV. DIFFERENTIAL GEOMETRY OF DIFFEOMORPHISM GROUPS

It turns out that diffeomorphism groups equipped with a one-sided invariant
metric look very much like negatively curved manifolds. In Lagrangian mechanics a
motion of a natural mechanical system is a geodesic line on a manifold-configuration
space in the metric given by the difference of kinetic and potential energy. In the
case at hand the geodesics are motions of an ideal fluid. Therefore, calculation of
the curvature of the diffeomorphism group provides a great deal of information on
instability of ideal fluid flows.

In this chapter we discuss in detail curvatures and metric properties of the groups
of volume-preserving and symplectic diffeomorphisms, and present the applications

of the curvature calculations to reliability estimates for weather forecasts.

§1. The Lobachevsky plane and preliminaries in differential geometry

1.A. The Lobachevsky plane of affine transformations. We start with an
oversimplified model for a diffeomorphism group: the (two-dimensional) group G of
all affine transformations @ — a + bx of a real line (or, more generally, consider the
(n 4 1)-dimensional group G of all dilations and translations of the n-dimensional
space R": x,a € R", b € Ry).

Regard elements of the group G as pairs (a, b) with positive b or as points of the
upper half-plane (half-space, respectively). The composition of affine transforma-

tions of the line defines the group multiplication of the corresponding pairs:

(az, ba) o (a1, b1) = (az + arbg, bybs).

To define a one-sided (say, left) invariant metric on G (and the corresponding Euler
equation of the geodesic flow on G; see Chapter I), one needs to specify a quadratic
form on the tangent space of G at the identity.

Fix the quadratic form da®+db* on the tangent space to G at the identity (a, b) =
(0,1). Extend it to the tangent spaces at other points of G by left translations.

PROPOSITION 1.1. The left-invariant metric on G obtained by the procedure
above has the form
_da® 4 db?

2
ds 72

0 b
Hence, the quadratic form da* 4+ db* on the tangent space Ty 1)G at the identity is

PROOF. The left shift by an element (a, b) on G has the Jacobian matrix ( b 0) .
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the pullback of the quadratic form (da® + db*)/b* on T, ;)G at the point (a,b).
0

Note that starting with any positive definite quadratic form, one obtains an

isometric manifold (up to a scalar factor in the metric).

DEFINITION 1.2. The Riemannian manifold G equipped with the metric ds? =
(da* + db*)/b* is called the Lobachevsky plane A? (respectively, the Lobachevsky
space A"t for x,a € R™).

PROPOSITION 1.3. Geodesic lines (i.e., extremals of the length functional) are
the vertical half lines (a = const,b > 0) and the semicircles orthogonal to the a-axis

(or a-hyperplane, respectively).

Here vertical half lines can be viewed as semicircles of infinite radius; see Fig.46.

b{;

T O
FIGURE 46. The Lobachevsky plane A? and geodesics on it.

PRrROOF. Reflection of A? in a vertical line or in a circle centered at the a-axis is

an isometry. O

Note that two geodesics on A? with close initial conditions diverge exponentially
from each other (in the Lobachevsky metric). On a path only few units long, a
deviation in initial conditions grows 100 times larger. The reason for practical
indeterminacy of geodesics is the negative curvature of the Lobachevsky plane (it
is constant and equal to —1 in the metric above). The curvature of the sphere of
radius R is equal to R~%. The Lobachevsky plane might be regarded as a sphere
of imaginary radius R = /—1.

PROBLEM 1.4 (B.Ya. Zeldovich). Prove that medians of every geodesic triangle
in the Lobachevsky plane meet at one point. (Hint: Prove it for the sphere; then
regard the Lobachevsky plane as the analytic continuation of the sphere to the

imaginary values of the radius.)
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1.B. Curvature and parallel translation. This section recalls some basic no-

tions of differential geometry necessary in the sequel. For more extended treatment

see [Mil3, Arn16, DFN].

Let M be a Riemannian manifold (one can keep in mind the Euclidean space R",
the sphere S™, or the Lobachevsky space A™ of the previous section as an example);
let € M be a point of M, and £ € T, M a vector tangent to M at z.

Denote by any of {v(x,£,t)} = {v(£,t)} = {v(t)} = ~ the geodesic line on M,
with the initial velocity vector £ = 4(0) at the point © = v(0). (Geodesic lines
can be defined as extremals of the action functional: § [4?dt = 0. It is called the
“principle of least action.”)

Parallel translation along a geodesic segment is a special isometry mapping the
tangent space at the initial point onto the tangent space at the final point, depend-

ing smoothly on the geodesic segment, and obeying the following properties.

(1) Translation along two consecutive segments coincides with translation along
the first segment composed with translation along the second.

(2) Parallel translation along a segment of length zero is the identity map.

(3) The unit tangent vector of the geodesic line at the initial point is taken to

the unit tangent vector of the geodesic at the final point.

EXAMPLE 1.5. The usual parallel translation in Euclidean space satisfies the
properties (1)—(3).

The isometry property, along with the property (3), implies that the angle formed
by the transported vector with the geodesic is preserved under translation. This
observation alone determines parallel translation in the two-dimensional case, i.e.,

on surfaces, see Fig.47.

FIGURE 47. Parallel translation along a geodesic line ~.

In the higher-dimensional case, parallel translation is not determined uniquely
by the condition of preserving the angle: One has to specify the plane containing

the transported vector.
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DEFINITION 1.6. (Riemannian) parallel translation along a geodesic is a family
of isometries obeying properties (1)—(3) above, and for which the translation of a
vector n along a short segment of length ¢ remains tangent (modulo O(#?)-small
correction as t — 0) to the following two-dimensional surface. This surface is formed
by the geodesics issuing from the initial point of the segment with the velocities

spanned by the vector n and by the velocity of the initial geodesic.

REMARK 1.7. A physical description of parallel translation on a Riemannian
manifold can be given using the adiabatic (slow) transportation of a pendulum
along a path on the manifold (Radon, see [Kl]). The plane of oscillations is parallelly
translated.

A similar phenomenon in optics is called the inertia of the polarization plane
along a curved ray (see [Ryt, V1d]). It is also related to the additional rotation of a
gyroscope transported along a closed path on the surface (or in the oceans) of the
Earth, proportional to the swept area [Ish]. A modern version of these relations
between adiabatic processes and connections explains, among other things, the
Aharonov-Bohm effect in quantum mechanics. This version is also called the Berry

phase (see [Berr, Arn23]).

DEFINITION 1.8. The covariant derivative V¢n of a tangent vector field 1 in a
direction £ € T, M is the rate of change of the vector of the field 7 that is parallel-
transported to the point x € M along the geodesic line v having at this point the

velocity € (the vector observed at x at time ¢ must be transported from the point
Y1)
Note that the vector field ¥ along a geodesic line v obeys the equation V434 = 0.

REMARK 1.9. For calculations of parallel translations in the sequel we need the

following explicit formulas. Let v(x,&,t) be a geodesic line in a manifold M, and

let Py : TyoyM — Ty M be the map that sends any n € T, 0)M to the vector
1d
(1.1) Peoyn = P lr=0 Y(2,§ +n7,t) € Ty M.

The mapping P, ;) approximates parallel translation along the curve v in the fol-
lowing sense. The covariant derwative Ven of the field 1 in the direction of the

vector £ € T, M is equal to
d

(1.2) Ven = — =0 Prgyn(1(€,1)) € T M.

REMARK 1.10. The following properties uniquely determine the covariant de-
rivative on a Riemannian manifold and can be taken as its axiomatic definition
(see, e.g., [Mil3, K-NJ):

1) V¢v is a bilinear function of the vector ¢ and the field v;
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2) Vefv = (Lef)v + f(Vev), where f is a smooth function and L¢f is the
derivative of f in the direction of the vector ¢ in T, M;
3) Le(v,w) = (Vev,w(x)) + (v(x), Vew); and
4) V) — Vi(a)yv = {v,w}i(z).
Here (, ) is the inner product defined by the Riemannian metric on M, and {v,w}
is the Poisson bracket of two vector fields v and w. In local coordinates (x1,..., )
on M the Poisson bracket is given by the formula

o “ ‘aw]‘ . ‘81)]4
{v,w}; = Z (vl oz, wlaxl) :

=1

Parallel translation along any curve is defined as the limit of parallel translations
along broken geodesic lines approximating this curve. The increment of a vector
after the translation along the boundary of a small region on a smooth surface is

(in the first approximation) proportional to the area of the region.

DEFINITION 1.11. The (Riemannian) curvature tensor € describes the infini-
tesimal transformation in a tangent space obtained by parallel translation around
an infinitely small parallelogram. Given vectors £,n € T, M, consider a curvilinear
parallelogram on M “spanned” by ¢ and 5. The main (bilinear in &, ) part of the
increment of any vector in the tangent space T, M after parallel translation around
this parallelogram is given by a linear operator Q(¢,n) : TyM — T, M. The action
of Q(&,n) on a vector ( € T, M can be expressed in terms of covariant differentiation

as follows:

(13) Q(faﬁ)f = (_vévﬁg—l_vﬁvég—l_v{é,ﬁ}gﬂl’:l’ov

where £, 7, are any vector fields whose values at the point z are ¢,7, and (. The
value of the right-hand side does not depend on the extensions £, 7, ¢ of the vectors
£,n, and (.

The sectional curvature of M in the direction of the 2-plane spanned by two
orthogonal unit vectors £, € T, M in the tangent space to M at the point z is the

value

For a pair of arbitrary (not necessarily orthonormal) vectors the sectional cur-

vature Cy, is

(& n)En)
<‘€7 ‘€><777 77> - <‘€7 77>2 ‘

(1.5) Cey =
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EXAMPLE 1.12. The sectional curvature at every point of the Lobachevsky plane
(Section 1) is equal to —1. (Hint: use the explicit description of the geodesics in

the plane. See also Section 2 for general formulas for sectional curvatures on Lie

groups.)

DEFINITIONS 1.13. The normalized Ricci curvature (at a point ) in the direc-
tion of a unit vector £ is the average of the sectional curvatures of all tangential
2-planes containing £. It is equal to r(£)/(n — 1), where the Ricci curvature r(§)
is the value r(§) = > Cee, = D (&, €;)€, €;), calculated in any orthonormal basis

(3 (3
€1,...,€y of the tangent space T, M.
The normalized scalar curvature at a point x is the average of all sectional cur-

vatures at the point. It is equal to p/n(n —1), the scalar curvature p being the sum

P = r(ei) +o r(en) =2 E Ceiej (Seev c.g., [M114])
1<y

1.C. Behavior of geodesics on curved manifolds. From the definition of

curvature one easily deduces the following

PROPOSITION 1.14. The distance y(t) between two infinitely close geodesics on

a surface satisfies the differential equation
(1.6) y+ Cy=0,

where C = C(t) is the Riemannian curvature of the surface along the geodesic.

In order to describe in general how the curvature tensor affects the behavior
of geodesics, we look at a variation v,(f) of a geodesic v = (). For each «
sufficiently close to 0, the curve =, is a geodesic whose initial condition is close to

that of 7. The field £(t) = 4& |4=0 Va(t) (defined along 7) is called the vector field

of geodesic variation.

LEMMA—DEFINITION 1.15. The wector field of geodesic wvariation satisfies the

second-order linear differential equation, called the Jacobi equation,
(17) V€4 Q3,64 = 0.

PROOF. Define the vector field of geodesic variation £(¢, «) for all geodesics of
the family v, (t) (with small «) as the derivative (¢, a) = % Ya(t). Then the fields
¢ and 4 commute ({£,4} = 0) as partial derivatives of the map (t,a) — vq(t).
Using the properties of covariant differentiation listed above and the definition of

the curvature tensor, we get

Vi€ = V5 Vil = Vi Ved = —Q(3, 6.
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4

Assume for a moment that the curvature is positive in all two-dimensional direc-
tions containing the velocity vector of the geodesic. A closer analysis of the Jacobi
equation (or its analogy with the standard pendulum; see Proposition 1.14) shows
that the normal component of the vector field of geodesic variation oscillates with
t. This means that geodesics with close initial velocities on a manifold of positive
curvature oscillate around each other (or locally converge); see Fig.48a. On the
other hand, negativity in sectional curvatures prompts analogy with the upside-
down pendulum and implies the exponential divergence of nearby geodesics from

the given one; see Fig.48b.

€ (b)

FIGURE 48. Geodesics on manifolds of (a) positive and (b) negative

curvature.

REMARK 1.16. For numerical estimates of the instability, it is useful to define
the characteristic path length as the average path length on which small errors in the
initial conditions are increased by the factor of e. If the curvature of our manifold
in all two-dimensional directions is bounded away from zero by the number —b?,
then the characteristic path length is not greater than 1/b (cf. Proposition 1.14).
In view of the exponential character of the growth of error, the course of a geodesic

line on a manifold of negative curvature is practically impossible to predict.

1.D. Relation of the covariant and Lie derivatives. Every vector field on
a Riemannian manifold defines a differential 1-form: the pointwise inner product
with vectors of the field. For a vector field v we denote by v” the 1-form whose
value on a tangent vector at a point x is the inner product of the tangent vector
with the vector v(z).

Every vector field also defines a flow, which transports differential forms. For

instance, one might transport the 1-form corresponding to some vector field by
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means of the flow of this field and get a new differential 1-form. Infinitesimally
this transport is described by the Lie derivative of the 1-form (corresponding to the
field) along the field itself, and the result is again a 1-form. This natural derivative
of a 1-form is related to the covariant derivative of the corresponding vector field

along itself by the following remarkable formula.

THEOREM 1.17. The Lie derivative of the one-form corresponding to a vector
field on a Riemannian manifold differs from the one-form corresponding to the

covariant derivative of the field along itself by a complete differential:
1
(1.8) L(v") = (V) + 5d(v.v).

Here (v,v) is the function on the manifold equal at each point x to the Riemannian

square of the vector v(x).
Note that this statement does not require the vector field to be divergence free.

PROOF. Let w be a vector field commuting with the field v (i.e., {v,w} = 0).

First, since parallel translation is an isometry,
(1.9) Ly(b,c) = (Vybye) 4+ (b, V),

for any vector fields a, b, and ¢. Applying this to the fields a = w, b= c¢ = v, gives
Ly(v,v) = (Vyv,0) + (v, Vo). From this we find that

1
(1.10) (Vypv,v) = §(d<v,v>)(w).
Applying the isometry property (1.9) once more to a = ¢ =wv, b= w, we get
(1.11) Ly (w,v) = (Vyw,v) + (w, V,0).

On the other hand, for commuting fields v and w, property 4) of Remark 1.10

implies
(1.12) (Vyw,v) = (Vyv,0).
Substituting this into (1.11) we obtain that

Ly(w,v) = (Vyv,v) + (w,V,v).
Using (1.10), we rewrite the above in the form

(1.13) Lo(w,0) = (Vov, ) + %(d<v,v>)(w).
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Next, we use the identity
(1.14) Le(v’(w)) = (Le(v"))(w) + 0" (Lew),

which expresses the naturalness of the Lie derivative: The flow of £ transports the
1-form v*, the vector w, and the value of the 1-form on this vector. (This is the
reason why vector fields are transported in the opposite direction in the definition

of the Lie derivative.)
Applying (1.14) to £ = v, we obtain

(1.15) Ly(v"(w)) = (Lo(v"))(w),

since Lyw = —{v,w} = 0. (Here we use the commutativity of v and w for the
second time.)

Note that by the definition of the map v — v” one has
Ly(v"(w)) = Ly (v, w).

Combining this with (1.15) and (1.13), we find that for any vector of a field w

commuting with the field v,

(1.16) (Lo(0")) = (Vor) () 4 50, o)) (),

At every point x where the vector field v is nonzero, it is easy to construct a
field w commuting with v and having at this point any value. Hence the identity

(1.16) implies
Lu(") = (Vo) + d(o,0),

which proves the theorem.
At the singular points v(x) = 0 there is nothing to prove, since both sides of the

relation (1.8) are equal to zero. O

REMARK 1.18. One can take an arbitrary field w instead of the one commuting
with v, and then the formulas are slightly longer. Two commutator terms have to be
introduced at the two places where commutativity was used: The additional term
({w,v},v) on the right-hand side of (1.12) cancels with the extra term (v, —{v,w})
on the right-hand side of (1.15).

