CHAPTER III

TOPOLOGICAL PROPERTIES OF
MAGNETIC AND VORTICITY FIELDS

The interior media of stars and planets are often virtually perfect conductors
and possess magnetic fields. These fields are said to be “frozen” into the medium
(for instance, plasma or magma) in spite of temperatures of a million degrees.
Mathematically this means that any motion of the medium transports the fields by
a diffeomorphism action preserving the mutual alocation of the fields’ trajectories.
Such a transform may diminish the field magnetic energy. The topological structure
of the field provides obstacles to the full dissipation of the magnetic energy of the
star or planet.

On the other hand, inhomogeneity of the medium’s motion (e.g., the “differential
rotation”) stretches the particles and hence might amplify the magnetic energy
(transforming part of the kinetic energy of the motion into magnetic energy). This
competing mechanism is apparently responsible for the dynamo effect, generating

a strong magnetic field from very small magnetic “seeds” (see Chapter V).

§1. Minimal energy and helicity of a frozen-in field

1.A. Variational problem for magnetic energy. In this chapter we will
look for the energy minimum for the fields obtained from a given divergence-free
vector field under the action of volume-preserving diffeomorphisms.

The energy of a vector field ¢ defined in a domain M of the three-dimensional
Euclidean space R? is the integral E = [(¢,&) p. (It differs by a factor of 2 from the

M

energy used in preceding chapters, which simplifies noticeably the estimates below.
Throughout Chapter III, the space R? is always equipped with the standard metric,
and p is the volume form.)

A more general setting assumes that M is a Riemannian manifold, possibly

with boundary. The fields are supposed to be divergence free with respect to
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128 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDS

the Riemannian volume form (and to obey some boundary conditions, such as
tangency to the boundary of M., or equality of the field normal component at

the boundary to a prescribed function). The energy E = (£,&) = [(£, ) p is a
M
geometric characteristic of the field relying on the choice of the Riemannian metric

()
Our purpose is to estimate the energy by means of topological features of the
field. Here a feature of the field is called topological if it persists under the action

of diffeomorphisms preserving the volume element (but not necessarily the metric).

REMARK 1.1. In magnetohydrodynamics, where this variational problem nat-
urally arises, the role of £ is played by a magnetic field B, frozen into a fluid of
infinite conductivity (but of finite viscosity v) filling a “star” M.

With an appropriate choice of units, the velocity field v and the magnetic field
B satisty the system of equations (cf. Section 1.10)

ot

{ % 4 (v,V)v = =Vp+vAv + (curl B) x B, div v =0,
%‘I'{UvB}:Ov leB:07

where {-,-} is the Poisson bracket of two vector fields. The covariant differentiation
(v, V)v, the Laplace operator A = —curl curl , the vorticity curl B, and the cross
product x, standard for R®, have natural generalizations to the case of an arbitrary
Riemannian manifold M. The magnetic field B and the velocity field v are pre-
scribed at the initial moment. The term (curl B) x B represents the Lorentz force
j X B acting on a current j, which coincides (modulo the factor 4x) with curl B
according to the Maxwell equation.

Physicists suggest that during evolution the kinetic energy dissipates due to the
viscosity term rAw, and the motion ceases “at the end,” each particle approaching
some terminal position. If this happens, the magnetic field, being frozen-in, will
attain some terminal configuration. The energy of this terminal field must be a local
minimum; otherwise the magnetic energy would have been converted into kinetic
energy, and because of the Lorentz force, the fluid would move further until the
hydrodynamical viscosity dissipated the excess of the magnetic energy above the

minimum.

1.B. Extremal fields and their topology. The variational principle for mag-
netic fields is dual to that for the steady fluid flows (studied in Chapter II) in the
following sense.

The energy functional that undergoes a minimization procedure is the same in

both problems. The domain of this functional in the magnetic case consists of
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all fields diffeomorphic to a given one, while for the case of the ideal fluid the
domain is replaced by the class of the isovorticed fields, i.e., by the fields with
diffeomorphic vorticities. (The term “dual” above refers to the fact that the domain
of diffeomorphic fields is an adjoint orbit in the Lie algebra of all divergence-free
vector fields, whereas the isovorticed fields constitute a coadjoint orbit of that

algebra; see Chapter I.)

The extremal fields in both of the variational problems coincide ([Arn9], for
the proof see Section II.2). These fields have very peculiar topology (cf. Section
I1.1). Namely, the extremals are the divergence-free fields that commute with their
vorticities. They are either Beltrami flows (i.e., the fields proportional to their own
vorticities) or are “integrable” flows whose stream lines fill almost everywhere tori

and annuli; see Fig.9 in Chapter II.

This analysis of topology of the extremal fields leaves little hope that the idealized
physical model of the magnetic field relaxation, described above, is legitimate for
any somewhat general initial conditions. Indeed, the initial magnetic field B can
be chosen having no invariant magnetic surfaces. Then the terminal field, if there
is one, cannot have invariant tori or annuli and must be a solenoidal field of a very
special (Beltrami) type (see [Hen] for the first numerical evidence of chaos in the
Beltrami flows). But such fields are too scarce, and one could hardly find a field
with the prescribed topology of the magnetic lines amongst them.

It appears that for a correct description of the actual process it is necessary to
take into account the magnetic viscosity, which violates the assumption that the
field is frozen-in and implies “reconnection” of the magnetic lines. Such a process
was not taken care of in our initial system of equations (one has to add the term

#AB on the right-hand side of the second equation to capture this phenomenon).

QUESTION 1.2. To what extent can one use the extremal fields to study the be-
havior of the magnetic field B at large time scales? What phenomena should appear
over the time interval during which the ordinary viscosity succeeds in extinguishing

the motion of the fluid, but the magnetic viscosity would not yet extinguish the

field B?

1.C. Helicity bounds the energy. Let ¢ be a divergence-free vector field
defined in a simply connected domain M C R? and tangent to the boundary of M.

DEFINITION 1.3. The helicity (or the Hopf invariant ) of the field € in the domain
M C R?is
H(E) = (£, carl 1) = /(ﬁ,curl_lﬁ) dv,

M



130 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDS

where (, ) is the Euclidean inner product, and A = curl™'¢ is a divergence-free
vector potential of the field £, 1.e., VX A =¢, div A=0.

The integral is independent of the particular choice of A (which is defined up to
addition of the gradient Vf of a harmonic function, since M is simply connected).
Indeed, integrating by parts, one obtains the following expression for the difference

of the helicity values associated to two different choices of A:

Jeanu- [eayu= [€Inu=[traveu+ [(r-oas=o,

M M M M oM

where the last term vanishes, since ¢ is tangent to the boundary M. Note that
such a field A = curl™'¢ exists and is defined uniquely in a simply connected M
upon specification of the boundary conditions, e.g., A i1s tangent to the boundary
of M (or, more generally, the normal to the boundary 9M component (A, n) of the
vector field A is fixed). If M is not bounded (say, M = R?), the field £ is supposed

to decay at infinity fast enough to make the integral above converge.

The helicity of a field measures the average linking of the field lines, or their

relative winding (see details in Section 1.D below).

Though the idea of helicity goes back to Helmholtz and Kelvin (see [Kel]), its
second birth in magnetohydrodynamics is due to Woltjer [Wol| and in ideal hydro-
dynamics is due to Moffatt [Mofl], who revealed its topological character (see also
[Mor2]). The word “helicity” was coined in [Mofl] and has been widely used in
fluid mechanics and magnetohydrodynamics since then. We refer to [Mof2, MoT]
for nice historical surveys.

The principal feature of this concept is described in the following statement.

THEOREM 1.4 (HELICITY INVARIANCE). The helicity H(E) is preserved under

the action on & of a volume-preserving diffeomorphism of M.

In this sense H(£) is a topological invariant: Though it is defined above with the
help of a metric, every volume-preserving diffeomorphism carries a field £ into a field
with the same helicity. We will prove this theorem in a slightly more general setting
at the end of this section just by giving a metric-free definition of the invariant.

Now we get an immediate and important dividend:

THEOREM 1.5 [Arn9]. For a divergence-free vector field &,
E(§) = C-H(E)],

where C' 1s a positive constant dependent on the shape and size of the compact

domain M.
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PROOF 1s a composition of the Schwarz inequality

HA(E) = (€. 4)" < (6.6 (4,4)

and the Poincaré inequality, applied to the vector field A (tangent to the boundary
of M if OM # 0):

() = [ty ns & [€on= 5o

for A = curl™¢, E(&) = (£, €). O
Various applications of this theorem can be found in [MoT, L-A].

REMARK 1.6. The inverse (nonlocal) operator curl ™! sends the space of divergence-
free vector fields (tangent to the boundary) on a simply connected manifold onto
itself. This operator is symmetric, and its spectrum accumulates at zero on both
sides. The restriction of the operator —curl® to the space of the divergence-free
vector fields is called the Laplace-Beltrami operator on the divergence-free fields.
Its components in the Euclidean R® case are the Laplacians of the field components.
Its spectrum is a sequence of real numbers divergent to —oo.

This Laplacian — curl? differs by the sign from the Laplace operator of topologists
dé + &d (see Sections 1.D and V.3.B below) restricted to the space of closed two-
forms. Here a divergence-free vector field { on a Riemannian manifold is regarded

as the corresponding closed 2-form i¢p.

COROLLARY 1.7. The eigenfield of the operator curl™ corresponding to the
etgenvalue X of the largest absolute value has minimal energy within the class of
divergence-free fields obtained from this eigenfield by the action of volume-preserving

diffeomorphisms.

Indeed, for any field ¢ the energy E({) can be minorized as follows:

B(6) = (6.6) > jleml™ £.6),

and the inequality becomes the equality for the eigenfield with the eigenvalue A. In

general, the constant C of the preceding theorem can be taken equal to |A|.

REMARK 1.8. The theorems above, as well as many results below, hold for the
more general case of manifolds M whose first homology group vanishes: Hy(M,R) =
0.

This statement also holds for an arbitrary closed three-dimensional Riemannian
manifold if one confines oneself to divergence-free fields that are “null-homologous”

(i.e., have a single-valued divergence-free potential).
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ExXAMPLE 1.9. The standard Hopf vector field on

4
S3 = {(x1,22,25,24) € R4|Zx? =1}

=1

is defined by

V($1,$2,$3,$4) = (—xz,xl, —$4,$3).

It corresponds to the maximal eigenvalue (=1/2) of the curl™! operator on S*
with the canonical induced metric and the orientation given by the inner normal.
The trajectories of this field are the great circles along which S® C C? intersects
the complex lines C! C C* (see Fig.21 for v-orbits under stereographic projection
S? — R?). These trajectories are pairwise linked. The Hopf field on S* has minimal
energy among all the fields diffeomorphic to it, i.e., obtainable from it by the action

of a volume-preserving diffeomorphism.

FIGURE 21. Hopf field in R® (the stereographic projection from S$®).

One circle becomes the vertical axis. Every two orbits are linked.

1.D. Helicity of fields on manifolds. We consider here an ad hoc definition
of the helicity integral on manifolds [Arn9], establish its simplest properties (in
particular, the topological invariance), and identify the result with Definition 1.3
above. An interesting topological meaning of the invariant will be discussed in the

next two sections.



§1. MINIMAL ENERGY AND HELICITY OF A FROZEN-IN FIELD 133

Let M be a three-dimensional manifold that is closed (compact, without bound-
ary), oriented, and connected, and let y be a volume element (i.e., a nonvanishing
differential 3-form defining the correct orientation) on M. Notice that we fix a

volume element on M, but we do not select any Riemannian metric.

DEFINITION 1.10. Every vector field { on M generates a differential 2-form we

according to the formula

we(n,¢) = (&, ¢)

for any vector fields  and (. The correspondence § — w¢ = t¢p is an isomorphism
of the linear spaces of fields and 2-forms. The differential of w¢, being a 3-form,

can be expressed via the volume form as
dwe = ¢ - pu,

where ¢ : M — R is a smooth function. The function ¢ is called the divergence of
the field ¢ : ¢ = div €. The velocity field of a flow that preserves the volume element
on M is divergence free, and conversely every field with vanishing divergence on M

is the velocity field of an incompressible flow.

REMARK 1.11. The origin of divergence is explained by the homotopy formula
for the Lie derivative L¢ = t¢¢d + di¢. The Lie derivative L¢ is the derivative of any
differential form f along the vector field ¢, defined as the derivative of the form
g'" f transported by the flow g of the vector field ¢, evaluated at the initial moment
t=0: L¢f = %|t:0(gt*f). The operation i¢ is the substitution of the vector field
¢ in the differential form as the first argument, and d is the (exterior) derivative.
Applied to the form p it gives Lep = tedp + digp = dwe = @p. Thus the function
¢ is the coefficient of stretching (or divergence) of the volume form by the field £.

DEFINITION 1.12. A divergence-free vector field £ on M 1is said to be null-

homologous if the 2-form w, corresponding to it is the differential of a globally
defined 1-form a on M:

we = da.

The 1-form « will be called a form-potential. A field is null-homologous if and only
if its flux across every closed surface is zero. In the case of a simply connected

closed M every divergence-free vector field is null-homologous.

REMARK 1.13. If M is endowed with a Riemannian metric (, ) then the 1-form
a can be identified with the vector field A for which

a(n) = (A,n) for every field 7.
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Here £ = curl A (in the Euclidean case £ = V x A), and the vector field A is called
the vector-potential of €. We would like to make a point, however, that the forms
w and «a (in contrast to the field A) do not depend on the Riemannian metric but

rely only on the choice of the volume element p.

DEFINITION 1.14. The helicity (or Hopf invariant) H(E) of a null-homologous
field € on a three-dimensional manifold M (possibly with boundary) equipped with
a volume element p is the integral of the wedge product of the form w, and its form

potential:

H(ﬁ):/ oz/\dozz/ da A, where da = we.
M M

THEOREM 1.15. This definition is consistent, t.e., the value of H does not de-
pend on the particular choice of the form-potential a, but only on the field &:

i) for a manifold M without boundary, or
it) for a simply connected manifold M with boundary, provided that the field &
tangent to OM.

PROOF. i) First assume that M is without boundary. If 3 = o + 6 is another

form potential for the same 2-form w¢, then df = 0, and therefore

/oz/\doz—ﬂ/\dﬂ:/ 9/\doz:/ d(GAa):/ ONa=0.
M M M OM=0

it) Now OM # (. In the simply connected case, a variation € of the form-
potential is exact (§ = df for some function f on M), and the variation of H is

given by

/MGAda:/Mdeda:/Md(fAda): FAda=0,

oM

where da vanishes on OM due to the condition £||0M. O

REMARK 1.16. In the presence of a Riemannian metric on M the helicity can

be expressed as

o) = [ anwe= [ ani= [ a@rn=[ (0= (o),

where A is any vector-potential of . (The shift of the substitution operator from
i to a is due to the fact that ¢ is the (inner) differentiation: i¢(a Ap) = ica Ap —
a Aigp.) Therefore, consistent with Definition 1.3, H is the inner product of the
field with its vector potential.

The above coordinate-free approach can be summarized in the following
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COROLLARY 1.17. The helicity of a null-homologous vector field € is preserved
under the action of an arbitrary volume-preserving diffeomorphism of M. For a
simply connected manifold M with boundary, the helicity of a divergence-free vec-
tor field tangent to the boundary does not change under the action of all volume-

preserving diffeomorphisms of M that carry the boundary OM to itself.

In particular, on a Riemannian manifold the inner product of a divergence-free
field and its vector potential is preserved when the field is acted on by a volume-

preserving diffeomorphism.

PrOOF. The invariance of H under diffeomorphisms that preserve the volume
element follows from the fact that H can be defined by using no structures other

than the smooth structure of M and the volume element p. O
This observation constitutes the proof of the Helicity Invariance Theorem.

ExaMPLE 1.18 (= 1.9"). The helicity of the Hopf vector field on S* C R*
(defined in Example 1.9, Fig.21) is 7% /2. Indeed,

_ 1 1 vol (S*® 22
L N O e

since the eigenvalue of the curl ™! operator on S® is equal to —1/2, and the volume
of S% is 272,

EXAMPLE 1.19. With any smooth map 7 : $® — S? one can associate the
following integer number, called the Hopf invariant of =. Fix on the sphere S? an
arbitrary area form v normalized by the condition area(S?) := fSQ v=1. Such a
form is closed on the sphere S?, and hence its pullback 7*v is exact on S® (since

H?(S?*) =0). That is, there exists a 1-form « such that da = 7*v. Then the Hopf

invariant of 7 is

H(nw) = /Sgoz/\ﬂ'*l/.

PROPOSITION 1.20. H(w) is an integer.

PROOF HINT: Choose the form v to be a d-type form on S? supported at one

point only. Compare the result with the topological definition of the Hopf invariant
below. O

Given a volume form on S, the number H(w) is the helicity of the divergence-
free vector field { defined by the condition i¢pr = m*r. The orbits of this field

are closed, being the preimages of points of S? under the mapping 7. The above
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S3 S?2

FIGURE 22. Hopf invariant for a map S® — S2.

definition of the helicity is a generalization of the Hopf invariant to the case where
an exact 2-form on S*® (or on M?) is not necessarily a pullback for any map 7.

An equivalent (topological) definition of the Hopf invariant for a map S* — S?
is the linking number in S® of the preimages of two generic points in S? (Fig.22).
The equivalence of the topological and integral definitions plays a key role in what
follows in this chapter.

Theorem 1.5 claims that for a map = : S* — S? with nonzero Hopf invariant
H(m), (a multiple of) the absolute value of this invariant bounds below the energy
of the corresponding vector field. The latter field i1s directed along the fibers of the
map m. The length of the vectors is defined by the volume form on S* and the
pullback of the S? area element.

