
CHAPTER IIITOPOLOGICAL PROPERTIES OFMAGNETIC AND VORTICITY FIELDSThe interior media of stars and planets are often virtually perfect conductorsand possess magnetic �elds. These �elds are said to be \frozen" into the medium(for instance, plasma or magma) in spite of temperatures of a million degrees.Mathematically this means that any motion of the medium transports the �elds bya di�eomorphism action preserving the mutual alocation of the �elds' trajectories.Such a transformmay diminish the �eld magnetic energy. The topological structureof the �eld provides obstacles to the full dissipation of the magnetic energy of thestar or planet.On the other hand, inhomogeneity of the medium's motion (e.g., the \di�erentialrotation") stretches the particles and hence might amplify the magnetic energy(transforming part of the kinetic energy of the motion into magnetic energy). Thiscompeting mechanism is apparently responsible for the dynamo e�ect, generatinga strong magnetic �eld from very small magnetic \seeds" (see Chapter V).x1. Minimal energy and helicity of a frozen-in �eld1.A. Variational problem for magnetic energy. In this chapter we willlook for the energy minimum for the �elds obtained from a given divergence-freevector �eld under the action of volume-preserving di�eomorphisms.The energy of a vector �eld � de�ned in a domain M of the three-dimensionalEuclidean space R3 is the integral E = RM (�; �)�. (It di�ers by a factor of 2 from theenergy used in preceding chapters, which simpli�es noticeably the estimates below.Throughout Chapter III, the space R3 is always equipped with the standard metric,and � is the volume form.)A more general setting assumes that M is a Riemannian manifold, possiblywith boundary. The �elds are supposed to be divergence free with respect toTypeset by AMS-TEX127



128 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSthe Riemannian volume form (and to obey some boundary conditions, such astangency to the boundary of M , or equality of the �eld normal component atthe boundary to a prescribed function). The energy E = h�; �i = RM (�; �)� is ageometric characteristic of the �eld relying on the choice of the Riemannian metric( ; ).Our purpose is to estimate the energy by means of topological features of the�eld. Here a feature of the �eld is called topological if it persists under the actionof di�eomorphisms preserving the volume element (but not necessarily the metric).Remark 1.1. In magnetohydrodynamics, where this variational problem nat-urally arises, the role of � is played by a magnetic �eld B, frozen into a 
uid ofin�nite conductivity (but of �nite viscosity �) �lling a \star" M .With an appropriate choice of units, the velocity �eld v and the magnetic �eldB satisfy the system of equations (cf. Section I.10)� @v@t + (v;r)v = �rp+ ��v + (curl B) �B; div v = 0;@B@t + fv;Bg = 0; div B = 0;where f�; �g is the Poisson bracket of two vector �elds. The covariant di�erentiation(v;r)v, the Laplace operator � = �curl curl , the vorticity curl B, and the crossproduct �, standard for R3, have natural generalizations to the case of an arbitraryRiemannian manifold M . The magnetic �eld B and the velocity �eld v are pre-scribed at the initial moment. The term (curl B)�B represents the Lorentz forcej � B acting on a current j, which coincides (modulo the factor 4�) with curl Baccording to the Maxwell equation.Physicists suggest that during evolution the kinetic energy dissipates due to theviscosity term ��v, and the motion ceases \at the end," each particle approachingsome terminal position. If this happens, the magnetic �eld, being frozen-in, willattain some terminal con�guration. The energy of this terminal �eld must be a localminimum; otherwise the magnetic energy would have been converted into kineticenergy, and because of the Lorentz force, the 
uid would move further until thehydrodynamical viscosity dissipated the excess of the magnetic energy above theminimum.1.B. Extremal �elds and their topology. The variational principle for mag-netic �elds is dual to that for the steady 
uid 
ows (studied in Chapter II) in thefollowing sense.The energy functional that undergoes a minimization procedure is the same inboth problems. The domain of this functional in the magnetic case consists of



x1. MINIMAL ENERGY AND HELICITY OF A FROZEN-IN FIELD 129all �elds di�eomorphic to a given one, while for the case of the ideal 
uid thedomain is replaced by the class of the isovorticed �elds, i.e., by the �elds withdi�eomorphic vorticities. (The term \dual" above refers to the fact that the domainof di�eomorphic �elds is an adjoint orbit in the Lie algebra of all divergence-freevector �elds, whereas the isovorticed �elds constitute a coadjoint orbit of thatalgebra; see Chapter I.)The extremal �elds in both of the variational problems coincide ([Arn9], forthe proof see Section II.2). These �elds have very peculiar topology (cf. SectionII.1). Namely, the extremals are the divergence-free �elds that commute with theirvorticities. They are either Beltrami 
ows (i.e., the �elds proportional to their ownvorticities) or are \integrable" 
ows whose stream lines �ll almost everywhere toriand annuli; see Fig.9 in Chapter II.This analysis of topology of the extremal �elds leaves little hope that the idealizedphysical model of the magnetic �eld relaxation, described above, is legitimate forany somewhat general initial conditions. Indeed, the initial magnetic �eld B canbe chosen having no invariant magnetic surfaces. Then the terminal �eld, if thereis one, cannot have invariant tori or annuli and must be a solenoidal �eld of a veryspecial (Beltrami) type (see [Hen] for the �rst numerical evidence of chaos in theBeltrami 
ows). But such �elds are too scarce, and one could hardly �nd a �eldwith the prescribed topology of the magnetic lines amongst them.It appears that for a correct description of the actual process it is necessary totake into account the magnetic viscosity, which violates the assumption that the�eld is frozen-in and implies \reconnection" of the magnetic lines. Such a processwas not taken care of in our initial system of equations (one has to add the term��B on the right-hand side of the second equation to capture this phenomenon).Question 1.2. To what extent can one use the extremal �elds to study the be-havior of the magnetic �eldB at large time scales? What phenomena should appearover the time interval during which the ordinary viscosity succeeds in extinguishingthe motion of the 
uid, but the magnetic viscosity would not yet extinguish the�eld B?1.C. Helicity bounds the energy. Let � be a divergence-free vector �eldde�ned in a simply connected domainM � R3 and tangent to the boundary of M .Definition 1.3. The helicity (or the Hopf invariant ) of the �eld � in the domainM � R3 is H(�) = h�; curl�1�i = ZM (�; curl�1�) dV;



130 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSwhere ( ; ) is the Euclidean inner product, and A = curl�1� is a divergence-freevector potential of the �eld �, i.e., r�A = �; div A = 0.The integral is independent of the particular choice of A (which is de�ned up toaddition of the gradient rf of a harmonic function, since M is simply connected).Indeed, integrating by parts, one obtains the following expression for the di�erenceof the helicity values associated to two di�erent choices of A:ZM (�;A1) �� ZM (�;A2) � = ZM (�;rf) � = ZM (fdiv �) �+ Z@M (f � �) dS = 0;where the last term vanishes, since � is tangent to the boundary @M . Note thatsuch a �eld A = curl�1� exists and is de�ned uniquely in a simply connected Mupon speci�cation of the boundary conditions, e.g., A is tangent to the boundaryof M (or, more generally, the normal to the boundary @M component (A;n) of thevector �eld A is �xed). If M is not bounded (say, M = R3), the �eld � is supposedto decay at in�nity fast enough to make the integral above converge.The helicity of a �eld measures the average linking of the �eld lines, or theirrelative winding (see details in Section 1.D below).Though the idea of helicity goes back to Helmholtz and Kelvin (see [Kel]), itssecond birth in magnetohydrodynamics is due to Woltjer [Wol] and in ideal hydro-dynamics is due to Mo�att [Mof1], who revealed its topological character (see also[Mor2]). The word \helicity" was coined in [Mof1] and has been widely used in
uid mechanics and magnetohydrodynamics since then. We refer to [Mof2, MoT]for nice historical surveys.The principal feature of this concept is described in the following statement.Theorem 1.4 (Helicity invariance). The helicity H(�) is preserved underthe action on � of a volume-preserving di�eomorphism of M .In this sense H(�) is a topological invariant: Though it is de�ned above with thehelp of a metric, every volume-preserving di�eomorphism carries a �eld � into a �eldwith the same helicity. We will prove this theorem in a slightly more general settingat the end of this section just by giving a metric-free de�nition of the invariant.Now we get an immediate and important dividend:Theorem 1.5 [Arn9]. For a divergence-free vector �eld �,E(�) � C � jH(�)j;where C is a positive constant dependent on the shape and size of the compactdomain M .



x1. MINIMAL ENERGY AND HELICITY OF A FROZEN-IN FIELD 131Proof is a composition of the Schwarz inequalityH2(�) = h�;Ai2 � h�; �i hA;Aiand the Poincar�e inequality, applied to the vector �eld A (tangent to the boundaryof M if @M 6= ;):hA;Ai = ZM (A;A) � � 1C2 ZM (�; �) � = 1C2 h�; �ifor A = curl�1�; E(�) = h�; �i: �Various applications of this theorem can be found in [MoT, L-A].Remark 1.6. The inverse (nonlocal) operator curl�1 sends the space of divergence-free vector �elds (tangent to the boundary) on a simply connected manifold ontoitself. This operator is symmetric, and its spectrum accumulates at zero on bothsides. The restriction of the operator � curl2 to the space of the divergence-freevector �elds is called the Laplace{Beltrami operator on the divergence-free �elds.Its components in the Euclidean R3 case are the Laplacians of the �eld components.Its spectrum is a sequence of real numbers divergent to �1.This Laplacian � curl2 di�ers by the sign from the Laplace operator of topologistsd� + �d (see Sections 1.D and V.3.B below) restricted to the space of closed two-forms. Here a divergence-free vector �eld � on a Riemannian manifold is regardedas the corresponding closed 2-form i��.Corollary 1.7. The eigen�eld of the operator curl�1 corresponding to theeigenvalue � of the largest absolute value has minimal energy within the class ofdivergence-free �elds obtained from this eigen�eld by the action of volume-preservingdi�eomorphisms.Indeed, for any �eld � the energy E(�) can be minorized as follows:E(�) = h�; �i � 1� hcurl�1 �; �i;and the inequality becomes the equality for the eigen�eld with the eigenvalue �. Ingeneral, the constant C of the preceding theorem can be taken equal to j�j.Remark 1.8. The theorems above, as well as many results below, hold for themore general case of manifoldsM whose �rst homology group vanishes: H1(M;R) =0. This statement also holds for an arbitrary closed three-dimensional Riemannianmanifold if one con�nes oneself to divergence-free �elds that are \null-homologous"(i.e., have a single-valued divergence-free potential).