This theorem explains the form of the Euler equation of an incompressible fluid

on an arbitrary Riemannian manifold M presented in Sections 1.5 and 1.7:
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COROLLARY 1.19. The Euler equation

v
—=—-V,o -V
ot cTp
on the Lie algebra g = S Vect(M) of divergence-free vector fields is mapped by the

inertia operator A : g — g* to the Euler equation

Iu]

(1.17) —

= —Ly[u]
on the dual space g* = QY(M)/dQ° (M) of this algebra. Here the field v and the
1-form u are related by means of the Riemannian metric: u = v°, and [u] € Q' /dQ°

18 the coset of the form u.

PROOF. The inertia operator A : S Vect(M) — Q' /dQ° sends a divergence-free
field v to the 1-form u = v considered up to the differential of a function. By
the above theorem, it also sends the covariant derivative V,v to the Lie derivative
L,u modulo the differential of another function. Hence the Euler equation for the
1-form u assumes the form

ou

i —Lyu — df,
with the function f = p — £(v,v). It is equivalent to Equation (1.17) for the coset
[u]. O

§2. Sectional curvatures of Lie groups

equipped with a one-sided invariant metric

Let G be a Lie group whose left-invariant metric is given by a scalar product
( , ) in the Lie algebra. The sectional curvature of the group G at any point is
determined by the curvature at the identity (since by definition, left translations
map the group to itself isometrically). Hence, it suffices to describe the curvatures

for the two-dimensional planes lying in the Lie algebra g = T.G.

THEOREM 2.1 [Arnd|. The curvature of a Lie group G in the direction deter-
maned by an orthonormal pair of vectors £,n wn the Lie algebra g s given by the

formula

(2.1) Cen = (6,6) + 2(a, §) — 3(a, @) — 4(B¢, By),
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where
20 = B(&,n) +B(n.&),  28=B(&n)— B¢
(2:2) 20 =[€,n].  2B¢=B((.£), 2By, = B(n.n),
and where |, ] 1is the commutator in g, and B is the bilinear operation on g defined

by the relation (B(u,v),w) = (u,[v,w]) (see Chapter I).

REMARK 2.2. In the case of a two-sided invariant metric, the formula for the

curvature has the particularly simple form

(2.3) Cen = 3] E1]).

In particular, in this case the sectional curvatures are nonnegative in all two-

dimensional directions.

REMARK 2.3. The formula for the curvature of a group with a right-invariant
Riemannian metric coincides with the formula in the left-invariant case. In fact, a
right-invariant metric on a group is a left-invariant metric on the group with the
reverse multiplication law (g1 x g2 = ¢2¢91). Passage to the reverse group changes
the signs of both the commutator and the operation B in the algebra. But in
every term of the curvature formula there is a product of two operations changing
the sign. Therefore, the formula for curvature is the same in the right-invariant
case. The right-hand side of the Euler equation changes sign under passage to the
right-invariant case.

The mapping of the group G to itself, sending each element ¢ to the inverse

! is an involution preserving the identity element. It sends any left-

element ¢~
invariant metric on the group to the corresponding right-invariant metric (de-
fined on the Lie algebra by the same quadratic form). Hence the group with the
left-invariant metric is isometric to the same group with the corresponding right-

imvariant metric.

To give the coordinate expression for the curvature, choose an orthonormal basis
€1,...,€, for the left-invariant vector fields. The Lie algebra structure can be

described by an n xn x n array of structure constants «;; where [e;, ;] = > ayjrer,
k

or, equivalently, a;jr = ([e;, €], ex). This array is skew-symmetric in the first two

indices. Then Theorem 2.1 claims the following:
THEOREM 2.1'(SEE [Mild]). The sectional curvature C. ., is given by the for-
mula

1
(2.4) Cere, = Z <§a12k (—an2k + agkr + Oék12)>
k

1
1 (12 — a1 + agk12) (12K + @2k — Gk12) — QR11 k22
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REMARK 2.4. Before proving the theorem we give here an account of notewor-

thy facts about left-invariant metrics on Lie groups that can be formulated in a

coordinate-free way (and some have infinite-dimensional counterparts). We refer to

[Mil4] for all the details.

If ¢ belongs to the center of a Lie algebra, then for every left-invariant
metric, the inequality C¢, > 0 is satisfied for all  (cf. Section VI.1.A on
the Virasoro algebra).

If a connected Lie group G has a left-invariant metric with all sectional
curvatures C' < 0, then it is solvable (example: affine transformations of
the line; see Section 1.A).

If G is unimodular (i.e., the operators ad, are traceless for all u € g), then
any such metric with ¢ < 0 must actually be flat (C = 0) (c¢f. Remark
11.4.14).

Every compact Lie group admits a left invariant (and in fact, a bi-invariant )
metric such that all sectional curvatures satisfy C' > 0 (cf. Remark 2.2
above).

If the Lie algebra of G contains linearly independent vectors £, n, ( satisfy-
ing [£,n] = (, then there exists a left-invariant metric such that the Ricci
curvature () is strictly negative, while the Ricci curvature r(() is strictly
positive. For instance, one can define such a metric on SO(3), the configu-
ration space of a rigid body, such that a certain Ricci curvature is negative!
(Wallach) If the Lie group G is noncommutative, then it possesses a left-
invariant metric of strictly negative scalar curvature.

If G contains a compact noncommutative subgroup, then G admits a left-

invariant metric of strictly positive scalar curvature [Mil4].

PROOF OF THEOREM 2.1. To obtain explicit formulas for sectional curvatures

of the group G we start by expressing the covariant derivative in terms of the

operation B (or of the array a;;i).

LEMMA 2.5. Let £ and n be two left-invariant vector fields on the group G.

Then the vector field Ven 1s also left-invariant and at the point e € G 1s given by

the following formula:

(2.5)

Ven le= (6] = B&n) — B(n.©)),

where on the right-hand side, £ and n are vectors in g = T.G defining the corre-

sponding left-invariant fields on G.
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In coordinates,

(qijk — ki + Qkij )€k

N | —

(2.5") Veei=>»

k

PrROOF OF LEMMA. Parallel transport on a Riemannian manifold preserves the
inner product (a,b). On the other hand, the left-invariant product (a,b) of any
left-invariant fields @ and b is constant. Therefore, for any ¢, the operator V. is

antisymmetric on left-invariant fields:
(Vea,b) + (V.b,a) = 0.

Furthermore, for the covariant derivative on a Riemannian manifold the following

“symmetry” condition holds (see Remark 1.10):
Vea = Ve ={e al.

Recall that on a Lie group, the Poisson bracket { , } of the left-invariant vector

fields @ and ¢ coincides at e € G with the commutator | , |4 in the Lie algebra:

(2.6) {a,¢} |e= [a, c]q.

The Poisson bracket of two right-invariant vector fields has the opposite sign (see
Remark 1.2.13 or [Arnd]).

Combining the above identities, we obtain the formula

(Ven, €) = 5(U16:€) = (In, L&) +{IC, €l m))

easily seen to be equivalent to (2.5). For the orthonormal basis ey, ..., ey, it imme-
diately implies
1
(Veiej,ex) = §(Oéijk — ki + Qi)
This completes the proof of Lemma 2.5. g

Finally, the coordinate expression (2.4) for sectional curvature is a straightfor-

ward consequence of formulas (1.4), (2.5"), and (2.6). Theorem 2.1 is proved. O

REMARK 2.6. Lemma 2.5 is deduced in [Arn4] from the Euler equation £ =
B(&,€) (see Chapter I).

Consider a neighborhood of the point 0 in the Lie algebra g as a chart of a
neighborhood of the unit element e in the group using the exponential map exp :

g — G. It sends #£ to the element exp(t{) of the one-parameter group starting at
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t = 0 from e with initial velocity £. (We leave aside the difficulties of this approach
in the infinite-dimensional case, where the image of the exponential mapping does
not contain the neighborhood of the group unit element.) The exponential mapping
identifies the tangent spaces of the group T,G with the Lie algebra g.

The Euler equation implies that the geodesic line on the group has, in our coor-

dinates, the following expansion in ¢:

2
10,6,) = 1€+ SBEE +O(), t =0,

Then the approximate translation

1d
Pyeon = 5 7- lr=0 Y(0, £+ 7, t) € Typg =g

of a vector n € Tog = g is explicitly given by
1
(2.7) Py =n+ 5(B(&n) + B(n,€)) + O(#).

By definition, the covariant derivative (in the direction £ € g) of the left-invariant

vector field on the group G determined by the vector n € g is

d
(2.8) Ven = = le=o Py-ie,0 Lae,0m-

where on the left-hand side, n stands for the corresponding left-invariant vector
field on G.

Note that for any Lie group G the operator of left translation by group elements
exp a close to the identity (i.e., as |a| — 0) acts on the Lie algebra g (considered as

a chart of the group) as follows:

(2.9) L& =&+ %[a,ﬂ +0(a”).

Indeed, the general case of any Lie group follows from the calculus on matrix groups:
1 2 2
expa-expb=exp|la+b+ 5[@,6] + O(a”) + O(b”)
for any Lie algebra elements a,b — 0. Setting b = £t, t — 0, |a| — 0, we get
1
exp a - exp t = exp {a + (.{ + 5[@,5] + O(a2)> t+ O(tz)} ,

which is equivalent to (2.9).
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Now, substituting into (2.8) the expressions (2.7) for P, and (2.9) for the left

translation L7, we get the following:

Ven = % =0 Pr=1(e,0(n + %[&n] +0(t))
= % |1=0 (77 + %([ﬁ,n] — B(¢,m) — B(n,€)) + O(t2)> ‘
U

Theorem 2.1 can now be proven in the following coordinate-free way (see [Arn4]).

PrROOF OF THEOREM 2.1. Let £,n be left-invariant vector fields on the group
G. Then the fields {£,n}, Ven, and V, £ are left-invariant as well. The formula
(2.5), combined with the notations (2.2), gives the following values of these vector

fields at the identity Id € G:

Vel = —2B, Ven =a — 6,
(2.10) Van = —-2B,, Vi€ =—(a+0).

Now, in order to evaluate the terms in (1.4), we use these expressions along with

the skew symmetry of V to obtain

<_v5v7)‘€777> = <v5777v7)‘€> = —<Oé - 67a + 6>7
(2.11) (VaVelm) = (Vel, Vo) = —4 (Be, By).

Moreover, by virtue of (2.6),

(Viem&n = (Vigmé&sn)
= (e Eon) — 3BUEM. O.m) — 2 (B [e.n).n)
(2.12) = —2(a,a) + 2{a, 7).

Finally, incorporating (2.10-2.12) into the definition (1.3-1.4) of sectional curvature,
we get

057) = —<Oé - 67a+6> _4<B&Bn> - 2<a7a> —|—2<Oé,ﬂ>,

which is equivalent to (2.1). This completes the proof. O
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63. Riemannian geometry of the group of

area-preserving diffeomorphisms of the two-torus

3.A. The curvature tensor for the group of torus diffeomorphisms. The
coordinate-free formulas for the sectional curvature allow one to apply them to the
infinite-dimensional case of groups of diffeomorphisms. The numbers that we obtain
by applying the formula for the curvature of a Lie group to these infinite-dimensional
groups are naturally called the curvatures of the diffeomorphism groups. We de-
scribe in detail the case of area-preserving diffeomorphisms of the two-dimensional
torus and review the results for the two-sphere (the S? case is of special interest
because of its relation to atmospheric flows and weather predictions), for the n-
dimensional torus T" (the T? case is important for stability analysis of the ABC

flows), for a compact two-dimensional surface, and for any flat manifold.

We start with the two-dimensional torus T? equipped with the Euclidean metric:
T? = R?/T, where T is a lattice (a discrete subgroup) in the plane, e.g., the set of
points with integral coordinates.

Consider the Lie algebra of divergence-free vector fields on the torus with a
single-valued stream function (or a single-valued Hamiltonian function, with respect
to the standard symplectic structure on T? given by the area form). The corre-
sponding group SoDiff(T?) consists of area-preserving diffeomorphisms isotopic to

the identity that leave the “center of mass” of the torus fixed.

REMARK 3.1. The subgroup SoDiff(T?) is a totally geodesic submanifold of the
group SDiff(T?) of all area-preserving diffeomorphisms; that is, any geodesic on
SoDiff(T?) is a geodesic in the ambient group. This follows from the momentum
conservation law: If at the initial moment the velocity field of an ideal fluid has
a single-valued stream function, then at all other moments of time the stream
function will also be single-valued. (Note that a similar statement holds in the
more general case of a manifold M with boundary: The two Lie subgroups in
SDiff( M) corresponding to the Lie subalgebras of exact (go) and semiexact (gse)
vector fields (see Remark 1.7.15) form totally geodesic submanifolds in the Lie group
of all volume-preserving diffeomorphisms of M.)

The right-invariant metric on the group SDiff(T?) is defined by the (doubled)
kinetic energy: Its value at the identity of the group on a divergence-free vec-
tor field v € SVect(T?) is (v,v) = [,.(v,v) d*x. We will describe the sectional
curvatures of the group SoDiff(T?) in various two-dimensional directions passing
through the identity of the group. The curvatures of SoDiff(T?) and SDiff(T?) in

these directions are the same, since the submanifold S,Diff(T?) is totally geodesic.
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The divergence-free vector fields that constitute the Lie algebra SoVect(T?) of
the group SoDiff(T?) can be described by their stream (i.e., Hamiltonian) functions
with zero mean (v = —H,0/0x + H,d/dy). Thus in the sequel the set SyVect(T?)
will be identified with the space of real functions on the torus having average value
zero. It is convenient to define such functions by their Fourier coefficients and to
carry out all calculations over C.

We now complexify our Lie algebra, inner product (, ), commutator |, |, and
the operation B in the algebra, as well as the Riemannian connection and curvature
tensor €2, so that all these operations become (multi-)linear in the complex vector
space of the complexified Lie algebra.

To construct a basis of this vector space we let ej (where k, called a wave vector,
is a point of the Euclidean plane) denote the function whose value at a point « of
our plane is equal to ¢'(*%).

This determines a function on the torus if the inner product (k, ) is a multiple
of 27 for all * € T'. All such vectors k belong to a lattice I'* in R?, and the functions
{er | k € T*, k # 0} form a basis of the complexified Lie algebra.

THEOREM 3.2 [Arn4,16]. The explicit formulas for the inner product, commu-

tator, operation B, connection, and curvature of the right-invariant metric on the

group SoDiffiT?) have the following form.:

(3.1a) (ex,e0) =0 for k+0#0
(er,e—i) = k%S,
(3.1b) [er, er] = (k X O)eppr where k x €= kily — kaolq,
2
(3.1C) B(ek,eg) = bk/elﬂ_g where bk,é = (k X 6)(]5%(—76)27
v X u)(u,v
(3.1d) Veper = di kyeerhye where dy » = (v#’
(3.1e) Qi tmn = (Qer,e)em,en) =0if k+L+m+n#0
Qk,é,m,n = (aénakm - aémakn)s Zf E+l+m+n= 07
2
(3.1f) where Aup = M
|u+ v

In these formulas, S is the area of the torus, and u x v the (oriented) area of the
parallelogram spanned by u and v. The parentheses (u,v) denote the Euclidean
scalar product in the plane, and angled brackets denote the scalar product in the

Lie algebra.

We postpone the proof of this theorem, as well as of the corollaries below, until
the next section. The formulas above allow one to calculate the sectional curvature

in any two-dimensional direction.
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ExaMPLE 3.3. Consider the parallel sinusoidal steady fluid flow given by the

stream function £ = cos(k,x) = (ex + e—r)/2. Let n be any other real vector of the
algebra SoVect(T?) (i.e., n = Sape, with 2_p = Z¢).

THEOREM 3.4. The curvature of the group SoDif{(T?) in any two-dimensional

plane containing the direction £ 1s
S 2 2
(3:2) Cen=—7 Y ddwee+ weparl,
4

and therefore nonpositive.

COROLLARY 3.5. The curvature is equal to zero only for those two-dimensional
planes that consist of parallel flows in the same direction as &, such that [€,n] = 0.

COROLLARY 3.6. The curvature in the plane defined by the stream functions
£ = cos(k,x) and n = cos(l,z) is

(3.3) Cey = —(k* + (*)sin® a - sin® 3/48,

where S 1s the area of the torus, o s the angle between k and {, and 3 s the angle

between k+ ¢ and k — ¢.

COROLLARY 3.7. The curvature of the area-preserving diffeomorphism group of

the torus {(x,y) mod 27} in the two-dimensional directions spanned by the velocity

fields (siny,0) and (0,sinz) is equal to C = —1/(87?).