REMARK 1.21. L.D. Faddeev proposed another but relevant variational problem
for the mappings 7 from R® to S%. Consider the functional on such mappings
that is a (weighted) sum of two terms. The first term is the Dirichlet integral
(of the squared derivative) of the map n. The second term is the energy of the
corresponding vector field directed along the fibers of the map. Then this functional
is bounded below by (a multiple of) |H(x)[>/*, where H(n) is the Hopf invariant
of the map 7 : R® — S? [V-K]. The proof uses a version of the Sobolev inequality
[Sobl]; c¢f. Theorem 5.3 below and its proof, which employs the same inequality.

Furthermore, some recent computer experiments for the relaxation process of
an initial mapping with nonzero Hopf invariant exhibit the following phenomenon.
In the equivariant case (of S acting by rotations on R® and S?), one observes an
“energy gap” over the poles, where the rotation axis intersects the sphere. It would

be very interesting to explain this singularity structure.



§2. TOPOLOGICAL OBSTRUCTIONS TO ENERGY RELAXATION 137

The addition of the Dirichlet integral to the energy is similar to the addition
of the Lagrange multiplier in the problem of energy minimization. We could start
with the action of all diffeomorphisms, and then consider the conditional minimum

for the action of only volume-preserving ones.

REMARK 1.22. The Hopf invariant equips the Lie algebra of divergence-free
vector fields on a closed simply connected three-dimensional manifold with a bilinear

form :

H(En) = (€, carl™y),

where curl ™17 is a vector-potential of the field 7.

This form is invariant with respect to the natural action of volume-preserving
diffeomorphisms on vector fields (i.e., with respect to the adjoint representation of
the group SDiff(M) in its Lie algebra; see Chapter I). Moreover, the form H is

symmetric, since

H(E,n) = /M igp Ad™ (iyp) = /M A (igp) Nigp = /M igpe A d™ (igp) = H(n, ).

The positive and negative subspaces of the form H are both infinite-dimensional; see
[Arn9, Smol|. Thus H generates a bi-invariant pseudo-Euclidean (indefinite) metric
on the corresponding group SDiff(M). For the case of a non-simply connected MM
one has to confine oneself to the subalgebra of all null-homologous vector fields
within the Lie algebra of all divergence-free vector fields on M (see Section IV.8.D
for more detail).

In this case one may also hope to define the generalized Hopf invariants with
values in some modules over the fundamental group, but this way has not yet been

duly explored.

§2. Topological obstructions to energy relaxation

2.A Model example: Two linked flux tubes. The helicity obstruction to
the energy relaxation is clearly seen in the example of a magnetic field confined to
two linked solitori, Fig.23a,b. Assume that the field vanishes outside those tubes
and the field trajectories are all closed and oriented along the tube axes inside.

To minimize the energy of a vector field with closed orbits by acting on the
field by a volume-preserving diffeomorphism, one has to shorten the length of most
trajectories. (Indeed, the orbit periods are preserved under the diffeomorphism

action; therefore, a reduction of the orbits’ lengths shrinks the velocity vectors
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FIGURE 23. a) A magnetic field is confined to two linked solitori.
b) Relaxation fattens the tori and shrinks the field orbits.

along the orbits.) In turn, the shortening of the trajectories implies a fattening of
the solitori (since the acting diffeomorphisms are volume-preserving).

For a linked configuration, as in Fig.23b, the solitori prevent each other from
endless fattening and therefore from further shrinking of the orbits. Therefore,
heuristically, in the volume-preserving relaxation process the magnetic energy of
the field supported on a pair of linked tubes is bounded from below and cannot

attain too small values [Sakh].

Below we show that the helicity of a field measures the rate of the mutual winding
(or “helix-likeness”) of the field trajectories around each other. To visualize this
notion (and the paradigm “helicity bounds energy” of the preceding section), we

first concentrate on the degenerate situation above (see [Mofl]).

Let a magnetic (that is, divergence-free) field ¢ be identically zero except in two
narrow linked flux tubes whose axes are closed curves C; and C5. The magnetic
fluxes of the field in the tubes are @1 and Q2 (Fig.24).

Suppose further that there is no net twist within each tube or, more precisely,

that the field trajectories foliate each of the tubes into pairwise unlinked circles.

LEMMA 2.1. The helicity invariant of such a field 1s given by
(2.1) H(E) =2 1k(C1,Cy) - Q1 - Qa,

where [k(Cy,Cy) 1s the linking number of Cy and Cs.

DEFINITION 2.2. The (Gauss) linking number [k(I'y,I's) of two oriented closed
curves I'1, T’y in R3 is the signed number of the intersection points of one curve with

an arbitrary (oriented) surface bounded by the other curve (Fig.25). The sign of
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FiGURE 24. (4, (5 are axes of the tubes; )1, ()2 are the corresponding

fluxes.

each intersection point is defined by the orientation of the 3-frame that is formed
at this point by the velocity vector of the curve and by the 2-frame orienting the

surface.

The linking number of curves is symmetric: [k(I';,T'y) = lk(T'2,T'y).

FiGURE 25. The linking number of I'; and I's is the signed number of

intersections of I'y with a surface bounded by I's.

PROOF OF LEMMA. The helicity volume integral H(§) = (curl ™', &) = [(A, &) p
over the tubes (here A = curl™'¢ ) descends to the sum of the corresponding line

integrals:

H(E) = O /Cl(A, dCy) + 0, /Cz(A, 0Cy).

Indeed, the volume element g in each tube is the product of the line element

dC'; and the area element dS; of the tube cross section. In turn, the integral of the
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&dS; over the corresponding cross section is the flux ¢);. Hence,

/zmtube(Ag ) dS; dC; = // ,(£dS;) dCy) Q/ (A, dC;).

Furthermore, the circulation | Cl(A, dCy) of the field A over the curve C is the
full flux of curl A = £ through a surface bounded by the axis curve C;. The latter
flux is equal to Qs - lk(C1,C2): Every crossing of the surface by the second tube
contributes to the signed amount of () into the full flux. Note that the first tube
itself does not contribute into that flux through its axis €1, due to the assumption
on the net twist within the tubes.

The same argument applied to the second circulation integral doubles the result:

H(f) ZQZIC(Cl,Cz)Ql 'QQ. 0

A generalization of this example to the case of an arbitrary divergence-free vector

field ¢ is described in Section 4.

2.B. Energy lower bound for nontrivial linking. The linking number is a
rather rough invariant of a linkage. The signed number entering the definition of %k
can turn out to be zero for configurations of curves linked in an essential way (see,
e.g., the so-called Whitehead link in Fig.26a). However, the heuristic observation
of the beginning of Section 2.A for the energy bound still holds.

== /N

(@) (b)

FIGURE 26. Nontrivial links with vanishing pairwise linking numbers.
a) Whitehead link, b) Borromean rings.

The heuristics above are supported by the following result of M. Freedman [Frl]:
Any essential linking between circular packets of ¢-integral curves implies a lower

bound to E.
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DEFINITIONS 2.3. A link L, i.e., a smooth embedding of n circles into a 3-
dimensional manifold, is trivial if it bounds n smoothly and disjointly embedded
disks. Otherwise, the link is called essential.

A vector field £ on M is said to be modeled on L if there is a {-invariant tubular

neighborhood of L C M foliated by integral curves of ¢ that is diffeomorphic to
D? x S foliated by circles {point} x S* (here D? is a 2-dimensional disk).
=1

THEOREM 2.4 [Frl]. If € 1s a divergence-free vector field on a closed 3-manifold
M that is modeled on an essential link (or knot) L, then there is a positive lower
bound to the enerqy of fields obtained from & by the action of volume preserving
diffeomorphisms of M.

Under the additional assumption on a field to be strongly modeled on a link, the
lower energy bound for a field in R?® was obtained in [FH1] explicitly. A divergence-

free field € is strongly modeled on L if there is a volume-preserving embedding that

carries the field % directed along the circles in |J (D?* x S'); into ¢ within a tubular
=1
neighborhood of L. The neighborhood consists of several solid tori of equal volume,

which we denote by V.

THEOREM 2.5 [FHI1]. The energy of a vector field & strongly modeled on an
essential link L in R3 satisfies the inequality

4/3
V/6/125
E(£) > <#> VA3 & 0.00624 VO3,

T2

Note that given any link, one may construct a field modeled (and even strongly
modeled) on it. The exponent 5/3 has the following origin. The Euclidean dilation
with a factor [ multiplies the image field by [ and the volume element by [*>. Thus
the total energy gains the factor I°, while the volume is multiplied by the factor I3.
Hence, the ratio E/V?/? is purely geometrical and independent of scaling in the

Euclidean case.

REMARK 2.6. Theorem 2.5 suggests the following construction of a set of invari-
ants of topological or smooth 3-manifolds. The invariants are parametrized by the
1sotopy classes of knots and links in the manifold. They might also be regarded as
the invariants of embeddings of 1-dimensional manifolds into 3-dimensional ones.

Consider the ratio E/V3/? for a vector field strongly modeled on the knot or on
the link of a given isotopy class in a Riemannian manifold. Take the infimum over
all such fields and over all the Riemannian metrics. The resulting number is an

invariant of the smooth (perhaps, even topological) isotopy class of the pair (link,

3-manifold).
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Further, one might take the infimum over all the compact 3-manifolds for a
homotopically trivial link to get an invariant of the classical link or knot. (Is this
infimum equal to the infimum of the above ratio for Euclidean 3-space or for the
3-sphere? Is the supremum over all the 3-manifolds finite?)

One might also start with a compact Riemannian manifold of volume 1 and
with a link of k solid tori of volume V each. If £V is smaller than 1, the infimum
of E/V?/3 over the metrics of total volume 1 is a function of V', which is still an
invariant of the embedding. We do not know whether these invariants are nontrivial,
i.e., whether they distinguish any 3-manifolds or embeddings (cf. Remark 6.7).

Freedman and He have informed us that Theorem 2.5 can be generalized to

arbitrary Riemannian manifolds. The limit of the coeflicient C' (V') for small volumes

4/3
V' 1s the same constant as in the Euclidean case C' = <x/6/125/772> given by
Theorem 2.5.

The strongly modeled fields have very simple behavior near the link and are far
from being generic within divergence-free vector fields. It would be of interest to

completely get rid of the condition on a special tubular neighborhood.

PROBLEM 2.7. Is there an energy lower bound for a field having a set of closed
trajectories forming an essential link on a Riemannian manifold (without an as-

sumption on a neighborhood of closed orbits)?

REMARK 2.8. The strongest result in this direction was obtained in [FH2] (see
Section 5), where the condition on a field to be modeled on a link was weakened to
the requirement for a field in R® to have invariant tori confining the link compo-
nents. Such fields form an ample set near the integrable divergence-free flows. This
follows from the KXAM theory of Hamiltonian perturbations of integrable Hamil-
tonian systems.

In particular, if a closed field orbit is elliptic (and generic), i.e., its Poincaré map
has two eigenvalues of modulus 1, then this orbit is confined to a set of nested tori
invariant under the field (see, e.g., [AKN]). Thus, every such orbit forming an essen-
tial knot provides the lower bound for the energy of the corresponding field. Indeed,
the energy of any of the invariant solid tori confining this knotted orbit cannot
diminish to zero, according to [FH2]. One can argue that a vector field with a
knotted hyperbolic closed orbit (whose Poincaré map has real eigenvalues of the
modulus different from 1) may not have a positive lower bound for the energy (cf.

the next section).

REMARK 2.9. The different estimates for the magnetic energy, should magnetic

solid tori form a trivial or nontrivial link, have a striking counterpart in the theory
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of Brownian motion.

Let K be a knot in S®, and {z(¢)| ¢ > 0} the standard Brownian motion on
S? starting at some point O ¢ K at a distance d(O,K) = 7 > 0 from K. If K
is unknotted, then there exists almost surely a sequence t; < t5 < ... such that
t, — oo and for which d(z(t,),0) < 7/2. Furthermore, the loop that we obtain
by following the Brownian path up to z(¢,) and then joining z(¢,) to O by a short
path A(z(t,),0) is homotopic to O in S*\ K [Var]. In other words, (almost surely)
the Brownian path returns close to its starting point untangled with respect to K,
and it does this infinitely many times.

The exact opposite happens when K is knotted: There almost surely exists a
T > 0 such that whenever the distance d(z(t), O) is small enough, d(z(t),0) < 7/2
and t > T, the homotopy class of the above loop is not trivial [Var|. In this sense
the Brownian motion can tell whether K is an essential knot or not. Heuristically,
this means that the Brownian motion distinguishes the existence of a hyperbolic
metric on the universal covering to S*\ K (see Thurston’s theorem on the hyperbolic

structure on the complement to a nontrivial knot or link [Th2]).

63. Sakharov—Zeldovich minimization problem

Assume now that a divergence-free field has a trivial topology in that all field
trajectories are closed and pairwise unlinked. An example of such a field is the
rotation field in a 3-dimensional ball (Fig.27). The energy lower bounds considered
in Section 2 are valid for essential links and are not applicable here. On the contrary,
in this case the field energy can be reduced almost to zero by a keen choice of

volume-preserving diffeomorphisms [Zel2, Sakh, Arn9, Fr2].

THEOREM 3.1. The energy of the rotation field in a 3-dimensional ball can be
made arbitrarily close to zero by the action of a suitable diffeomorphism that pre-

serves volumes and fizes the points in a neighborhood of the ball boundary.

REMARK 3.2. This result, formulated by A. Sakharov and Ya. Zeldovich [Sakh,
Zel2], is based on the following reasoning. Divide the whole ball into a number of
thin solid tori (bagels) formed by the orbits of the field and into a remainder of
small volume. Then deform each solid torus (preserving its volume) such that it
becomes fat and small, with the hole decreasing almost to zero. (Such deformations
must violate the axial symmetry of the field, since any axisymmetric diffeomorphism
sends the rotation field to itself and hence preserves the total energy.) Now the field

energy in the solid tori is decreased (since the field lines are shortened). The whole
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FIGURE 27. A rotation field in a 3-dimensional ball can dissipate its

energy almost completely.

construction can be carried out in such a way that the field energy in the remaining
small volume is not increased by too much. As a result, the total energy remains
arbitrarily small.

This consideration was placed on a rigorous foundation by M. Freedman. We

outline the main ideas of his proof below.

Let B® be a ball in three-dimensional Euclidean space and £ the vector field
generated by infinitesimal rotation about the vertical axis. The trajectories of this
field are horizontal pairwise unlinked circles (and their limits, the points on the

vertical axis).

THEOREM 3.3 [Fr2]. There exists a family of volume-preserving diffeomorphisms
pt + B — B® 1 <t < oo, such that it starts at the identity diffeomorphism
(p1 = Id), it is steady on the boundary (v |spz= Id) for all t, and the family
of the transformed vector fields & = & (being the image of the rotation field £
under the pi-action) fulfills the following conditions as t — oco:

1) the energy of the field & decays as E(&) := [|&]]5. = O(1/1),
2) the supremum norm is unbounded: ||&||p = O(t), yet
3) for all k,p < oo the Sobolev norms decay: ||&t||px» — O (here the norm

||| Lxr s the LP-norm in the space of n’s derivatives of orders 0,... k).

REMARK 3.4 [Fr2]. For this family of diffeomorphisms, the limit of & = @&
at infinity ¢ — oo does not exist, but for large t the regions of large norm |||
constitute a “topological froth” F; with trivial relative topology. The froth F; is

a “time-fractal” (the facet size drops abruptly in a sequence of catastrophes as ¢
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increases) and becomes dense as t — oo.

PROOF SKETCH. The following lemma is a modification of Moser’s result [Mos1]
on the existence of volume-preserving diffeomorphisms between diffeomorphic man-

ifolds of equal volume.

LEMMA 3.5. Let D and D' be domains of equal volume in R™ and f: D — D'
a diffeomorphism. Then f 1s i1sotopic to a volume-preserving diffeomorphism fo
between the domains.

Moreover, if f preserves orientation and a function p is the “excess density”
p=1—det (f.), then there exist constants C} , depending only on the domain D
such that

||f - f0||L’f+1vP < Ck,pHPHLkm for any k,p < oco.

ProoOF OF LEMMA 3.5. Pull back the D’-volume form pp/ to D. The density
function p manifests the excess of the volume f*(pps) over pp. The mean value of
p 1s zero due to the volume equality condition.

Let ¥ be a solution of the Neumann problem on D for p, i.e., A = p on
D and %1/} = 0 on the boundary 0D (where 9/0n indicates differentiation in
the direction of the exterior normals; see Lemma 3.7 below on solvability of the
Neumann problem).

Rewrite this system in the form div (V¢) = p, V¢ || dD. Then the gradient
vector field V 1) is tangent to the boundary 0D and defines infinitesimally an isotopy
of D moving the volume element pp into f*(upr). The isotopy itself is now the
phase flow of the dynamical system on D defined by the instant field V .

Finally, the required estimate is a consequence of the inequality |A1]| - |||z <
llpl| 2, where Ay is the closest to 0 (from the left) eigenvalue of the Neumann

problem. Taking the gradient V ¢, we lose one order in the Sobolev norm. g

REMARK 3.6. For application to the case where D is a spherical shell, note that
the constants C , may be chosen independent of the thickness. It follows from the
fact that the closest to 0 eigenvalue A; of the Neumann problem on the shell tends
to the smallest Laplace-Beltrami eigenvalue on the sphere S? as the shell thickness
goes to zero.

Indeed, the eigenvalues of the Laplace operator on such a shell are sums of those
on the sphere and of the eigenvalues of the radial component

o? 10
o Tor
of the Laplacian. One immediately sees that all but the first eigenfunctions of the

latter operator with the Neumann boundary conditions highly oscillate on a short
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segment. Hence, all but the first corresponding eigenvalues tend to infinity, while
the first one goes to zero as the segment shrinks to a point. This very first eigenvalue
is the only eigenvalue that contributes to the eigenvalue A; of the Neumann problem

on the shell, and its contribution vanishes as the shell thickness goes to zero.

LEMMA 3.7. The Neumann problem Ay = p on D and %1/} = 0 on the boundary
D has solution for any function p with zero mean (i.e., for p that is L*-orthogonal

to constants on D).