132 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSExample 1.9. The standard Hopf vector �eld onS3 = f(x1; x2; x3; x4) 2 R4j 4Xi=1 x2i = 1gis de�ned by v(x1; x2; x3; x4) = (�x2; x1;�x4; x3):It corresponds to the maximal eigenvalue (=1/2) of the curl�1 operator on S3with the canonical induced metric and the orientation given by the inner normal.The trajectories of this �eld are the great circles along which S3 � C 2 intersectsthe complex lines C 1 � C 2 (see Fig.21 for v-orbits under stereographic projectionS3 ! R3). These trajectories are pairwise linked. The Hopf �eld on S3 has minimalenergy among all the �elds di�eomorphic to it, i.e., obtainable from it by the actionof a volume-preserving di�eomorphism.
Figure 21. Hopf �eld in R3 (the stereographic projection from S3).One circle becomes the vertical axis. Every two orbits are linked.1.D. Helicity of �elds on manifolds. We consider here an ad hoc de�nitionof the helicity integral on manifolds [Arn9], establish its simplest properties (inparticular, the topological invariance), and identify the result with De�nition 1.3above. An interesting topological meaning of the invariant will be discussed in thenext two sections.



x1. MINIMAL ENERGY AND HELICITY OF A FROZEN-IN FIELD 133Let M be a three-dimensional manifold that is closed (compact, without bound-ary), oriented, and connected, and let � be a volume element (i.e., a nonvanishingdi�erential 3-form de�ning the correct orientation) on M . Notice that we �x avolume element on M , but we do not select any Riemannian metric.Definition 1.10. Every vector �eld � on M generates a di�erential 2-form !�according to the formula !�(�; �) = �(�; �; �)for any vector �elds � and �. The correspondence � 7! !� = i�� is an isomorphismof the linear spaces of �elds and 2-forms. The di�erential of !�, being a 3-form,can be expressed via the volume form asd!� = ' � �;where ' :M ! R is a smooth function. The function ' is called the divergence ofthe �eld � : ' = div �. The velocity �eld of a 
ow that preserves the volume elementonM is divergence free, and conversely every �eld with vanishing divergence on Mis the velocity �eld of an incompressible 
ow.Remark 1.11. The origin of divergence is explained by the homotopy formulafor the Lie derivative L� = i�d+ di�. The Lie derivative L� is the derivative of anydi�erential form f along the vector �eld �, de�ned as the derivative of the formgt�f transported by the 
ow gt of the vector �eld �, evaluated at the initial momentt = 0: L�f = ddt jt=0(gt�f). The operation i� is the substitution of the vector �eld� in the di�erential form as the �rst argument, and d is the (exterior) derivative.Applied to the form � it gives L�� = i�d�+ di�� = d!� = '�. Thus the function' is the coe�cient of stretching (or divergence) of the volume form by the �eld �.Definition 1.12. A divergence-free vector �eld � on M is said to be null-homologous if the 2-form !� corresponding to it is the di�erential of a globallyde�ned 1-form � on M : !� = d�:The 1-form � will be called a form-potential. A �eld is null-homologous if and onlyif its 
ux across every closed surface is zero. In the case of a simply connectedclosed M every divergence-free vector �eld is null-homologous.Remark 1.13. IfM is endowed with a Riemannian metric ( ; ) then the 1-form� can be identi�ed with the vector �eld A for which�(�) = (A; �) for every �eld �:



134 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSHere � = curl A (in the Euclidean case � = r�A), and the vector �eld A is calledthe vector-potential of �. We would like to make a point, however, that the forms! and � (in contrast to the �eld A) do not depend on the Riemannian metric butrely only on the choice of the volume element �.Definition 1.14. The helicity (or Hopf invariant) H(�) of a null-homologous�eld � on a three-dimensional manifoldM (possibly with boundary) equipped witha volume element � is the integral of the wedge product of the form !� and its formpotential: H(�) = ZM � ^ d� = ZM d� ^ �; where d� = !�:Theorem 1.15. This de�nition is consistent, i.e., the value of H does not de-pend on the particular choice of the form-potential �, but only on the �eld �:i) for a manifold M without boundary, orii) for a simply connected manifold M with boundary, provided that the �eld �tangent to @M .Proof. i) First assume that M is without boundary. If � = � + � is anotherform potential for the same 2-form !�, then d� = 0, and thereforeZM � ^ d�� � ^ d� = ZM � ^ d� = ZM d(� ^ �) = Z@M=; � ^ � = 0:ii) Now @M 6= ;. In the simply connected case, a variation � of the form-potential is exact (� = df for some function f on M), and the variation of H isgiven by ZM � ^ d� = ZM df ^ d� = ZM d(f ^ d�) = Z@M f ^ d� = 0;where d� vanishes on @M due to the condition �jj@M . �Remark 1.16. In the presence of a Riemannian metric on M the helicity canbe expressed asH(�) = ZM � ^ !� = ZM � ^ i�� = ZM �(�) ^ � = ZM (A; �) � = h curl�1�; � i;where A is any vector-potential of �. (The shift of the substitution operator from� to � is due to the fact that i� is the (inner) di�erentiation: i�(� ^ �) = i��^ ��� ^ i��.) Therefore, consistent with De�nition 1.3, H is the inner product of the�eld with its vector potential.The above coordinate-free approach can be summarized in the following



x1. MINIMAL ENERGY AND HELICITY OF A FROZEN-IN FIELD 135Corollary 1.17. The helicity of a null-homologous vector �eld � is preservedunder the action of an arbitrary volume-preserving di�eomorphism of M . For asimply connected manifold M with boundary, the helicity of a divergence-free vec-tor �eld tangent to the boundary does not change under the action of all volume-preserving di�eomorphisms of M that carry the boundary @M to itself.In particular, on a Riemannian manifold the inner product of a divergence-free�eld and its vector potential is preserved when the �eld is acted on by a volume-preserving di�eomorphism.Proof. The invariance of H under di�eomorphisms that preserve the volumeelement follows from the fact that H can be de�ned by using no structures otherthan the smooth structure of M and the volume element �. �This observation constitutes the proof of the Helicity Invariance Theorem.Example 1.18 (= 1.90). The helicity of the Hopf vector �eld on S3 � R4(de�ned in Example 1.9, Fig.21) is �2=2. Indeed,H(v) = ZS3 (v; curl�1v) � = 12 ZS3(v;v) � = 12 ZS3 � = vol (S3)2 = 2�22 = �2;since the eigenvalue of the curl�1 operator on S3 is equal to �1=2, and the volumeof S3 is 2�2.Example 1.19. With any smooth map � : S3 ! S2 one can associate thefollowing integer number, called the Hopf invariant of �. Fix on the sphere S2 anarbitrary area form � normalized by the condition area(S2) := RS2 � = 1. Such aform is closed on the sphere S2, and hence its pullback ��� is exact on S3 (sinceH2(S3) = 0). That is, there exists a 1-form � such that d� = ���. Then the Hopfinvariant of � is H(�) = ZS3 � ^ ���:Proposition 1.20. H(�) is an integer.Proof hint: Choose the form � to be a �-type form on S2 supported at onepoint only. Compare the result with the topological de�nition of the Hopf invariantbelow. �Given a volume form on S3, the number H(�) is the helicity of the divergence-free vector �eld � de�ned by the condition i�� = ���. The orbits of this �eldare closed, being the preimages of points of S2 under the mapping �. The above



136 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDS
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-1Figure 22. Hopf invariant for a map S3 ! S2.de�nition of the helicity is a generalization of the Hopf invariant to the case wherean exact 2-form on S3 (or on M3) is not necessarily a pullback for any map �.An equivalent (topological) de�nition of the Hopf invariant for a map S3 ! S2is the linking number in S3 of the preimages of two generic points in S2 (Fig.22).The equivalence of the topological and integral de�nitions plays a key role in whatfollows in this chapter.Theorem 1.5 claims that for a map � : S3 ! S2 with nonzero Hopf invariantH(�), (a multiple of) the absolute value of this invariant bounds below the energyof the corresponding vector �eld. The latter �eld is directed along the �bers of themap �. The length of the vectors is de�ned by the volume form on S3 and thepullback of the S2 area element.Remark 1.21. L.D. Faddeev proposed another but relevant variational problemfor the mappings � from R3 to S2. Consider the functional on such mappingsthat is a (weighted) sum of two terms. The �rst term is the Dirichlet integral(of the squared derivative) of the map �. The second term is the energy of thecorresponding vector �eld directed along the �bers of the map. Then this functionalis bounded below by (a multiple of) jH(�)j3=4, where H(�) is the Hopf invariantof the map � : R3! S2 [V-K]. The proof uses a version of the Sobolev inequality[Sob1]; cf. Theorem 5.3 below and its proof, which employs the same inequality.Furthermore, some recent computer experiments for the relaxation process ofan initial mapping with nonzero Hopf invariant exhibit the following phenomenon.In the equivariant case (of S1 acting by rotations on R3 and S2), one observes an\energy gap" over the poles, where the rotation axis intersects the sphere. It wouldbe very interesting to explain this singularity structure.



x2. TOPOLOGICAL OBSTRUCTIONS TO ENERGY RELAXATION 137The addition of the Dirichlet integral to the energy is similar to the additionof the Lagrange multiplier in the problem of energy minimization. We could startwith the action of all di�eomorphisms, and then consider the conditional minimumfor the action of only volume-preserving ones.Remark 1.22. The Hopf invariant equips the Lie algebra of divergence-freevector �elds on a closed simply connected three-dimensional manifold with a bilinearform : H(�; �) = h�; curl�1�i;where curl�1� is a vector-potential of the �eld �.This form is invariant with respect to the natural action of volume-preservingdi�eomorphisms on vector �elds (i.e., with respect to the adjoint representation ofthe group SDi�(M) in its Lie algebra; see Chapter I). Moreover, the form H issymmetric, sinceH(�; �) = ZM i�� ^ d�1(i��) = ZM d�1(i��) ^ i�� = ZM i�� ^ d�1(i��) = H(�; �):The positive and negative subspaces of the formH are both in�nite-dimensional; see[Arn9, Smo1]. ThusH generates a bi-invariant pseudo-Euclidean (inde�nite) metricon the corresponding group SDi�(M). For the case of a non-simply connected Mone has to con�ne oneself to the subalgebra of all null-homologous vector �eldswithin the Lie algebra of all divergence-free vector �elds on M (see Section IV.8.Dfor more detail).In this case one may also hope to de�ne the generalized Hopf invariants withvalues in some modules over the fundamental group, but this way has not yet beenduly explored.x2. Topological obstructions to energy relaxation2.A Model example: Two linked 
ux tubes. The helicity obstruction tothe energy relaxation is clearly seen in the example of a magnetic �eld con�ned totwo linked solitori, Fig.23a,b. Assume that the �eld vanishes outside those tubesand the �eld trajectories are all closed and oriented along the tube axes inside.To minimize the energy of a vector �eld with closed orbits by acting on the�eld by a volume-preserving di�eomorphism, one has to shorten the length of mosttrajectories. (Indeed, the orbit periods are preserved under the di�eomorphismaction; therefore, a reduction of the orbits' lengths shrinks the velocity vectors