REMARK 3.8. These calculations show that in many directions the sectional
curvature is negative, but in a few it is positive. The stability of the geodesic
is determined by the curvatures in the directions of all possible two-dimensional
planes passing through the velocity vector of the geodesic at each of its points (the
Jacobi equation).

Any fluid flow on the torus is a geodesic of our group. However, calculations
simplify noticeably for a stationary flow. In this case the geodesic is a one-parameter
subgroup of our group. Then the curvatures in the directions of all planes passing
through velocity vectors of the geodesic at all of its points are equal to the curvatures
in the corresponding planes going through the velocity vector of this geodesic at
the initial moment of time. To prove it, (right-) translate the plane to the identity
element of the group. Thus, stability of a stationary flow depends only on the
curvatures in those two-dimensional planes in the Lie algebra that contain the
velocity field of the steady flow.
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3.B. Curvature calculations.

PROOF OF THEOREM 3.2. Formula (3.1a) is an immediate consequence of the
definition. Statement (3.1b) follows from the version of (2.6) for right-invariant
fields: {a,c} |¢= —[a,c]g. Moreover, combining (3.1b) with the definition of B, we

come to the relation

(3.4) (Blek,er),em) = (€ X m)(€rpm,€k)-

Further, application of (3.1a) shows that B(e,, e¢) is orthogonal to e, for k+{(+m #
0. Thus, B(ek,er) = by rep+e. Expression (3.1c) follows from (3.1a) and (3.4) for
m=—k— (.

Now, formulas (3.1b,c) along with expression (2.5) for the covariant derivative

imply that .
1 k= —1
Vek ey — 5(;{? X 6) (1 — m) Ck4¢-

This implies (3.1d) after the evident simplification

1( k2—£2>_w

2 (k02

(k+10)?

In order to find the curvature tensor (1.3), we first compute from (3.1d)

vek veg Em = dé—l—m,k—l—é—l—mdm,é—l—mek—l—é—l—ma

v[ek,ez]em = (k X g)dm,k—l—é—l—mek—l—é—l—m-
Along with (3.1a) this implies that Qf ¢, =0 for k 4+ ¢+ m +n # 0, and
Qk,é,m,n = (dk—l—m,ndn,k—l—n - dé—l—m,ndm,é—i—n + (k X g)dm,n)nzs

for k + ¢+ m 4 n = 0 (note that d, , is symmetric in v and v due to (3.1d)). We
leave to the reader the reduction of this identity to the form (3.1e). g

expte_g

PROOF OF THEOREM 3.4. To derive formula (3.2), we substitute { = ==

and 7 = > x¢es into
4

1
=1 g (it ke, —2k—0T 0T —2k—p + Qb 0, —k 2k—0T(T2k—¢
¢

+ Qb — b —1xe g+ Qp ok —eT T ).

1y vy
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Taking into account the relations (3.1e-f) of Theorem 3.2, one obtains the coef-

ficients of this quadratic form:

2
Qo k,—2k—0 = Qg 0k, —0 = —aj ¢S

2
Qe o, —k,—0 =k 0~k 26— = —ag, _S.

Then the form C¢, for the orthonormal vectors £ and 7 becomes

S
(UEmEm) = = > lai f(wer—sk—e + xex—o) + af _p(viwap_r + x|
a

S
2
=77 g GH(SL‘M—zk—e + 2T+ TopokTop + TopokT_r—2k ),
¢

where the last identity is due to af , = a? ,_,, (see (3.1f)). Finally, from the

reality condition x_; = z;, we get

S 9 _ _ _ _
Cey = 1 Z GH(SL‘MH% + @0T0 + TogorTe + Top2kTotok),
¢

which is equivalent to (3.2). O

Proor or COROLLARY 3.6. By definition the sectional curvature in the plane

spanned by a pair of orthogonal vectors £ and 7 is

(A& m)Em)
Con= e et

For our choice of ¢ and n we have (£,&) = k2S/2, (n,n) =1?S/2, and 2y = x_¢ = 3.
Therefore, by virtue of Theorem 3.4 and (3.1f), one obtains

S
<Q(‘€7 77)57 77> = _g(ai,é + ai,—f)‘

Moreover, the explicit expression (3.1f) gives the identity

1 1
2 2 4
apo+ap o= (k<) ( + > )
R
with hy := k £ (. This, in turn, can be written as

2 2 (k x 0)*(hy x h_)* 2
Ay o+ A _p = (k= + (%),
2h% h%

where we made use of the evident relations hﬁ_ + h? = 2(k2 + 62) and hy X h_ =
—2(k x (). Putting all the above together and substituting (k x )? = k%(? sin® «,
(hg x h_)? = h3 RhZ sin’ 3, we obtain formula (3.3) of the corollary. O
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§4. Diffeomorphism groups and unreliable forecasts

4.A. Curvatures of various diffeomorphism groups. For an arbitrary com-
pact n-dimensional closed Riemannian manifold M, the curvatures of the diffeo-
morphism group SoDiff(M) were calculated by Lukatsky [Luk5] (see also [Smo2]).
We refer to [Luk3] for computations of the curvature tensor for the diffeomorphism
group of any compact two-dimensional surface (the case of the two-dimensional
sphere S? important for meteorological applications, can be found in [Lukl, Yo])
and to [Luk4] for those of a locally flat manifold (the case of the flat n-dimensional
torus was treated in [Luk2]; see also explicit formulas for 7% in [KNH]).

Riemannian geometry and curvatures of the semidirect product groups, relevant
for ideal magnetohydrodynamics, are considered in [Ono]. In [Mis3] the curvatures
of the group of all diffeomorphisms of a circle are discussed. The latter group,
as well as its extension called the Virasoro group, is the configuration space of
the Korteweg—de Vries equation; see Section VI.1.A. The geometry of bi-invariant
metrics and geodesics on the symplectomorphism groups was studied in [Don).

Another way of investigating the Riemannian geometry of the group of volume-
preserving diffeomorphisms is to embed it as a submanifold in the group of all
diffeomorphisms of the manifold and then to study the exterior geometry of the
corresponding submanifold (see Section 5 below).

Keeping in mind applications to weather forecasting, we look first at the group
SDiff(S?) of diffeomorphisms preserving the area on a standard sphere S* C R* =
{z,y,2}. Consider the following two steady flows on S?: the rotation field u =
(—y,2,0) and the nonrealistic “tradewind current” v = z - (—y, x,0), Fig.49 (the
real tradewind current has the same direction in the northern and southern hemi-
spheres).

It was proved in [Lukl] that the sectional curvatures Cy,, in all two-planes con-
taining u are nonnegative for every field w € SVect(.S?), while for two-planes con-
taining the field v the curvatures C,,, are negative for “most” directions w. Notice
that the nonrealistic tradewind current v is a “spherical counterpart” of the parallel
sinusoidal flow on the torus & = (siny,0) (see statements 3.4-3.7 above).

In the case of volume-preserving diffeomorphisms of a three-dimensional domain
M C R? of Euclidean space (most important for hydrodynamics), the Jacobi equa-
tion was used by Rouchon to obtain the following information on the sectional

curvatures of the diffeomorphism group.

DEFINITION 4.1 [Rou2]. A divergence-free vector field on M is said to be a
perfect eddy if it is equal to the velocity field of a solid rotating with a constant

angular velocity around a fixed axis (in particular, the vorticity is constant). Such



§4. DIFFEOMORPHISM GROUPS AND UNRELIABLE FORECASTS 229

AZ

FIGURE 49. The velocity profile of the tradewind current on the sphere.

a fluid motion is possible if and only if the domain M admits an axis of symmetry.

THEOREM 4.2 [Rou2]. If the velocity field v(t) of a flow of an ideal incompress-
wle flurd filling a domain M 1s a perfect eddy with constant vorticity, then the
sectional curvature in every two-dimensional direction in S Vect(M) containing v
18 nonnegative.

If the velocity v(t) of an ideal fluid flow 1s not a perfect eddy, then for each time
t there always exist plane sections containing v(t) (the velocity along the geodesic)

where the sectional curvature s strictly negative.

The result on nonnegativity of all the sectional curvatures holds also for rotations

of spheres of arbitrary dimension [Misl].

REMARK 4.3. One can expect that the negative curvature of the diffeomorphism
group causes exponential instability of geodesics (i.e., flows of the ideal fluid) in the
same way as for a finite-dimensional Lie group (see, e.g., computer simulations in
[KHZ]). For instance, on an n-dimensional compact manifold with nonpositive sec-
tional curvatures the Jacobi equation along the fluid motion with constant pressure
function always has an unbounded solution [Misl].

We emphasize that the instability discussed here is the exponential instability
(also called the Lagrangian instability) of the motion of the fluid, not of its velocity
field (compare with Section II.4). The above result shows that from a Lagrangian
point of view, all solutions of the Euler equation in M C R? (with the exception of

the perfect eddy) are unstable.
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On the other hand, a stationary flow can be a Lyapunov stable solution of
the Euler equation, while the corresponding motion of the fluid is exponentially
unstable. The reason is that a small perturbation of the fluid velocity field can
induce an exponential divergence of fluid particles. Then, even for a well-predicted
velocity field (the case of a stable solution of the Euler equation), we cannot predict

the motion of the fluid mass without a great loss of accuracy.

REMARK 4.4. The curvature formulas for the diffeomorphism groups SDiff(M)
simplify drastically for a locally flat (or Euclidean) manifold M, i.e., for a Rie-
mannian manifold allowing local charts in which the Riemannian metric becomes
Euclidean. Let p : Vect(M) — SVect(M) be the orthogonal projection of the
space of all smooth vector fields onto their divergence-free parts, where the or-
thogonality is considered with respect to the L?-inner product on Vect(M). Let
g = Id—p : Vect(M) — Grad(M) be the orthogonal projection onto the space of
the gradient vector fields.

Consider some local Euclidean coordinates {x1,...,2,} on M and assign to a

pair of vector fields u and v their covariant derivative in M:

Ov; 0
Vv i= Z Zu](x)a—; 02,

i J

THEOREM 4.5 [Luk4]. Let M be locally Euclidean. Then the sectional curvature
Cuv for an orthonormal pair of divergence-free vector fields u,v € S Vect(M) s

Cuv = _<Q(vuv)7 Q(vuv» + <Q(vuu)7 vvv>'

COROLLARY 4.6 [Luk4]. If the vector field Vu is divergence free (i.e., ¢(Vyu) =

0, for instance, u is a simple harmonic on T™ ), then the curvature is nonpositive:

Cuv - _<Q(vuv)7 Q(VUU»

REMARK 4.7. It is natural to describe the curvature tensor for the three-dimensional
torus 7% in the basis ey of SoDiff(T?), where ej, = /(5% L € Z*\{0}. An arbitrary
velocity field u(x) is represented as u(x) = ), urer, where the Fourier compo-
nents satisfy (k,ur) = 0 (divergence free) and u_j = uy (reality condition). Then,

according to [NHK], one has

(QUuper, veer)WmeEm, Znen)

= (27)? ((uk,m)(wm,k) _ (ve,n)(2n, () (ve,m) (Wi, () ‘ (uk,n)(zn,k)> ‘

|k + m]| |0+ n| |0+ m| |n + k|
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All the sectional curvatures in the three-dimensional subspace of the ABC' flows

in SoDiff(T?) (see Section II.1) are equal to one and the same negative constant,

i.e., the curvatures do not depend on A, B, and C' [KNH].

Fix a divergence-free vector field v € SVect(T*) on the k-dimensional flat torus
T*. The average of the sectional curvatures of all tangential 2-planes in SVect(T*)
containing v is characterized by an infinite-dimensional analogue of the normalized

Ricci curvature.

DEFINITION 4.8. Let A be the Laplace—Beltrami operator on vector fields from
SVect(T*), and {e;| 7 = 1,2,...} be its orthonormal ordered (—)\; < —);41) eigen-

basis (Ae; = Aje;). Define the normalized Ricci curvature in the direction v by

Ric(v) = lgnooﬁzcvel.

The normalized Ricei curvature in a given direction on a finite-dimensional manifold
is the average of the sectional curvatures of all tangential 2-planes containing the
direction (Definition 1.13). It differs from the classical Ricci curvature by the factor

of (dimension of manifold)—1, and it makes sense as the dimension goes to infinity.

THEOREM 4.9 [Luk2]. For a divergence-free vector field v € S Vect(T*) on the
flat torus T,

E+1

Rie(v) = =m0 = D £ 2)

[V—-A vHL2(T’f)7

where /—A 18 the “positive” square root of the minus Laplace operator on vector

fields.

4.B. Unreliability of long-term weather predictions. To apply the cur-
vature calculations above, we make the following simplifying assumption: The
atmosphere i1s a two-dimensional homogeneous incompressible fluid over the two-
torus, and the motion of the atmosphere is approximately a “tradewind current”
parallel to the equator of the torus and having a sinusoidal velocity profile.

Though the two-sphere is a better approximation for the earth than the two-
torus, the calculations carried out for a “tradewind current” over S? in [Lukl]
show the same order of magnitude for curvatures in both groups SoDiff(7?) and
SDiff(S?). Hence, the same conclusions on the characteristic path length and in-
stability of flows hold in both cases.

To estimate the curvature, we consider the “tradewind current” with velocity

field £(x,y) = (siny,0) on the torus T? = {(z,y) mod 27}. Then, Theorem 3.4
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shows that the curvature of the group SoDiff(T?) in the planes containing ¢ (with
the wave vector k = (0,1)) varies within the limits —2/5 < C' < 0, where S = 472
is the area of the torus. However, the lower limit here is obtained by a rather crude
estimate. To make a rough estimate of the characteristic path length, we take a
quarter of this limit as the value of the “mean curvature” Cy = —1/(25). There

exist many two-dimensional directions with curvatures of approximately this size.

Having agreed to start with this value Cy for the curvatures, we obtain the
characteristic path length s = 1//—Cy = V/2S; see Remark 1.16. (Recall that
the characteristic path length is the average path length on which a small er-
ror in the initial condition grows by the factor of e.) Note that along the group
SDiff(T?), the velocity of motion corresponding to the “tradewind current” ¢ is
equal to [[{||r2(r2) = +/5/2 (since the average square value of the sine is 1/2).
Hence, the time it takes for our flow to travel the characteristic path length is equal

to 2.
Now, the fastest fluid particles go a distance of 2 after this time, i.e., 1/7 part of

the entire orbit around the torus. Thus, if we take our value of the mean curvature,
then the error grows by e™ & 20 after the time of one orbit of the fastest particle.
Taking 100 km /hour as the maximal velocity of the tradewind current, we get 400

hours for the time of orbit, i.e., less than three weeks.

Thus, if at the initial moment, the state of the weather was known with small

error ¢, then the order of magnitude of the error of prediction after n months would

be

<24
10",  where k = ?)(Z)LT log,,(e™) ~ 2.5.

For example, to predict the weather two months in advance we must have five
more digits of accuracy than the prediction accuracy. In practice, this implies that

calculating the weather for such a period is impossible.

65. Exterior geometry of the group of

volume-preserving diffeomorphisms

The group SDiff(M) of volume-preserving diffeomorphisms of a Riemannian
manifold M™ can be thought of as a subgroup of a larger object: the group Diff(M)
of all diffeomorphisms of M (cf. [E-M]). Just like its subgroup, the larger group

is also equipped with a weak Riemannian metric (which is, however, no longer
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right-invariant ):

(5.1) (94, 94m) = /M(&n)g(xw(l‘),

where £, € Vect(M); (£,1n)q is the inner product of £ and n with respect to the
metric (, ) on M at the point a; and ¢ € Diff(M).

Viewing the group of volume-preserving diffeomorphisms as a subgroup in the
group of all diffeomorphisms of the manifold happens to be quite fruitful for various
applications. To some extent the bigger group is “always flatter” than the subgroup.

The source of many simplifications lies in the following fact.

THEOREM 5.1 [Misl]. The components of the curvature tensor 0 of the bigger
group Diff (M) are the “mean values” of the curvature tensor components for the

Riemannian manifold M itself:
(Qu, v)w, z) = /M<in(U($)av(x))W(w)az(w)M/«L(x),

where QM is the curvature tensor of M at x € M; the volume form p is defined by
the metric, and u,v,w,z, € Vect(M).

Below we derive (following [Misl, Shn4, Tod]) the second fundamental form of
the embedding of the “curved” subgroup SDiff(M) C Diff( M) into the “flatter” am-
bient group. Though not intrinsic in nature, it gives a nice shortcut to calculations

of the curvatures.

For simplicity, let the manifold M be the flat n-torus T". Represent a diffeo-
morphism ¢ € Diff(T™) close to the identity in the form ¢g(z) = « + &(x).