PrOOF OF LEMMA 3.7. The image of an operator is the orthogonal complement
to the kernel of the corresponding coadjoint operator. To apply it to the Neumann

operator we first find the set of functions h orthogonal to all Ay with %1/} =0

0:/(A¢ /vwm/ /z/)Ah /¢—h

D oD

Taking as test functions those ¢’s that vanish on the boundary 9D, we obtain
that Ah = 0. Then for a generic ¢, the boundary term is equal to zero, and hence
%h = 0 on 0D. Thus only the constant functions g are orthogonal to the image
of the Neumann operator Ay (with the boundary condition %1/} = 0), and any

function orthogonal to constants is in the image of this operator. O

Mawn construction. We first cut the ball B in two parts by splitting out a
spherical shell Sh of thickness s from a subball B, (Fig.28). We will fix s later.
The internal subball can be stretched in the vertical direction and squeezed into a

thin “snake” by a volume-preserving diffeomorphism.

Such a stretching transformation shrinks all the {-orbits (located in the hori-
zontal planes in the internal subball B,) by an arbitrarily large prescribed factor,
and hence it reduces the field energy in the (transformed) subball to an arbitrarily
small positive level.

Then we put the snake into the original ball, keeping the volume preserved.
Allow the composition map of the subball B, into a snake inside the ball B to be
accompanied with a map of the shell Sh into the snake complement. One may
do it first without control of the volume elements but providing smoothness of the
transformation (Bs U Sh) — B (see Fig.29). Then the accompanying map of the
shell Sh can be made volume-preserving by applying the isotopy of Lemma 3.5.

The total energy of the field ¢ after the diffeomorphism action is composed by
the energy in the subball image and in the shell image F = E uppani + Eshen-
The stretching procedure above allows one to handle the first term completely:

Given positive e, the energy Euppqan can be suppressed to the level Egyppan ~ ¢



§3. SAKHAROV-ZELDOVICH MINIMIZATION PROBLEM 147

Sh
an -
|
BS| — _—— - . >t
|
v
Y,
— ——
1, 1

It Tt

o~

FIGURE 28. Stretching a subball into a snake reduces its energy.

N

FIGURE 29. The complement of the snake in the ball is a neighborhood

of a 2-complex K.

by considering an appropriately long snake. The embedding of the snake into the
original ball does not essentially increase its energy, since the bending occurs in the
directions orthogonal to the trajectories of the magnetic field, and hence it does
not stretch the vectors.

Now we have to estimate the field energy in the shell image. Note that the
image is concentrated near a 2-complex K “complementary” to the snake in B.
Using Lemma 3.5 and Remark 3.6 in order to control the maximal stretching of

orbits in the shell, it is sufficient to provide boundedness of the stretching of the
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volume element for an arbitrarily thin shell. The latter is achieved by considering

a one-parameter family of diffeomorphisms (plotted in Fig.30):

a) first expand a thin shell (of thickness s) to that of a fixed thickness,
b) then map it to a neighborhood of K defined by a given snake embedding,
c¢) and finally, squeeze this neighborhood to K.

FIGURE 30. Family of maps of a shell into a neighborhood of K.

The energy Fp.q; tends to zero as the thickness s — 0, since the energy integrand
i1s bounded independently of s, while the volume of the integration domain, the
shell volume, goes to zero. Thus, having chosen s sufficiently small, one can obtain

Espen =~ ¢.

Scale estimate. To organize the family ¢, of diffeomorphisms, we will define the
initial stretching of the subball into a snake of length ¢t. Then the area of every
horizontal section is squeezed by the factor of ¢, and vectors themselves are squeezed
by the factor of \/#; see Fig.28.

This reduces the total energy to E(p;¢) =~ % However, some orbits in the
shell stretch to the “full length” ~ t. Hence, the supremum norm [|@;€||r~ =

max [|& = O(t).

Once a length scale ¢ is selected, the energy cannot be squeezed to < % by using
the smooth one-parameter family. To proceed further, one has to renew the original
stretching of the subball into the snake. This produces the next collapse at a finer

scale. The corresponding 2-complex froth I = F; “blossoms and branches” [Fr2].
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The topology of K remains trivial (the froth is contractible to the boundary 0B),

since the complement to K is homeomorphic to a ball. O

64. Asymptotic linking number

The classical Hopf invariant for S® — S%-mappings has two definitions: a topo-
logical one (as the linking number of the preimages of two arbitrary points of S?),
and an integral one (as the value of [w A d™'w for any two-form w on S? that is a
pullback of a normalized area form on S?); see Example 1.19.

The helicity of an arbitrary divergence-free vector field on a three-dimensional
simply connected manifold is a straightforward generalization of the integral defini-
tion of the Hopf invariant. The topological counterpart is more subtle and leads to
the notions of asymptotic and average linking numbers of field trajectories [Arn9],
which replace the linking of the closed curves of the classical definition.

This section deals with such an ergodic interpretation of the helicity.

4.A. Asymptotic linking number of a pair of trajectories. Let M be a
three-dimensional closed simply connected manifold with volume element p. Let ¢

be a divergence-free field on M and {g*: M — M} its phase flow.

Consider a pair of points x1, 2 in M. We will associate to this pair of points a
number that characterizes the “asymptotic linking” of the trajectories of the flow
{g'} issuing from these points. For this purpose, we first connect any two points
@ and y of M by a “short path” A(«z,y). The conditions imposed on a system of
short paths will be described below and are satisfied for “almost any” choice of the
system.

We select two large numbers T} and T, and close the segments g'x1(0 <t < T})
and g'z2(0 < t < T3) of the trajectories issuing from x; and x2 by the short
paths A(gT 2, 2r) (k = 1,2). We obtain two closed curves, I'y = ', () and
'y = I'py(22); see Fig.31. Assume that these curves do not intersect (which is

true for almost all pairs @1, 2 and for almost all 71, 75). Then the linking number

lke(xq,22;Th,T2) := lk(T'1,Iy) of the curves I'y and I'y is well-defined.

DEFINITION 4.1. The asymptotic linking number of the pair of trajectories g'z
and g'xy (21,29 € M) of the field ¢ is defined as the limit

A¢(w1,22) =  lim

where T} and 75 are to vary so that I'y and I's do not intersect.
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FIGURE 31. The long segments of the trajectories are closed by the
“short” paths.

Below we will see that this limit exists almost everywhere and is independent
of the system of “short” paths A (as an element of the space L(M x M) of the
Lebesgue-integrable functions on M x M).

DEFINITION 4.2. The average (self-)linking number of a field ¢ is the integral
over M x M of the asymptotic linking number A¢(21,22) of the field trajectories:

(4.1) A= [ [ relerian) e

REMARK 4.3. The average self-linking number can be defined via an auxiliary
step by specifying what the asymptotic linking of field lines with a closed curve
i1s and then by replacing the curve with another orbit. This approach is used in

Section 5 to define the average crossing number.

THEOREM 4.4 (HELICITY THEOREM, [Arn9]). The average self-linking of a
divergence-free vector field € on a simply connected manifold M with a volume

element p coincides with the field’s helicity:

(4.2) Ae = H(E).

EXAMPLE 4.5. For the Hopf vector field v(xy, 22,23, 24) = (—22, 21, —24,23)
on the unit sphere S* C R?, the linking number of every two orbits (great circles) is

equal to 1. All the orbits are periodic with the same period 27. Hence, the value of
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Av(z1,22), being the asymptotic linking of two trajectories per time unit, is 1/472.

The average self-linking number of the Hopf field is

1 (vol(S53))? (2m%)? 9
/\v :///\v(xl,xz) ,ul,UZ ://H N1H2 — 47(2 — 47(2 =7,

53 58 53 58

which coincides with the mean helicity H(v) of the field v; see Example 1.19.

REMARK 4.6. The result can be literally generalized to the case of two differ-
ent divergence-free fields ¢ and n on a simply connected M. The linking number
Ag,n(2,y) in the latter case measures the asymptotic linkage of the trajectories géx
and gf)y issuing from x and y respectively. The helicity is replaced by the bilinear
form H(,n); see Remark 1.22. The Helicity Theorem states in this case that

//Am(way)uwy = /Ws A (d™ wy),
M M M

where the 2-forms are defined by we = igu, w, = iyu, and d 'w, denotes an
arbitrary potential 1-form « such that da = w,,.
In the case of a manifold M with boundary, all the vector fields involved are

supposed to be tangent to the boundary.

REMARK 4.7. The identity of the two classical definitions of the Hopf invari-
ant (being a nonergodic version of the Helicity Theorem; see Example 1.19) is a
manifestation of Poincaré duality.

Assume that we deal with singular forms (of é-type) supported on compact
submanifolds. Replace the differential forms by their supports. Then the operations
d~! and A correspond to the passage from the support submanifolds to the film
bounded by them and to their intersections, respectively. Finally, the integration
fM i1s summation of the intersection points with the corresponding signs. The
intersection of a submanifold with a film bounded by another submanifold is the
linking number of these two submanifolds.

The consideration of smooth differential forms instead of singular ones leads to
the averaging of appropriate linking characteristics. The asymptotic version of the
linking number can be regarded in the context of asymptotic cycles [SchS, DeR,
GPS, Sul].

A counterpart of the homotopy invariance of the classical Hopf invariant is un-

known for the asymptotic linking number:

PROBLEM 4.8. Is the average self-linking number of a divergence-free vector

field invariant under the action of homeomorphisms preserving the measure on the
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manifold? Here, a measure-preserving homeomorphism is supposed to transform
the flow of one smooth divergence-free vector field into the flow of the other, both
fields having well-defined average self-linking numbers.

A partial (affirmative) answer to this question was given in [G-G|, where the
average linking number for a field in a solitorus was related to the topological

invariants of Ruelle [Rue] and Calabi [Ca] for disk diffeomorphisms (see also Sections

III.7.A and IV.8.B).

We will give two versions of the proof of the Helicity Theorem. The first one
makes explicit use of the Gauss linking formula and of the Biot-Savart integral in
R3. The second, coordinate-free, version reveals the reason for the helicity-linking
coincidence on an arbitrary simply connected manifold.

Various generalizations of asymptotic linking are discussed in subsequent sec-

tions.

4.B. Digression on the Gauss formula. To state the formula given by Gauss
for the linking number of two closed curves in three-dimensional Euclidean space,
we introduce the following notation.

Let v; : S — R® and v, : S — R3 be smooth mappings of two circumferences to
R? with disjoint images. Let ¢;(mod T} ) and #;(mod T3) be coordinates on the first
and second circumferences. We denote by 4; = 4;(t;), ¢ = 1,2, the corresponding
velocity vectors in the images (Fig.32).

Assume that the circumferences are oriented by the choice of the parameters ¢,
and t,, and fix an orientation for R®. Then we can define vector products and triple

scalar products in R3.

THEOREM 4.9 (GAUSs THEOREM). The linking number of the closed curves
71 (SY) and v2(S1) in R? is equal to

T, T

1 (;717;72771 _72)
Ik Y1,7Y2) = —// dtldtz
T O B [Tk
0
Proor. Consider the mapping
f: T = 52

from the torus to the sphere sending a pair of points on our circumferences to the
vector of unit length directed from ~5(t2) to v1(t1) : f = F/||F||, where F(t1,t3) =
~v1(t1) — 72(t2); see Fig.32.

We orient the sphere by the inner normal and the torus by the coordinates t1,¢,.
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AtZ

FiGURE 32. Two parametrized linked curves in space define the Gauss
map T? — S2.

LEMMA 4.10. The degree of the mapping f is equal to the linking number lk(~y1,~2).

Indeed, this is true for small circumferences situated far away from each other:
Both the linking number and the degree of the mapping f are 0; cf. Fig.32. Neither
of these quantities changes in the course of any deformation that leaves the curves
disjoint. Furthermore, it is easy to verify that under any deformation of the pair of
curves containing a passage of one curve through another, both the linking number
and the degree of the mapping change by 1 with the same sign. Therefore, the
equality lk(y1,7v2) = deg f follows, in view of the connectedness of the set of
smooth mappings S* — R3.

Now the Gauss Theorem is a consequence of the following lemma.

LEMMA 4.11. The degree of the mapping f : T?* — S? is given by the Gauss

integral formula.

Proor orF LEMMA 4.11. By definition of the degree,

1 *
deg £ =1 [[ 102
T2

where the 2-form v? is the area element on the unit sphere. Now, by definition of
f, the value of the form f*v? on a pair of vectors a;,as tangent to the torus at
t = (t1,t2) € T? is equal to their mixed product with the vector —f := —f(t) (we

oriented the sphere by means of the inner normal):

f*’/z(alva2) = Vz(f*alaf*GZ) = (f*al,f*ag, _f)
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By differentiating f, we obtain f.a = Fya/||F|| 4 ¢(a, f)f (here ¢(a, f) is a scalar

factor), and therefore

v (fiar, fraz) = (Frar, Feas, =F) /|| F|°.
Recalling that F' = @1 — x5, we obtain the expression
fro? = (&1, &9, 21 — @221 — x2||_3dt1 A dts
for an element of the spherical image of the torus, as was to be shown. O

The higher-dimensional version of the Gauss linking formula, developed in [Poh,
Wh], is based on the same observation about equivalence of the linking and the

degree of the Gauss map.

4.C. Another definition of the asymptotic linking number. Let {g'} be
the phase flow defined by a divergence-free field ¢ in a three-dimensional compact
Euclidean domain M C R3. The field is assumed to be tangent to the boundary

oM.
Define the Gauss linking of the {-trajectories as

Ty (ty), Ea(tz), x1(t1) — xa2(t2))
A T dtidt
elonaz) = tm o T1T2 // w1 (tr) — 22 ()] o

where x;(t;) = g% (x;) is the trajectory of the point x;, and z;(t;) = %gtixi is the

corresponding velocity vector.

LEMMA 4.12.

1) The limit Ag(xq,22) exists almost everywhere on M x M.
2) The value Ag(x1, 22) coincides with the number A¢(xq,x2) defined above for

almost all @1, x.

PRrOOF. To prove the first statement, it is enough to verify that A is the “time
average” of an integrable function on the manifold M x M, on which the abelian

group {g"'} x {g'2} acts. The integrand is the function

(a17a27x1 - x?)

|21 — 22|

G(.Tl,xz) =

where aj, = ﬁ lt, =09 &), = {(x). The function G has a singularity on the diagonal
of M x M: It grows at most like 7=, where r is the distance to the diagonal. Since
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the codimension of the diagonal is 3, the function G belongs to the space L1 (M x M),
as required.

To compare A¢ with A¢, we represent the linking coefficient of the curves I'y =
Ir (21) and T'y = ' (22) by the Gauss integral with 0 <t; < Ty +1, 0 <ty <
T5 + 1, by using the value of the parameter ty from T} to T + 1 for parametrizing
the “short path” A(gTkzy,x)) that joins gTrz) to .

DEFINITION 4.13. A system of short paths joining every two points in M is
a system of paths depending in a measurable way on the points  and y in M
and obeying the following condition. The integrals of Gauss type for every pair
of nonintersecting paths of the system, and also for every nonintersecting pair (a
path of the system, a segment of the phase curve gz, 0 < t < 1), are bounded
independently of the pair by a constant C'.

REMARK 4.14. One can verify that systems of short paths exist for nowhere
vanishing vector fields or even for generic vector fields (with isolated zeroes). It
i1s useful to keep in mind that an integral of Gauss type for a pair of straight-
line segments remains bounded when these segments approach each other. The
phenomenon one has to avoid is the winding of a trajectory around a path of the
system, which implies unboundedness of the integral. However, a small perturbation
of the short path system leads to a system satisfying the condition above.

Indeed, the phenomenon of winding does not occur in systems where there is
N € Z such that at any point of the manifold M at least one of the derivatives of
A (along the paths) of order less than N does not coincide with that of g’ (along
the flow). Given a vector field £ (or equivalently, given flow g'), the systems of
short paths A subject to the latter constraint form an ample set (cf. the strong

transversality theorem [AVG]).

The fields with nonisolated zeroes constitute a set of infinite codimension in the
space of all vector fields. For such vector fields, the existence question of systems of
short paths is more subtle, and there still are some unresolved issues related to it.!

It would be very interesting to complete the proof of existence in full generality.

To+11Th+1 Ty T,
Now, the difference f | — [ | of Gauss-type integrals can be estimated by
0 00
the sum of at most [T7] —|— [T2] + 1 terms, none of which exceeds C. Therefore,

To+1 T+l T Ty
/\5(;517;52)—/\5@1,552) :T1 171“2—>oo 47 - T1T2 / / //

'We are grateful to P. Laurence, who noted that an existence proof would require some kind
of “global approach,” considering vector fields on the whole manifold, while the transversality
theorem is “local” in nature.
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(where T and T3 tend to infinity over any sequence for which the curves I'y =

I'p (21) and 'y = ', (22) do not meet). O

Now we complete the proof of the Helicity Theorem on the equivalence of the
ergodic and integral definitions of the helicity of a divergence-free vector field defined
in a domain M C R® (and tangent to the boundary OM).

Consider the Biot—Savart integral

1 () X (21— a9)
dr Syl — 2P

Afzs) =

()

(where x denotes the cross product) that defines a vector-potential A = curl™!¢ in

R3. It allows one to obtain the integral representation of the helicity

HE) = (ot ) = () = - [[ 2] ) o)

—zof?

The Helicity Theorem follows from this formula and from the Birkhoff ergodic
theorem applied to the integrable function (£(z1),&(x2), 21 — 22)/(4n||x1 — 2=2|]*)
on M x M. The space average

[ Ae(rer,2a) p(er) p(es)

MxM Ae

(vol(2M))? - (vol(M))?

of the time average A¢ along the trajectories of the measure-preserving flow of {

coincides with the space average H(&)/(vol(M))? of the function. O

REMARK 4.15. Note that for an ergodic field (£,€) on M x M the function
A¢(xq1,22) is constant almost everywhere: The asymptotic linking numbers for al-

most all pairs of {-trajectories are equal to each other.