138 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDS
(a) (b)Figure 23. a) A magnetic �eld is con�ned to two linked solitori.b) Relaxation fattens the tori and shrinks the �eld orbits.along the orbits.) In turn, the shortening of the trajectories implies a fattening ofthe solitori (since the acting di�eomorphisms are volume-preserving).For a linked con�guration, as in Fig.23b, the solitori prevent each other fromendless fattening and therefore from further shrinking of the orbits. Therefore,heuristically, in the volume-preserving relaxation process the magnetic energy ofthe �eld supported on a pair of linked tubes is bounded from below and cannotattain too small values [Sakh].Below we show that the helicity of a �eld measures the rate of the mutual winding(or \helix-likeness") of the �eld trajectories around each other. To visualize thisnotion (and the paradigm \helicity bounds energy" of the preceding section), we�rst concentrate on the degenerate situation above (see [Mof1]).Let a magnetic (that is, divergence-free) �eld � be identically zero except in twonarrow linked 
ux tubes whose axes are closed curves C1 and C2. The magnetic
uxes of the �eld in the tubes are Q1 and Q2 (Fig.24).Suppose further that there is no net twist within each tube or, more precisely,that the �eld trajectories foliate each of the tubes into pairwise unlinked circles.Lemma 2.1. The helicity invariant of such a �eld is given by(2.1) H(�) = 2 lk(C1; C2) �Q1 �Q2;where lk(C1; C2) is the linking number of C1 and C2.Definition 2.2. The (Gauss) linking number lk(�1;�2) of two oriented closedcurves �1;�2 in R3 is the signed number of the intersection points of one curve withan arbitrary (oriented) surface bounded by the other curve (Fig.25). The sign of



x2. TOPOLOGICAL OBSTRUCTIONS TO ENERGY RELAXATION 139
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2Figure 24. C1; C2 are axes of the tubes; Q1; Q2 are the corresponding
uxes.each intersection point is de�ned by the orientation of the 3-frame that is formedat this point by the velocity vector of the curve and by the 2-frame orienting thesurface.The linking number of curves is symmetric: lk(�1;�2) = lk(�2;�1).
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Figure 25. The linking number of �1 and �2 is the signed number ofintersections of �1 with a surface bounded by �2.Proof of Lemma. The helicity volume integralH(�) = hcurl�1�; �i = R (A; �) �over the tubes (here A = curl�1� ) descends to the sum of the corresponding lineintegrals: H(�) = Q1 ZC1(A; dC1) +Q2 ZC2(A; dC2):Indeed, the volume element � in each tube is the product of the line elementdCi and the area element dSi of the tube cross section. In turn, the integral of the



140 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDS�dSi over the corresponding cross section is the 
ux Qi. Hence,Zith tube(A; �) dSi dCi = ZCi ZSi(A; (�dSi) dCi) = Qi ZCi(A; dCi):Furthermore, the circulation RC1(A; dC1) of the �eld A over the curve C1 is thefull 
ux of curl A = � through a surface bounded by the axis curve C1. The latter
ux is equal to Q2 � lk(C1; C2): Every crossing of the surface by the second tubecontributes to the signed amount of Q2 into the full 
ux. Note that the �rst tubeitself does not contribute into that 
ux through its axis C1, due to the assumptionon the net twist within the tubes.The same argument applied to the second circulation integral doubles the result:H(�) = 2 lk(C1; C2) �Q1 �Q2. �A generalization of this example to the case of an arbitrary divergence-free vector�eld � is described in Section 4.2.B. Energy lower bound for nontrivial linking. The linking number is arather rough invariant of a linkage. The signed number entering the de�nition of lkcan turn out to be zero for con�gurations of curves linked in an essential way (see,e.g., the so-called Whitehead link in Fig.26a). However, the heuristic observationof the beginning of Section 2.A for the energy bound still holds.
(a) (b)Figure 26. Nontrivial links with vanishing pairwise linking numbers.a) Whitehead link, b) Borromean rings.The heuristics above are supported by the following result of M. Freedman [Fr1]:Any essential linking between circular packets of �-integral curves implies a lowerbound to E.



x2. TOPOLOGICAL OBSTRUCTIONS TO ENERGY RELAXATION 141Definitions 2.3. A link L, i.e., a smooth embedding of n circles into a 3-dimensional manifold, is trivial if it bounds n smoothly and disjointly embeddeddisks. Otherwise, the link is called essential.A vector �eld � on M is said to be modeled on L if there is a �-invariant tubularneighborhood of L � M foliated by integral curves of � that is di�eomorphic tonSi=1D2i � S1 foliated by circles fpointg � S1 (here D2 is a 2-dimensional disk).Theorem 2.4 [Fr1]. If � is a divergence-free vector �eld on a closed 3-manifoldM that is modeled on an essential link (or knot) L, then there is a positive lowerbound to the energy of �elds obtained from � by the action of volume preservingdi�eomorphisms of M .Under the additional assumption on a �eld to be strongly modeled on a link, thelower energy bound for a �eld in R3 was obtained in [FH1] explicitly. A divergence-free �eld � is strongly modeled on L if there is a volume-preserving embedding thatcarries the �eld @@� directed along the circles in nSi=1(D2�S1)i into � within a tubularneighborhood of L. The neighborhood consists of several solid tori of equal volume,which we denote by V .Theorem 2.5 [FH1]. The energy of a vector �eld � strongly modeled on anessential link L in R3 satis�es the inequalityE(�) >  p6=125�2 !4=3 � V 5=3 � 0:00624 V 5=3:Note that given any link, one may construct a �eld modeled (and even stronglymodeled) on it. The exponent 5/3 has the following origin. The Euclidean dilationwith a factor l multiplies the image �eld by l and the volume element by l3. Thusthe total energy gains the factor l5, while the volume is multiplied by the factor l3.Hence, the ratio E=V 5=3 is purely geometrical and independent of scaling in theEuclidean case.Remark 2.6. Theorem 2.5 suggests the following construction of a set of invari-ants of topological or smooth 3-manifolds. The invariants are parametrized by theisotopy classes of knots and links in the manifold. They might also be regarded asthe invariants of embeddings of 1-dimensional manifolds into 3-dimensional ones.Consider the ratio E=V 5=3 for a vector �eld strongly modeled on the knot or onthe link of a given isotopy class in a Riemannian manifold. Take the in�mum overall such �elds and over all the Riemannian metrics. The resulting number is aninvariant of the smooth (perhaps, even topological) isotopy class of the pair (link,3-manifold).



142 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSFurther, one might take the in�mum over all the compact 3-manifolds for ahomotopically trivial link to get an invariant of the classical link or knot. (Is thisin�mum equal to the in�mum of the above ratio for Euclidean 3-space or for the3-sphere? Is the supremum over all the 3-manifolds �nite?)One might also start with a compact Riemannian manifold of volume 1 andwith a link of k solid tori of volume V each. If kV is smaller than 1, the in�mumof E=V 5=3 over the metrics of total volume 1 is a function of V , which is still aninvariant of the embedding. We do not know whether these invariants are nontrivial,i.e., whether they distinguish any 3-manifolds or embeddings (cf. Remark 6.7).Freedman and He have informed us that Theorem 2.5 can be generalized toarbitrary Riemannianmanifolds. The limit of the coe�cient C(V ) for small volumesV is the same constant as in the Euclidean case C = �p6=125=�2�4=3 given byTheorem 2.5.The strongly modeled �elds have very simple behavior near the link and are farfrom being generic within divergence-free vector �elds. It would be of interest tocompletely get rid of the condition on a special tubular neighborhood.Problem 2.7. Is there an energy lower bound for a �eld having a set of closedtrajectories forming an essential link on a Riemannian manifold (without an as-sumption on a neighborhood of closed orbits)?Remark 2.8. The strongest result in this direction was obtained in [FH2] (seeSection 5), where the condition on a �eld to be modeled on a link was weakened tothe requirement for a �eld in R3 to have invariant tori con�ning the link compo-nents. Such �elds form an ample set near the integrable divergence-free 
ows. Thisfollows from the KAM theory of Hamiltonian perturbations of integrable Hamil-tonian systems.In particular, if a closed �eld orbit is elliptic (and generic), i.e., its Poincar�e maphas two eigenvalues of modulus 1, then this orbit is con�ned to a set of nested toriinvariant under the �eld (see, e.g., [AKN]). Thus, every such orbit forming an essen-tial knot provides the lower bound for the energy of the corresponding �eld. Indeed,the energy of any of the invariant solid tori con�ning this knotted orbit cannotdiminish to zero, according to [FH2]. One can argue that a vector �eld with aknotted hyperbolic closed orbit (whose Poincar�e map has real eigenvalues of themodulus di�erent from 1) may not have a positive lower bound for the energy (cf.the next section).Remark 2.9. The di�erent estimates for the magnetic energy, should magneticsolid tori form a trivial or nontrivial link, have a striking counterpart in the theory