PROPOSITION 5.2. In the coordinates {£}, a Ct-small neighborhood of the iden-
tity Id € Diff(T™) of the group Diff(T™) equipped with the metric (5.1) is isometri-
cally embedded in the Hilbert space H = {¢ € L*(T",R™)}.

PROOF OF PROPOSITION 5.2 is a straightforward calculation. 4

Abusing notation, we will denote by H the (pre-)Hilbert space of smooth maps
from the torus 7" to R™ equipped with the L? inner product. Then a neighborhood
of the identity of the group Diff(T™) is isometric with a neighborhood of the origin
in H. The group SDiff(T") of volume-preserving diffeomorphisms of 7" will be
viewed as a submanifold D of H (Fig.50):

23

D = SDIff(T") = {¢ € L*(T",R") | det [Id +a_x] =1} CH
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T, ®

FIGURE 50. The embedding of the volume-preserving diffeomorphisms
D = SDiff( M) into the group of all diffeomorphisms H = Diff( A1).

DEFINITION 5.3. The second fundamental form L (at 0 € D) of the embedding
D C His a quadratic map L : TyD — T3-D from the tangent space ToD C H to
its orthogonal complement T;-D C H. The value of the second fundamental form
L(v,v) at a vector v € Ty D is equal to the acceleration of a point moving by inertia

along D with initial velocity v (see [K-N]).

In other words, L measures (the second derivative of) the “distance” in H be-
tween the point tv moving in the tangent space ToD with constant velocity v and

the orthogonal projection prp of this point to D:

2
(5.2) prp(tv) = tv + %L(v, v)+O(t*) as t — 0.

The spaces TyD and T;-D are more explicitly described as follows

TyD = SVect(T") = {v € Vect(T") | div v = 0},
Ti-D = Grad(T") = {w € Vect(T™) | w = Vp, for some pe C(T")}

(we have included in TyD the divergence-free fields shifting the center of mass of
T, and hence T;-D consists of the gradients of all univalued functions).

Observe that for a vector field v € SVect(T™) the transformation = — x +
tv(x) means that every point * € T™ moves uniformly with velocity v(z) along
the straight line passing through z. Such transformations are diffeomorphisms for

smooth v(z) and sufficiently small ¢ > 0.

To demonstrate the machinery, we confine ourselves, for now, to the case n = 2
and give an alternative proof of Theorem 3.4 on curvatures SDiffo(T?) in two-

dimensional directions containing the sinusoidal flow £ on the torus.
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PROOF OF THEOREM 3.4. A vector field v € SVect(T?) can be described by
the corresponding (univalued) stream (or Hamiltonian) function ¢ : v = sgrad ¢;

that is, vy = —0v/Jxs and vy = O /Ox;.

THEOREM 5.4. The value of the second fundamental form L at a vector field v

(5.3) L(v,v) = —2V(A ™ (det[Hess ])),

where Hess 1 1s the Hessian matriz of the stream function o of the field v, and
A~ s the Green operator for the Laplace operator A in the class of functions with

zero mean on T?.

ProOOF OF THEOREM 5.4. The following evident relation shows how far the

transformation Id +tv is from D (i.e., from being volume-preserving):
v ) 9 2
det [Id —I—ta_x =1 —|—t div v —|—t (1)1711)272 — 1)1721)271) =1 —|—t (1)1711)272 — 1)1721)271),

where v; ; := Ov;/0z, and the last equality is due to div v = 0. The transformation
Id +tv does not belong to D, and it changes the standard volume element on T? by
a term quadratic in ¢.

Hence, we have to adjust tv by adding to it a vector field t?w € T;-D to suppress
the divergence of Id4tv. To compute the second fundamental form (see (5.2))
observe that its value at the vector v is L(v,v) = 2w, where w € T;-D is defined
by the condition that the transform x — x +tv + 2w is volume-preserving modulo
O(t%).

The defining relation on the field w: div w = —(vyv22 — v12v2,1) follows

immediately from the expansion

det (Id L pOv

ax ax) — 1 —I— t2(1)1711)272 — 1)1721)271 —I_ le UJ) —I_ O(t3)

From the definition of Ti-D, the vector field w is a gradient: w = V. Therefore,
divw = VZp = Ap, and

L(v,v) = 2w = =2V (A7 vy jvg9 — v12021)).

The introduction of the stream function v for the field v reduces the latter formula
to the required form (5.3). O

The symmetric fundamental form L(u,v) can now be obtained from the qua-

dratic form L(v,v) via polarization:

L(u,v) = (L(u +v,u +v) — L(u,u) — L(v,v))/2.
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Finally, the sectional curvature Cy, of the group D in the two-dimensional direc-
tion spanned by any two orthonormal vectors u and v is, according to the Gauss—
Codazzi formula (Proposition VIL.4.5 in [K-NJ), given by

Cuv = <L(u7u)7L(v7v)> - <L(u7v)7L(uvv)>v

where ( , ) is the inner product in the Hilbert space H (cf. also Theorem 4.5
above). For nonorthonormal vectors one has to normalize the curvature according
to formula (1.5).

EXAMPLE 5.5. We will now calculate (using the second fundamental form) the
sectional curvature in the direction spanned by the vector fields v and v with the
stream functions ¢ = cosay and ¢ = cosbx (where the wave vectors of Corollary
3.6 are k = (0,a) and ¢ = (b,0)).

One easily obtains that det[Hess ¢] = det[Hess o] = 0, while det[Hess (¢ + )] =
a?b? cos ay cos bx. Then the application of A™! is equivalent to the multiplication
of the above function by —1/(a® +b%). Passing to the gradient, one sees that L(u,v)

1s the vector field
2 bZ

L(u,v)=— a ((b sin bx cos ay)ag + (@ cos ba sin ay)ag> ,

a? + b2 x Yy
while both L(u,u) and L(v,v) vanish. Note also that (u,u) = a?S/2, (v,v) =
b25/2, where S is the area of the torus. Finally, evaluating the L?-norm of the
vector field L(u, v) over the torus, we come to the following formula for the sectional
curvature:

o oI R
v <u7u> ) <v7v> (a2 + 62)57

which is in a perfect matching with (3.3).

We leave it to the reader to check that the substitution of the vector fields v and

exte_k
2

v with the stream functions ¢ = and n = Sage, (with x_p = #¢) into the

curvature formula gives an alternative proof of Theorem 3.4 in full generality. 4

REMARK 5.6. Bao and Ratiu [B-R] have studied the totally geodesic (or asymp-
totic) directions on the Riemannian submanifold SDiff(M) C Diff(M), i.e., those
directions in the tangent spaces T, SDiff(M) (alternatively, divergence-free vector
fields on M) for which the second fundamental form L of SDiff(M), relative to
Diff(M), vanishes. For an arbitrary manifold M™, they obtained an explicit de-
scription of such directions ¢g.v € T, SDiff(A]) in the form of a certain first-order
nonlinear partial differential equation on v. For the two-dimensional case this equa-

tion can be rewritten as an equation for the stream function. Assume for simplicity

that OM = () and Hl(M) =0.
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THEOREM 5.7 [B-R]. For a two-dimensional Riemannian manifold M the divergence-
free vector field g.v € T, S Diff (M) is a totally geodesic direction on S Diff (M) if
and only if the stream function ¥ of the field v satisfies the degenerate Monge-
Ampére equation

det [Hess ] = K -m - |V+||?/2,

where m is the determinant of the metric on M in given coordinates {x1,x5}, Hess
18 the Hessian matriz of 1 in these coordinates, and K is the Gaussian curvature

function on M.

Their paper also contains examples of manifolds for which the Monge—Ampere
equation has, or has no, solutions (see also [BLR| for a characterization of all

manifolds M for which the asymptotic directions are harmonic vector fields).

Asymptotic directions on SDiff( M%) arise intrinsically in the context of a discrete
version of the Euler equation of an incompressible fluid [MVe]. A solution of the
discretized Euler equation is a recursive sequence of diffeomorphisms. The Monge—
Ampere equation is the constraint on the initial condition ensuring that all the

diffeomorphisms of the sequence preserve the area element on AM?.

REMARK 5.8. Consider an equivalence relation on the diffeomorphism group
Diff (M), where two diffeomorphisms are in the same class if they differ by a volume-
preserving transformation. We obtain a fibration of Diff(M) over the space of
densities (i.e., the space of positive functions on M) with the fiber isomorphic
to the set of volume-preserving diffeomorphisms SDiff(M ). Let the manifold M™
be one of the following: an n-dimensional sphere S™, Lobachevsky space A", or
Euclidean space R™. According to S.M. Gusein-Zade, there is no section of this
SDiff( M )-bundle over the space of densities that is invariant with respect to motions
of the corresponding space M"™. However, there exists a unique connection in
this bundle that is invariant with respect to motions on M". Parallel translation
in this connection is essentially described in the proof of the Moser theorem (cf.
Lemma II1.3.5). The case of a two-dimensional sphere has interesting applications

in cartography.

§6. Conjugate points in diffeomorphism groups

Although in “most” of the two-dimensional directions the sectional curvatures of
the diffeomorphism group SDiff(T?) are negative, in some directions the curvature

18 positive.
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EXAMPLE 6.1 [Arn4]. In the algebra SVect(T?) of all divergence-free vector
fields on the torus 7% = {(z,y) mod 27} consider the plane spanned by the two
stream functions £ = cos(3px —y)+cos(3px+2y) and n = cos(px +y)+ cos(pr —2y).

Then for the sectional curvature one has

(Q&mEm) 9
(€, €)(n,m) 82

Cey = >0 as p— oo.
It is tempting to conjecture, by analogy with the finite-dimensional case, that

positivity of curvatures is related to the existence of the conjugate points on the

group SDiff(T?).

DEFINITION 6.2. A conjugate point of the initial point v(0) along a geodesic line
(), t € [0,00) (on a Riemannian manifold M), is the point where the geodesic line
hits an infinitely close geodesic, starting from the same point v(0). The conjugate
points are ordered along a geodesic, and the first point is the place where the

geodesic line ceases to be a local minimum of the length functional.

Strictly speaking, one considers zeroes of the first variation rather than the actual

intersection of geodesics (see, e.g., [K-N]).

THEOREM 6.3 [Mis2]. Conjugate points exist on the geodesic in the group S Diff(T?)
emanating from the identity with velocity v = sgrad ¢ defined by the stream function
¢ = cos 6x - cos 2y.

A segment of a geodesic line is no longer the shortest curve connecting its ends
if the segment contains an interior point conjugate to the initial point (Fig.51).
Indeed, the difference of lengths of a geodesic curve segment and of any C! e-close
curve joining the same endpoints is of order ¢* (the geodesic being an extremal).
The length of a geodesic e-close to the initial one and connecting the initial point A
with its conjugate point C' differs from the length of the initial geodesic between A
and C by a quantity of higher order, 3. The difference between BD and BC' + CD
is of order €?. Hence ADB is shorter than AC'B.

D
/(\\
A cC> B

FIGURE 51. A geodesic ceases to be the length global minimum after
the first conjugate point.
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If a segment of a geodesic contains k interior points conjugate to the initial point,

then the quadratic form of the length second variation has k negative squares.

REMARK 6.4 [Mis2]. Conjugate points can be found on the group SDiff(T"),
where T" is a flat torus of arbitrary dimension n (this is a simple corollary of the
two-dimensional example above).

More examples are provided by geodesics on the group of area-preserving dif-
feomorphisms of a surface of positive curvature (example: uniform rotation of the
standard two-dimensional sphere; see Section 4.A).

On the other hand, those geodesics in SDiff( M) that are also geodesics in Diff( M)
have no conjugate points whenever M is a Riemannian manifold of nonpositive
sectional curvature [Misl]. Such geodesics have asymptotic directions on SDiff(M)
and correspond to the solutions of the Euler equation in M with constant pressure

functions.

REMARK 6.5. It has been neither proved nor disproved that the Morse index of
a geodesic line corresponding to a smooth stationary flow is finite (for any finite
portion of the geodesic). It is interesting to consider whether the conjugate points
might accumulate in this situation.

Note that the existence of a small geodesic segment near the initial point that is
free of conjugate points follows from the nondegeneracy of the geodesic exponential
map at the initial point and in its neighborhood. One might also ask what the
shortest path is to a point on the geodesic that is separated from the initial point
by a point conjugate to it. (One hopes that the overall picture in this classical
situation is not spoiled by the pathology of the absence of the shortest path between

special diffeomorphisms, discovered by Shnirelman in [Shnl]; see Section 7.D.)

§7. Getting around the finiteness of the diameter of
1

the group of volume-preserving diffeomorphisms

Consider a volume-preserving diffeomorphism of a bounded domain. In order

to reach the position prescribed by the diffeomorphism, every fluid particle has to

move along some path in the domain. The distance of this diffeomorphism from
the identity is the averaged characteristic of the path lengths of the particles.

It turns out that the diameter of the group of volume-preserving diffeomorphisms

of a three-dimensional ball is finite, while for a two-dimensional domain it is infinite.

This difference is due to the fact that in three (and more) dimensions there is enough

I This section was written by A. Shnirelman.
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space for particles to move to their final places without hitting each other. On the
other hand, the motion of the particles in the plane might necessitate their rotation
about one another. The latter phenomenon of “braiding” makes the system of
paths of particles necessarily long, in spite of the boundedness of the domain (and

hence, of the distances between the initial and final positions of each particle).

In this section we describe some principal properties of the group of volume-
preserving diffeomorphisms D(M ) := SDiff(M) as a metric space along with their

dynamical implications.

7.A. Interplay between the internal and external geometry of the dif-

feomorphism group.

DEFINITION 7.1. Let M™ be a Riemannian manifold with volume element dz.
Introduce a metric on the group D(M) = SDiff(M") as follows. To any path
gt, t1 <t <tg, on the group D(M) we associate its length:

12 ) to ag " ) 1/2
e = [ ladeand = [ (/ | 2t d:z;) dt.
t t Mn

For two fluid configurations f,h € D(M), we define the distance between them
on D(M) as the infimum of the lengths of all paths connecting f and h:
dist Jh) = inf / L.
D(M)(f ) (4 )CD(M) {9:}0
go=f,g1=h
This definition makes D(M) into a metric space. Now the diameter of D(M) is the

supremum of distances between its elements:

diam ( D(M) )= sup  distpan(f,h).
f,heD(M)

The metric on the group of volume-preserving diffeomorphisms D(M) defined
here is induced by the right-invariant metric on the group defined at the identity
by the kinetic energy of vector fields (compare formula (7.1) with Example 1.1.3).

We start with the study of the following three intimately related problems:

A. (DIAMETER PROBLEM ) Is the diameter of the group D(M ) of volume-preserving
diffeomorphisms infinite or finite? In the latter case, how can it be estimated for a

given manifold M"™?

Let M be a bounded domain in the Euclidean space R™ (with the Euclidean
volume element dz). In this case the diffeomorphism group D(M) is naturally
embedded into the Hilbert space L*(M",R") of vector functions on M™. This
embedding defines an isometry of D(M) with its (weak) Riemannian structure onto

its image equipped with the Riemannian metric induced from the Hilbert space.
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DEFINITION 7.2. The standard distance disty: between two diffeomorphisms
f,h € D(M) C L*(M,R") is the distance between them in the ambient Hilbert
space L*(M,R"):

distz2(f,h) = ||f = Rllz2(a -

B. (RELATION OF METRICS) What is the relation between the distance distp(ar)
in the group D(M) defined above and the standard distance distz» pulled back to
D(M) directly from the space L*(M,R")?

Evidently, distp(ar) > distz2. But does there exist an estimate of distp(ar) (g, 2)
through disty2(g, h)? In particular, is it true that if two volume-preserving diffeo-
morphisms are close in the Hilbert space, then they can be joined by a short path
within the group D(M)?

C. (SHORTEST PATH) Given two volume-preserving diffeomorphisms, does there
exist a path connecting them in the group D(M) that has minimal length? If so,
it is a geodesic; i.e., after an appropriate reparametrization it becomes a solution
of the Euler equation for an ideal fluid in M™. Finding the shortest path between

two arbitrary fluid configurations promises to be a good method for constructing

fluid flows.

REMARK 7.3. Similar problems can be posed for diffeomorphisms of an arbitrary
Riemannian manifold M™, if we first isometrically embed M™ in R? for some gq.
Such an embedding for which the Euclidean metric in R? descends to the given
Riemannian metric on M™ exists by virtue of the Nash theorem [Nash] (where one
can take ¢ = 3n(n 4+ 9)/2 for a compact M", and ¢ = 3n(n + 1)(n + 9)/2 for a

noncompact M"™).