4.D. Linking forms on manifolds. Here we show how the preceding argu-
ments can be adjusted to the case of an arbitrary simply connected manifold, where
the Gauss-type integral of De Rham’s “double form” [DeR| cannot be written as
explicitly as in R® (see [KhC]).

THEOREM 4.16 (=4.6"). The average linking number of two divergence-free vec-
tor fields & and n coincides with H(E,n):

// A (2, Yty = /M iep A d™ (igp).

MxM

PrROOF. We start by recalling some facts about double bundles and linking
forms. Denote by Q¥(M) the space of differential k-forms on a manifold M.
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DEFINITION 4.17. A differential 2-form G € Q*(M x M) is called a Gauss—De
Rham linking form on a simply connected manifold M if for an arbitrary pair of
nonintersecting closed curves I'; and I'y the integral of this form over I'y x I'y equals

the corresponding linking number:

/[ c-nwira.

Fl XFQCMXM

Here I'y x Ty ={(x,y) e M x M | # € I'1, y € I's}. The existence of such a form
will be established later.

DEFINITION 4.18. Each differential form K(x,y) € Q*(M x M) determines an
operator I - Q*(M) — Q*(M) on the space of differential forms Q*(M) on M that

sends a differential form ¢(y) into the differential form

Eoe) = [ K nelo)
()
where m : M x M — M is the projection on the first component, and the integration
is carried out over the fibers of this projection; see Fig.33. The value of the form
Ky at a point # € M is the integral over the fiber 7 Y x) C M x M of the wedge
product K(x,y) A ¢(y). If the product K(z,y) A p(y) is an n-form in y, then by
definition, (Ky)(x) = 0.

7 '(x,)
! '//
M MX M
i s
} } i -
Xo M X

FIGURE 33. Any form on M x M defines an operator on Q*(M).

ProposITION 4.19. The operator G corresponding to the linking form 1is the

Green operator inverse to the exterior derivative of 1-forms: If ¥ = dp and ¢ €

QY M), then

p=G(v) +dh
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for a certain function h.

The term dh materializes the fact that a potential 1-form ¢ can be reconstructed

from an exact 2-form ¥ modulo a full differential only.

ProoF oF PROPOSITION. Let d = d, 4 d, be the operator of the exterior
derivative on Q*(M x M).

LEMMA»%QO.JQ?::doﬁﬁ

Indeed, [d,K(x,y)] A p(y) = do[IK(x,y) A o(y)], and hence

/ K (e p)]) A gly) = d / K(e.y) A o(y)
m=1(z) 7~ 1(z)

LEMMA 4.21. If K 1s a 1-form in the variable y, then d;\f&’ =Kod.

This follows from the identity

/ [, K (2. 9)] A ply) = / K(e.y) A da(y).
m=1(z) m~1(x)

LEMMA 4.22. The exterior derwative of a Gauss—De Rham form G on M x M
18 the sum dG =46+ 3 of
— the §-form on the diagonal A C M x M (the integral of the §-form over any
3-chain i M x M 1s equal to the algebraic number of intersection points of
the chain with the diagonal A), and of

— some form B € Q¥(M x M) that is a linear combination of forms from
QF (M) @ Q3=F(M)-forms with each factor being closed.

mrnt) = [[a= [[[ 4= [[[ ac

F1><F2 8—1(F1><I‘2) (8—1F1)><I‘2

PROOF.

On the other hand, since the linking number is the intersection number of the
cycle T'y and a surface 87'T'; (whose boundary is T'y), it can be represented as the

integral of the §-form over the chain (07'T';) x T'y:

e Jff

(8 1F1)><F2
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Now the statement follows from the fact that all those 3’s are closed, and each (3

is characterized by the conditions

fIf smvms fff oo

(8—1I‘1)><F2 I‘1><(8—1I‘2)

4

REMARK 4.23. The form [ can be chosen in such a way that the cohomol-
ogy class of § + 3 in H*(M x M) is trivial. Indeed, though the class of J in
H3(M XM)=>", Hk(M) ® H3_k(M) is nontrivial (the diagonal in M x M is not
a boundary), adding an appropriate 3 we can get rid of the H°(M)- and H?*(M)-
terms. Hence, the class of § + 3 vanishes due to the simple-connectedness of M
(HY (M) = H*(M) = 0).

This proves the existence of a Gauss—De Rham linking form G as a solution of
the equation [dG] =0 € H*(M x M), where [x] denotes the cohomology class of a

differential form.

To complete the proof of Proposition 4.19, we pass from the equation on forms

dG = § + (3 to the relation on the corresponding operators: dG =6 + 3, or

d,G+d,G=6+7.

At this point we notice that

a) the d-form corresponds to the identity operator §= Id, and
b) the image of the operator B in Q*(M) belongs to the subspace of closed
forms (see Lemma 4.22). In particular, within Q!(M) the image consists of

the exact forms.

Combining these facts with Lemmas 4.20-21, we come to the relation
doG+God=1Id+do7

for operators on one-forms in M. Having applied the operators of both sides of the

relation to a form ¢ and rearranging the terms, one transforms this relation into

do (G(p) —A(p)) + Gldg) = .

Finally, for ¢» = dy, we obtain

p=G(v) +dh

for some function h. O
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LEMMA 4.24. There exists a Gauss—De Rham linking form G(x,y) with a pole
of order 2 on the diagonal of M x M.

ProoF. The linking number of T'y with I'y by definition coincides with the
linking number of I'y x I'y with the diagonal A in M x M. Identify a neighborhood
of the diagonal in M x M with a neighborhood of the zero section in the normal

bundle T+A over the diagonal via the geodesic exponential map (Fig.34).

MxM>DA

FIGURE 34. For any point of the diagonal A C M x M a neighborhood
in the transversal to A direction can be identified with a neighborhood

in R3.

Then, in every fiber (being a neighborhood of 0 € R?), we consider the standard
Gauss linking form singular at the origin. The latter is the 2-form obtained by the
substitution of the radius vector field V(1/r) into the standard volume element in
R3. It has a pole of order 2 at the origin. Extend the definition of this form from
one fiber to the entire neighborhood of A in M x M by prescribing that this form
vanishes on vectors parallel to A C T+A. We obtain a linking form in M x M that
has a pole of the desired order 2 on the diagonal. O

COROLLARY 4.25. The linking form G is integrable: G € L' (M x M), i.e., the
value of G evaluated on any two smooth vector fields 1s an integrable function on

M x M.

Indeed, the codimension of the diagonal in M x M equals 3, and the growth

order of the form G near the diagonal is 2.

REMARK 4.26. All the above arguments on the Gauss—De Rham linking forms
hold (with certain evident modifications) for manifolds of arbitrary dimension. Fur-

ther consideration in this section is essentially three-dimensional.

Let £ and n be divergence-free fields on M equipped with a volume form p. Let
géx and gpy be the segments of the trajectories of these fields starting at « and y for
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time intervals 0 <¢ < T and 0 < s < 5. Denote by A, and A, the corresponding
“short paths” closing the segments of the trajectories and making them into two
piecewise smooth closed curves.

The asymptotic linking number is equal to

1
Aﬁ,n(xay) ngloo T.S // G:lel”riloo T T.8 //

(g xUAL) X (g5yUAy) geTXghy

The last equality of the limits follows from the boundedness of the integrals over

the short paths (see Definition 4.13 of a short paths system). Hence,

&n // en(T,y) papty /M'u /M,uy Té‘g)loo T T-S //

MxM 17><!1 Y

1 T S

where 4¢i,G is regarded as a function on M x M and fOT fOS denotes the integral
of this function over the product of (the pieces of) the trajectories géx and gpy.
By the Birkhoff ergodic theorem applied to the integrable function i¢7, G, we can

pass from the time averages to the space average:
Aey = // Aen(T,y) papy = /:“l’/:“y (igiy G).
MxM M M

Finally, shift the substitution operators ¢¢ and ¢, from G to the forms p, and p,

(the operation ¢ is inner differentiation; see Section 1):

Aa,n—//Aanwy uxuy—/ux/uy iginG) Zgux /nuy/\G

MxM

= /iw A Gliyp).

M

By Proposition 4.19 the operator G is inverse to exterior differentiation: (N;(i,,,u) =

d~'(iyp) modulo an exact form. This completes the proof of Theorem 4.16:

New = / ep Ad~ (i) = H(E.m).

M
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65. Asymptotic crossing number

The helicity approach to magnetic energy minoration in terms of the topology
of magnetic lines was generalized by Freedman and He [FH1,2] by introducing
the notion of asymptotic crossing number. They determined the complexity of a
knotted orbit by the “minimal number of crossings” in its projections. It replaces
the linking number, where the crossings are counted with appropriate signs. In the

presentation below we mostly follow the paper [FH2].

5.A. Energy minoration for generic vector fields.

DEFINITION 5.1. For two closed curves +; and 72 in R® the crossing num-
ber ¢(v1,72) is equal to the integral of the absolute value of the Gauss integrand

for their linking number:

Ty 1o

1 (315 Y2, 71 — 72)]
5.1 C\Y1,72) = —// dtldtz
5.1) ( e J ) 71— 2| ?

This quantity is no longer invariant under a curve isotopy. However, all the no-
tions and definitions regarding the corresponding asymptotic version can be literally
transferred to this situation.

For a vector field ¢ defined in a domain M C R® (and tangent to the boundary
OM), we use the same definition of a “system of short paths” as above (see Definition
4.13 and subsequent Remark 4.14). Denote by I'r(x) the piece of the £-orbit of
@ € M run in the time period [0, T] and closed by a short path.

DEFINITION 5.2. The asymptotic crossing number of the field lines of a divergence-
free vector field ¢ with a closed curve + in a simply connected manifold M3 is the
limit

ce(z,v) =lm sup % e(Tr(x), 7).

T—o00
This limit exists, belongs to L'(M), and is well defined in L'(M) in spite of the
ambiguity in the choice of the system of short curves.
Similarly, the average crossing number of the field lines of ¢ with the curve ~ is

given by the integral

celr) = /M cel2,7) pa.

where p is a volume form on M.
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Finally, given two divergence-free vector fields £ and 5, their asymptotic crossing
number Cr(€,n) is defined as the space integral of the crossing number of one of
the fields with the trajectories of the other:

T—o0

Crigon) = [ (imsup FeeTr) o

where I'r(y) is the piece 0 <t < T of the ¢-field line issuing from the point y and

closed by a short path. This crossing number admits the integral representation
(€ & — )
(5.2) &n / / flafly-
T an ||$ y||3 !

The asymptotic crossing number yields the following lower bound for the Fj/,-
energy By () == [y, [1€1°% 1

THEOREM 5.3 [FH2]. For any divergence-free vector field & in M

1/4
5.3 Bp©2 (7)) Ot

REMARKS 5.4 [FH2]. A) The L?/?-norm used in the definition of the Ej 5-energy
is justified by the “conformal nature” of the problem. Any lower bound for the Es /»-
energy implies a lower bound for the standard Ey-energy Eo(§) := [, [|€]* g due
to a straightforward application of the Holder inequality:

(E3/2(6))*/? 16 1
(vol(AD))T/5 = <7T-v01(M)> Cr(&:9),

or, in a more recognizable form, f(||€||3/2 1) <(f 1€]12)3/% - (vol (M) /4.

(5.4) Ey(§) =

B) Similarly, for any two divergence-free vector fields ¢ and n in M,

1/4
Cr(é,n) < (5) (Bs () - (Espo(m)*"”.

T

C) Both sides of the inequality have geometric nature (they rely on a particular
choice of metric) and are not topologically invariant. On the other hand, the energy
estimate in terms of the helicity gives a topological bound for a geometric quantity.

One can make the right-hand side of the inequality (5.3) topological by brute

force, defining the topological crossing number

CTmp(f, 77) = hEDiiIg;RB) C’r(h*f, h*n)
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Then
T
By po(he€) 2 (15)"* Criop(6,€)°/*.
for any h € Diff(R?).

D) Theorem 5.3 holds for vector fields with an arbitrary divergence, provided
that Cr({,§) is defined by the integral formula (5.2) and not ergodically. Having
used the integral definition of the helicity as well (see Definition 1.3), one obtains

T

1/4 )
Eups(ha§) > (15)  [MEQP/", for any h € Difi(M C B,

by virtue of the evident inequality Cr(§,§) > |H(E)].

REMARK 5.5. A two-dimensional version of the asymptotic crossing number has
been developed and applied to energy estimates of the braided magnetic tubes in
[Be2]. In this case the energy lower bound appears to be quadratic in the total
crossing number of a braided field, while the energy of a knotted field in three-
dimensional space is bounded by an expression linear in C'r (see the estimate (5.4)

for the Es-energy above).

PrOOF OF THEOREM 5.3. The integral form of the asymptotic crossing number
yields the following upper bound:

Cr(é, ) = %// |(€(2), (), = —y)| otty

|z =yl

g%!!%@M@%%%)MMZZM@mwmw

where the density p: R* — R7 is defined as

= L[ I

dm ) [le —ylP?
M

By the Hardy-Littlewood-Sobolev inequality [Sobl, Lieb] in potential theory,

one obtains
1/3
3 T3 3/2
3 = < [ —
lpllz (M/p I _<16> /||€|| 10

After combining it with Holder’s inequality one sees that

mmos/mwmmww

2/3

T

1/3 ,
< Nellzorz - llells < (5) (lgllzor)?.
and the theorem follows. O
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5.B. Asymptotic crossing number of knots and links. Apparently, any
reasonably sharp estimates of Cry,), for a fairly generic field { are beyond reach.
However, much more can be done under the (already exploited) assumption that

the vector field has some linked or knotted invariant tori.

DEFINITIONS 5.6. The crossing number en(K) (or en(L)) of a knot K (or link
L) in R?® is the minimum number of crossings of all plane diagrams representing
the knot (or the link).

Consider some tubular neighborhood T of the (oriented) knot K. An arbitrary
closed oriented curve confined to the neighborhood is said to be of degree p if it can
be isotoped within T to the curve that is K covered p times.

A two-component link (P, Q) in R® is called a degree (p,q) satellite link of K
(p and ¢ are positive integers) if (P, Q)) can be (simultaneously) isotoped to a pair
of curves (P, Q') C T with degree(P') = p and degree(Q') = q. The over-
crossing number en(P, Q) of the link (P, Q) is defined to be the minimum number
of overcrossings of P over () among all planar knot diagrams representing (P, Q);

see Fig.35.

FIGURE 35. The crossing number of this link L = PUQ is en(L) = 4.

The over-crossing number is en(P, Q) = 2.

Let ¢ny o(K) be the minimum of en(P, Q) over all degree (p,q) satellite links
(P, Q) of K. Define the asymptotic crossing number of the knot I to be
(5.5) ac(K)=lm inf e¢n, (K)/pg=inf{en, (K)/pq|p,q>1}.

Pig—ro0

REMARK 5.7. The equivalence of the two definitions of ac(K’) follows from the
construction of an analogue of a k-fold alternate diagram for a degree (p, q) satellite
that represents a (kp, kq) satellite. The number of crossings of the (smartly chosen)
degree (kp, kq) satellite differs from that of the degree (p, q) satellite by the factor
k?; see [FH2].

?
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Obviously, ac(K) < en(K), since en(P,Q) < cen(K) for P and @ taken to be

copies of a minimal knot diagram.
CONJECTURE 5.8 [FH2]. ac(K) = en(K).

THEOREM 5.9 [FH2|. For a divergence-free field { defined in the solid torus T
of knot type K and parallel to the boundary OT one has the inequality

Cr(€,€) > |Flux(€)*ac(K).

COROLLARY 5.10. Criop(&,€) > |Fluz(§)|*ac(K).

COROLLARY 5.11. The Ej/y-energy of such a field § yields the following lower

bound: »
16"/ 3/2 -\ 3/4
Eapp(€) 2 (2) 7 [ Plus(©)? (ac(5))*/"
Proor. Combine the above with Theorem 5.3. O

Notice that the right-hand side of the energy inequality is now topologically

invariant.

The estimate can be specified even further in terms of knot invariants (we refer
to [FH2] for the details and the proofs). A Seifert surface of a knot K € R® is an
arbitrary surface embedded in R® whose boundary is the knot K. The genus of
a knot is the minimal genus (number of handles pasted to a disk) of an oriented
Seifert surface. By the very definition, the genus is at least 1 for nontrivial knots

(an unknot bounds a genuine embedded disk).

THEOREM 5.12 [FH2|. For any knot K the asymptotic crossing number ac(I)
satisfies: ac(K) > 2-genus(K)—1. In particular, ac(K) > 1 for a nontrivial knot.

DEFINITION 5.13. For alink L = (L4,..., L), one first chooses a neighborhood
consisting of k solitori T+, ..., T} disjointly embedded in R®. Introduce quantities
enp (Li; L), ¢ € {1,...,k} to be the minimal number of times a curve of degree
p in T; must pass over (when projected into a plane) a k component link created
by choosing degree one curves in Ty,..., T;. Similarly, one defines the asymptotic
crossing number ac(L;, L) of L; over L by formula (5.5), with the replacement of
enp o(K) by eny, o(L;i; L).

Then for a divergence-free field ¢ leaving invariant the link of solid tori,

k

Criop(€,€) > (Z ac(L;, L) - |[Flux (¢

=1

Ti)

) - in {|Fluz (€l )}
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In particular, for a two-component link of solid tori (T, T2), one can deduce that

Criop(€,€) > 2|lk(Ly, Ly) - Fluz({|T,) - Fluxz(£|T,)|-

Thus certain energy minorations can be obtained from the solution of a purely
topological problem of the calculation of the quantities ac(K) and ac(L;, L) for
given types of knots and links of vortex tubes [FH2].