x3. SAKHAROV{ZELDOVICH MINIMIZATION PROBLEM 143of Brownian motion.Let K be a knot in S3, and fz(t)j t > 0g the standard Brownian motion onS3 starting at some point O 62 K at a distance d(O;K) = � > 0 from K. If Kis unknotted, then there exists almost surely a sequence t1 < t2 < : : : such thattn ! 1 and for which d(z(tn); O) � �=2. Furthermore, the loop that we obtainby following the Brownian path up to z(tn) and then joining z(tn) to O by a shortpath �(z(tn); O) is homotopic to O in S3nK [Var]. In other words, (almost surely)the Brownian path returns close to its starting point untangled with respect to K,and it does this in�nitely many times.The exact opposite happens when K is knotted: There almost surely exists aT > 0 such that whenever the distance d(z(t); O) is small enough, d(z(t); O) � �=2and t > T , the homotopy class of the above loop is not trivial [Var]. In this sensethe Brownian motion can tell whether K is an essential knot or not. Heuristically,this means that the Brownian motion distinguishes the existence of a hyperbolicmetric on the universal covering to S3nK (see Thurston's theorem on the hyperbolicstructure on the complement to a nontrivial knot or link [Th2]).x3. Sakharov{Zeldovich minimization problemAssume now that a divergence-free �eld has a trivial topology in that all �eldtrajectories are closed and pairwise unlinked. An example of such a �eld is therotation �eld in a 3-dimensional ball (Fig.27). The energy lower bounds consideredin Section 2 are valid for essential links and are not applicable here. On the contrary,in this case the �eld energy can be reduced almost to zero by a keen choice ofvolume-preserving di�eomorphisms [Zel2, Sakh, Arn9, Fr2].Theorem 3.1. The energy of the rotation �eld in a 3-dimensional ball can bemade arbitrarily close to zero by the action of a suitable di�eomorphism that pre-serves volumes and �xes the points in a neighborhood of the ball boundary.Remark 3.2. This result, formulated by A. Sakharov and Ya. Zeldovich [Sakh,Zel2], is based on the following reasoning. Divide the whole ball into a number ofthin solid tori (bagels) formed by the orbits of the �eld and into a remainder ofsmall volume. Then deform each solid torus (preserving its volume) such that itbecomes fat and small, with the hole decreasing almost to zero. (Such deformationsmust violate the axial symmetry of the �eld, since any axisymmetric di�eomorphismsends the rotation �eld to itself and hence preserves the total energy.) Now the �eldenergy in the solid tori is decreased (since the �eld lines are shortened). The whole



144 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDS
Figure 27. A rotation �eld in a 3-dimensional ball can dissipate itsenergy almost completely.construction can be carried out in such a way that the �eld energy in the remainingsmall volume is not increased by too much. As a result, the total energy remainsarbitrarily small.This consideration was placed on a rigorous foundation by M. Freedman. Weoutline the main ideas of his proof below.Let B3 be a ball in three-dimensional Euclidean space and � the vector �eldgenerated by in�nitesimal rotation about the vertical axis. The trajectories of this�eld are horizontal pairwise unlinked circles (and their limits, the points on thevertical axis).Theorem 3.3 [Fr2]. There exists a family of volume-preserving di�eomorphisms't : B3 ! B3; 1 � t � 1, such that it starts at the identity di�eomorphism('1 = Id), it is steady on the boundary ('t j@B3= Id) for all t, and the familyof the transformed vector �elds �t := 't�� (being the image of the rotation �eld �under the 't-action) ful�lls the following conditions as t!1:1) the energy of the �eld �t decays as E(�t) := k�tk2L2 = O(1=t),2) the supremum norm is unbounded: k�tkL1 = O(t), yet3) for all k; p < 1 the Sobolev norms decay: k�tkLk;p ! 0 (here the normk�kLk;p is the Lp-norm in the space of �'s derivatives of orders 0; : : : ; k).Remark 3.4 [Fr2]. For this family of di�eomorphisms, the limit of �t = 't��at in�nity t ! 1 does not exist, but for large t the regions of large norm k�tkconstitute a \topological froth" Ft with trivial relative topology. The froth Ft isa \time-fractal" (the facet size drops abruptly in a sequence of catastrophes as t



x3. SAKHAROV{ZELDOVICH MINIMIZATION PROBLEM 145increases) and becomes dense as t!1.Proof sketch. The following lemma is a modi�cation of Moser's result [Mos1]on the existence of volume-preserving di�eomorphisms between di�eomorphic man-ifolds of equal volume.Lemma 3.5. Let D and D0 be domains of equal volume in Rm and f : D ! D0a di�eomorphism. Then f is isotopic to a volume-preserving di�eomorphism f0between the domains.Moreover, if f preserves orientation and a function � is the \excess density"� = 1 � det (f�), then there exist constants Ck;p depending only on the domain Dsuch that kf � f0kLk+1;p � Ck;pk�kLk;p for any k; p <1:Proof of Lemma 3.5. Pull back the D0-volume form �D0 to D. The densityfunction � manifests the excess of the volume f�(�D0) over �D. The mean value of� is zero due to the volume equality condition.Let  be a solution of the Neumann problem on D for �, i.e., � = � onD and @@n = 0 on the boundary @D (where @=@n indicates di�erentiation inthe direction of the exterior normals; see Lemma 3.7 below on solvability of theNeumann problem).Rewrite this system in the form div (r ) = �; r k @D. Then the gradientvector �eldr  is tangent to the boundary @D and de�nes in�nitesimally an isotopyof D moving the volume element �D into f�(�D0). The isotopy itself is now thephase 
ow of the dynamical system on D de�ned by the instant �eld r  .Finally, the required estimate is a consequence of the inequality j�1j � k kL2 �k�kL2 , where �1 is the closest to 0 (from the left) eigenvalue of the Neumannproblem. Taking the gradient r , we lose one order in the Sobolev norm. �Remark 3.6. For application to the case where D is a spherical shell, note thatthe constants Ck;p may be chosen independent of the thickness. It follows from thefact that the closest to 0 eigenvalue �1 of the Neumann problem on the shell tendsto the smallest Laplace{Beltrami eigenvalue on the sphere S2 as the shell thicknessgoes to zero.Indeed, the eigenvalues of the Laplace operator on such a shell are sums of thoseon the sphere and of the eigenvalues of the radial component@2@r2 + 1r @@rof the Laplacian. One immediately sees that all but the �rst eigenfunctions of thelatter operator with the Neumann boundary conditions highly oscillate on a short



146 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSsegment. Hence, all but the �rst corresponding eigenvalues tend to in�nity, whilethe �rst one goes to zero as the segment shrinks to a point. This very �rst eigenvalueis the only eigenvalue that contributes to the eigenvalue �1 of the Neumann problemon the shell, and its contribution vanishes as the shell thickness goes to zero.Lemma 3.7. The Neumann problem � = � on D and @@n = 0 on the boundary@D has solution for any function � with zero mean (i.e., for � that is L2-orthogonalto constants on D).Proof of Lemma 3.7. The image of an operator is the orthogonal complementto the kernel of the corresponding coadjoint operator. To apply it to the Neumannoperator we �rst �nd the set of functions h orthogonal to all � with @@n = 0:0 = ZD (� )h = �ZD r rh+ Z@D ( @@n )h = ZD  �h� Z@D  ( @@nh):Taking as test functions those  's that vanish on the boundary @D, we obtainthat �h = 0. Then for a generic  , the boundary term is equal to zero, and hence@@nh = 0 on @D. Thus only the constant functions g are orthogonal to the imageof the Neumann operator � (with the boundary condition @@n = 0), and anyfunction orthogonal to constants is in the image of this operator. �Main construction. We �rst cut the ball B in two parts by splitting out aspherical shell Sh of thickness s from a subball Bs (Fig.28). We will �x s later.The internal subball can be stretched in the vertical direction and squeezed into athin \snake" by a volume-preserving di�eomorphism.Such a stretching transformation shrinks all the �-orbits (located in the hori-zontal planes in the internal subball Bs) by an arbitrarily large prescribed factor,and hence it reduces the �eld energy in the (transformed) subball to an arbitrarilysmall positive level.Then we put the snake into the original ball, keeping the volume preserved.Allow the composition map of the subball Bs into a snake inside the ball B to beaccompanied with a map of the shell Sh into the snake complement. One maydo it �rst without control of the volume elements but providing smoothness of thetransformation (Bs [ Sh) ! B (see Fig.29). Then the accompanying map of theshell Sh can be made volume-preserving by applying the isotopy of Lemma 3.5.The total energy of the �eld � after the di�eomorphism action is composed bythe energy in the subball image and in the shell image E = Esubball + Eshell.The stretching procedure above allows one to handle the �rst term completely:Given positive ", the energy Esubball can be suppressed to the level Esubball � "
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Figure 28. Stretching a subball into a snake reduces its energy.
K

Figure 29. The complement of the snake in the ball is a neighborhoodof a 2-complex K.by considering an appropriately long snake. The embedding of the snake into theoriginal ball does not essentially increase its energy, since the bending occurs in thedirections orthogonal to the trajectories of the magnetic �eld, and hence it doesnot stretch the vectors.Now we have to estimate the �eld energy in the shell image. Note that theimage is concentrated near a 2-complex K \complementary" to the snake in B.Using Lemma 3.5 and Remark 3.6 in order to control the maximal stretching oforbits in the shell, it is su�cient to provide boundedness of the stretching of the



148 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSvolume element for an arbitrarily thin shell. The latter is achieved by consideringa one-parameter family of di�eomorphisms (plotted in Fig.30):a) �rst expand a thin shell (of thickness s) to that of a �xed thickness,b) then map it to a neighborhood of K de�ned by a given snake embedding,c) and �nally, squeeze this neighborhood to K.
squeeze it
to

s

K

expand
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1/2

K

Figure 30. Family of maps of a shell into a neighborhood of K.The energy Eshell tends to zero as the thickness s! 0, since the energy integrandis bounded independently of s, while the volume of the integration domain, theshell volume, goes to zero. Thus, having chosen s su�ciently small, one can obtainEshell � ".Scale estimate. To organize the family 't of di�eomorphisms, we will de�ne theinitial stretching of the subball into a snake of length t. Then the area of everyhorizontal section is squeezed by the factor of t, and vectors themselves are squeezedby the factor of pt; see Fig.28.This reduces the total energy to E('�t �) � 1t . However, some orbits in theshell stretch to the \full length" � t. Hence, the supremum norm k'�t �kL1 =maxk�tk = O(t).Once a length scale ` is selected, the energy cannot be squeezed to < 1̀ by usingthe smooth one-parameter family. To proceed further, one has to renew the originalstretching of the subball into the snake. This produces the next collapse at a �nerscale. The corresponding 2-complex froth K = Ft \blossoms and branches" [Fr2].