7.B. Diameter of the diffeomorphism groups. In what follows we con-
fine ourselves to the simplest domain M™, namely, to a unit cube: M" = {z =
(r1,...,2,) € R"| 0 < 2; < 1}. We thus avoid the topological complications due
to the topology of M.

THEOREM 7.4 [Shnl]. For a wnit n-dimensional cube M"™ where n > 3, the
diameter of the group of smooth volume-preserving diffeomorphisms D(M) is finite

in the right-invariant metric distp(ar).
THEOREM 7.4' [Shnj]. diam ( D(M™) ) <2,/Z.

These theorems generalize to the case of an arbitrary simply connected manifold
M. However, the diameter can become infinite if the fundamental group of M is

not trivial [ER2]. The two-dimensional case is completely different:
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THEOREM 7.5 [ER1,2]. For an arbitrary manifold M of dimension n = 2, the
diameter of the group D(M) us infinite.

One can strengthen the latter result in the following direction.

DEFINITION 7.6. A diffeomorphism ¢ : M — M of an arbitrary domain (or a
Riemannian manifold) M is called attainable if it can be connected with the identity

diffeomorphism Id by a piecewise-smooth path ¢; C D(M) of finite length.

THEOREM 7.7 [Shn2]. Let M™ be an n-dimensional cube and n > 3. Then every
element of the group D(M) is attainable. In the case n = 2, there are unattainable
diffeomorphisms of the square M?*. Moreover, the unattainable diffeomorphisms can

be chosen to be continuous up to the boundary OM?* and identical on OM?.

A diffeomorphism ¢ may be unattainable if its behavior near the boundary 9M"
of M is complicated enough. We will give an example of an unattainable diffeo-
morphism in Section 8.A. Note that only attainable diffeomorphisms are physically
reasonable, since the fluid cannot reach an unattainable configuration in a finite
time.

The statement above allows one to specify Theorem 7.5:

THEOREM 7.8 (=7.5"). For two-dimensional M, the subset of attainable diffeo-
morphisms in D(M) is of infinite diameter.

It is not known whether all the attainable diffeomorphisms form a subgroup in
D(M?) (i.e., whether the inverse of an attainable diffeomorphism is attainable). Tt
is not always true that if a path {¢g;} C D(M?) has finite length, then the length
of the path {g;'} C D(M?) is finite. The group D(M?) splits into a continuum
of equivalence classes according to the following relation: Two diffeomorphisms are
in the same class if they can be connected to each other by a path of finite length.

Every equivalence class has infinite diameter.

The proofs of the two-dimensional results are rather transparent and are dis-
cussed in Sections 8.A-B. Various approaches to the three- (and higher-) dimen-
sional case are, on the contrary, all quite intricate, and only the ideas are discussed

below.

7.C. Comparison of the metrics and completion of the group of diffeo-
morphisms. The main difference between the geometries of the groups of diffeo-
morphisms in two and three dimensions is based on the observation that for a long
path on D(M?), which twists the particles in space, there always exists a “short-
cut” untwisting them by “making use of the third coordinate.” More precisely, the

following estimate holds.
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THEOREM 7.9 [Shnl]. Given dimension n > 3, there exist constants C > 0 and
a > 0 such that for every pair of volume-preserving diffeomorphisms f,h € D(M™)

of the unit cube,

distp(ar)(f, h) < C(distp2(f, 7))

THEOREM 7.9" [Shnb]. The exponent « in this inequality is not less than 2/(n + 4).

This property means that the embedding of D(M™) into L*(M,R"), n > 3, is
“Holder-regular.” Apparently, it is far from being smooth, i.e., & < 1. Certainly,
the Holder property (Theorem 7.9) implies the finiteness of the diameter (Theorem
7.4).

No such estimate is true for n = 2. Namely, for every pair of positive constants
¢,C there exists a diffeomorphism g € D(M?) such that distp(ar)(g,Id) > C, but
distr2(g,Id) < e. This complements Theorem 7.5 but requires, of course, a separate

proof.

Theorems 7.4 and 7.9 imply the following simple description of the completion
of the metric space D(M™) in the case n > 3.

COROLLARY 7.10. For n > 3 the completion of the group D(M™) in the metric
distpary coincides with the closure D(M™) of the group in L*(M™ R™).

PROOF OF COROLLARY. Each Cauchy sequence {¢;} in D(M") (with respect
to the metrics distp(prny) is a Cauchy sequence in L?(M™,R"), and therefore it
converges to some element g € L*(M" R").

Conversely, if g belongs to the closure of D(M" ) in L*(M™,R"), then there exists
a sequence of diffeomorphisms {¢;} C D(M™) that converges to it in L*(M" R™).
Therefore, by virtue of Theorem 7.9, {g¢;} is a Cauchy sequence in D(M"), and
thus ¢ lies in the completion of D(M™). O

THEOREM 7.11 [Shnl]. The completion D(M™) (n > 3) of the group D(M™)
consists of all measure-preserving endomorphisms on M, i.e., of such Lebesgue

measurable maps f: M"™ — M™ that for every measurable subset 2 C M™,
mes f~1(Q) = mes Q.

The idea for a proof of this theorem is as follows. Divide the unit cube M™ into
N"™ equal small cubes having linear size N~!. Consider the class Dy of piecewise-
continuous mappings, translating in a parallel way each small cube »r into another
small cube o(s), where o is some permutation of the set of small cubes. First one
proves that every measure-preserving map f : M — M may be approximated with

arbitrary accuracy in L*(M™,R") by a permutation of small cubes for sufficiently
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large N. In turn, every such permutation may be approximated in L? by a smooth
volume-preserving diffeomorphism. Conversely, if a map ¢ belongs to the closure
of the diffeomorphism group ¢ € D(M"), then ¢ = limg;, g; € D(M"), almost
everywhere in M", and hence ¢ is a measure-preserving endomorphism; see [Shnl]
for more detail.

In the two-dimensional case, the completion of D(M?) in the metric distp(ar) 1s
a proper subset of the L%-closure D(M?); no good description of this completion is

known.

7.D. The absence of the shortest path. We will see below how the facts
presented so far in this section imply a negative answer to the question of existence

of the shortest path in the diffeomorphism group:

THEOREM 7.12 [Shnl]. For a unit cube M"™ of dimension n > 3, there exist
a pair of volume-preserving diffeomorphisms that cannot be connected within the
group D(M) by a shortest path, i.e., for every path connecting the diffeomorphisms

there always exists a shorter path.

Thus, the attractive variational approach to constructing solutions of the Euler
equations is not directly available in the hydrodynamical situation. This is not to
say that the variational approach is wrong, but merely that our understanding is

still incomplete and further work is required.

REMARK 7.13. The proof of Theorem 7.12 is close in spirit to the Weierstrass
example of a variational problem having no solution. Weierstrass proposed his
example in his criticism of the use of the Dirichlet principle for proving the existence

of a solution of the Dirichlet problem for the Laplace equation.

FIGURE 52. There is no smooth shortest curve between A and B that
would be orthogonal to the segment AB at the endpoints.

This example illustrates that in some cases a functional cannot attain its infi-

mum. Consider two points A and B in the plane. We are looking for a smooth
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curve v of minimal length connecting A and B such that its tangents at the points
A and B are orthogonal to the line (AB), Fig.52. It is clear that if v is different
from the segment [AB], then it may be squeezed toward the line (AB) (say, by the
factor 1/2), and this transformation reduces its length. However, if v coincides with
the segment [AB], it does not satisfy the boundary conditions. Thus, the infimum
cannot be attained within the class of admissible curves.

Weierstrass’s criticism encouraged Hilbert to establish a solid foundation for the

Dirichlet variational principle.

We proceed to describe an example of a diffeomorphism g € D(M?) of the three-
dimensional cube M3 that cannot be connected to the identity diffeomorphism Id
by a shortest path.

Let (21,3, 2) be Cartesian coordinates in R?, and let M?® = {0 < 1,22,z < 1}.
Consider an arbitrary diffeomorphism g € D(M?) of the form

g(x,z) = (M), 2),
where h is an area-preserving diffeomorphism of the square M? and x := (21, 22).
THEOREM 7.12'. If
diStD(M3)(Id, g) < diStD(M2)(Id, h),

then Id € D(M?) cannot be connected with the diffeomorphism g by a shortest path
in D(M?).

Proor. Rather than the length, we shall estimate an equivalent quantity, the
action along the paths.

DEFINITION 7.14. The action along a path ¢4, t; < t < 3, on the group of
diffeomorphisms D(M™) of a Riemannian manifold M™ is the quantity

. to 1 f2 C 2 agt
Hotle = 3 gl 22 (ar) dt = ‘ dydt.
t1

The action and the length are related via the inequality
(7.2) 2 <2j(ta —t1).

Unlike the length K{gt}if, the action ]{gt}if depends on the parametrization, and
the equality in (7.2) holds if and only if the parametrization is such that

0
19el12 200y = / -
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This allows us, in the sequel, to pass freely from one notion to the other.

Suppose there exists a shortest path ¢g; connecting Id and ¢; we shall construct
another path that has smaller length.

First squeeze the flow g, by a factor of 2 along the z-direction: Instead of a family
of volume-preserving diffeomorphisms of the three-dimensional unit cube M?, we

now have volume-preserving diffeomorphisms of the parallelepiped
Pi={(z,2) e M® |0< 2z <1/2}.

Now consider the new (discontinuous) flow g; in the cube M3 = P, U P, that is
the above squeezed flow on each of the halves P, and P»; see Fig.53. (Here P,
is specified by the condition 1/2 < z < 1.) It is easy to see that the flow g; is
incompressible in M? and is, in general, discontinuous on the (invariant) plane

z = 1/2. Notice also that the flow g; satisfies the same boundary conditions as

gi: go=1d, g1 =g¢.

~~

(=
T

FiGURE 53. Each of the two parallelepipeds contains the former flow

in the cube squeezed by a factor of 2.

Compare the actions along the paths ¢g; and ¢g;. Define the horizontal j; and

vertical jy components of the action j = jg + jv for g; as follows:

1/t Ox'(x,z,t)
j V== at — 0 2 dPad
ot =5 [t [ G e,
1/t 0z'(x,z,t)
j L=z dt/ 12 dPad
lad =5 [t [ 1T e,
and similarly for the path g;. (Here g4(x,z) = (2/,2").) From the definition of g,

we easily obtain

L . . L 1.
]H{gt}(lJ = ]H{gt}(lJ? while lv{gt}é = §JV{9t}(1)-
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Therefore, the action along the path g, is smaller than that along the path ¢; : j{g¢}}
i{g¢}% if the vertical component of the action is positive, jy{g;}¢ > 0.

The last condition, jyv{g:}§ > 0, follows from the assumption of the theo-
rem. Indeed, if the vertical component of the action vanishes (jy{g:}5 = 0), then
0z'(x,z,t)/0t = 0, and the map = — a'(x,z,t) for any fixed z and t is an area-

preserving diffeomorphism of the square M?. In this case the action along the flow

]{gt}o_/ dZ(/ dt/M 1 8:1; xzt)szzx>7

which implies that there is a value zy € [0, 1] such that

. ! 1,02 (x,20,1) )2
1 i ) 20, 2
L R e

However, this is impossible, since by the assumption, the distance in D(M?) from

gt 18

Id to the diffeomorphism a — «'(x,z9,t) |;=1= h(x) is greater than the distance
in D(M?) from Id to ¢, the length of the shortest path g; in D(M?) connecting Id
and g¢.

Hence jv {g:}¢ > 0, and we have constructed a discontinuous flow g; (connecting
Id and the diffeomorphism ¢) whose action is less than that of ¢:: j{g:} < j{g:}d-

Now Theorem 7.12' follows from the following lemma on a smooth approximation.

LEMMA 7.15. For every e > 0 there exists a smooth flow ¢, C D(M?), 0 <t <
1, that starts at the identity o = Id, reaches an e-vicinity of ¢ in the standard
L?-metric, distre(asy(p1,9) < €, and whose action approzimates the action along

the discontinuous path gy @ |i{g:}¢ —if{pels| < e.

To complete the proof, we replace the short but discontinuous path ¢; by its
smooth approximation ;. It starts at the identity and ends up at ¢, L%*-close to
g. By Theorem 7.9, there exists a path f; in D(M?),1 <t < 2, connecting ¢ and
¢, and such that

U fi}e < Ce?, a >0,
and hence the length ({f;}} tends to 0 together with e. It follows that the composite
path ¢; U f; has length not exceeding ({g;} + ¢ + C=®. Finally, observe that for

sufficiently small e, the composite path is shorter than g, because ({g;}} < ({g:}}.
This completes the proof of Theorem 7.12" modulo Lemma 7.15. g

PrROOF OF THEOREM 7.12. By virtue of Theorem 7.5, for every C' > 0 there is
a diffeomorphism & of the square M? such that distp(ar2y(Id, ) > C. On the other

hand, if ¢ is a diffeomorphism of the 3-dimensional cube M? having the form

g(:z;,z) = (h(:z;),z) , T E szz S (071)7
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then by Theorem 7.4, distp(as)(Id, ¢) < 2. Hence, if C' > 2, this diffeomorphism
¢ cannot be connected with Id by a shortest path. This completes the proof of
Theorem 7.12. g

PROOF OF LEMMA 7.15. For a (discontinuous) flow g;, we define (almost every-
where) its Eulerian velocity field by v(z,t) = 0g+(g; *(x))/0t. For a small 6 > 0 let
Ms be the set M with the é-neighborhood of the boundary M removed, and p;s
the dilation mappings M — Ms. Denote by vs(x,t) = (ps)sv(x,t) the image of the
field v under the dilations. By setting vs = 0 outside Mj, we obtain an L?-vector
field in the whole of R? that is incompressible in the generalized sense, i.e., the

vector field vs is L?-orthogonal to every gradient vector field.

Now define the smooth field
ws(z,t) = / v5(y,t)ds(x — y)dy,
RS

as a convolution of the field vs with a mollifier ds(x) = §3d(x/§), where d(x) €
Ce°(R?) and [ ¢(x)de = 1. The field ws(z,t) has compact support ws(z,t) €
C§e(M) for all t, and as 6 — 0, it converges to the field v(x,t) uniformly on every
compact set in M outside OM and outside the plane z = % Moreover, ws — v 1n
L?(M). This implies that for sufficiently small §, the smooth flow ; obtained by

integrating the vector field ws satisfies the conditions of Lemma 7.15. 4

7.E. Discrete flows. The proofs of Theorems 7.4, 7.7, and 7.9 are similar and
are based on the following discrete approximation of the group D(M™) (cf. also
[Lax, Mos2]). Split the cube M™ C R™ into N™ identical subcubes. Let My be the
set of all these cubes. Denote by Dy the group of all permutations of the set My
this is a discrete analogue of the group D(M ) of volume-preserving diffeomorphisms.

Two subcubes s, »" € My are called neighboring if they have a common (n—1)-
dimensional face. A permutation o € Dy is called elementary if each subcube
% € My is either not affected by o, or o(s) is a neighbor of ». A sequence of
elementary permutations oy, ..., o0 is called a discrete flow; the number £ is called
its duration. We say that the discrete flow oq,...,0% connects the configurations
o,0/ € Dyifopoop_q10---00100 =0'.

The following, purely combinatorial, theorem is the cornerstone of the study. It

can be regarded as a discrete version of Theorem 7.4.

THEOREM 7.16. For every dimension n there exists a constant Cy, > 0 such that
for every N every two configurations 0,0’ € Dy can be connected by a discrete flow

O1y...,0r whose duration k 1s less than C, - N.

The proof is tedious yet elementary; see [Shnl].
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To formulate the discrete analogue of Theorem 7.9, we define the length of a

discrete flow (not to be confused with its duration).

DEFINITION 7.17. Let oq,...,0k be a discrete flow in M. Let each permutation

o; take m; subcubes into neighboring ones and leave N™ — m; subcubes in place.

The length ({o;}} of the discrete flow is (cf. (7.1))

k

" n\1/2
(ot =3 DT

i=1

(The reasoning is transparent: A permutation o; is approximated by a vector field
of magnitude 1/N supported on a set of volume m;/N". Then the summands are
“L?-norms” of the permutations.)