REMARK 5.14. These invariants are finer than the linking numbers, due to the
following immediate corollary of the plane projection method of computation of
linking numbers:

ac(Li, L) > > |Ik(Li, L;)|, 1 <i <k
i#)
This estimate is useless for configurations with vanishing linking numbers (as the
Borromean rings; Fig.26b). A statement similar to Theorem 5.12 provides a lower
bound for ac(L;, L) in terms of the so-called Thurston norm of certain surfaces
associated to a link L (see [FH2]). In particular, if L; is not a trivial component
split away from the rest of the link L (say, L; is one of components of the Borromean

rings), then the asymptotic crossing number ac(L;, L) is minorized by 1.

PROOF OF THEOREM 5.9. Define the degree of a (multivalued) function f : T —
S1 = R/Z to be its homological degree, i.e., the winding number of the function

on the solitorus.

LEMMA 5.15. For a vector field & parallel to the boundary OT of a solitorus T

(5.6) Flua(€) = /_F (EV1) .

for any degree 1 function f: T — R/Z.

PROOF OF LEMMA. Cut the solid torus T along any surface ¥ (representing the
generator of Hy(T,0T), Fig.36) to form a cylinder F.

T

FIGURE 36. Cut the solid torus along ¥ to obtain a cylinder.
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The function f on T gives rise to a function f:F = R on the cylinder. The
values of f at the corresponding points of the cylinder top 0+ F and bottom 0_ F
differ by 1. Denote by dA the area element on the section ¥. Then

[evnn=[vhu= [ axion
-/ | Gem day | (e aa

o_F

— [ (Ftop(a) — Fvottom(z)] €n) date) = [ (&m) da
The lemma is proved. O

To prove the theorem, we assume that Fluz({) = 1, and ¢' is the phase flow of
. Then, for a fixed C'-mapping f : T — R/Z of degree 1 and its lift f: TR,

T

61 [ - fenu= [ [T @8l ) e

= /qux(g) dt = .

0

Recall that T'-(z) is the curve g'(2),0 < t < 7, joined to the “short curve”
A(g7(x),x) for any @ € T. Then

| degree(T+(2)) = (F(97 () = f2)| < C,

since the lengths of the short paths are uniformly bounded and the function f is
continuously differentiable.

On the other hand, by definition of the asymptotic crossing number,
(5.8) e(Tr(x),y) > ac(K) - degree(I'-(x)) - degree()
for any closed curve ~ in the solitorus T. Therefore,

c(Tr(2),7) = ac(K) - degree(y) - [(f(¢" (x)) — f(x)) — C].
Combining this inequality with formula (5.7), we obtain

1

- / (Tr(2),7) pie = ac(K) - degree(~) (1 - CLI(T)) .

T

\]
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Finally, as 7 — oo it bounds below the average crossing number cg(~):

ce(v) > ac(K) - degree(v).

Similarly, letting v = I'/(y), y € T, and utilizing formula (5.8) and the definition

of the asymptotic crossing number, we deduce the required inequality

Cr(€,&) > ac(KK).

5.C. Conformal modulus of a torus. Some energy bounds for vector fields
possessing invariant tori can be formulated in terms of the conformal modulus of a

solid torus.

Let T be a solitorus endowed with some Riemannian metric. Homotopically T

is equivalent to the circle S' = R/Z.

DEFINITION 5.16. The conformal modulus of a solitorus T with a metric on it
18

=1n 3
() = inf T/ V51 1

where f : T — R/Zis taken to be any degree one, C''-function.

REMARK 5.17. The modulus may be thought of as a measure of the “electrical
conductivity” for currents along T: A “fat” torus will have a large modulus, while a
very thin one will have a modulus close to zero. The modulus m(T) is a conformal
invariant: It is preserved under a conformal change of metric, since V scales as
length ™.

THEOREM 5.18 [FH2|. For any divergence-free vector field £ leaving a solid torus
T wnvariant,
3/2
_ 32, 5 [Flur(7
Eal) = [ P2 0= s
where Flux(§) is the flur of the field £ through any surface ¥ representing the
generator of Ho(T,0T); see Fig.36.

PrOOF. The theorem follows immediately from Lemma 5.15. Indeed, the Holder
inequality applied to (5.6) gives |Flux(&)| < ||€]|1z/2||V f|13; therefore

|[Flua()[*"2

Bopa®) = (lellisr)* = o
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The minimization over degree 1 functions f turns the L*-norm in the denominator

into the conformal modulus. O

REMARK 5.19. An incompressible diffeomorphism action preserves Flux (&), and
therefore it leaves the energy of the field h.£ bounded from below once the modulus
of the torus has an upper bound. In turn, the modulus m(T) can be bounded by
purely topological quantities associated to the knot (or link) type of the torus (or

of the collection of tori).

THEOREM 5.20 [FH2|. For any solid torus T of knot type I embedded in Eu-
clidean three-space R3,
NS
T) < —————-.
™T) S e K)o
We refer to [FH2| for the proofs and for other interesting inequalities relating
energy, linking, and moduli of solid tori. Conjecturally, for a nontrivial link of solid

tori, min{m(T4),...,m(Tx)} is majorized by a universal constant independent of

k (the upper bound obtained in [FH2] is < /7k'/?/4).

66. Energy of a knot

The relaxation process of magnetic tubes to a state with minimal energy raises
a question on optimal embeddings of curves, or of more general submanifolds, into
the space. Is there a natural way to associate such an “energy” to a submanifold so
that the energy is infinite for immersions that are not embeddings, and so that the
gradient flow of the energy would preserve isotopy type and evolve the submanifold

to the “optimal” state?

6.A. Energy of a charged loop. Imagine an infinitesimal relative of a mag-
netic tube, a charged loop of string. Among various possible potential energies for
a loop in 3-space, the one recently suggested by O’Hare [OH1] is of special interest
because of its nice invariance properties (see [ BFHW, FHW]).

Let v = 4(u) be a rectifiable curve embedded in R?, where u belongs to the circle
S1. For any pair of points ~(u),~(v) we denote by dist(y(u),~(v)) the distance
between them along the curve, i.e., the minimum of the lengths of the two subarcs

of v with endpoints at v(u) and ~(v).



§6. ENERGY OF A KNOT 171

DEFINITION 6.1 [OH1]. The energy of the curve v is the following integral:

1 1 ‘ ‘
o= // { (0 = ([P Tdist(y(0), 7 ()P } A ()] dude.

The invariance of the energy under reparametrizations and dilations of the space

is immediate.

REMARK 6.2. The energy E is defined on the space of embeddings S' — R3.
It tends to infinity when the embedding becomes singular. It is a regularization of
1/r%-potential energy of a charged curve, while the Newton-Coulomb potential in
R® is 1/r. The energies corresponding to the exponents smaller than or equal to
—2 (in particular, to the case at hand) blow up as two distinct arcs of a curve get
closer to each other and the curve acquires a double point. It creates an infinite
barrier against any change of the knot topology. Indeed, the unregularized energy
for two pieces of straight lines intersecting transversally (say, for segments of the

@- and y-axes, respectively) is given by the integral

] e = ] e

which diverges at the origin.

A remarkable property of E(~) is a form of Mobius invariance. Recall that a
Mobius transformation in R® is a composition of a Euclidean motion, a dilation,
and an inversion with respect to a sphere. Adding one point at infinity, one makes

the Mobius transforms into bijections of the 3-sphere R® U {oo}.

THEOREM 6.3 [BFHW, FHW]. Let v be a simple closed curve in R® and let MT
be a Mobius transformation of R* U {oco}. The following statements hold:

(i) If MT o~ C R®, then E(MT o~) = E(v).

(ii) If MT o~ passes through oo, then E((MT o~)NR?) = E(y) — 4.

O’Hara [OH1] proved that there exist only finitely many knot types among the
curves with a given simultaneous upper bound on energy, length, and L*-norm of
the curvature. The conditions on the length and the L?-norm of the curvature can

be dropped, as the following theorem shows.

THEOREM 6.4 [FHW]. Let v be a simple closed curve in R® and let en(v) (respec-
tively, ¢(v,7)) denote the topological (respectively, average self-) crossing number
of the knot type of v (respectively, of the curve ~ itself). Then

27 - en(y) + 4 < E(v),



172 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDS

127 - ¢(vy,v) < 11E(v) + 12.

Notice that the average self-crossing number ¢(v,v) given by the Gauss-type
integral (5.1) is bounded, since the numerator undergoes a double degeneracy on
the diagonal of St x S,

The energy of any round circle is E(circle) = 4, being the minimum of the
energy for closed curves in R*®. The theorem implies that if a closed curve satisfies
the inequality E(v) < 6m+4 ~ 22.849, then ~ is unknotted (the number of crossings
en(v) > 3 for any essential knot ).

Using the exponential upper bound of the number of distinct knots with a given

bound for the number of crossings, one obtains the following

COROLLARY 6.5 [FHW]. The number of (the isomorphism classes of ) knots that

can be represented by curves whose energy E does not exceed N 1s bounded by
2. (2474/27) . (24127)N ~ (0.264)(1.658) ™.

Milnor [Mill] showed that for the total curvature

i) = ‘(H%H)l

and ° stand for the derivative in u), the inequality TK (v) < 4x implies

du

(where '

that + is unknotted (T K (circle) = 27). However, for any given € > 0 there exist

infinitely many knot types having representatives of total curvature TK < 4w + .

REMARKS 6.6. The total energy can be similarly assigned to a link (v1,...,7%),
which consists of k disjoint embeddings of S1 to R3:

k k
1

i=1 ij=1,i

where E(~i,v:) = E(v:), and for i # j,

] Bl sl
E(vi, ;) = / 1 () — ()| dudv.

SixS

Given N > 0 there are finitely many link types that have representatives with
TE < N (see [FHW]).

REMARKS 6.7. For a divergence-free field confined to nontrivially knotted or
linked tubes there is a lower bound of the magnetic energy, as discussed in Sec-
tion 2.B. Moffatt [Mof5] suggested using these lower bounds of the energy as the

invariants of (the tubular neighborhoods of’) knots and links.
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Namely, for any knot, consider a satellite flux-tube of volume vol carrying
an “untwisted” vector field ¢ of flux Flux (across any meridian section of the
tube) and look at the associated energy of this vector field. This energy can
be decreased by a diffeomorphism action, preserving both vol and Flux, to a
topological accessible minimum. On dimensional grounds, this minimal energy
E(¢) = m - (Fluz)*(vol)™'/?, where m = m(Fluz,vol) is a positive real number
depending on the knot topology. If for a given knot, different local minima of the
energy exist, then the sequence {mg,my,... ,m,} of possible values could be rea-
sonably described as the energy spectrum of the knot (neighborhood). The lowest
number mg provides a possible natural measure of the knot complexity (see also

C-M)).

It would be interesting to relate the final positions of the vortex magnetic tubes
under the Fs-energy relaxation to the shape of the curves, realizing the minimum
of an appropriate energy function on curves. The critical points of such an energy

would correspond to the equilibrium states for the Moffatt spectrum.

6.B. Generalizations of the knot energy. There is a variety of Mobius
invariant generalizations of the knot energy (see, e.g., [D-S, AuS, KuS]). Imagine a

charge uniformly spread over a k-dimensional submanifold M C R™.

DEFINITION 6.8. Given a function f, define the f-energy to be

//MxM |l — y||)2k dvoly(x) dvoly(y).

Regard the function f on M x M as afunction of three arguments, f = f(M, z,y).

DEFINITION 6.9. A function f(M,x,y) is g-invariant under the action of a map
g: M — Mif f(g. M, g(x), g(y)) = f(M,x,y).

THEOREM 6.10 [D-S, AuS, KuS]. Any scale and Mdébius invariant factor f gives

rise to the energy Ey invariant with respect to the Mobius transformations of R™U

{oo}-

The scale invariance of the integrand justifies the choice of the power 2k rather
than the physically meaningful n — 2 in the denominator of the energy in R”. The
submanifold M C R"U {oc} can be viewed as a submanifold of S C R"*! via the
stereographic projection. Such a projection extends to a Mobius transformation of

R"*!, while the energy formula does not depend on the ambient dimension.
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X

AN

FIGURE 37. Triangles Oxy and O#y are similar (where &,y are the

inverses of x,y).

ProOOF. The statement follows from the Mobius invariance of the integrand with
f = 1. For the latter case the scale invariance is evident, while the invariance under
inversion r ~ 7 :=r/||r||* follows from Fig.37.

The similar triangles Oxy and Oy provide the identity

2] - Mgl _ [l - [lyll
lz =gl e -yl

On the other hand, the inversion transforming M into M expands conformally
the lengths at @ by the factor ||#||/||#||- The corresponding change of the volume

element is

dvol (&) = (||z|/lz])* dvoly (x).

This shows that the integrand, as a whole, remains invariant under inversion, and

hence under an arbitrary Mobius transformation. O

If f = 1, the integrand blows up as = approaches y, and therefore the energy
is infinite for any M. The regularizing factor f is designed to compensate the
singularity, and so it vanishes as * — y.

The list of properties desired from a particular regularization usually includes
the infinite barrier against self-crossings, the Mobius invariance, and boundedness
of the energy from below. More restrictive is the property of approximate additivity
for the connected sum of two remote knots, and the requirement that the energy
contribution of any two disjoint arcs would be independent of whether they are in
the same component of the link (see the discussion in [AuS]).

To give an example, return to the case of a knot v € R®. Define a specific

regularization fo : v X v — R by the following construction.
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DEFINITION 6.11 [D-S]. Given a point & € v and any other point p € R?® there
is a unique circumference (or straight line) S,(p) tangent to + and passing through
p. Thus given two points @ and y of v, we have two oriented circumferences S, (y)
and Sy(z) that meet at equal angles at » and y. Let a be the angle at which
these two circles meet in R®. These circles and, in particular, the angle a are
defined in a Mobius invariant manner. Set the special weight fo to be the function
fo :=1—cosa. (The angle a can also be defined in the case of an arbitrary k-

dimensional submanifold in R™ by replacing the circumferences S,(y) by k-spheres

[KuS]).

PROPOSITION 6.12 [D-S|. The knot energy Ey, defined by the special weight fo
is equivalent to O Hare’s energy E modulo a constant: If v is a closed curve in R3,
then

Er(v) = E(y) — 4

It was shown in [FHW] that for an irreducible knot there is a representative
having minimal energy among all simple loops of the same knot type. A criterion
describing the “optimal” (minimizing the energy) states was obtained in [OH2]. We
also refer to the paper [KuS] for nice stereo-pairs of optimal links (with the number

of crossings en < 8) that allow one to visualize the three-dimensional picture.

REMARK 6.13. Note that the number of critical points of a function on the
space of embeddings S' — R? can be minorized by Morse theory and by Vassiliev's
calculation of the Betti numbers of the space of embeddings [VasV].

Unlike knots, plane curves (immersions S — R?) generically have self-intersection
points. The simplest singular plane curves (forming the discriminant hypersurface
in the space of maps S' — R?) have either a triple point or a point of self-tangency
(see Fig.38). A treatment of the corresponding theory of Vassiliev-type invariants
for the plane and Legendrian curves can be found in [Arn21, Aic, L-W, Vir, PI1,2,
P1V, Shm, Tab2, Gor, FuT].

FiGURE 38. Plane curves with triple points and self-tangencies.
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PROBLEMS 6.14. A) Is there an energy functional on the space of immersions
that is infinite on the discriminant and possesses the property of Mobius invariance
(and/or other properties from the discussion above)? Conjecturally, there will be
only finitely many homotopy classes of immersed curves whose would-be energy is

bounded from above.

B) Are there asymptotic generalizations of invariants of plane curves similar to
those discussed above for the linking of space curves? We refer to [Aic, L-W] for

very suggestive integral formulas of the invariants.

REMARK 6.15 (D. Kazhdan). The growth rate of the number of types of im-
mersions into the plane as a function of the crossing number suggests the existence

of a negative curvature metric in the corresponding spaces of immersions.

§7. Generalized helicities and linking numbers

This section describes various generalizations of the helicity integral to manifolds
with boundary, to the non-simply connected and higher-dimensional cases, as well

as to magnetic tubes forming links detected by certain higher-order link invariants.

7.A. Relative helicity. The helicity of a vector field in a simply connected
manifold with boundary (say, in a domain of R?) is well-defined, provided only
that the field is tangent to the boundary. A vector field crossing the boundary
possesses neither the ergodic version of the definition (some of its trajectories leave
the region, and therefore their asymptotic linking cannot be specified) nor the
integral one (the formula has to include a boundary term). However, the vector
fields identical outside the region can be compared by means of the relative linking of

their trajectories in the interior [Ful, B-F].

The definition of the relative linking number for nonclosed curves rests on the
introduction of “reference arcs” with the same endpoints and closing up the curves,
Fig.39 (see [Ful], where this construction is applied to the study of DNA knotted-
ness).

The continuous version is as follows [B-F|. Suppose that a domain in the space
R? (or a closed simply connected manifold M?) is split into two simply connected
regions A and B separated by a boundary surface S. Assume further that two
divergence-free vector fields £ and n in A coincide on the boundary .S and have the
same extension ( into the region B. Call the extended fields in M respectively £
and 7. Abusing notation we will denote them as the sums § = £ + ¢ and 7 = 7+ ¢
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FIGURE 39. Nounclosed curves have relative linking with respect to arcs

outside the region.

(where £, n,  are regarded as the (discontinuous) vector fields in the entire manifold

M with supports supp £, supp n C A, and supp ¢ C B).

LEMMA—DEFINITION 7.1. The difference of the helicities of the fields E and 7
AH = H(E) — H(7)

18 independent of their common extension ( in the region B, and hence it measures

the relative helicity of the fields £ and n in A.

PROOF. Define the (closed) two-forms «, 3, and w (by substituting the vector
fields ¢,n, and ¢ with respect to the volume form g on M: igp = a, etc.). Then

one has to show that the difference

H(E - H() = [

(atanaase) = [ @rona(@+a)

M

does not depend on w. One readily obtains

A?—[:/ ocAd_loz—/ ﬂ/\d_lﬂ—l—/ (oz—ﬂ)/\d_lw—l—/ wAd (a—p).
M M M M
Here d~! applied to a discontinuous 2-form is a continuous 1-form (the “form-
potential”). The terms in AH containing w are [, (a—B)Ad " 'w+ [, wAd™ (a—p),
and we want to show that their contribution vanishes.