x4. ASYMPTOTIC LINKING NUMBER 149The topology of K remains trivial (the froth is contractible to the boundary @B),since the complement to K is homeomorphic to a ball. �x4. Asymptotic linking numberThe classical Hopf invariant for S3 ! S2-mappings has two de�nitions: a topo-logical one (as the linking number of the preimages of two arbitrary points of S2),and an integral one (as the value of R ! ^ d�1! for any two-form ! on S3 that is apullback of a normalized area form on S2); see Example 1.19.The helicity of an arbitrary divergence-free vector �eld on a three-dimensionalsimply connected manifold is a straightforward generalization of the integral de�ni-tion of the Hopf invariant. The topological counterpart is more subtle and leads tothe notions of asymptotic and average linking numbers of �eld trajectories [Arn9],which replace the linking of the closed curves of the classical de�nition.This section deals with such an ergodic interpretation of the helicity.4.A. Asymptotic linking number of a pair of trajectories. Let M be athree-dimensional closed simply connected manifold with volume element �. Let �be a divergence-free �eld on M and fgt :M !Mg its phase 
ow.Consider a pair of points x1; x2 in M . We will associate to this pair of points anumber that characterizes the \asymptotic linking" of the trajectories of the 
owfgtg issuing from these points. For this purpose, we �rst connect any two pointsx and y of M by a \short path" �(x; y). The conditions imposed on a system ofshort paths will be described below and are satis�ed for \almost any" choice of thesystem.We select two large numbers T1 and T2, and close the segments gtx1(0 � t � T1)and gtx2(0 � t � T2) of the trajectories issuing from x1 and x2 by the shortpaths �(gTkxk; xk) (k = 1; 2). We obtain two closed curves, �1 = �T1(x1) and�2 = �T2(x2); see Fig.31. Assume that these curves do not intersect (which istrue for almost all pairs x1; x2 and for almost all T1; T2). Then the linking numberlk�(x1; x2;T1; T2) := lk(�1;�2) of the curves �1 and �2 is well-de�ned.Definition 4.1. The asymptotic linking number of the pair of trajectories gtx1and gtx2 (x1; x2 2M) of the �eld � is de�ned as the limit��(x1; x2) = limT1;T2!1 lk�(x1; x2;T1; T2)T1 � T2 ;where T1 and T2 are to vary so that �1 and �2 do not intersect.
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Figure 31. The long segments of the trajectories are closed by the\short" paths.Below we will see that this limit exists almost everywhere and is independentof the system of \short" paths � (as an element of the space L1(M �M) of theLebesgue-integrable functions on M �M).Definition 4.2. The average (self-)linking number of a �eld � is the integralover M �M of the asymptotic linking number ��(x1; x2) of the �eld trajectories:(4.1) �� = ZM ZM ��(x1; x2) �1�2:Remark 4.3. The average self-linking number can be de�ned via an auxiliarystep by specifying what the asymptotic linking of �eld lines with a closed curveis and then by replacing the curve with another orbit. This approach is used inSection 5 to de�ne the average crossing number.Theorem 4.4 (Helicity Theorem, [Arn9]). The average self-linking of adivergence-free vector �eld � on a simply connected manifold M with a volumeelement � coincides with the �eld's helicity:(4.2) �� = H(�):Example 4.5. For the Hopf vector �eld v(x1; x2; x3; x4) = (�x2; x1;�x4; x3)on the unit sphere S3 � R3, the linking number of every two orbits (great circles) isequal to 1. All the orbits are periodic with the same period 2�. Hence, the value of



x4. ASYMPTOTIC LINKING NUMBER 151�v(x1; x2), being the asymptotic linking of two trajectories per time unit, is 1=4�2.The average self-linking number of the Hopf �eld is�v = ZS3 ZS3 �v(x1; x2) �1�2 = ZS3 ZS3 14�2 �1�2 = (vol(S3))24�2 = (2�2)24�2 = �2;which coincides with the mean helicity H(v) of the �eld v; see Example 1.19.Remark 4.6. The result can be literally generalized to the case of two di�er-ent divergence-free �elds � and � on a simply connected M . The linking number��;�(x; y) in the latter case measures the asymptotic linkage of the trajectories gt�xand gt�y issuing from x and y respectively. The helicity is replaced by the bilinearform H(�; �); see Remark 1.22. The Helicity Theorem states in this case thatZM ZM ��;�(x; y)�x�y = ZM !� ^ (d�1!�);where the 2-forms are de�ned by !� = i��; !� = i��, and d�1!� denotes anarbitrary potential 1-form � such that d� = !�.In the case of a manifold M with boundary, all the vector �elds involved aresupposed to be tangent to the boundary.Remark 4.7. The identity of the two classical de�nitions of the Hopf invari-ant (being a nonergodic version of the Helicity Theorem; see Example 1.19) is amanifestation of Poincar�e duality.Assume that we deal with singular forms (of �-type) supported on compactsubmanifolds. Replace the di�erential forms by their supports. Then the operationsd�1 and ^ correspond to the passage from the support submanifolds to the �lmbounded by them and to their intersections, respectively. Finally, the integrationRM is summation of the intersection points with the corresponding signs. Theintersection of a submanifold with a �lm bounded by another submanifold is thelinking number of these two submanifolds.The consideration of smooth di�erential forms instead of singular ones leads tothe averaging of appropriate linking characteristics. The asymptotic version of thelinking number can be regarded in the context of asymptotic cycles [SchS, DeR,GPS, Sul].A counterpart of the homotopy invariance of the classical Hopf invariant is un-known for the asymptotic linking number:Problem 4.8. Is the average self-linking number of a divergence-free vector�eld invariant under the action of homeomorphisms preserving the measure on the



152 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSmanifold? Here, a measure-preserving homeomorphism is supposed to transformthe 
ow of one smooth divergence-free vector �eld into the 
ow of the other, both�elds having well-de�ned average self-linking numbers.A partial (a�rmative) answer to this question was given in [G-G], where theaverage linking number for a �eld in a solitorus was related to the topologicalinvariants of Ruelle [Rue] and Calabi [Ca] for disk di�eomorphisms (see also SectionsIII.7.A and IV.8.B).We will give two versions of the proof of the Helicity Theorem. The �rst onemakes explicit use of the Gauss linking formula and of the Biot-Savart integral inR3. The second, coordinate-free, version reveals the reason for the helicity{linkingcoincidence on an arbitrary simply connected manifold.Various generalizations of asymptotic linking are discussed in subsequent sec-tions.4.B. Digression on the Gauss formula. To state the formula given by Gaussfor the linking number of two closed curves in three-dimensional Euclidean space,we introduce the following notation.Let 
1 : S11 ! R3 and 
2 : S12 ! R3 be smoothmappings of two circumferences toR3 with disjoint images. Let t1(mod T1) and t2(mod T2) be coordinates on the �rstand second circumferences. We denote by _
i = _
i(ti); i = 1; 2, the correspondingvelocity vectors in the images (Fig.32).Assume that the circumferences are oriented by the choice of the parameters t1and t2, and �x an orientation for R3. Then we can de�ne vector products and triplescalar products in R3.Theorem 4.9 (Gauss Theorem). The linking number of the closed curves
1(S1) and 
2(S1) in R3 is equal tolk(
1; 
2) = 14� T1Z0 T2Z0 ( _
1; _
2; 
1 � 
2)jj
1 � 
2jj3 dt1dt2:Proof. Consider the mapping f : T 2 ! S2from the torus to the sphere sending a pair of points on our circumferences to thevector of unit length directed from 
2(t2) to 
1(t1) : f = F=kFk, where F (t1; t2) =
1(t1)� 
2(t2); see Fig.32.We orient the sphere by the inner normal and the torus by the coordinates t1; t2.



x4. ASYMPTOTIC LINKING NUMBER 153
f

O

t2

t1

T

1(t1)

2(t2)

2

1

S

2

2Figure 32. Two parametrized linked curves in space de�ne the Gaussmap T 2 ! S2.Lemma 4.10. The degree of the mapping f is equal to the linking number lk(
1; 
2).Indeed, this is true for small circumferences situated far away from each other:Both the linking number and the degree of the mapping f are 0; cf. Fig.32. Neitherof these quantities changes in the course of any deformation that leaves the curvesdisjoint. Furthermore, it is easy to verify that under any deformation of the pair ofcurves containing a passage of one curve through another, both the linking numberand the degree of the mapping change by 1 with the same sign. Therefore, theequality lk(
1; 
2) = deg f follows, in view of the connectedness of the set ofsmooth mappings S1 ! R3.Now the Gauss Theorem is a consequence of the following lemma.Lemma 4.11. The degree of the mapping f : T 2 ! S2 is given by the Gaussintegral formula.Proof of Lemma 4.11. By de�nition of the degree,deg f = 14� ZZT2 f��2;where the 2-form �2 is the area element on the unit sphere. Now, by de�nition off , the value of the form f��2 on a pair of vectors a1; a2 tangent to the torus att = (t1; t2) 2 T 2 is equal to their mixed product with the vector �f := �f(t) (weoriented the sphere by means of the inner normal):f��2(a1; a2) = �2(f�a1; f�a2) = (f�a1; f�a2;�f):