The distance in Dy between configurations o, ¢’ is defined as
distpy (0,0") = min ({o;}*,

where min is taken over all discrete flows (of arbitrary duration) connecting o and

o'. The L?-distance between o,0’ € Dy is defined as

diStL2(0', U/) - ( Z HO-(%) ]_\7:/(%)"2> ”

»EMN

where ||o(5)—a'(5)|| is the distance in R® between the centers of the corresponding

small cubes.
The following is the analogue of Theorem 7.9 on the relation of metrics.

THEOREM 7.18. For every dimension n there are constants Cp, > 0 and a, > 0

such that for every N and every pair of permutations o,0’ € Dy,
distpy (0,0") < O, (disty2(a,0"))m.

The proof is an inductive multistep construction of a “short” discrete flow con-
necting two given L?-close discrete configurations; see [Shnl]. The explicit con-

struction in the three-dimensional case (n = 3) yields asz > 1/64.

7.F. Outline of the proofs. The proof of Theorems 7.4 and 7.9 proceeds as
follows.

Let ¢ € D(M"™) with n > 3. We construct a path ¢, C D(M™), 0 <t <1, that
connects the identity and ¢ ( go = Id, ¢1 = ¢), and such that

Hgids < C(distr2(1d, ¢))*.
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First of all, we prove that ¢ can be approximated by some permutation o € Dy
of small cubes for sufficiently large N. Furthermore, for every ¢ > 0 there exists a
discontinuous, piecewise-smooth flow £, 0 < 7 < 1, connecting ¢ and ¢, and such
that L{¢,}) < e. (More precisely, for every 7 the mapping &, : M"™ — M" is smooth
in every small cube »r € My, discontinuous on interfaces between neighboring cubes
s, and measure-preserving. )

Construct the “short” discrete flow o1, ...,0, connecting Id and o in Dy and
satisfying the conclusion of Theorem 7.18. Omne can show that there exists a dis-
continuous flow n;, 0 <t < 1, that interpolates the flow oy,..., 0 at the moments
t=yg/kforall j=1,...,k (= =0j00;-10---001 ) and has the same order
of length:

niYs < const - t{a;}F.

Therefore, the composition of the paths n; and &, is a discontinuous flow con-
necting Id and ¢ and having a controllable length.
The final step is the smoothening of the latter flow provided by the following

LEMMA 7.19. Let ¢ € D(M™), and let ¢ : M™ — M"™ be a discontinuous
measure-presermng flow such that (o = Id, (4 = ¢, and (4 18 smooth in every
small cube 32 € My. If n > 3, then for every ¢ > 0 there exists a smooth flow
gy M — M™, 0 <t <1, with the same boundary conditions g9 = Id, g1 = ¢ as

(e, and such that ({g:}5 < L{( )8 +e.

The flow g coincides with (; in every cube ss = {x € s | distpn (2,05) > 6}
for some small 6. The most subtle point in extending the flow is to define it on the
6-neighborhood of all subcube faces, the “froth-like” domain Ks := (J, ¢ (5 \
xs5). Here we use the fact that the fundamental group of the domain Ky is trivial
(m1(K5) =0), which is true if n > 3. Theorem 7.9 (and Theorem 7.4 as a particular
case) follows; see [Shnl] and analogous arguments in the proof of Theorem II1.3.3

in Section II1.3 for the details.

The proof of Theorem 7.7 is similar, but more complicated; we refer to [Shn2].

7.G. Generalized flows. We now return to the problem of finding the shortest
paths in the group of volume-preserving diffeomorphisms D(M™). We already know
that there exist pairs of diffeomorphisms that cannot be connected by a smooth
flow of minimal length. Is there, however, some wider class of flows (say, discon-
tinuous or measurable) where the minimum is always attainable? This problem
has been resolved by Y. Brenier [Brel]. He found a natural class of “generalized

incompressible flows” for which the variational problem is always solvable.
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The generalized flows (GF) are a far-reaching generalization of the classical flows,
where fluid particles are not only allowed to move independently of each other, but
also their trajectories may meet each other: The particles may split and collide.
The only restrictions are that the density of particles remains constant all the time
and that the mean kinetic energy is finite. The formal definition of the GF is
presented below.

Let X = C([0,1]; M™) be the space of all parametrized continuous paths x(¢) in
M". Fix a diffeomorphism g € D(M™).

DEFINITION 7.20. A generalized flow (GF) in M™ connecting the diffeomor-
phisms Id and g 1s a probabilistic measure p{dz} in the space X satisfying the

following conditions:

(i) For every Lebesgue-measurable set A C M™, and every t € [0,1],
plz(t) | z(ty) € A} = mes A

(this may be called incompressibility).
(ii) For p-almost all paths x(t), the action along each of them is finite

it =5 /1

and so 1s the “total action”

t
szt < 00,
t

Ox(t)
0

i{ut = [ i{z()}pfde} < oo
/

(finiteness of action).
(iii) For p-almost all paths x(t), the endpoints x(0) and x(1) are related by means
of the diffeomorphism g: x(1) = g(«(0)) (boundary condition).

Thus, a generalized flow p{dxz} can be thought of as a random process. In general
this process is neither Markov nor stationary. This notion is very similar to the
notion of a polymorphism, appearing in the work of Neretin [Ner2]. Polymorphisms
arise as a natural domain for the extensions of representations of diffeomorphism

groups.

Every smooth flow g; C D(M) may be regarded as a generalized flow if we
associate to ¢; the measure (4, {dz} such that for every measurable set Y C X its

fi(g,y-measure is equal to the measure of points whose trajectories belong to Y

/,L(gt)(Y) = mes{a € M"‘{gt(a)} €Y}
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This measure is concentrated on the n-dimensional set of trajectories ¢4(a) of the
flow g¢;.

Another example of a GF is a multifiow, that i1s, a convex combination of GF's,
corresponding to smooth flows. In other words, in the multiflows different portions
of fluid move (penetrating each other, see Fig.54) in different directions within the

same volume! Generic G F's are much more complicated than multiflows.

THEOREM 7.21 [Brel]. For every diffeomorphism g € D(M™) there always ex-
ists a generalized flow p (with the boundary conditions Id and g) that realizes the

manimum of action,
iut = rrllli,ni{u’},
where the minimum is taken over generalized flows p' connecting the identity 1d

and the diffeomorphism g¢.

Thus, although in our example the infimum cannot be assumed among smooth
flows, there exists a generalized flow minimizing the action (as well as the length);

see also [Roe].

\/

\/

(a) (b)

FIGURE 54. Trajectories of particles in the GF, corresponding to (a)
the flip of the interval [0,1] and (b) the interval-exchange map.

In fact, Theorem 7.21 is even more general, since it applies equally to discontin-
uous and to orientation-changing maps ¢g. In the latter case the minimizing GF is
especially interesting because the fluid is being turned “inside out”! No measurable
flow, or even multiflow, can produce such a transformation. These problems are

nontrivial even in the one-dimensional case.
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Here are two beautiful examples, found by Brenier. Let gi(x) and g¢a(x) be
the transformations of the segment [0, 1], defined, respectively, as a flip-flop map
gi(x):=1—x, x €[0,1], and as an interval-exchange map ¢, : [0,1/2] < [1/2,1].

Figures 54a and 54b display the trajectories of fluid particles for the minimal
flows connecting Id with g1 and g, respectively. In the first case, each fluid particle
splits at ¢ = 0 into a continuum of trajectories of “smaller” particles; they move
independently, pass through all the points of the segment, and then coalesce at
t = 1. In the second case, the GF is a multiflow (more precisely, a 2-flow). For
more examples of exotic minimal GF's, see [Brel,2].

An important question is to what extent these minimal GF's may be regarded
as generalized solutions of the Fuler equation. The similarity between these gen-
eralized flows and the “true” solutions extends very far: For example, for every
GF p there exists a scalar function p(«,t), playing the role of pressure [Bre2], such
that for almost every fluid particle its acceleration at almost every (z,t) is equal to
—Vzp ! The minimal GF's are generalized solutions of the mass transport problem
(of the so-called Kantorovich problem). However, their hydrodynamical meaning

is not yet completely understood.

7.H. Approximation of fluid flows by generalized ones. Generalized flows
have proved to be a powerful and flexible tool for studying the structure of the space
D(M™) of volume-preserving diffeomorphisms. The key role here is played by the

following approximation theorem.

THEOREM 7.22 [Shnd]. Let g € D(M™), n > 3, be a smooth volume-preserving
diffeomorphism. Then each generalized flow p{dx} connecting Id and g can be ap-
prozimated (together with the action) by smooth incompressible flows: There exists
a sequence of smooth incompressible flows ggk) connecting Id and ¢ such that as
k — oo,

(i) the measures g0 weak*-converge in X to the measure u;

t
(ii) the actions along ggk) converge to the total action along p{dz}:

cr (k .
iae ) — ind.
Here weak*-convergence means that for every bounded continuous functional
ple()} on X,

(p{x}, /«ngk){dl'}> — (p(z), p{dx}), as k — oco.

We shall not present here the (lengthy) proof of this theorem, referring to [Shn5|
instead. An immediate consequence of this theorem and formula (7.2) is the fol-

lowing estimate on the distances in D(M™), n > 3.
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COROLLARY 7.23. If n > 3, then for every diffeomorphism g € D(M™),
dist(Id, ¢) = inf(2 - j{u}5)"/*,

where the infimum is taken over all generalized flows p connecting Id and g.

Thus, to estimate the distance between Id and ¢ € D(M"), we may try to
construct a GF connecting Id and ¢ and having the smallest possible action. Then

Lemma 7.23 guarantees a majorant for the distance.

EXAMPLE 7.24 (=THEOREM 7.4). Let us estimate the diameter diam D(M™)
of the group of volume-preserving diffeomorphisms of the n-dimensional unit cube.
An accurate computation of all the intermediate constants in the proof of Theorem
7.4 for n = 3 yields diam D(M?) < 100, which is very far from reality. Here we

prove
THEOREM 7.4" [Shnb]. If the dimension n > 3, then diam D(M™) < 24/n/3.

PROOF. We use a construction close to that of Y. Brenier, who proved that all
fluid configurations on the torus are attainable by GF's [Brel].

The required GF is constructed as follows. At ¢ = 0 every fluid particle in
the cube splits into a continuum of particles moving in all directions. Having
originated at a point y, this “cloud” (of cubical form) expands, and at ¢+ = 1/2 it
fills out the whole cube M™ with a constant density. During the second half of the
motion (1/2 <t < 1) the “cloud” shrinks and collapses at t = 1 to the point ¢(y).
All “clouds” expand and shrink simultaneously, and the overall density remains

constant for all ¢.

More accurately, suppose that the cube M™ is given by the inequalities |z;| <
oL
in the faces of M™. For each initial point y € M"™ and a velocity vector v € M™,

t=1,...,n. Let T be a discrete group of motions generated by the reflections

we define the corresponding billiard trajectory in M™ for the time 0 < ¢ < 1/2, i.e.,
the path x, ,(¢) C M, where

Ty o(t) :=T(y + 4vt) N M".

Given a point y, the end-point mapping ¢, : v — z,,(1/2) is a 2"-fold covering

of M", and moreover, ¢, is volume-preserving. These billiard trajectories are

trajectories of the “microparticles” into which every initial point y splits. At t = %

the microparticles fill M™ uniformly, and after this moment they move along other

billiard trajectories, gathering at the point ¢(y) at the end. All particles split and

move independently in the same manner; incompressibility is fulfilled automatically.
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Let My, M,, M., M, be 4 copies of the cube M™ with coordinates y,v, z, u, re-
spectively. Define a set Q C M, x M, x M. x M, that consists of all four-tuples
w = (y,v,z,u) € Q such that z = g(y) and such that the end-points of the corre-
sponding trajectories coincide: x, ,(1/2) = z. ,(1/2).

Denote by dw = 27"dydv the normed volume element on 2. Then the required
GF i is the following random process in M™ with probability space (€2, dw):

2y.0(41), 0<t<1/2,
T4 —4t), 1/2 <t <1,

o(t,w) = {

where w = (y,v,¢(y),u) € Q. The action of this GF is

1/2
1 2
il = —/ 1602 dv = — / 1622 dz = —.
> Jur, 2 3
—1/2

By virtue of Corollary 7.23 this implies that the distance between the identity

Id and the diffeomorphism ¢ (which has been chosen arbitrarily) is majorated as

follows
dist(Id, ¢) < +/2-i{p} = 24/n/3.
Hence, the diameter of the group D(M"™) has the same upper bound. O

Analogous (though much longer) reasoning proves Theorem 7.9', which mi-
norates the Holder exponent «,, n > 3, for the embedding of D(M™) into
L*(M,R"™) : a, > 2/(n+4); see [Shnb]. Given ¢, we construct explicitly the
GF satisfying that estimate. Our constructions are possibly not optimal, and a
natural question is to find the best possible estimate for the diameter and for the

exponent «,. Is the latter equal to or less than 17 Both possibilities are interesting.

7.1. Existence of cut and conjugate points on diffeomorphism groups. One
more application of the techniques of generalized flows is the proof of the existence

of cut points on the space D(M™); cf. Section 6.

DEFINITION 7.25. Let g4 C D(M™) be a geodesic trajectory on the group of
diffeomorphisms. We call a point g;, on the trajectory the first cut of the initial
point go along ¢, if the geodesic ¢g; has minimal length among all curves connecting
go and ¢, for all 7 < t., and it ceases to minimize the length as soon as 7 > ¢,
(i.e., for every 7 > t. there exists a curve g¢; connecting ¢o and g, whose length is
less than the length of the segment {g¢] 0 <t < 7}). We call a point ¢;, the first
local cutif it is the first cut, and the curve g; may be chosen arbitrarily close to the

geodesic segment {g¢| 0 <t < 7} for every 7 > t,.
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On a complete finite-dimensional Riemannian manifold, the cut point of a point
go comes no later than the first conjugate point of gg. The example of a flat torus
shows that one can have cut points but no conjugate points. But in the finite-
dimensional case, the first local cut point is always a conjugate point; so, all cut
points on the torus are nonlocal, which is evident. In the case of diffeomorphism
groups the precise relationship between cut points and conjugate points has yet to
be clarified.

In the two-dimensional case (n = 2) the conjugate points on certain geodesics
in D(T?) were found by G. Misiolek [Mis2]; see Section 6. It is curious that for
n > 3 there are local cut (and, probably, conjugate?) points on every sufficiently

long geodesic curve. This is a consequence of the following result.

THEOREM 7.26 [Shnb]. Let {g;| 0 <t < T} C D(M™) be an arbitrary path on
the group and n > 3. If the length of the path exceeds the diameter of the group,
g }d > diamD(M™), then there exists a path {g}| 0 <t < T} C D(M™) with the

same endpoints go and g that

(1) us uniformly close to g4 (i.e., for every e > 0 there exists a path g; such that
distp(ary(gt,9¢) < & for every t € [0,T]) and
(ii) has a smaller length: ({g)}L < t{g:}L.

In other words, if the geodesic segment ¢, is long enough (({g;}{ > diam D(M™)),
then there exists a local cut point ¢;, with ¢, < T. A shorter path can be cho-
sen arbitrarily close to the initial geodesic, which on a complete finite-dimensional

manifold would imply the existence of a conjugate point.

PROOF. Let hy, 0 <t < T, be a path in D(M™) connecting ¢go and g7 and such
that 5
t{he}y < diam D(M") + 5 < Hails

for some small 6 > 0. Such a path exists by the definition of diameter.

Assume that the parametrization of the paths ¢; and hy is chosen in such a
manner that ||g¢]] = const, HhtH = const, and hence we have the inequality
i{he 3l < j{ge}d for the actions as well.

Let (i, , ftn, be the GFs corresponding to the classical flows ¢4, hy. Consider the
convex combination fi of the measures pg, , pip, in the space X @ g :=(1— A)p,, +

Aptp, for some 0 < A < 1. Then the total action for the generalized flow [ 1s

i{into = (1 =N) j{ado + X i{hds <ilaels-

To return to the classical flows we use approximation Theorem 7.22. It guar-

antees that there exists a smooth flow f;,0 < ¢ < T connecting gy and g7 and
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weakly*-approximating the GF p together with its action, so that j{f:}{ < ij{g:}{.
The flow f;, certainly, depends on A, and it is easy to see that for small A the flow
fi is L?-close to g¢;:

distr2(fe, g0) < C - A2,

Hence, for sufficiently small A, these two flows are close on the group by virtue of
Theorem 7.9: distp(arny(fi,9¢) < ¢ for all 0 < ¢ < T. This completes the proof of
Theorem 7.26. g

For other applications of the generalized flows and for more detail we refer to

[Shnb, Shn§|.