Integrating by parts one of the terms, we come to 2 fM(a — B3) Ad™'w, which,
in turn, is equal to 2 [, (o —B) Ad~'w, since supp(a— ) C A.
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On the other hand, in A the 1-form d~'w is the differential of a function: d~!w =
dh. Indeed, it is closed (the differential d(d~'w) = w vanishes in A due to the con-
dition on supp ¢ = supp w C B), and hence it is exact in the simply connected

region. Hence,

2/(a—ﬂ)/\d_1w:2/(a—ﬂ)/\dh:2/h(a—ﬂ):O,

A A S

where the last equality is due to the assumption on the identity of the fields ¢ and
n on the boundary S. This proves that AH is not affected by the choice of the

extension (. O

The relative helicity of a field transversal somewhere to the boundary of M is

no longer invariant under the action of volume-preserving diffeomorphisms of M.

REMARK 7.2. The phenomenon of the same type holds for divergence-free vector
fields on non-simply connected manifolds. A true linking number does not exist for
such a case, but two “homologically equivalent” fields can be compared with each
other. A nice application to the linking numbers for cascades can be found in [GST].

Choose a nonsingular C'! vector field inside a solid torus such that the flow
lines are transversal to its 2-disks, as in Fig. 40a. In this setting one can define
the following version of the linking number. We fix the direct product structure
S1 x D? in the solid torus trivializing its fibration over S?!.

The topological linking of two long pieces of orbits is the algebraic number of
times one trajectory winds around the other. Namely, the projections of the orbits
to the disk form a moving pair of points in the same 2-disk. The linking number
is the rotation number of one point around the other. This definition extends to
the case of the cascades of periodic orbits in a solid torus. A cascade flow in the
solid torus cyclically interchanges smaller invariant disks in the transverse section
and repeats itself inside these disks (Fig.40b).

On the other hand, to the piece 0 < t < T of a single orbit of a C''-flow one
can associate the (infinitesimal) self-linking number by counting how many times a
tangent vector in the disk direction turns around the orbit. For almost all points,
the infinitesimal self-linking number has a limit as 7" — oo, and this limit can be
described by a spatial integral of the appropriate derivative [Rue].

Gambaudo, Sullivan, and Tresser showed in [GST] that the sequence of the topo-
logically defined average linking numbers between successive orbits in the cascade
converges to the average self-linking number of the invariant set. They also de-

scribed the sequences of rational numbers (in a sense, counterparts of the rotation
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(b) >

FIGURE 40. a) A solid torus with a vector field transversal to the 2-disk
D2, b) Cascade of embedded solitori.

numbers of maps of a circle into itself) that can appear as the average linking

numbers in a cascade of iterated torus knots.

7.B. Ergodic meaning of higher-dimensional helicity integrals. The
higher-dimensional integrals generalizing the helicity of a vector field in R® were
introduced by Novikov [Novl]. His idea was to extend to closed differential forms
on higher-dimensional spheres (which are not necessarily the pullbacks of the forms
from the spheres of smaller dimension) the Whitehead operations in the homotopy
groups of the spheres (simulating the approach, transforming the Hopf invariant on
the homotopy group m3(S5?) into the helicity of divergence-free vector fields on S*).

An ergodic interpretation of Novikov’s constructions encounters the following
difficulty. Unlike the three-dimensional case, where the asymptotic linking number
is defined for almost every pair of trajectories, the field lines are not linked if the
dimension of the ambient manifold is greater than 3. Thus, instead of the curves,
one should consider the submanifolds of higher dimensions. But for nonclosed
submanifolds of dimension > 2 one lacks a satisfactory generalization of the system

of short paths.

We consider the geometric meaning of the invariants of closed two-forms on
manifolds of arbitrary dimension. For odd-dimensional manifolds quantities like
Jd'a AB A+ ANw arise as first integrals in the theory of an ideal or barotropic
fluid (Sections 1.9, VI.2) or in the Chern—Simons theory (Section 8.A). Here the
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asymptotic linking number of every pair of field lines is replaced by the linking of
a trajectory with a foliation of codimension 2. For even-dimesional manifolds the
Novikov invariants are described as the average nongeneric linkings [IKh1l]. The
interpretation presented here is an ergodic counterpart of the Poincaré duality that
translates facts on the differential forms into a description of the intersections of
their kernel foliations (cf. Remark 4.7).

Let M™ be a compact connected manifold without boundary and H;(M,R) =
Hy(M,R) = 0. Denote closed (and hence, exact) two-forms on M by «,f3,--- €
Q*(M), while d~ta,d13,--- € QY(M) are arbitrary primitive one-forms (form-
potentials) for the corresponding two-forms. We start with the following simple

observations:

PROPOSITION 7.3. i) For an odd-dimensional manifold M*™1 and arbitrary
m+1 closed two-forms a, 3,...w, the Hopf-type integral I(a, 3,...w) = fM dla A
BN - ANw is symmetric under the permutations of «,... ,w and does not depend
on the choice of the primitive d'a.

ii) [Novl] On a four-dimensional manifold M* for any two 2-forms o and 3 that
obey the conditions a Na = A3 =a AP =0, the integrals

Ji(a, 3) :/Md_loz/\oz/\d_lﬂ and

Ja(a, B) = / d'aApAdTB
M
do not depend on the choices of d ™ o and d=' 3.

In [Novl], Novikov defined a set of invariants on manifolds of an arbitrary di-
mension, and we consider the case of M* for illustration. We are going to represent
these integrals as the generalized linking numbers of certain foliations associated to

the differential forms.

DEFINITION 7.4. A closed 2-form o of rank < 2 on a manifold M™ determines a
(singular) foliation (called a kernel foliation ) of codimension 2 in M: the tangent
plane to this foliation at any point of M is spanned by the (n — 2)-vector being the
kernel of « at that point.

If the manifold is equipped with a volume form g, then this foliation is generated
by the field of (n — 2)-vectors A whose substitution i 4 into the volume form gives
a (ie., ig p=a).

PROPOSITION 7.5. The kernel field of a closed two-form 1s completely integrable.

In particular, for the form of rank < 2, it spans a foliation of codimension > 2.

PROOF is an application of the Frobenius integrability criterion. O
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REMARK 7.6. Without the restriction on rank of the two-form « the correspond-
ing kernel (n — 2)-vector field A is generically indecomposable. The conditions
aNa=3A3 =0 on the pair a,3 in 7i) in the above proposition are exactly the
limitations on the ranks: rk(a),rk(3) < 2. The third condition o A 3 = 0 ensures
that the kernel foliations (of dimension 2 in M*) determined by the forms a and
B (near a point where rk(a) = rk(3) = 2) are allocated in the following peculiar
way. The intersections of their leaves form a 1-dimensional foliation, provided that
a and 3 are not proportional. Moreover, the distribution spanned by the kernels

of a and 3 determines in this case a 3-dimensional foliation [Arn9].

DEFINITION 7.7. The average linking of a curve I' with the foliation A is the
flux of the two-form a = i 4 p through an arbitrary surface 87'T" bounded by TI:

lk(F,A):/ a:/d_la.
o—-1T r

The following proposition motivates the definition of [k(I", A).

PROPOSITION 7.8. The number lk(I', A) coincides with the average linking num-
ber (evaluated with the help of the linking form G € Q"~2(M)x Q' (M)) of the leaves
of foliation A with the curve T.

PRrROOF. By definition of the form G the linking number of two submanifolds P
and () in M is given by the integral ffoQCMxM G, see Section 4. Therefore,

[[e= [[is0rn= [[nian= [[ara- [

M xI' M xI'

(Here the first identity is the definition of ffoF G, the last one is the main property
of G: the operator corresponding to the linking form acts on the exact differential

2-forms just like the operator d~!; see Section 4.D.) g

By analogy with the three-dimensional case, we can now define an asymptotic
linking lke(x, A) of the trajectory of a vector field £ passing through a point # € M
with the foliation A. It is the time-average of the linking number with A of the
curve I'r () consisting of the long segment (for time 0 <t < T') of the {-trajectory
géx starting at € M and of a short closing path:

he(2, A) = lim %lk(FT(:p),A).

T—o0
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DEFINITION 7.9. The average linking number of the vector field £ with the foli-
ation A defined on the manifold M equipped with the volume form g is

lmm:[JM%m”

THEOREM 7.10. Let a,f3,...,w be a set of m + 1 closed two-forms on M?*™T1L,
Assume that the rank of one of the forms (for example, «) is at most 2. Then the
Hopf-type integral I(a,3,... ,w) = fM d~ta An... Nw coincides with the average
linking number of the vector field & with the foliation A:

Ia,... ,w)=1lke(A),

where the fields £ and A are defined by iepp =B N ... Aw and iqp = a.

PROOF 1s a straightforward application of the Birkhoff ergodic theorem. O

The rank of « is essential merely to define the foliation A. In the general case, we
would consider a linking with an abstract (n — 2)-vector field instead of an (n — 2)-
dimensional foliation. If, conversely, all these forms have rank < 2 (of course, this is
seldom the case), then one can interpret the number I(a, ... ,w) as the multilinking

of all the corresponding foliations.

Namely, the usual linking number is a bilinear form on the space of disjoint
submanifolds of appropriate dimensions: It is defined for a pair of submanifolds P*
and Q' in M™, subject to the conditions k +1 =n —1 and PN Q = . Similarly,
we define the multilinking number as a multilinear form on the space of r-tuples of

submanifolds (Py, ..., P,) such that

T

(7.1) Z codim P; =n+1

=1

and
(7.2) (P=0.
=1

DEFINITION 7.11. The mutual linking number of r oriented closed submanifolds
Py,...,P. in M =R" (or S") satisfying the condition above is the signed number
of the intersection points of a manifold ¥ C M bounded by one of these surfaces
P, = OF with the intersection of all the other submanifolds.

If these submanifolds are equipped with some transversal orientations, then so

are all the manifolds bounded by them and all their intersections, and hence the
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FIGURE 41. Links of a) three circles in the plane; b) two spheres and

a circle in space.

signs of the intersection points are well-defined. For example, it is possible to link
three circles in the plane or two spheres and one circle in 3-space (Fig.41).

Note that the mutual linking number of a collection Py, ..., P, C M is the usual
linking number of the submanifold P, x --- x P, C M X --- x M with the diagonal
A={(z,...,2) |lzeM} CMx---xM.

We recall that every closed 2-form of rank < 2 determines a foliation of codi-
mension 2. If the leaves were compact, one could consider the mutual linking of

these leaves for (m + 1) two-forms in M2t due to

m+1
Z (codimension of leaves) = 2m + 2 = dim M + 1.

=1
So in these terms, Theorem 7.10 above reads as

THEOREM 7.10°. The Hopf-type invariant is equal to the average asymptotic

multilinking number of the leaves determined by the given 2-forms.

To describe the ergodic meaning of the Novikov integrals J; and J2, we shall
extend the concept of multilinking. We are going to drop the codimension condition
(7.1) if it is compensated in (7.2) by an assumption on the nongeneric intersection
of the submanifolds. For example, two circles S and a sphere 5% cannot be linked
in R® (one can untie any configuration of them not passing through any triple point,
Fig.42a). However, if these two circles are two meridians of the same ball (and so

their intersection S consists of two points), the linking may be nontrivial (Fig.42h).



184 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDS

@ o ~

N &

(b) S

N

FIGURE 42. a) Generic and b) nongeneric linkings of two circles and a

sphere.

Namely, one cannot remove S? far from the two meridians unless it passes through
an intersection point of these two meridians.
In the definition of invariants .J;, the (o A 3 = 0)-type conditions provide the

nongeneric intersections of the corresponding leaves.

THEOREM 7.12. The invariant Jy(a, ) (respectively, Jo(a,3)) coincides with
the average linking number of the foliation A of the 2-form « (respectively, of the

foliation B of 3) with the vector field £ satisfying igp = d(d~'a Ad™1(3).

Roughly speaking, each of these two amounts is the average linking number of
the 1-dimensional foliation formed by the intersections of A and B with the foliation

A or B (determined, respecively, by a or by ).

REMARK 7.13. The Hopf-type invariants arise in [Novl] in a context of quantum
anomalies. Consider the space £ of smooth mappings f : S — M" homotopic to

zero. To a closed (¢ + 1)-form 6 on M one naturally associates a multivalued
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function Fy(f) (or a closed 1-form dFy) on the space L:

Fy(f) = / 6.
J(D1)

Here f : 9 — M™ is extended to a mapping D! — M" of the ball D" bounded
by the sphere. Closedness of the (¢ + 1)-form 6 implies that §F depends just on
f |aDq+1:S<I-

The differential §F of a multivalued functional F(f) on the space L is said to
be local if it depends on f and on a finite number of its derivatives. Forn > ¢+ 1
all multivalued functionals F(f) with local differentials are the sums of a local
univalued functional and Fy(f) [Nov2]. A construction of multivalued functionals
for n < g+ 1 that conjecturally describes all functionals with local differentials is
given in [Novl].

There is an integer lattice inside the space of 8’s consisting of homotopy invariant
elements. The meaning of this lattice is exactly equivalent to the role of the usual
integer-valued Hopf invariant of mappings S® — S? among all asymptotic linking
invariants for arbitrary divergence-free vector fields on S®. It is natural to call the

appearance of the integral lattice a quantization condition [Novl].

7.C. Higher-order linking integrals. The Gauss linking integral fails to de-
tect the entanglements of curves in R® with an equal number of “oppositely signed
crossings.” The Whitehead link and the Borromean rings are examples of this kind
(see Fig.43). In this section we consider the higher-order invariants called Massey
numbers (see [Mas]) that generalize the linking number of two curves and allow one

to detect more general curve configurations.

4YA

FIGURE 43. Three solid tori form the Borromean rings.
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The formalism of differential forms for the hierarchy of higher link invariants was
developed in [Mas] (see also [MRe]). This notion was introduced in a magnetohy-
drodynamical setting in the paper [MSa] and rediscovered in [Bel, E-B], to which
we refer for more detail (cf. [LS2]). The topological obstruction rules for the links

in nematics and in certain superfluids can be found in [MRe].

The helicity of field tubes is quadratic in the magnetic fluxes (see formula (2.1)),
and therefore it describes a second-order invariant. For the Borromean rings the
Gauss integral taken over any two rings vanishes and so does the helicity of the
entire tube configuration. The Borromean rings can be distinguished from the
three totally unlinked rings by means of a third-order linking invariant, cubic in the

fluxes.

We start with the three closed curves forming the Borromean rings and encased
in toroidal volumes Ty, k = 1,2,3. The field £ i1s concentrated in the tube T}y,
vanishes outside, and has unit flux in Tj. Denote by A; a vector-potential for £
and by ¢y the associated 1-form-potential. (In invariant terms, one first finds a
closed two-form aj = ¢¢, p, which is the substitution of the field §; into the volume
form p, and then ¢y = d~'ay is any primitive one-form such that doy = ay.)

Having defined the two-forms w;; = ¢; A¢; = —¢; A ¢; for i # j (note: dw;; =0
outside of T; UT;), the helicity integral becomes

Hij = H(fl,fj) = / a; A d_loz]‘ = /Ozi A ¢j = /dwi]‘
T, UT; T, T,

due to supp a; C T;. By virtue of the Stokes formula, the latter integral is equal
to H;; = faT,» w;j. All the quantities Hy2, Ho3, Hs1 vanish for the Borromean rings.

One can modify the form w,;; inside the tubes to make it closed everywhere.
Namely, one has to add the 2-form h(;); - a; to w;; inside T; and to subtract
h(i); - a; from w;; inside T;, where h;); is a scalar potential satisfying ¢; = dh;);.
The function h;; exists in the tube T; (but not globally), since the magnetic field
¢; (and the corresponding two-form a; = d¢;) is zero there, and because T; is not
linked with T';. The Poincaré lemma applied to the new w;; guarantees that there

is a one-form 6;; such that w;; = db;;.
DEFINITION 7.14. The third-order linking integral is

Hijre = /Wijk :/dwijk =— / Wijk

oT; T; 0Ty

for distinct ¢, j, k, where w;j; is the Massey triple product

Wijk = ¢i AN O + 6i5 A oy
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As a matter of fact, the Massey product is a map defined on cohomology classes.
This implies both the gauge invariance of the third-order linking integral H;;; and
its invariance under deformations of the three curves. It vanishes for three unlinked

circuits but is equal to +1 for the Borromean rings.

REMARK 7.15. In the language of vector calculus the Massey product becomes
Qijr = Ai ¥ curl_lﬁjk + curl_lﬁij x Ak,

where (2;; is the vector field A; X A; modified inside the tubes to make it divergence
free and hence to provide the existence of a potential curl™'€;; (see [E-B]).

The purely cohomological description of the numbers H; ;i is as follows (see, e.g.,
[MRe]). Let the curves I'y, k = 1,2, 3, constitute the “axes” of the Borromean rings
T in S3. A closed 1-form ¢y is the Alexander dual of the circle T'y. It is defined
in S\ T'x and can be regarded as a linking form: For any closed curve ~ in this
complement fy ok = k(T'k, 7).

The condition [k(T';,T';) = 0 allows one to find a 1-form w;; on S*\ (I'; UT})
such that dw;; = ¢; A ¢;. Now wi23 = wia A 93+ @1 Awas is defined on S? with the

three circles removed, and it can be integrated over the boundary 0T .

REMARK 7.16. This is the starting point for a hierarchy of the invariants. (The
invariants of order n can be defined for configurations whose invariants of order
< n — 1 vanish.)