154 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSBy di�erentiating f , we obtain f�a = F�a=kFk + c(a; f)f (here c(a; f) is a scalarfactor), and therefore�2(f�a1; f�a2) = (F�a1; F�a2;�F )=kFk3:Recalling that F = x1 � x2, we obtain the expressionf�!2 = ( _x1; _x2; x1 � x2)kx1 � x2k�3dt1 ^ dt2for an element of the spherical image of the torus, as was to be shown. �The higher-dimensional version of the Gauss linking formula, developed in [Poh,Wh], is based on the same observation about equivalence of the linking and thedegree of the Gauss map.4.C. Another de�nition of the asymptotic linking number. Let fgtg bethe phase 
ow de�ned by a divergence-free �eld � in a three-dimensional compactEuclidean domain M � R3. The �eld is assumed to be tangent to the boundary@M .De�ne the Gauss linking of the �-trajectories as��(x1; x2) = limT1;T2!1 14� � T1T2 T2Z0 T1Z0 ( _x1(t1); _x2(t2); x1(t1)� x2(t2))kx1(t1)� x2(t2)k3 dt1dt2;where xi(ti) = gti(xi) is the trajectory of the point xi, and _xi(ti) = ddti gtixi is thecorresponding velocity vector.Lemma 4.12.1) The limit ��(x1; x2) exists almost everywhere on M �M .2) The value ��(x1; x2) coincides with the number ��(x1; x2) de�ned above foralmost all x1; x2.Proof. To prove the �rst statement, it is enough to verify that � is the \timeaverage" of an integrable function on the manifold M �M , on which the abeliangroup fgt1g � fgt2g acts. The integrand is the functionG(x1; x2) = (a1; a2; x1 � x2)kx1 � x2k3 ;where ak = ddtk jtk=0gtkxk = �(xk). The function G has a singularity on the diagonalof M �M : It grows at most like r�2, where r is the distance to the diagonal. Since



x4. ASYMPTOTIC LINKING NUMBER 155the codimension of the diagonal is 3, the functionG belongs to the space L1(M�M),as required.To compare �� with ��, we represent the linking coe�cient of the curves �1 =�T1(x1) and �2 = �T2(x2) by the Gauss integral with 0 � t1 � T1 + 1, 0 � t2 �T2 + 1, by using the value of the parameter tk from Tk to Tk + 1 for parametrizingthe \short path" �(gTkxk; xk) that joins gTkxk to xk.Definition 4.13. A system of short paths joining every two points in M isa system of paths depending in a measurable way on the points x and y in Mand obeying the following condition. The integrals of Gauss type for every pairof nonintersecting paths of the system, and also for every nonintersecting pair (apath of the system, a segment of the phase curve gtx, 0 � t � 1), are boundedindependently of the pair by a constant C.Remark 4.14. One can verify that systems of short paths exist for nowherevanishing vector �elds or even for generic vector �elds (with isolated zeroes). Itis useful to keep in mind that an integral of Gauss type for a pair of straight-line segments remains bounded when these segments approach each other. Thephenomenon one has to avoid is the winding of a trajectory around a path of thesystem, which implies unboundedness of the integral. However, a small perturbationof the short path system leads to a system satisfying the condition above.Indeed, the phenomenon of winding does not occur in systems where there isN 2Z+ such that at any point of the manifold M at least one of the derivatives of� (along the paths) of order less than N does not coincide with that of gt (alongthe 
ow). Given a vector �eld � (or equivalently, given 
ow gt), the systems ofshort paths � subject to the latter constraint form an ample set (cf. the strongtransversality theorem [AVG]).The �elds with nonisolated zeroes constitute a set of in�nite codimension in thespace of all vector �elds. For such vector �elds, the existence question of systems ofshort paths is more subtle, and there still are some unresolved issues related to it.1It would be very interesting to complete the proof of existence in full generality.Now, the di�erence T2+1R0 T1+1R0 � T2R0 T1R0 of Gauss-type integrals can be estimated bythe sum of at most [T1] + [T2] + 1 terms, none of which exceeds C. Therefore,��(x1; x2)� ��(x1; x2) = limT1;T2!1 14� � T1T2 0@ T2+1Z0 T1+1Z0 � T2Z0 T1Z0 1A = 01We are grateful to P. Laurence, who noted that an existence proof would require some kindof \global approach," considering vector �elds on the whole manifold, while the transversalitytheorem is \local" in nature.



156 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDS(where T1 and T2 tend to in�nity over any sequence for which the curves �1 =�T1(x1) and �2 = �T2(x2) do not meet). �Now we complete the proof of the Helicity Theorem on the equivalence of theergodic and integral de�nitions of the helicity of a divergence-free vector �eld de�nedin a domain M � R3 (and tangent to the boundary @M).Consider the Biot{Savart integralA(x2) = � 14� ZM �(x1)� (x1 � x2)kx1 � x2k3 �(x1)(where � denotes the cross product) that de�nes a vector-potential A = curl�1� inR3. It allows one to obtain the integral representation of the helicityH(�) = h�; curl�1�i = h�;Ai = 14� ZZM�M (�(x1); �(x2); x1 � x2)kx1 � x2k3 �(x1) �(x2):The Helicity Theorem follows from this formula and from the Birkho� ergodictheorem applied to the integrable function (�(x1); �(x2); x1 � x2)=(4�kx1 � x2k3)on M �M . The space averageRRM�M ��(x1; x2) �(x1) �(x2)(vol(M))2 = ��(vol(M))2of the time average �� along the trajectories of the measure-preserving 
ow of �coincides with the space average H(�)=(vol(M))2 of the function. �Remark 4.15. Note that for an ergodic �eld (�; �) on M � M the function��(x1; x2) is constant almost everywhere: The asymptotic linking numbers for al-most all pairs of �-trajectories are equal to each other.4.D. Linking forms on manifolds. Here we show how the preceding argu-ments can be adjusted to the case of an arbitrary simply connected manifold, wherethe Gauss-type integral of De Rham's \double form" [DeR] cannot be written asexplicitly as in R3 (see [KhC]).Theorem 4.16 (=4.60). The average linking number of two divergence-free vec-tor �elds � and � coincides with H(�; �):ZZM�M ��;�(x; y)�x�y = ZM i�� ^ d�1(i��):Proof. We start by recalling some facts about double bundles and linkingforms. Denote by 
k(M) the space of di�erential k-forms on a manifold M .



x4. ASYMPTOTIC LINKING NUMBER 157Definition 4.17. A di�erential 2-form G 2 
2(M �M) is called a Gauss{DeRham linking form on a simply connected manifold M if for an arbitrary pair ofnonintersecting closed curves �1 and �2 the integral of this form over �1��2 equalsthe corresponding linking number:ZZ�1��2�M�M G = lk(�1;�2):Here �1 � �2 = f(x; y) 2 M �M j x 2 �1; y 2 �2g. The existence of such a formwill be established later.Definition 4.18. Each di�erential form K(x; y) 2 
�(M �M) determines anoperator ~K : 
�(M) ! 
�(M) on the space of di�erential forms 
�(M) on M thatsends a di�erential form '(y) into the di�erential form( ~K')(x) = Z��1(x) K(x; y) ^ '(y);where � :M�M !M is the projection on the �rst component, and the integrationis carried out over the �bers of this projection; see Fig.33. The value of the form~K' at a point x 2 M is the integral over the �ber ��1(x) �M �M of the wedgeproduct K(x; y) ^ '(y). If the product K(x; y) ^ '(y) is an n-form in y, then byde�nition, ( ~K')(x) = 0.
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Figure 33. Any form on M �M de�nes an operator on 
�(M).Proposition 4.19. The operator eG corresponding to the linking form is theGreen operator inverse to the exterior derivative of 1-forms: If  = d' and ' 2
1(M), then ' = eG( ) + dh



158 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSfor a certain function h.The term dh materializes the fact that a potential 1-form ' can be reconstructedfrom an exact 2-form  modulo a full di�erential only.Proof of Proposition. Let d = dx + dy be the operator of the exteriorderivative on 
�(M �M).Lemma 4.20. gdxK = d � eK.Indeed, [dxK(x; y)] ^ '(y) = dx[K(x; y) ^ '(y)], and henceZ��1(x) [dxK(x; y)] ^ '(y) = d0B@ Z��1(x) K(x; y) ^ '(y)1CA :Lemma 4.21. If K is a 1-form in the variable y, then gdyK = eK � d.This follows from the identityZ��1(x) [dyK(x; y)] ^ '(y) = Z��1(x) K(x; y) ^ d'(y):Lemma 4.22. The exterior derivative of a Gauss{De Rham form G on M �Mis the sum dG = � + � of{ the �-form on the diagonal � �M �M (the integral of the �-form over any3-chain in M �M is equal to the algebraic number of intersection points ofthe chain with the diagonal �), and of{ some form � 2 
3(M � M) that is a linear combination of forms from
k(M) 
 
3�k(M)-forms with each factor being closed.Proof. lk(�1;�2) = ZZ�1��2G = ZZZ@�1(�1��2)dG = ZZZ(@�1�1)��2 dG:On the other hand, since the linking number is the intersection number of thecycle �2 and a surface @�1�1 (whose boundary is �1), it can be represented as theintegral of the �-form over the chain (@�1�1)� �2:lk(�1;�2) = ZZZ(@�1�1)��2 �:



x4. ASYMPTOTIC LINKING NUMBER 159Now the statement follows from the fact that all those �'s are closed, and each �is characterized by the conditionsZZZ(@�1�1)��2 � = 0 and ZZZ�1�(@�1�2)� = 0: �Remark 4.23. The form � can be chosen in such a way that the cohomol-ogy class of � + � in H3(M � M) is trivial. Indeed, though the class of � inH3(M �M) =PkHk(M)
H3�k(M) is nontrivial (the diagonal in M �M is nota boundary), adding an appropriate � we can get rid of the H0(M)- and H3(M)-terms. Hence, the class of � + � vanishes due to the simple-connectedness of M(H1(M) = H2(M) = 0).This proves the existence of a Gauss{De Rham linking form G as a solution ofthe equation [dG] = 0 2 H3(M �M), where [�] denotes the cohomology class of adi�erential form.To complete the proof of Proposition 4.19, we pass from the equation on formsdG = � + � to the relation on the corresponding operators: fdG = ~� + ~�, orgdxG+ gdyG = ~� + ~�:At this point we notice thata) the �-form corresponds to the identity operator ~� = Id, andb) the image of the operator ~� in 
�(M) belongs to the subspace of closedforms (see Lemma 4.22). In particular, within 
1(M) the image consists ofthe exact forms.Combining these facts with Lemmas 4.20-21, we come to the relationd � eG+ eG � d = Id+d � ~
for operators on one-forms in M . Having applied the operators of both sides of therelation to a form ' and rearranging the terms, one transforms this relation intod � ( eG(')� ~
(')) + eG(d') = ':Finally, for  = d', we obtain ' = eG( ) + dhfor some function h. �



160 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSLemma 4.24. There exists a Gauss{De Rham linking form G(x; y) with a poleof order 2 on the diagonal of M �M .Proof. The linking number of �1 with �2 by de�nition coincides with thelinking number of �1��2 with the diagonal � in M �M . Identify a neighborhoodof the diagonal in M �M with a neighborhood of the zero section in the normalbundle T?� over the diagonal via the geodesic exponential map (Fig.34).
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3Figure 34. For any point of the diagonal � �M�M a neighborhoodin the transversal to � direction can be identi�ed with a neighborhoodin R3.Then, in every �ber (being a neighborhood of 0 2 R3), we consider the standardGauss linking form singular at the origin. The latter is the 2-form obtained by thesubstitution of the radius vector �eld r(1=r) into the standard volume element inR3. It has a pole of order 2 at the origin. Extend the de�nition of this form fromone �ber to the entire neighborhood of � in M �M by prescribing that this formvanishes on vectors parallel to � � T?�. We obtain a linking form in M �M thathas a pole of the desired order 2 on the diagonal. �Corollary 4.25. The linking form G is integrable: G 2 L1(M �M), i.e., thevalue of G evaluated on any two smooth vector �elds is an integrable function onM �M .Indeed, the codimension of the diagonal in M �M equals 3, and the growthorder of the form G near the diagonal is 2.Remark 4.26. All the above arguments on the Gauss{De Rham linking formshold (with certain evident modi�cations) for manifolds of arbitrary dimension. Fur-ther consideration in this section is essentially three-dimensional.Let � and � be divergence-free �elds on M equipped with a volume form �. Letgt�x and gs�y be the segments of the trajectories of these �elds starting at x and y for



x4. ASYMPTOTIC LINKING NUMBER 161time intervals 0 � t � T and 0 � s � S. Denote by �x and �y the corresponding\short paths" closing the segments of the trajectories and making them into twopiecewise smooth closed curves.The asymptotic linking number is equal to��;�(x; y) = limT;S!1 1T � S ZZ(gt�x[�x)�(gs�y[�y)G = limT;S!1 1T � S ZZgt�x�gt�yG:The last equality of the limits follows from the boundedness of the integrals overthe short paths (see De�nition 4.13 of a short paths system). Hence,��;� = ZZM�M ��;�(x; y) �x�y = ZM �x ZM �y0B@ limT;S!1 1T � S ZZgt�x�gt�yG1CA= ZM �x ZM �y  limT;S!1 1T � S Z T0 Z S0 (i�i�G) dsdt! ;where i�i�G is regarded as a function on M �M and R T0 R S0 denotes the integralof this function over the product of (the pieces of) the trajectories gt�x and gs�y.By the Birkho� ergodic theorem applied to the integrable function i�i�G, we canpass from the time averages to the space average:��;� = ZZM�M ��;�(x; y) �x�y = ZM �x ZM �y (i�i�G):Finally, shift the substitution operators i� and i� from G to the forms �x and �y(the operation i� is inner di�erentiation; see Section 1):��;� = ZZM�M ��;�(x; y) �x�y = ZM �x ZM �y (i�i�G) = ZM i��x ^0@ZM i��y ^G1A= ZM i�� ^ eG(i��):By Proposition 4.19 the operator eG is inverse to exterior di�erentiation: eG(i��) =d�1(i��) modulo an exact form. This completes the proof of Theorem 4.16:��;� = ZM i�� ^ d�1(i��) = H(�; �): �



162 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSx5. Asymptotic crossing numberThe helicity approach to magnetic energy minoration in terms of the topologyof magnetic lines was generalized by Freedman and He [FH1,2] by introducingthe notion of asymptotic crossing number. They determined the complexity of aknotted orbit by the \minimal number of crossings" in its projections. It replacesthe linking number, where the crossings are counted with appropriate signs. In thepresentation below we mostly follow the paper [FH2].5.A. Energy minoration for generic vector �elds.Definition 5.1. For two closed curves 
1 and 
2 in R3 the crossing num-ber c(
1; 
2) is equal to the integral of the absolute value of the Gauss integrandfor their linking number:(5.1) c(
1; 
2) = 14� T1Z0 T2Z0 j( _
1; _
2; 
1 � 
2)jjj
1 � 
2jj3 dt1dt2:This quantity is no longer invariant under a curve isotopy. However, all the no-tions and de�nitions regarding the corresponding asymptotic version can be literallytransferred to this situation.For a vector �eld � de�ned in a domain M � R3 (and tangent to the boundary@M), we use the same de�nition of a \system of short paths" as above (see De�nition4.13 and subsequent Remark 4.14). Denote by �T (x) the piece of the �-orbit ofx 2M run in the time period [0; T ] and closed by a short path.Definition 5.2. The asymptotic crossing number of the �eld lines of a divergence-free vector �eld � with a closed curve 
 in a simply connected manifold M3 is thelimit c�(x; 
) = lim supT!1 1T c(�T (x); 
):This limit exists, belongs to L1(M), and is well de�ned in L1(M) in spite of theambiguity in the choice of the system of short curves.Similarly, the average crossing number of the �eld lines of � with the curve 
 isgiven by the integral c�(
) = ZM c�(x; 
) �x;where � is a volume form on M .



x5. ASYMPTOTIC CROSSING NUMBER 163Finally, given two divergence-free vector �elds � and �, their asymptotic crossingnumber Cr(�; �) is de�ned as the space integral of the crossing number of one ofthe �elds with the trajectories of the other:Cr(�; �) = ZM (lim supT!1 1T c�(�T (y)) �y;where �T (y) is the piece 0 � t � T of the �-�eld line issuing from the point y andclosed by a short path. This crossing number admits the integral representation(5.2) Cr(�; �) = 14� ZZM�M j(�(x); �(y); x � y)jjjx � yjj3 �x�y:The asymptotic crossing number yields the following lower bound for the E3=2-energy E3=2(�) := RM k�k3=2 �.Theorem 5.3 [FH2]. For any divergence-free vector �eld � in M(5.3) E3=2(�) � �16� �1=4 Cr(�; �)3=4:Remarks 5.4 [FH2]. A)The L3=2-normused in the de�nition of the E3=2-energyis justi�ed by the \conformal nature" of the problem. Any lower bound for the E3=2-energy implies a lower bound for the standard E2-energy E2(�) := RM k�k2 � dueto a straightforward application of the H�older inequality:(5.4) E2(�) � (E3=2(�))4=3(vol(M))1=3 � � 16� � vol(M)�1=3 Cr(�; �);or, in a more recognizable form, R (k�k3=2 � 1) � (R k�k2)3=4 � (vol(M))1=4 .B) Similarly, for any two divergence-free vector �elds � and � in M ,Cr(�; �) � �16� �1=4 �E3=2(�)�2=3 � �E3=2(�)�2=3 :C) Both sides of the inequality have geometric nature (they rely on a particularchoice of metric) and are not topologically invariant. On the other hand, the energyestimate in terms of the helicity gives a topological bound for a geometric quantity.One can make the right-hand side of the inequality (5.3) topological by bruteforce, de�ning the topological crossing numberCrtop(�; �) = infh2Di�(R3 )Cr(h��; h��):



164 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSThen E3=2(h��) � ( �16)1=4Crtop(�; �)3=4;for any h 2 Di�(R3).D) Theorem 5.3 holds for vector �elds with an arbitrary divergence, providedthat Cr(�; �) is de�ned by the integral formula (5.2) and not ergodically. Havingused the integral de�nition of the helicity as well (see De�nition 1.3), one obtainsE3=2(h��) � � �16�1=4 jH(�)j3=4; for any h 2 Di�(M � R3);by virtue of the evident inequality Cr(�; �) � jH(�)j.Remark 5.5. A two-dimensional version of the asymptotic crossing number hasbeen developed and applied to energy estimates of the braided magnetic tubes in[Be2]. In this case the energy lower bound appears to be quadratic in the totalcrossing number of a braided �eld, while the energy of a knotted �eld in three-dimensional space is bounded by an expression linear in Cr (see the estimate (5.4)for the E2-energy above).Proof of Theorem 5.3. The integral form of the asymptotic crossing numberyields the following upper bound:Cr(�; �) = 14� ZM ZM j(�(x); �(y); x � y)jjjx � yjj3 �x�y� 14� ZM ZM jj�(y)jj� jj�(x)jjjjx� yjj2� �x�y = ZM jj�(y)jj �(y) �y;where the density � : R3! R+ is de�ned as�(y) = 14� ZM jj�(x)jjjjx� yjj2 �x:By the Hardy{Littlewood{Sobolev inequality [Sob1, Lieb] in potential theory,one obtains jj�jjL3 = 0@ZM �3 �1A1=3 � � �16�1=30@ZM jj�jj3=2 �1A2=3 :After combining it with H�older's inequality one sees thatCr(�; �) � ZM jj�(y)jj �(y) �y� jj�jjL3=2 � jj�jjL3 � � �16�1=3 (jj�jjL3=2)2;and the theorem follows. �



x5. ASYMPTOTIC CROSSING NUMBER 1655.B. Asymptotic crossing number of knots and links. Apparently, anyreasonably sharp estimates of Crtop for a fairly generic �eld � are beyond reach.However, much more can be done under the (already exploited) assumption thatthe vector �eld has some linked or knotted invariant tori.Definitions 5.6. The crossing number cn(K) (or cn(L)) of a knot K (or linkL) in R3 is the minimum number of crossings of all plane diagrams representingthe knot (or the link).Consider some tubular neighborhood T of the (oriented) knot K. An arbitraryclosed oriented curve con�ned to the neighborhood is said to be of degree p if it canbe isotoped within T to the curve that is K covered p times.A two-component link (P;Q) in R3 is called a degree (p; q) satellite link of K(p and q are positive integers) if (P;Q) can be (simultaneously) isotoped to a pairof curves (P 0; Q0) � T with degree(P 0) = p and degree(Q0) = q. The over-crossing number cn(P;Q) of the link (P;Q) is de�ned to be the minimum numberof overcrossings of P over Q among all planar knot diagrams representing (P;Q);see Fig.35.
P

Figure 35. The crossing number of this link L = P [Q is cn(L) = 4.The over-crossing number is cn(P;Q) = 2.Let cnp;q(K) be the minimum of cn(P;Q) over all degree (p; q) satellite links(P;Q) of K. De�ne the asymptotic crossing number of the knot K to be(5.5) ac(K) = lim infp;q!1 cnp;q(K)=pq = inffcnp;q(K)=pq j p; q � 1g:Remark 5.7. The equivalence of the two de�nitions of ac(K) follows from theconstruction of an analogue of a k-fold alternate diagram for a degree (p; q) satellitethat represents a (kp; kq) satellite. The number of crossings of the (smartly chosen)degree (kp; kq) satellite di�ers from that of the degree (p; q) satellite by the factork2; see [FH2].