68. Infinite diameter of the group of Hamiltonian

diffeomorphisms and symplecto-hydrodynamics

The picture changes drastically when we turn from the group of volume-preserving
diffeomorphisms of three- (and higher-) dimensional manifolds to area-preserving
diffeomorphisms of surfaces. Practically none of the aspects under consideration
in the preceding section (such as metric properties and diameter of the group,
existence of solutions for the variational problem of Cauchy and Dirichlet types,
or completion of the group and description of attainable diffeomorphisms) can be
literally transferred to this case. It is natural to describe the properties of the
groups of area-preserving diffeomorphisms of surfaces in the more general setting

of diffeomorphisms of arbitrary symplectic manifolds.

DEFINITION 8.1. A symplectic manifold (M,w) is an even-dimensional manifold
M?" endowed with a nondegenerate closed differential two-form w.

A group of symplectomorphisms consists of all diffeomorphisms ¢ : M — M that
preserve the two-form w (i.e., ¢*w = w). We will be considering symplectomor-
phisms belonging to the identity connected component in the symplectomorphism
group, and particularly those symplectomorphisms that can be obtained as the
time-one map of a Hamiltonian flow. By the Hamiltonian flow we mean the flow
of a time-dependent Hamiltonian vector field (having a single-valued Hamiltonian
function). Such symplectic diffeomorphisms of M are called Hamiltonian. Denote
the group of Hamiltonian diffeomorphisms by Ham(M ) and the corresponding Lie
algebra of Hamiltonian vector fields by ham(M).

For a two-dimensional manifold the symplectic two-form w is an area form, and

the group of area- and mass center-preserving diffeomorphisms SDiffy(M?) coin-
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cides with the group Ham(AM). The role of the group Ham(M ) in plasma dynamics
is similar to that of the group SDiff(M) in ideal fluid dynamics.

The study of geodesics of right-invariant metrics on symplectomorphism groups
is an interesting and almost unexplored domain. It might be called symplecto-
hydrodynamics, and it is a rather natural generalization of two-dimensional hy-
drodynamics. The relation becomes even more transparent for complex or almost
complex manifolds, where the metric ( , ) is related to the symplectic structure w

by means of the relation (£,n) = w(£,in).
The symplecto-hydrodynamics in higher dimensions differs drastically from that

in dimension two. For instance, every bounded domain on the plane can be em-
bedded in any other domain of larger area by a symplectomorphism (i.e., by a
diffeomorphism preserving the areas). Already in dimension four this is not always
the case: Even some ellipsoids in a symplectic space cannot be embedded in a
ball of larger volume by a symplectomorphism [Gro]. For example, the ellipsoid
;—2(p% + %) + b%(p% + ¢2) < 1 cannot be sent into a ball p} + ¢} + p3 + ¢5 < R?
of bigger volume if R < max(a,b). Moreover, a “symplectic camel” (a bounded
domain in the symplectic four-dimensional space) cannot go through the eye of a
needle (a small hole in the three-dimensional wall), while in volume-preserving hy-
drodynamics such a percolation through an arbitrarily small hole is always possible
in any dimension.

Thus the preservation of the symplectic structure w of the phase space M by
the Hamiltonian phase flow implies some peculiar restrictions on the resulting dif-
feomorphisms, making symplectomorphisms scarce among the volume-preserving
maps in dimensions > 4. (Moreover, the group of symplectomorphisms of a sym-
plectic manifold is C%-closed in the group of all diffeomorphisms of the manifold,
l.e., in general, a volume-preserving diffeomorphism cannot be approximated by
symplectic ones [Ell, Gro]). These restrictions might even imply some unexpected
phenomena in statistical mechanics, where, in spite of the symplectic nature of the
problem, one usually takes into account the first integrals and volume preserva-
tion only and freely permutes the particles of the phase space. One may also hope
that symplecto- (contacto-, conformo-) hydrodynamics will find other physically
interesting applications. In this section we will describe a few results known in
symplecto-hydrodynamics.

We will concentrate mostly on two main metrics with which the group Ham(M )
can be equipped. The first one is the right-invariant metric, which arises from the
kinetic energy and is responsible for hydrodynamic applications (we follow [ER1,2]).

The second one is the bi-invariant metric introduced in [Hof] (and studied in [E-P,
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LaM]), which has turned out to be a powerful tool in symplectic geometry and

topology.

8.A. Right-invariant metrics on symplectomorphisms. Let (M?*" w) be

a compact exact symplectic manifold. This means that the symplectic form w is a
differential of a 1-form 6 : w = d6.

Such a manifold neccessarily has a nonempty boundary. Otherwise the integral

/ w":/d(e/\w"_l
M

would vanish, which is impossible since the 2n-form g = w™ is a volume form on

M. We fix a Riemannian metric on M with the same volume element.

DEFINITION 8.2. The right-invariant L?-metric on Ham(M ) is determined by
the LP-norm (p > 1) on Hamiltonian vector fields ham(M ) at the identity of the
group (for hydrodynamics, one needs the L?-case corresponding to the kinetic en-
ergy of a fluid). Given a path {¢;| t € [0,1]} C Ham(M ), we define its LP-length
(y({g+}) by the formula

6({0)) / 190t = / (M/ 1) a

The length functional ¢, gives rise to the distance function dist, on Ham(M) by

dist,(f,¢) = inf (,({g:}),

where the infimum is taken over all paths ¢; joining go = f and ¢; = ¢. Finally,

define the diameter of the group by

diam,(Ham(M)) := sup  disty(f,9).
f,g€Ham (M)

THEOREM 8.3(=7.5") [ER2]. The diameter diam,(Ham(M)) of the group of
Hamiltonian diffeomorphisms Ham(M) is infinite in any right-invariant LP-metric.

Note that the strongest result is that for the L!-norm, since
Cp(x) > C(M,p) - l1(*).

REMARK 8.4. Contrary to the volume-preserving case (for dim M > 3), the
infiniteness of the diameter of the symplectomorphism group has a local nature,

and 1t is not related to the topology of the underlying manifold. The source of the
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FIGURE 55. Profile of the Hamiltonian function and the trajectories of
the corresponding flow, which is “a long path” on the group Ham(B?).

distinction between these two cases is in the different topologies of the corresponding
groups of linear transformations. The fundamental group of the group of linear
symplectic transformations Ham(2n) is infinite, while it is finite in the volume-
preserving case of SL(2n) for n > 1.

To give an example of a “long path” in a group of Hamiltonian diffeomorphisms,
we consider the unit disk B*> C R? with the standard volume form. Then such a
path on Ham(B?) is given, for instance, by the Hamiltonian flow with Hamiltonian
function H(z,y) = (2% +y*—1)? for a long enough period of time (Fig.55). The final
symplectomorphism is sufficiently far away from the identity diffeomorphism Id €
Ham(B?), since two-dimensionality prevents “highly twisted clusters of particles”
to untwist via a short path.

This allows one to present the following example of an unattainable diffeomor-
phism of the square [Shn2]. It corresponds to the time-one map of the flow whose

Hamiltonian function is depicted in Fig.56. It has “hills” of infinitely increasing

height and with supports on a sequence of disks convergent to the boundary of the

square.

We will prove Theorem 8.3 for the case of the L?-norm and the group of sym-
plectomorphisms of the ball B?" that are fixed on the boundary dB [ER1]. The

main ingredient of the proof is the notion of the Calabi invariant.

8.B. Calabi invariant. Consider the group Hamy(B) of the Hamiltonian dif-



§8. INFINITE DIAMETER OF THE GROUP OF SYMPLECTOMORPHISMS 261

A

FIGURE 56. An unattainable diffeomorphism of the square.

feomorphisms of the ball (B?", w) stationary on the sphere 9B (w being the dif-

ferential of a 1-form 6, say, the standard symplectic structure w = > dp; A dg¢; in
RZn)‘

PROPOSITION 8.5. Guven a I-form 6 on the ball B and a Hamiltonian diffeo-
morphism g € Hamy(B) fized on the sphere OB, there exists a unique function
h : B*" — R vanishing together with its gradient on OB and such that

(8.1) 6 — g*6 = dh.

PROOF. The 1-form 6 — ¢*6 is closed (d(6 — ¢*0) = df — ¢*df = w — g*w = 0)
and hence exact in the ball B?". Therefore, it is the differential of some function
h. The vanishing property for h is provided by the condition that ¢ is steady on
the boundary. O

LEMMA—DEFINITION 8.6. The integral of the function h over the ball B does not
depend on the choice of the 1-form 6 satisfying d8 = w. The Calabi invariant of the
Hamiltonian diffeomorphism g is this integral divided by (n + 1):

Cal (g) 1= — /hw".

n-+1
B
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PRrROOF. The form 6 is defined modulo the differential of a function. Under the
change 8 — 6 = 6 + df, the function h becomes h = h + (f — g*f), since the
differential commutes with pullbacks. The forms (¢* f)w™ and fw™ have the same
integrals, since the map ¢ preserves the symplectic structure w. Then the integral

of h is preserved:

[ [ fur=syon= 1o —cu )

B B B B
U

Lemma—definition 8.6 also holds for an arbitrary symplectomorphism ¢ of the
ball, fixed on the boundary. However, for Hamiltonian diffeomorphisms, there is

the following alternative description of the Calabi invariant.

Let hamg(B) be the Lie algebra of the group Hamy(B) of Hamiltonian diffeo-
morphisms of the ball. It consists of the Hamiltonian vector fields vanishing on the
boundary sphere dB. We shall identify it with the space of Hamiltonian functions
H, normalized by the condition that H and its differential both vanish on 0B.
(Notice that the definition of the Hamiltonian function corresponding to a vector
field from hamg(B) is the infinitesimal version of relation (8.1).)

Let ¢ € Hamp(B) be a Hamiltonian diffeomorphism of the n-dimensional ball
B. Consider any path {g¢| 0 <t < T, ¢(0) =1d, ¢(T) = ¢g} on the group Hamy(B)
connecting the identity element with g. The path may be regarded as the flow
of a time-dependent Hamiltonian vector field on B whose normalized Hamiltonian

function H; (defined on B?™ x [0,T]) vanishes on B along with its differential.

THEOREM 8.7 [Ca]. The integral of the Hamiltonian function Hy over B?" x
[0, T] s equal to the Calabi invariant of the symplectomorphism g:

T

(8.2) Cal (g):/ /Ht W | dt.

In particular, this integral does not depend on the connecting path, that is, on the
choice of time-dependent Hamiltonian Hy, provided that the time-one map ¢(T) = g
18 fized.

Geometrically, the Calabi invariant is the volume in the (2n 4 2)-dimensional
space {(x,t,2)} = B*" x [0,T] x R under the graph of the function (x,t) — z =
Ht(l')
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LEMMA 8.8. The Calabi invariant Cal : Hamp(B) — R is the group homomor-
phism of the group of Hamuiltonian diffeomorphisms of B (fized on the boundary)

onto the real line.

PROOF OF LEMMA. Let g1, g2 € Hamy(B) — R be two Hamiltonian diffeomor-

phisms, and ¢ = g3 0 g1. We have to show that the corresponding functions & and
hi, ¢ = 1,2, vanishing on the boundary 0B and determined by the condition (8.11),

satisfy the relation
/hw":/hlw"—l—/hzwn.

dh=80—g"0=10—g30 + 936 — (920 91)"0 = dha + g5(dh1),

The latter holds, since

and because gy preserves the symplectic form w. O

REMARK 8.9. The kernel of the Calabi homomorphism (formed by the Hamil-
tonian diffeomorphisms whose Calabi invariant vanishes) is a simple group, the
commutant of Hamp(B); see [Ban]. (The commutant of a group consists of the
products of commutators of the group elements.)

The fact that the Hamiltonian diffeomorphisms whose Calabi invariant vanishes
form a connected normal subgroup is evident (one can multiply the time-dependent
Hamiltonian by a constant). The Lie algebra of this subgroup consists of the Hamil-
tonian vector fields whose normalized Hamiltonian functions have zero integral.
The fact that the subgroup consists of the products of commutators in Hamg(B)
is similar to the following. The Hamiltonian functions with vanishing integral are
representable as finite sums of Poisson brackets of functions from hamgs(B).

The subgroup of Hamiltonian diffeomorphisms with vanishing Calabi invariant
has an infinite diameter, just as the ambient group of all Hamiltonian diffeomor-
phisms of the ball [ER2].

More generally, the Calabi invariant is the homomorphism of the group Sympas(B)
of all symplectomorphisms of the ball (fixed on the boundary) to R. We do not
know whether the group of symplectomorphisms Sympg(B) of a 2n-dimensional
ball (fixed on the boundary) and this normal subgroup {Cal(¢) = 0} are simply
connected. The group Symps(B) is known to be contractible for n = 1 [Mosl] and
for n = 2 [Gro].

PrOOF OF THEOREM 8.7. Let {g; € Hamy(B) |0 <t < T, ¢(0) =1d, ¢(T) =
¢} be a path of Hamiltonian diffeomorphisms with the time-dependent Hamiltonian

function H;.
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Owing to the homomorphism property of Cal , it is enough to prove the relation

T

/hw":(n—l-l)/ /Htw" it

B 0

for an “infinitesimally short” period of time [0, 7). In other words, we differentiate

this relation in ¢ at t = 0, and will prove the identity

/(%h) " = (n—l—l)/HO o,

Note that the time derivative at t = 0 of the left-hand side of formula (8.1) for
the diffeomorphism g¢; is, by definition, minus the Lie derivative of the 1-form 6

along the Hamiltonian vector field v = %|t=09t generated by the function H = Hy:

(8.3) L6=d (%h) |

We apply the homotopy formula L, = i,d + di, (see Section 1.7.B) to the Lie
derivative L,6 and use the definition of the Hamiltonian function —dH = i,w,

where w = d#6:
(8.4) —L,0 = —i,df — di,0 = d(H —i,0).

From formulas (8.3-4) one finds the derivative d/dt h:

d
Ch—H—i6
dt !

(Actually, formulas (8.3-4) allow one to reconstruct the derivative up to an additive
constant only, which turns out to be zero by virtue of the vanishing boundary
conditions for all H, v, and h.)

Now, Theorem 8.7 follows from the following lemma.

- [y on—n [ mon.

B

LEMMA 8.10.

Proor oF LEMMA. Owing to the properties of the inner derivative operator 2,

—/iUG/\w":—/G/\iv(w")

B B

:—n/e/\ivw/\w"_l:n/e/\dﬂ/\w"_l.
B B

we have
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Moving the exterior derivative d to the 1-form 6 gives

n/dG/\H/\w"_l—n/G/\H/\w"_l:n/HuJ",
B oB B

since the function H vanishes on B. This completes the proof of Lemma 8.10 and

Theorem 8.7. O

REMARK 8.11. Theorem 8.7 can be reformulated as follows. Define the Cal-

abi integral of a Hamiltonian function H as [ Hw™. This formula defines a linear
B
function (or an exterior 1-form) on the Lie algebra hama(B).

The Calabi form on the corresponding group Hamp(B) is the right-invariant dif-
ferential form coinciding with the Calabi integral on the Lie algebra hams(B). The
Calabi form is actually a bi-invariant (i.e., both left- and right-invariant) 1-form
on the group of Hamiltonian diffeomorphisms Hams(B). It immediately follows
from the fact that the Calabi integral, defined on hamgy(B), is invariant under the
adjoint representation of this group Hamg(B) in the corresponding Lie algebra
hamg(B). In turn, the latter holds because a symplectomorphism sends the Hamil-
tonian vector field of H to the Hamiltonian vector field of the transported function,
while preserving the form w”. Hence, the symplectomorphism action preserves the
integral.

The Calabi invariant Cal (¢) of a Hamiltonian diffeomorphism ¢ in Hamg(B) is
the integral of the Calabi form along a path ¢; in Hams(B) joining the identity
diffeomorphism with ¢ .

THEOREM 8.7". The Calabi form is exact: The integral depends only on the final

point g and not on the connecting path.

Although we have already proved the exactness of the Calabi form in slightly
different terms, we present here a shortcut to prove its closedness. It would im-
ply exactness if we knew that the group of Hamiltonian diffeomorphisms is simply
connected, i.e., that every path connecting the identity with ¢ in Hams(B) is ho-
motopical (or at least homological) to any other. Unfortunately, we do not know

whether this is the case in all dimensions (see Remark 8.9).
PROOF OF CLOSEDNESS. We start with a well-known general fact:

LEMMA 8.12. For any right-invariant differential form « on a Lie group,

da(&,n) = a([€,n])
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for every pair of vectors £,n in the Lie algebra.