A fourth-order linking invariant capturing the Whitehead link was suggested in
[A-R]. Consider Seifert surfaces corresponding to two closed disjoint curves. For
each of the curves such a surface can be chosen not to intersect the other curve,
provided that the linking number of the pair vanishes. Then, generically, the in-
tersection of the two Siefert surfaces is a closed curve equipped with a framing.
The self-linking number of the framed curve i1s a topological invariant; and it is
independent of the choice of the surfaces [Sat]. By making the curves into thin

solid tori, one can obtain an integral form of the invariant [A-R].

REMARK 7.17. Another way to generalize the linking number to more compli-
cated links was suggested by Milnor [Mil2]. For all necessary definitions of higher-
order Milnor coefficients and for their relation to the higher-order Massey linking
numbers see [Mil2, Tul, Por, MRe].

REMARK 7.18. In all the constructions of this section, the magnetic field is
assumed to be highly degenerate: It is concentrated in toroidal tubes with all

the trajectories closed inside the tubes. Such fields form a slim set of infinite
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codimension in the space of all divergence-free vector fields. No asymptotic version
of these constructions is known.

The dream is to define such a hierarchy of invariants for generic vector fields
such that, whereas all the invariants of order < k have zero value for a given field
and there exists a nonzero invariant of order k + 1, this nonzero invariant provides

a lower bound for the field energy.

REMARK 7.19. It should be mentioned that the total helicity is approximately
preserved even if the magnetic field is not frozen into the media but undergoes a
small-scale turbulence [Tay]. In this case the fast reconnections of the field trajec-
tories drastically change the local topological characteristics of the field. However,
averaged over the entire domain, the helicity persists for large time intervals.

This phenomenon is based on the fact that small-scale components of the field
(the components with wave vectors of large length k) contribute to the total helicity
the amount of order (amplitude)?/k, while their contribution to the energy is of
order (amplitude)?. Hence, a change of the higher harmonics of the field affects
the helicity approximately k times more weakly than it affects the energy.

Analytically, an evolution of the magnetic field B ( div B = 0) in the presence
of diffusion is described by the equation

0B
ot
The helicity dissipation over a fixed time 4t is

=2 [ (wl (1AB).B) =20 [ G.B) g

= —{v,B} + nAB.

whereas the energy E = [, (B,B) p dissipates as

OE = Q/M(WABvB) = 2n /M(J',J') Il

(here j = curl B is the current density). The Schwarz inequality gives the upper
bound for §H of order n'/2: |§H| < |n (§E) E|'/2.

The combinatorial arguments of [FrB| show that there are “reconnection path-
ways” that remove other invariants while changing the helicity only at a rate n?.
Neither of the linking invariants of higher order (> 3) defined above for tubes of
closed trajectories persist under the reconnection deformations [MSa, FrB].

The reconnection of magnetic lines under magnetic diffusion is similar to the
vortex reconnection in a viscid incompressible fluid. We refer to [KiT] for a survey
on vortex reconnection and to [Ryl] for other topological properties of various vortex

flows.
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7.D. Calugareanu invariant and self-linking number. Let a narrow tube
around a curve v in R® be filled by the trajectories of a vector field £. Suppose
that all the {-trajectories in the tube are closed and that one of them is the curve
~ 1tself.

The helicity of the field inside the tube is proportional to the linking number [k

of any two trajectories inside the pencil:

H(E) =1k Q°,

where () is the flux of £ across any section of the tube. A straightforward application
of the helicity formulas (4.1-4.2) for a field filling an arbitrary volume, this formula
can also be visualized by presenting the tube as consisting of many slim solitori and
by counting their mutual helicity (see formula (2.1)).

On the other hand, the linking number [k between the curve v and a neighboring
curve ~' is a quantity assigned to a ribbon bounded by v and ~'. Precisely, the
linking number is the sum

lk=Wr+Tw
of the writhing number Wr and the total twisting number Tw defined as follows.

DEFINITIONS 7.20. The writhing number is the algebraic number of crossovers

of the curve v C R® averaged over all the projection directions:

_ 1 (F(t1), ¥ (t2), v(t1) — v(t2))
Wr = 4”5[5[ o dt, dts.

)
t1) —y(t2)[?

where the curve v = v(t) is parametrized by t € S! (see, e.g., [Ful]). Just as it is
for the average self-crossing number ¢(+,~) (see Theorem 6.4), the integral above
is bounded. Its value is not supposed to be an integer, and it is not a topological
invariant. For instance, for a plane (or spherical) curve the writhing number is zero.

The twist number is not defined for a curve, but it can be defined for a ribbon. It

specifies the total rotation number of the edge 4 revolving about the “axis” curve
B 1 dn(t)
n(t
= — t t)) dt
L [0 )

Sl

Tw

where ~(t) is an arc-parametrization of the curve v, and the family n(f) consists of

the unit normals attached along v and pointing in the direction of 7.

The formula [k = Wr 4+ Tw is illustrated in Fig.44. This relation, due to Calu-

gareanu [Cal], was extensively studied along with its numerous applications (e.g.,
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g A\

7

FIGURE 44. The formula lk = Wr+ Tw for a helical ribbon (see [Ful]).
Here Ik = n, Tw = nsina, Wr = n(l — sina), where « is the pitch

angle of a helix, and n is the number of turns.

the helical DNA structure) by Fuller [Ful], Pohl [Poh], White [Wh], and in the
hydrodynamical context by Berger and Field [B-F], and Moffatt and Ricca [MoR,
RiM]. We refer to [MoR] for a derivation of the Calugareanu invariant from basic
hydrodynamical principles, as well as for the invariant history and extensive bibli-
ography. The decomposition [k = Wr 4+ Tw corresponds to the writhe and twist
contributions to the helicity of a bundle of field lines, which is a substitution for a

ribbon in the hydrodynamical setting.

We also refer to the paper by Bott and Taubes [B-T] for a purely topological
notion of the self-linking number of a knot, which has been conceived in the context
of the Chern—Simons topological quantum field theory and then decoupled from the
group structure involved (see the references therein for the earlier papers by D. Bar-
Natan, by A. Guadaguini, M. Martinelli, and M. Mintchev, and by M. Kontsevich).
In the next section we describe the relation of the linking numbers to the Chern—

Simons functional.

7.E. Holomorphic linking number. Many real notions in mathematics have
their complex counterparts. The analogies can be as “straightforward” as the cor-
respondence of real and complex manifolds, or of the groups of orthogonal and
unitary matrices (O(n), U(n)), or much more elaborate, say, the Stiefel-Whitney
and Chern characteristic classes of vector bundles. Another nontrivial example is
the duality of the homotopy groups mg (in the real setting) and m; (in the complex
setting). It can be understood as follows: The number of connected components
(o) is a measure of complexity of the complement to a hypersurface in a real mani-
fold. On the other hand, a complex hypersurface does not split a complex manifold,
and it can be bypassed. The fundamental group (m;) measures the complexity of

the complement in the latter case. We refer to [Arn23, Kh2| for other examples of



§7. GENERALIZED HELICITIES AND LINKING NUMBERS 191

informal complexification.

Here we discuss a complex counterpart of the notion of linking number (following
the ideas of [At]; see [KhR, FKT, Ger, F-K]). Instead of linking two smooth closed
curves in a simply connected real three-manifold, we will deal with an invariant
associated to a pair of closed complex curves (Riemann surfaces) in a complex three-
dimensional (i.e., of real dimension 6) manifold. In the scketch below we always
assume that the described manifolds and forms exist, and we briefly mention the

necessary existence conditions.

REMARK 7.21. The classical linking number [k is an integer topological invariant
equal to the algebraic number of crossings of one curve in R? with a two-dimensional
surface bounded by the other curve (Fig.25). The topological invariance of [k and
its independence of the choice of surface follow from the fact that the algebraic
number of intersections of a closed curve and a closed surface is equal to zero.

The latter invariance can also be viewed as the Stokes formula for §-type forms
supported on closed curves and surfaces (cf. Remark 4.7). The Stokes formula, and
more generally, the De Rham theory of smooth differential forms, has a genuine real

flavor: One considers real manifolds with boundary and an appropriate orientation,
the Z /27Z-valued invariant.

One argues in [F-K, Kh2] that the Leray theory of meromorphic forms on com-
plex manifolds is an informal complexification of De Rham theory. The Leray
residue formula is a higher-dimensional generalization of the Cauchy formula, which
gives the value of a contour integral of a meromorphic 1-form via the form’s residue
at the pole. It “replaces” the Stokes formula in the complexification. Instead of
restricting a form to the boundary, one takes the residue of a meromorphic form at

the polar set.

To define the Leray residue, let w be a closed meromorphic k-form on a compact
complex n-dimensional manifold M with poles on a nonsingular complex hypersur-
face N C M. All poles here and below are supposed to be of the first order. Let
be a function defining N in a neighborhood of some point p € N. Then locally, in
a certain neighborhood U(p), the k-form w can be decomposed into the sum

(7.3) w:%/\a—l—ﬁ,

W

where a and 3 are holomorphic in U(p). One can show that the restriction oz‘N 18
a well-defined (i.e., independent of ¢) holomorphic (k — 1)-form (see [Ler]).
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DEFINITION 7.22. The form-residue res w of the closed meromorphic k-form w
is the holomorphic (k — 1)-form on N such that, in any neighborhood U(p) of an
arbitrary point p € N, it coincides with the form «a |x of the decomposition (7.3):

res w=a|yN.

Similarly, one defines the residue in the case of polar sets consisting of several

complex hypersurfaces in a general position in M.

REMARK 7.23. For a complex manifold M with A1 (M) := dim H' (M, Q") =
0, every holomorphic (n —1)-form on N is the residue of some meromorphic n-form
on M with poles on N of the first order; see, e.g., [Chr]. This meromorphic n-form
on M is defined by its residue on N uniquely up to a holomorphic n-form on M.
Note that the condition 2™!(M) = 0 in the complex setting can be thought of as

an analogue of simple-connectedness of a real manifold.

Now let C1,Cs C M be two complex closed nonintersecting curves in a complex
closed three-fold M: C;NCy = (). Fix some holomorphic differentials a; and ay on
the curves C7 and (', respectively, and a meromorphic 3-form n on M, satisfying
the following condition: The zero locus of 1 intersects neither of the curves C; and
Cy (e.g., if M is a Calabi—Yau manifold, it possesses a nonvanishing holomorphic
3-form 7, unique up to a factor). The number we are going to assign to this pair
of curves depends linearly on a;, as, and 7!,

Suppose that there exists a complex surface S; in M that contains the complex
curve C7. Denote by 31 any meromorphic 2-form on 57 with a polar set on the
curve (1, and such that the residue of this 2-form 3; is equal to ay: res fy|c, = ay.

By virtue of the remark above, such a 2-form (3| exists as soon as there is a complex
surface S; C M containing the curve C'; and such that H!(S;,Q?%) = 0.

DEFINITION 7.24 [KhR, FKT]. The holomorphic linking number lk¢ of the pair
of complex curves C; with chosen holomorphic differentials «; on them (in the
manifold M with the meromorphic form ) is the following sum over all intersection

points of the surface S7 and the curve Cs:

(7.4) ke ((Crrar), (Cayan)) = 3 [31270‘2

S1NCs

Note that the 3-form 31 A ay is well-defined at the points of intersection S N Cy,
and the ratio on the right-hand side measures its proportionality coefficient with

the 3-form 75 at the same points.
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Unlike the real case, the holomorphic linking number is not integer valued, and
it is not an isotopy invariant. Its value can be any complex number, and it depends
on the mutual location of the complex curves C'; and Cs in M, as well as on the
differential forms ay, az, and 5 involved. However, it will be the same for all

additional choices.

PROPOSITION 7.25.

i) The holomorphic linking number lkc is well-defined; i.e., it does not depend
on the choice of complex surface S1 O C1 or the meromorphic two-form 3
on it, provided that res B1|c, = an (Fig.45).

it) The value lkc is a symmetric function of its arguments: One gets the same
linking number by embedding the curve Cy into a complex surface So, taking
a meromorphic form By such that res Ba|c, = ag, and forming the sum

ar N By

ke ((Cryan),(Cayan)) = > c=1lko((Cy, ), (Cy, 1))

C1NSs g

FiGURE 45. The holomorphic linking number of complex curves Cy
and C5 counts the contributions of the intersections of the curve Cs

with a surface S7 D (', or equivalently with another surface S| D Cj.

PROOF. Assume that the complex curve (' is a transversal intersection of two
complex surfaces S; and 57, and each of the surfaces is equipped with a mero-
morphic 2-form (respectively, $; and 3]) whose residues on C; are «;. Define a
meromorphic 3-form v, on M with poles (of the first order) on S; and S and

residues 31 and — 7, respectively. These conditions on the form ~; are consistent.
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Indeed, on the intersection of two surfaces the form (second) residue depends on
the order in which the repeated residue is taken: It differs by the sign. For example,
according to the order, the form dx A dy/xy has the second residue 1 or —1 at the

origin:
de N d d .
res|y:ores|x207y = res|y:o—y =1, while
ryY
de N dy dx
res|y=ores|y—g ——— = —res|,—g— = —1.
xy x

Similarly, the second residue of the 3-form ~; on the curve €y = S; N S| is the

1-form ay or —ay. For instance,

res|c,res|s, 1 = res|o, B1 = .

Then, by the definition of the holomorphic linking number (7.4),

ke ((Croan). (Coran)) = 3 27N a2

S1NCs g

since res vy |s, = 1. The latter ratio at every point of S; N Cy is equal to

#i!
res (— A as),
1
where 77)—1 i1s a meromorphic function on M, and 77)—1 A ag 1s a meromorphic 1-form

defined on C5. Indeed, one can easily see that the equality

A
(res )Nz (0L A ay)
n n

holds at every point of the intersection S; N C3 by doing calculations in local
coordinates.

Then lkc is the sum of residues of the meromorphic 1-form 771 Aas on the complex
curve Cy at the poles S; N Cy. By using the surface S} instead of Sy for the same
calculation, one obtains minus the sum of residues of the same 1-form 77)—1 A ag on
C3, where the residues are taken at the poles S{ N Cy. The latter follows from the
assumption that res vi|g = —f;.

The Cauchy theorem states that the sum of residues of a meromorphic 1-form on
a complex curve is equal to zero. We apply it to the meromorphic 1-form 771 A
on the complex curve Cs. Then the sum of the form’s residues at all poles, i.e., at
the points of intersection of Cy with both S; and S7, is equal to zero. This shows

that {kc does not depend on whether we use the surface Sy or 57 (statement (7)).



§7. GENERALIZED HELICITIES AND LINKING NUMBERS 195

The symmetry of k¢ can be immediatelly seen if we present Cy as a transversal
intersection of two surfaces Sy and S} and associate to it a meromorphic 3-form ~,

in the same way as above. Then

the ((Cran (Can) = 3 et (2032,

S1NSLiNS, n

where res® is the residue of the meromorphic 3-form

Y1 A Y2
n

at the triple intersections S N S5 N Sy. The skew symmetry of the wedge product
and the sign change when passing to the intersections S; N S N Sy complete the
proof of (ii). O

REMARK 7.26. The main reason for introducing the complex linking number is
that it arises as the “first approximation” of the complex analogue of the Chern—
Simons functional (see [FKT, FKR] and Remark 8.9). The standard linking number
governs the asymptotics of the classical Chern—Simons functional ([Pol, Wit2], Sec-
tion 8 below).

REMARK 7.27. In a real three-dimensional manifold M, a knot (or link) invari-
ant is a locally constant function on the space of embeddings of a circle (respectively,
a union of circles) into the manifold M. In [VasV], V. Vassiliev defined the jump
of an invariant as the function assigned to the immersions of the circle with one
point of self-intersection and whose value is equal to the difference of the knot
invariant on the embeddings “before” and “after” the self-intersection. (Here the
notions of “before” and “after” are determined by the orientation of the circle and
of the ambient manifold M.) One can iterate the jumps and define the function on
immersions with any finite number of self-intersection points.

By definition, the Vassiliev invariant of order k is a knot or link invariant whose
jump function vanishes on all immersions with at least k+ 1 self-intersection points.

In particular, one has the following

PROPOSITION 7.28. The linking number of two curves in R® is an invariant of

order 1.

REMARK 7.29. The holomorphic linking number [k ¢ is not defined if the two
complex curves C7 and C5 intersect, and it tends to infinity as the curves approach
each other. We suggest the following “meromorphic” counterpart of the Vassiliev

theory.
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Let M be a complex three-dimensional manifold equipped with a nonvanishing
holomorphic form 5. Denote by M ; the moduli space of all embedded holomorphic
curves of fixed genus g; (j = 1,2) in the complex manifold M. The space M; is a
finite-dimensional complex manifold by itself (and we assume that its dimension is
nonzero). The product M = M; x M, can be thought of as a complex analog of
the space of (real) knots or links.

Similar to the real case, it is natural to call the discriminant A C M the subset
of all configurations in the moduli space M such that the curves C; and C3 hit
each other. The discriminant A is a (singular) complex hypersurface in M, and
its regular points Ay correspond to simple intersections of the curves C; and Cs.
Further degenerations of the discriminant variety A D Ag D Ay D ... are stratified
by the number and multiplicity of the intersections.

It would be interesting to define the holomorphic linking number Ik ¢ as a closed
differential form on the moduli space M or on some bundle over it. Since [k tends
to infinity as the two curves get close to each other, this differential linking form is
supposed to have a pole of first order along (the regular part Ag of ) the discriminant

A. In particular, the corresponding residue might be well-defined along Ag.

More generally, one can call a complex link invariant of complex curves of genera
gi1,92,...,gm in a complex three-manifold M any closed meromorphic k-form on
the appropriate moduli space M := M; x My x --- x M,, of the holomorphic
embeddings in M.

DEFINITION 7.30. A complex link invariant of order k is a closed meromorphic
form on the moduli space M whose (k + 1)-st residue vanishes on all strata Ay of
the discriminant A C M that correspond to embeddings of complex curves with k

points of pairwise intersections.