(This formula follows from the definition of the exterior differential d; see Section
1.7.B). Therefore, the differential of the Calabi form is minus the integral of the

Poisson bracket of two Hamiltonian functions.

LEMMA 8.13. Let H be a Hamaltonian function defined on the ball B and con-
stant on the boundary OB. Then the Poisson bracket of H with another Hamailtonian

function F has zero integral over B.

ExaAMPLE &.14. For two smooth functions F' and H in a bounded domain D of
the plane (p, q),

/{F,H} dp A dg =0,
D

provided that H is constant on 0D (i.e., that the Hamiltonian field of H is tangent
to 0D). Indeed,

/{F,H} dp/\dq:/dF/\dH:— HdF =-H | dF =0,
D D aD aD

since H is constant on the boundary 0D.

PROOF OF LEMMA 8.13. The Poisson bracket {F, H} is (minus) the derivative
of F' along the Hamiltonian vector field of H. Consider the 2n-form in B that is
the result of transporting the 2n-form F w™ by the flow of H. This flow leaves the
ball B invariant, since H is constant on the boundary 0B, and the corresponding
Hamiltonian flow is tangent to 0B.

Then the integral of the Poisson bracket {F, H} is equal to (minus) the time
derivative of the integral over B of this resulting form. But this Hamiltonian flow
preserves w” and hence preserves the integral. Thus, the time derivative of the

integral of the transported form vanishes, and so does the integral of the Poisson
bracket. O

REMARK 8.15. Similarly, for any two smooth functions on a closed compact
symplectic manifold, the integral of their Poisson bracket vanishes. Here one might
replace one of the functions by a closed (nonexact) differential 1-form; it does
not change the proof. Moreover, every function on a connected closed symplectic
manifold whose integral vanishes can be represented as a sum of Poisson brackets

of functions on this manifold [ArnT].

The closedness of the Calabi form (the invariance of integral (8.2) under the
deformations of the path) follows immediately from Lemmas 8.12 and 8.13: The
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differential of the Calabi form is the integral of (minus) the Poisson bracket of any

two functions from Symps(B), which always vanishes. O

Now we are ready to prove the infiniteness of the diameter of the symplectomor-

phism group.

PROOF OF THEOREM 8.3 FOR Hamy(B?"). Let the ball B*" be equipped with
the standard symplectic structure, and let ;1 = w™ denote the corresponding volume
form. The (y-length of a path {g;} in the right-invariant metric on Hamy(B)
(g¢ being the flow of a time-dependent Hamiltonian function H(x) joining the
endpoints go = Id and ¢; = ¢) is given by

1 1/2

o= [ [155 2 ) a

1/2
= [ { [ 19801 u

0

1
dt = / IV Hy | 1) dt.
0

Then the desired estimate follows from the Poincaré and Schwarz inequalities:

1 1
(o) = [ IV H eyt = e [ 17l o
0 0

1 1
2 C2/HHtHL1(B) dt > CZ//Ht pdt =cy - Cal (g).
0 0 B

Owing to the surjectivity of the map Cal : Hamg(B) — R, one can find a Hamil-
tonian diffeomorphism (see Remark 8.4) with an arbitrarily large Calabi invariant

and therefore arbitrarily remote from the identity. O

Analogous statements for the right-invariant metric generated by the L!-norm
on vector fields ham(M) and for nonexact symplectomorphisms (Theorem 8.3 in

full generality) require noticeably more work [ER2].

8.C. Bi-invariant metrics and pseudometrics on the group of Hamilton-
ian diffeomorphisms. The group Ham (R?") of (compactly supported) Hamil-
tonian diffeomorphisms of the standard space R*" (or the group of symplectomor-
phisms of a ball that are stationary in a neighborhood of its boundary) admits
interesting bi-invariant metrics (see [Hof, E-P, H-Z, LaM, Plt, Don]). The right-
invariant metrics discussed above are defined in terms of the norm of vector fields,
which requires an additional ingredient, a metric on R?”. On the contrary, the

bi-invariant metrics are defined solely in terms of the Hamailtonian functions.
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DEFINITION 8.16 [E-P]. Any LP-norm (1 < p < oo) on the space C§°(R?") of
compactly supported Hamiltonian functions assigns the length [, to any smooth
curve on the group Ham(AM). Given the Hamiltonian function Hy € C§°(R?") of a

flow from f to ¢, we define

1
bF9) = [ WEillen) .
0

The length functional generates a pseudometric p, on the group Ham(AM) (i.e.,
a symmetric nonnegative function on Ham(M) x Ham(M) obeying the triangle
inequality).

The pseudometrics p, are bi-invariant. This immediately follows from invariance

of the LP-norm under the adjoint group action: The integral

VI, o, = /]R | H(x) | "

persists under symplectic changes of the variable . More generally, one can start

with an arbitrary symplectically invariant norm on the algebra ham (M).

In particular, the distance poo(Id, f) in the L*-(pseudo)metric between any
Hamiltonian diffeomorphism f € Ham(R?") and the identity element Id reads

1

pelld, ) =gt [ sup | Hz.t) | .

0

where the infimum is taken over all Hamiltonian functions H(x,t) corresponding
to flows starting at Id and ending at f. By definition, poo(f,g) := po(Id, fg~1).
This bi-invariant (pseudo-)metric p is equivalent to the one introduced by Hofer

[Hof]:

(8.5) pr(Id, f) = i%f/ (sgp H(x,t) — ir;f H(x,t)) dt.

0
We use the notation po, in the sequel for both p, and p/ .

THEOREM 8.17 [Hof]. The (pseudo-)metric po is a genuine bi-invariant metric

on Ham(M); i.e., in addition to positivity and the triangle inequality, the relation
pool(fryg) =0 tmplies that f = g.

Lalonde and McDuff [LaM] showed that p., defined by the same formula (8.5)
for any symplectic manifold (M, w), is a true metric on the group Ham(M ). They
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used it to prove Gromov’s nonsqueezing theorem in full generality for maps of

arbitrary symplectic manifolds into a symplectic cylinder.

It turns out, however, that the limit case p = oo is the only LP-norm on Hamil-
tonians that generates a metric. For 1 < p < oo there are distinct symplecto-
morphisms with vanishing p,-distance between them [E-P]. The features of the
(pseudo)metrics above are deduced from special properties of the following sym-
plectic invariant, first introduced by Hofer for subsets of R?™ and called the dis-
placement energy.

Let p be a bi-invariant (pseudo)metric on the group of Hamiltonian diffeomor-

phisms Ham(M) of an open symplectic manifold M.

DEFINITION 8.18. The displacement energy e(A) of a subset A C M is the
(pseudo)-distance from the identity map to the set of all symplectomorphisms that

push A away from itself: e(A) = inf { p(Id, f) }, where the infimum is taken over
all f € Ham(M) such that f(A)N A = 0. (If there is no such f, we set e¢(A4) := cc.)

THEOREM 8.19 [E-P]. Let p be a bi-invariant metric on Ham(M). Then the
displacement energy of every open bounded subset A C M is nonzero: e,(A) # 0.

For instance, for a disk B C R? of radius R, the displacement energy in Hofer’s
metric is 7R? [Hof]. Furthermore, the displacement energy is nonzero for every
compact Lagrangian submanifold of M [Che]. (A submanifold L of a symplectic
manifold (M?*" w) is called Lagrangian if dimL = n and the restriction of the

2-form w to L vanishes.)

PROOF OF THEOREM 8.19. First notice that for the group commutator [¢, ]
of any two elements ¢, € Ham(M ) one has

(8.6) p(1d. [6,4]) < 2min(p(Id, §), p(Id, ).

This follows from the bi-invariance of the metric p and the triangle inequality.
Choose arbitrary diffeomorphisms ¢, € Ham(M) such that their supports are
in A and [¢,] # Id. Then Theorem 8.19 will be proved with the following lemma:

LEMMA 8.20. p(Id,[¢,9]) < 4e,(A).

PROOF OF LEMMA. Assume that a Hamiltonian diffeomorphism h € Ham(M)
displaces A : h(A)NA = . Then the diffeomorphism 0 := ¢h~'¢~1h has the same
restriction to A4 as ¢. Hence, ¢ 1¢¢ = 8716, Utilizing the bi-invariance and the
inequality (8.6), we have

p(1d, [6,4]) = p(¢, ¢~ b)) = p(eh, 671 9p8) < 2p(1d, ) < 4p(1d, 7).

Minimization over h completes the proof. O
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COROLLARY 8.21 [E-P|. The (pseudo)metric p, on Ham(M) generated by the

L?-norm on C§(M) is not a metric for p < oo.

PROOF OF COROLLARY. Let B C M be an embedded ball and {¢/’} a (com-
pactly supported) Hamiltonian flow that pushes B away from itself: ¢f7(B)NB = {).
This flow is generated by a function H € C§°(M %[0, 1]). Introduce a new Hamilton-
ian function K(.,t) by smoothly cutting off H(.,t) outside a neighborhood Uy C M
of the moving boundary ¢/?(0B); see Fig.57.

V ) 45(B)

FIGURE 57. Displacement of a ball with rotation.

The flows of K and H coincide when restricted to the boundary dB: ¢/ (0B) =
g (0B) for every t, and therefore ¢f*(B) N B = {).

Shrinking the neighborhoods Uy, one can make the LP-norm of K (.,t) (and hence
the distance p,(1d, ¢g{*)) arbitrarily small for every p # oo. Thus the displacement

energy of B associated to p,, p # oo vanishes, and Theorem 8.19 is applicable.
O

Informally, one can push a ball away from itself with an arbitrarily low energy,
but the tradeoff is an extremely fast rotation of the shifted ball near the boundary:
The function K (., ) has steep slopes (and hence a large gradient ) in a neighborhood
of 0B.

Let us confine ourselves to the case of compactly supported Hamiltonian diffeo-

morphisms in R?7,

REMARK 8.22 [E-P]. For every diffeomorphism ¢ € Ham(R?*") and 1 < p < oo,
one has p,(Id,¢) = 0. If p =1, then pi(Id, ¢) = |Cal(¢)|.

The situation is completely different for the bi-invariant metrics of L*-type. We
refer the reader to [H-Z] for an account of other peculiar properties of symplecto-

morphism groups.
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In particular, consider the embedding of the group of Hamiltonian diffeomor-
phisms, say, of the ball B C R?", into the group of all compactly supported Hamil-

tonian diffeomorphisms of R?™:

THEOREM 8.23 [Sik]. The subgroup of all Hamiltonian diffeomorphisms Hamy(B)
of a unit ball (steady near the boundary) has a finite diameter (in Hofer’s metric)
in the group of all compactly supported Hamaltonian diffeomorphisms of R2™.

For the diffeomorphisms with support in the ball of radius R, the diameter is
majorated by 167 R? [H-Z]. Furthermore, for Hofer’s metric the following analogue
of the SDiff(M?)- and L?- metric estimates holds (cf. Theorem 7.9):

THEOREM 8.24 [Hof]. The metric po is continuous in the C°-topology: for
every ¢ € Ham(R?"),

poo(1d,vp) < 128 (diameter of supp()))|Id —v|co,

where poo 18 given by (8.5).

The diameter result changes drastically if we consider the group Hamps(B) by
itself. For every symplectic manifold M with boundary its group of Hamiltonian
diffeomorphisms Hamy (M) stationary at the boundary has an infinite diameter in
Hofer’s metric (compare with Theorem 8.3 asserting the infiniteness of the diameter
in the right-invariant L?*-metric). This follows from the existence of symplectomor-
phisms with arbitrarily large Calabi invariant, which bounds below Hofer’s metric;
see, e.g., [ER2]. (A more subtle statement is that the diameter of the commutant
subgroup of Hamg(M ), the group of Hamiltonian diffeomorphisms with zero Calabi

invariant, is also infinite; see [LaM].)

PrROBLEM 8.25. Is the diameter of the group of Hamiltonian diffeomorphisms

of the two-dimensional sphere finite in Hofer’s metric?

8.D. Bi-invariant indefinite metric and action functional on the group
of volume-preserving diffeomorphisms of a three-fold. Though divergence-
free vector fields do not have analogues of Hamiltonian functions if the dimension
of the manifold is at least 3, the group of volume-preserving diffeomorphisms of a
simply connected three-dimensional manifold can be equipped with a bi-invariant
(vet indefinite) metric.

Let M be a simply connected compact three-dimensional manifold equipped with
a volume form p. To define a bi-invariant metric, one needs to fix on the Lie algebra
SVect(M) of divergence-free vector fields a quadratic form that is invariant under

the adjoint action of the group SDiff( M) (i.e., under a change of variables preserving
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the volume form). Such a form has already been introduced in Chapter III (Section
II1.1.D) as the Hopf invariant (or the helicity functional, or the asymptotic linking
number) of a divergence-free vector field.

Recall that we start with a divergence-free vector field v on M? and define the
differential two-form o = 7,4, which is exact on M. The Hopf invariant H(v) is the
indefinite quadratic form

H(v) = /d_loz A a.
M
The group SDiff(M) can be equipped with a right-invariant indefinite “finite sig-
nature” metric p by right translations of H into every tangent space on the group.

The quadratic form H(v) is invariant under volume-preserving changes of vari-
ables by virtue of the coordinate-free definition of H. It follows that the corre-
sponding indefinite metric p on the group SDiff(M) is bi-invariant. This metric
has infinite inertia indices (0o, 00), due to the spectrum of the d~! (or curl™') op-
erator (see [Arn9, Smol]). The properties of this metric, apart from those discussed
in Chapter III, are still obscure.

A similar phenomenon is encountered in symplectic topology (or symplectic
Morse theory; see, e.g., [A-G, Arn22, Cha, Vit, Gro]). The action functional on the

space of contractible loops in a symplectic manifold also has inertia indices (oo, 00).

REMARK 8.26. For a non-simply connected three-manifold M equipped with
a volume form g, the definition of the helicity invariant can be extended to null-

homologous vector fields (i.e., the fields belonging to the image of the curl operator):

H(v,w) = /M(iv/,L) Ad ).

PROPOSITION 8.27. The null-homologous vector fields form a subalgebra of the
Lie algebra of divergence-free vector fields on M.

PRrROOF. For any two divergence-free vector fields v and w on M, their commu-

tator {v,w} is null-homologous : igy wypr = d (2y7wit). O

COROLLARY 8.28. The subgroup of volume-preserving diffeomorphisms of M
corresponding to the subalgebra of null-homologous vector fields 1s endowed with a

bi-invariant “finite signature” metric.

The subalgebra of null-homologous vector fields is also a Lie ideal in the ambient
Lie algebra of divergence-free fields. Moreover, the null-homologous vector fields
form the commutant (i.e., the space spanned by all finite sums of commutators

of elements) of the Lie algebra of all divergence-free vector fields on an arbitrary
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compact connected manifold M™ with a volume form ([Arn7]; see also [Ban] for the

symplectic case).

REMARK 8.29. Consider a divergence-free vector field on a three-dimensional
manifold that is exact and has a vector-potential. We can associate to this field
some kind of Morse complex by the following construction. Associate to a closed
curve in the manifold the integral of the vector-potential along this curve (if the
curve is homologous to zero, it 1s the flux of the initial field through a Seifert surface
bounded by our curve).

We have defined a function on the space of curves. The critical points of this
function are the closed trajectories of the initial field. Indeed, if the field is not
tangent to the curve somewhere, its flux through the small transverse area would
be proportional to the area, and the first variation cannot vanish.

The positive and negative inertia indices of the second variation of this functional
are both infinite. Indeed, in the particular case of a vertical field in a manifold
fibered into circles over a surface, our functional is the oriented area of the projection
curve. The latter is exactly the nonperturbed functional of the Rabinowitz—Conley—
Zehnder theory; see [H-Z].

From this theory we know that the infiniteness of both indices is not an obstacle
to the application of variational principles. We may, therefore, hope that the study
of the Morse theory of our functional might provide some interesting invariants of
the divergence-free vector field. In hydrodynamical terms these would be invariants
of the class of isovorticed fields, that is, of coadjoint orbits of the volume-preserving
diffeomorphism group.

The Morse index of a closed trajectory changes when the trajectory collides with
another one, that is, when a Floquet multiplier is equal to 1. For the n-fold covering
of the trajectory, the index changes when the Floquet multiplier traveling along the
unit circle crosses an n''-root of unity. Thus, one may hope to have a rather full
picture of the Morse complex at least for the curves in the total space of a circle

bundle that are sufficiently close to the fibers.