PROBLEMS 7.31. A) Show that the complex linking form [k ¢ can be defined as
a complex link invariant of order 1. Similarly, one can try to define the complex

analogues of Massey products and of other cohomological operations on knots and

links.

B) Give an ergodic interpretation of the holomorphic version of the linking num-

ber in the spirit of Section 4.

68. Asymptotic holonomy and applications

8.A. Jones—Witten invariants for vector fields. There is a diversity of
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subtle invariants for knots and links. For instance, one might consider the knot
polynomials (of Alexander, Kauffman, Jones, HOMFLY, Reshetikhin and Turaev,
etc.) or the Vassiliev invariants of finite order (see, e.g., [Tu2, VasV]). It is of great
interest to extend the domain of such invariants to the case of (divergence-free)
vector fields, to “diffuse knots” in the three-space R3. From this standpoint, a

regular knot is understood as a vector field supported on a single closed curve.

The classical (combinatorial) approach to introducing the knot invariants is
based on some type of recurrence relation: One starts with an unknot and defines
a precise recipe for how the invariant changes under elementary surgeries (for ex-
ample, the connected sum). This strategy seemed to be nonapplicable to extending

the definitions to vector fields.

The situation changed after Witten’s generalization [Wit2] of the Jones poly-
nomial to arbitrary closed 3-manifolds in terms of the asymptotics of the Chern—
Simons functional on the space of connections over the manifold. The structure
group of the connection gives one more parameter to the problem, and the actual

Jones polynomial corresponds to the SU(2)-connections.

The extension of Witten’s approach from links to “diffuse knots” was started
by Verjovsky and Freyer in [V-F], and we present below the main steps of that
paper. In the abelian case of the U(1)- (or GL(1)-)connections the asymptotics in
question are essentially determined by the helicity invariant of the corresponding
divergence-free vector field. The GL(n)-version of the asymptotic monodromy along
a nonclosed trajectory of a vector field is provided by Oseledets’s multiplicative
ergodic theorem [Osel]. However, the extension of the invariants to the nonabelian
case encounters serious obstacles arising from the lack of a nonabelian version of

the Birkhoff ergodic theorem on the equality of time and space averages.

Let M be a closed compact real three-manifold M and let L C M be a link (a
disjoint union L = U ;C; of smoothly embedded circles C;). Further, let P =
M x G be the G-principal bundle over M, where the structure group G might be
U(1) or SU(2).

Denote by A the space of all connections in the (trivial) bundle P. It can be
identified with the affine space A'(M,g) of 1-forms on M with values in the Lie
algebra g of G. Finally, let G= C>°(M,G) be the current group of fiber-preserving

automorphisms of P.

DEFINITION 8.1. The Jones—Witten invariant of a link L C M 1is the following
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function of k:

Wir(k) = / exp (ik/tr(A/\dA—l—%A/\A/\A))- H tr(PeXp/A) - DA,

A/G M cicL ¢

where Pexp is the path ordered exponential integral, and DA is “an appropriate
measure on the moduli space of the connections.” From the mathematical point of

view, neither DA nor W has a sound definition.

Witten showed in [Wit2] that for M = S® and G = SU(2) this corresponds to
the Jones polynomial (in k) for the link L. Though justification of the meaning of

this integral is still not complete, it looks a lot simpler for an abelian group G, say

U(1):

(8.1) Wi (k) = / exp (z’k/A/\dA)- 11 (eXp/A) . DA.

A/ G M Cick Ci

One can think of [, AAdA as a quadratic form Q(A) on A, while the line integral
fCi A is regarded as a linear functional (the so-called De Rham current) Ic,(A)
evaluated at the 1-form A.

For the abelian case (see [SchA, Pol]), the path integral modulo factors related

to a regularization and topology of the manifold M is equal to

(8.2)

Wi (k) = const - exp i Z(Ici,d_lfcj> = const - exp i Z Ik(C;,CY)
— Y

2

The regularization is needed to define the linking number for each curve C; with
itself (cf. the definition of self-linking number in Section 7.D). The topological
factor, being the value of Wy (k) in the case without any link (L = 0), is the
Ray—Singer torsion of the manifold M [SchA].

REMARK 8.2. Heuristically, one computes here a quadratic Gaussian integral of

the type
/ eik(x,Qx)ei(b,x)(W—n/Z) dx,

which, upon the extraction of a complete square, is equal to
e#“vQ_lb)/ eik(x—l—Q_lb,Q(x-|—Q_1b))(ﬂ_—n/2) de

:eﬁ@,Q_lb)(det Q)—1/2(e(%~signQ))_
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One can apply this formula to the (completion of the) infinite-dimensional space
A = Q'(M,g) in the case of the quadratic form Q(A) = [,, A A dA. Since the
form () is degenerate, the integration is carried out only along a subspace in the
space A transversal to the kernel of ). This corresponds to integration over the

G-quotient of the space A, see [Wit2, V-F]. Although this differs from the above
case of a nondegenerate form, here we are interested only in the factor eﬁa”Q_lb),
which has a straightforward analogue.

In our context, this factor turns out to be the linking term:

i -1 l
eﬁ(va b) = exp ﬂz<l€i7d_l]€j>

6

The ergodic (“diffuse”) version of this approach has to do with notions of as-
ymptotic and average holonomy. (One can think of diffusing the knot as the way
of its regularization: The neighboring trajectories can be regarded as a framing. In
particular, it allows one to determine the knot self-linking as the linking number of

the knot with its shift in the direction of the frame.)

DEFINITION 8.3. The asymptotic holonomy of a connection A along the trajec-
tory I'e(p) = {gé | t > 0} of a vector field ¢ issuing from a point p € M is the
following element of the Lie group G:

1
Pexp/ A= Tlim Pexp / (fA)
—co
retw {91 0<t<T)

The last integral is defined by the limiting procedure T' — oo, due to the trivial-
ization of the bundle P = M X G (or by means of a system of short paths used for
the asymptotic linking number, see Definition 4.13).

It can also be thought of as follows. The (indefinite) integration

Pexp / A

{g¢1 t>0}

along the trajectory I'¢(p) defines a curve in the Lie group G. Choose the one-
parameter subgroup in GG approximating this curve as ¢ — oo. Then the asymptotic
holonomy is the point £ = 1 on the subgroup. The existence of this limit for an
arbitrary group G is obscure. However, in some cases the limiting eigenvalues for

almost all initial points p € M are provided by the multiplicative ergodic theorem

[Osel].
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Though in the nonabelian case no simple answer for the space average of the
asymptotic holonomy is known (there is no matrix analogue to the Birkhoff ergodic
theorem on the equality of time- and space-averages), we present the would-be

definition in “full” generality (see [V-F]).

DEFINITION 8.4. The average holonomy holg ,(A) of a connection A on a divergence-
free field £ preserving the measure y on M is the group exponent of the Lie algebra

element [, A(¢) p.

REMARK 8.5. In general, neither the average holonomy hol¢ ,(A) nor its con-
jugacy class in the group G is gauge invariant (i.e., preserved under the change of
the connection A to A + €([A, f] + df) for an arbitrary f € C>(M,g)).

In the case of abelian (say, GL(1)) connection, the form A is a real-valued 1-form
on M, and the ordered exponent P exp becomes an ordinary exponent. Then the
holonomy holg ,(A) is gauge invariant, and the above definitions exactly correspond
to the ergodic interpretation of the Hopf (helicity) functional in terms of average

linking number considered above:

THEOREM 8.5 (= HELICITY THEOREM 4.4). For an abelian group G the multi-
plicative average of the asymptotic holonomy over the entire manifold M coincides

with the average holonomy calculated by total integration of the “infinitesimal trans-

forms” A(¢):
exp A = hol¢ ,(A).
/M (/F‘f(p) ) H €7N( )

The latter identity of the two invariants suggests the following definition.

DEFINITION 8.6 [V-F]. The Jones—Witten functional for a divergence free vector

field € on a closed three-manifold M endowed with a measure p is the expression

2
We u(k) = {exp(ik / tr(ANdA+ -ANANA))-tr(holg ,(A))} - DA,
AJG M 3

where the average holonomy holg ,(A) is defined above.

REMARK 8.7. Note that the case of an actual knot or link L = Ji_, C; can be
understood as a particular case of this definition for a “4-type” measure p supported

on a finite number of curves {C;}.

Assume now that M is a closed three-manifold, p is a smooth volume form on
M, and £ is a null-homologous trivial vector field on M, i.e., the two-form #¢p is
exact: t¢p = df for some 1-form 6. The case of the abelian connection can be

handled completely:
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THEOREM 8.8 [V-F|. For a topologically trivial linear bundle over M (with G =
U(1l) or GL(1)), the Jones—Witten functional for the vector field £ reduces to its

helicity invariant:

We (k) = const - exp(i / do N 6).
M

PrROOF SKETCH. The average holonomy in the abelian case is

holg ,(A) = exp/

y A Ap = exp/ ANdO =exp(Ie(A)),

M

where I¢ is the De Rham current corresponding to the field . (The “diffuse” term

holg ,(A) :exp/ A(ﬁ)/\,u:exp/ / AN p,
M M JT¢(p)

/ )
Ci

11 (eXP/ A)=exp( )
C;CL Ci C;CL
in (8.1).) Then the expression (8.2) for the abelian case becomes

We u(k) = const-exp{i([ad_lfg} = const-exp(i/ do N 6).
M

REMARKS 8.9. The Chern—Simons functional

CS(A):/tr(A/\dA—l—%A/\A/\A)
M

on G-connections { A} over real three-dimensional manifolds M has a complez ana-

logue for Calabi—Yau manifolds, or, more generally, for any three-dimensional com-

plex manifold N; see [Wit3]:

2
CS@(A):/tr(AAdA+§AAAAA)An,
N

where 1 is a holomorphic (or meromorphic) 3-form on N. In the case of the abelian
group G = GL(1,C) and a complex link L, being a disjoint union of complez curves
C'; with holomorphic differentials «; on them, the asymptotics of the corresponding
complex analogue of the Jones—Witten functional W is given by the holomorphic

linking number lkc((C;, a;), (C}, a;)) defined in Section 7.E (see [FKT, FKR, Ger]).
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REMARKS 8.10. The higher linking numbers introduced in Section 7.B arise in
the calculation of correlators in Chern—Simons theories in dimensions greater than
3 (see [FNRS]).

A higher-dimensional version of the Chern—Simons path integral can be regarded
as a nonabelian counterpart of the corresponding hydrodynamical integral. Being
an example of so-called topological field theories, by its very definition it does
not require a metric to specify the action functional. Hence, all gauge-invariant
observables in the theory are topologically invariant, provided that the measure in
the path integral does not spoil the invariance under diffeomorphisms.

Let {A} be the space of U(1)-connections on a manifold M?>™+!: DA is a shift-
invariant integration measure. For a collection of cycles Cq,...,C, of dimensions

dim C; =2d;4+1,:=1,...,r, define the gauge-invariant functional

Qo0 (A) = HGXP /A A (dA)"
=1 C
Suppose that the cycles obey the linking condition (7.1): Y.;_,(m — d;) = m + 1.
Then asymptotically for large k the expectation value of the functional ®, that is,
ik
® Ay>= [ & A) - AN(dA)™ | DA
<Py, 00 (4) > / (Ch,..,o1 (A) - exp <2m_|_1 /M A (dA) ) )

is given by the exponent of the mutual linking number for the collection of cycles:
exp (Ik(Cy,...,C,) /k"™1), where the number lk(C}, ..., C,) is the linking number
of, say, C, with the intersection of all other cycles; see Section 7.B. (To avoid the

contribution of the self-linking of the cycles into the integral, one assumes the so-
called normal ordering of the operators involved.) If the linking condition is not
fulfilled, but there are sublinks saturating the condition, then the leading term in

the asymptotics is given by the mutual linking numbers of these sublinks.

REMARKS 8.11. The above holonomy functional can be regarded as a counter-
part of the Radon transform: given a Lie group G it sends a gauge equivalence class
of the G-connections on M to a G-valued functional on the space of loops in M.

The value of the holonomy functional on aloop I' is the holonomy of a connection
A around I'. In the abelian case (G = R) the Radon transform associates to a one-

form 6 on M the corresponding functional Iy on the free loop space LM (the space

Io(T) = /F 0.

In [Bry2], Brylinski characterizes the range of the Radon transform as the set

of smooth maps S' — M):

of functionals on LM obeying a certain system of second-order linear PDE (called



§8. ASYMPTOTIC HOLONOMY AND APPLICATIONS 203

the Radon—John system). The necessary and sufficient conditions are constraints
on the partial derivatives 6219/6%66%;, where the coordinates {z¢} are the Fourier
components of small variations of the curve I'. In dimension 2, this system gives
rise to the hypergeometric systems in the spirit of [GGZ]. A nonabelian counterpart

of the Radon—John equations involves the bracket iterated integrals (see [Bry2]).

Note that in three dimensions the Radon transform displays the kind of function-
als on vector fields that can be defined as fluxes of fields through surfaces bounded
by embedded curves (or, the same, as the average linking number of the fields and
the curves). Indeed, the embedded nonparametrized curves in R® form a subset
in the dual SVect(R®)* of the Lie algebra of divergence-free vector fields in the
space (see Section VI.3). A curve I' C R® defines the functional whose value at a
divergence-free field ¢ is the flux of ¢ through I'.

To relate it to the description above, fix a vector field £ and assume that p is a
volume form in the space. Let 6 be a one-form such that iy = df (€ is the vorticity
field for 6). Then I4(T') := [ 6 = { flux of £ through ' } can be regarded as the
functional on the I'’s. A regular element of the dual space SVect(R?)* is a “diffuse”

loop I, a divergence-free vector field n (see Section 1.3), while the pairing is

Iy(n) := /R 8(n) 1 =H(E n).

8.B. Interpretation of Godbillon—Vey-type characteristic classes. Let
F be a cooriented foliation of codimension 1 on the oriented closed manifold M,

and 8 a 1-form determining this foliation. Then df = 6 A w for a certain 1-form w.

PROPOSITION 8.12 (SEE, E.G., [Fuks]). The form w A dw s closed, and its

cohomology class does not depend on the choices of 8 and w.

DEFINITION 8.13. The cohomology class of the form w A dw in H*(M,R) is
called the Godbillon—Vey class of the foliation F.
On a three-dimensional manifold this class is defined by its value on the funda-

mental 3-cycle:

GV(F) = /M w A dw.

Let v be an arbitrary vector field with the sole restriction #(v) = 1, and let L*

denote the kth Lie derivative along v.
THEOREM 8.14 (SEE [Sul, Th1]). GV (F)=— [, L6 A db.

If M?® is a manifold equipped with a volume form pu, the class GV admits an

ergodic interpretation in terms of the asymptotic Hopf invariant of a special vector

field.
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Define the vector field { by the relation
ic,u = L%e AB.
COROLLARY 8.15 [Tabl]. The vector field ( is null-homologous, and its asymp-

totic Hopf invariant 1s equal to the Godbillon—Vey invariant of the foliation F.

PRrROOFS. By the homotopy formula (see Section 1.7.B)
Ly0 =div0 +ivdd =iy Nw=w— f6,

where the function fis f = w(v). This implies that (Lv6) A0 = w A0 = —df, and

moreover,
(L20) A0 = Ly((Ly0) A ) = Ly(—df) = —dL,0 = —d(w — f8).

Hence we can take w’ = w— f# as a new 1-form w in the definition of the Godbillon—

Vey class. Theorem 8.10 readily follows:

/Lie/\dez/ Lie/\e/\w’:—/ dw' ANw' = =GV (F).
M M M

The null-homologous property for the field ( also follows from the fact that the
2-form (L260) A § = i;p is a complete differential. Furthermore, the asymptotic

Hopf invariant of ( is

H(() = /M iep ANd M (icp) = /M dw' A w' = GV (F).

4

REMARK 8.16 [Sul, Thl, Tabl]. Having defined an auxiliary vector field £ (tan-
gent to the leaves of F) by the relation

Tept = LyONG,

one may argue that it measures the rotation of the tangent planes to the foliation
in the transversal direction v. Namely, the direction of £ is the axis of rotation, and
the modulus of £ is the angular velocity of the rotation. Then one may say that (
measures the acceleration of the rotation, and the above statement reads: GV (JF)

is the asymptotic Hopf invariant of this rotation acceleration field.

As an element of H?*(M,R), the Godbillon-Vey class on manifolds of higher

dimensions is determined by its values on 3-cycles. Any such value coincides with
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the asymptotic Hopf invariant of the corresponding field (, constructed for the

induced foliation on the 3-cycle.

Similarly, one can define the asymptotic and integral Bennequin invariants for
a null-homologous vector field on a contact simply connected three-manifold (see
[Tabl]). These invariants generalize the classical Bennequin definition of the self-
linking number of a curve transverse to the contact structure [Ben|. Interesting
polynomial invariants of Legendrian curves (and more generally, of framed knots)

in a solid torus, generalizing the Bennequin invariant, have been introduced by

Aicardi [Aic] (see also [FuT, Fer, P12]).

In conclusion, we refer to [DeR, SchL, SchS, GPS, Sul] and references therein for
various questions related to structure cycles, asymptotic cycles, approximations of

cycles by flows and foliations, and the corresponding smoothness conditions.

PROBLEMS 8.17. A) Give an ergodic interpretation of the global real-valued
invariant of three-dimensional C R-manifolds found in [B-E].

Roughly speaking, a C R-structure on a (2n + 1)-dimensional manifold is defined
by choosing an n-dimensional integrable subbundle T19M of the complexified tan-
gent bundle of M. In particular, this subbundle determines a distribution of the
corresponding contact elements on M. The C R-structure gives rise to a real-valued

(Chern—Simons-type) 3-form (defined modulo an exact form) on the manifold.

B) It would be interesting to consider whether similar techniques can be applied
to generalize the Casson invariant and the Floer homology of homological 3-spheres

to aspherical (4k — 1)-manifolds with an additional structure (say, to contact man-

ifolds); see [CLM, Arn24].