166 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSObviously, ac(K) � cn(K), since cn(P;Q) � cn(K) for P and Q taken to becopies of a minimal knot diagram.Conjecture 5.8 [FH2]. ac(K) = cn(K):Theorem 5.9 [FH2]. For a divergence-free �eld � de�ned in the solid torus Tof knot type K and parallel to the boundary @T one has the inequalityCr(�; �) � jFlux(�)j2ac(K):Corollary 5.10. Crtop(�; �) � jFlux(�)j2ac(K):Corollary 5.11. The E3=2-energy of such a �eld � yields the following lowerbound: E3=2(�) � �16� �1=4 jFlux(�)j3=2 (ac(K))3=4 :Proof. Combine the above with Theorem 5.3. �Notice that the right-hand side of the energy inequality is now topologicallyinvariant.The estimate can be speci�ed even further in terms of knot invariants (we referto [FH2] for the details and the proofs). A Seifert surface of a knot K 2 R3 is anarbitrary surface embedded in R3 whose boundary is the knot K. The genus ofa knot is the minimal genus (number of handles pasted to a disk) of an orientedSeifert surface. By the very de�nition, the genus is at least 1 for nontrivial knots(an unknot bounds a genuine embedded disk).Theorem 5.12 [FH2]. For any knot K the asymptotic crossing number ac(K)satis�es: ac(K) � 2 � genus(K)� 1. In particular, ac(K) � 1 for a nontrivial knot.Definition 5.13. For a link L = (L1; : : : ; Lk), one �rst chooses a neighborhoodconsisting of k solitori T1; : : : ;Tk disjointly embedded in R3. Introduce quantitiescnp;q(Li;L); i 2 f1; : : : ; kg to be the minimal number of times a curve of degreep in Ti must pass over (when projected into a plane) a k component link createdby choosing degree one curves in T1; : : : ;Tk. Similarly, one de�nes the asymptoticcrossing number ac(Li; L) of Li over L by formula (5.5), with the replacement ofcnp;q(K) by cnp;q(Li;L).Then for a divergence-free �eld � leaving invariant the link of solid tori,Crtop(�; �) �  kXi=1 ac(Li; L) � jFlux(�jTi)j! � min1�j�kfjFlux(�jTj )jg:



x5. ASYMPTOTIC CROSSING NUMBER 167In particular, for a two-component link of solid tori (T1;T2), one can deduce thatCrtop(�; �) � 2jlk(L1; L2) � Flux(�jT1 ) � Flux(�jT2)j:Thus certain energy minorations can be obtained from the solution of a purelytopological problem of the calculation of the quantities ac(K) and ac(Li; L) forgiven types of knots and links of vortex tubes [FH2].Remark 5.14. These invariants are �ner than the linking numbers, due to thefollowing immediate corollary of the plane projection method of computation oflinking numbers: ac(Li; L) �Xi 6=j jlk(Li; Lj)j; 1 � i � k:This estimate is useless for con�gurations with vanishing linking numbers (as theBorromean rings; Fig.26b). A statement similar to Theorem 5.12 provides a lowerbound for ac(Li; L) in terms of the so-called Thurston norm of certain surfacesassociated to a link L (see [FH2]). In particular, if Li is not a trivial componentsplit away from the rest of the link L (say, Li is one of components of the Borromeanrings), then the asymptotic crossing number ac(Li; L) is minorized by 1.Proof of Theorem 5.9. De�ne the degree of a (multivalued) function f : T!S1 = R=Z to be its homological degree, i.e., the winding number of the functionon the solitorus.Lemma 5.15. For a vector �eld � parallel to the boundary @T of a solitorus T(5.6) Flux(�) = ZT(�;rf) �;for any degree 1 function f : T! R=Z.Proof of Lemma. Cut the solid torus T along any surface � (representing thegenerator of H2(T; @T), Fig.36) to form a cylinder F .
F

T

Figure 36. Cut the solid torus along � to obtain a cylinder.



168 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSThe function f on T gives rise to a function ~f : F ! R on the cylinder. Thevalues of ~f at the corresponding points of the cylinder top @+F and bottom @�Fdi�er by 1. Denote by dA the area element on the section �. ThenZT(�;rf) � =ZF (�;r ~f ) � = ZF div( ~f�) �=Z@+F ( ~f �; n) dA+ Z@�F ( ~f�; n) dA=Z�([ ~f (top(x)) � ~f (bottom(x)] �; n) dA(x) = Z�(�; n) dA:The lemma is proved. �To prove the theorem, we assume that Flux(�) = 1, and gt is the phase 
ow of�. Then, for a �xed C1-mapping f : T! R=Z of degree 1 and its lift ~f : ~T! R,ZT ( ~f (g� (x)) � ~f (x)) � = �Z0 ZT (rf(gt(x)); �(gt(x))) �xdt(5.7) = �Z0 Flux(�) dt = �:Recall that �� (x) is the curve gt(x); 0 � t � � , joined to the \short curve"�(g� (x); x) for any x 2 T. Thenjdegree(�� (x)) � ( ~f (g� (x)) � ~f (x))j � C;since the lengths of the short paths are uniformly bounded and the function ~f iscontinuously di�erentiable.On the other hand, by de�nition of the asymptotic crossing number,(5.8) c(�� (x); 
) � ac(K) � degree(�� (x)) � degree(
)for any closed curve 
 in the solitorus T. Therefore,c(�� (x); 
) � ac(K) � degree(
) � [( ~f (g� (x)) � ~f (x)) � C]:Combining this inequality with formula (5.7), we obtain1� ZT c(�� (x); 
) �x � ac(K) � degree(
)�1� C � vol(T)� � :



x5. ASYMPTOTIC CROSSING NUMBER 169Finally, as � !1 it bounds below the average crossing number c�(
):c�(
) � ac(K) � degree(
):Similarly, letting 
 = �� (y); y 2 T, and utilizing formula (5.8) and the de�nitionof the asymptotic crossing number, we deduce the required inequalityCr(�; �) � ac(K): �5.C. Conformal modulus of a torus. Some energy bounds for vector �eldspossessing invariant tori can be formulated in terms of the conformal modulus of asolid torus.Let T be a solitorus endowed with some Riemannian metric. Homotopically Tis equivalent to the circle S1 = R=Z.Definition 5.16. The conformal modulus of a solitorus T with a metric on itis m(T) = inff ZT jjrf jj3 �;where f : T! R=Zis taken to be any degree one, C1-function.Remark 5.17. The modulus may be thought of as a measure of the \electricalconductivity" for currents along T: A \fat" torus will have a large modulus, while avery thin one will have a modulus close to zero. The modulus m(T) is a conformalinvariant: It is preserved under a conformal change of metric, since r scales aslength�1.Theorem 5.18 [FH2]. For any divergence-free vector �eld � leaving a solid torusT invariant, E3=2(�) = ZT jj�jj3=2 � � jFlux(�)j3=2m(T)1=2 ;where Flux(�) is the 
ux of the �eld � through any surface � representing thegenerator of H2(T; @T); see Fig.36.Proof. The theorem follows immediately from Lemma 5.15. Indeed, the H�olderinequality applied to (5.6) gives jFlux(�)j � jj�jjL3=2 jjrf jjL3 ; thereforeE3=2(�) = (jj�jjL3=2 )3=2 � jFlux(�)j3=2(jjrf jjL3)3=2 :



170 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSThe minimization over degree 1 functions f turns the L3-norm in the denominatorinto the conformal modulus. �Remark 5.19. An incompressible di�eomorphismaction preservesFlux(�), andtherefore it leaves the energy of the �eld h�� bounded from below once the modulusof the torus has an upper bound. In turn, the modulus m(T) can be bounded bypurely topological quantities associated to the knot (or link) type of the torus (orof the collection of tori).Theorem 5.20 [FH2]. For any solid torus T of knot type K embedded in Eu-clidean three-space R3, m(T) � p�4(ac(K))3=2 :We refer to [FH2] for the proofs and for other interesting inequalities relatingenergy, linking, and moduli of solid tori. Conjecturally, for a nontrivial link of solidtori, minfm(T1); : : : ;m(Tk)g is majorized by a universal constant independent ofk (the upper bound obtained in [FH2] is � p�k1=2=4).x6. Energy of a knotThe relaxation process of magnetic tubes to a state with minimal energy raisesa question on optimal embeddings of curves, or of more general submanifolds, intothe space. Is there a natural way to associate such an \energy" to a submanifold sothat the energy is in�nite for immersions that are not embeddings, and so that thegradient 
ow of the energy would preserve isotopy type and evolve the submanifoldto the \optimal" state?6.A. Energy of a charged loop. Imagine an in�nitesimal relative of a mag-netic tube, a charged loop of string. Among various possible potential energies fora loop in 3-space, the one recently suggested by O'Hare [OH1] is of special interestbecause of its nice invariance properties (see [BFHW, FHW]).Let 
 = 
(u) be a recti�able curve embedded in R3, where u belongs to the circleS1. For any pair of points 
(u); 
(v) we denote by dist(
(u); 
(v)) the distancebetween them along the curve, i.e., the minimum of the lengths of the two subarcsof 
 with endpoints at 
(u) and 
(v).



x6. ENERGY OF A KNOT 171Definition 6.1 [OH1]. The energy of the curve 
 is the following integral:E(
) = ZZS1�S1 � 1jj
(v)� 
(u)jj2 � 1jdist(
(v); 
(u))j2� � jj _
(u)jj � jj _
(v)jj dudv:The invariance of the energy under reparametrizations and dilations of the spaceis immediate.Remark 6.2. The energy E is de�ned on the space of embeddings S1 ! R3.It tends to in�nity when the embedding becomes singular. It is a regularization of1=r2-potential energy of a charged curve, while the Newton{Coulomb potential inR3 is 1=r. The energies corresponding to the exponents smaller than or equal to�2 (in particular, to the case at hand) blow up as two distinct arcs of a curve getcloser to each other and the curve acquires a double point. It creates an in�nitebarrier against any change of the knot topology. Indeed, the unregularized energyfor two pieces of straight lines intersecting transversally (say, for segments of thex- and y-axes, respectively) is given by the integralZZy x dxdy(px2 + y2)2 = ZZ� r rr2 dr d�;which diverges at the origin.A remarkable property of E(
) is a form of M�obius invariance. Recall that aM�obius transformation in R3 is a composition of a Euclidean motion, a dilation,and an inversion with respect to a sphere. Adding one point at in�nity, one makesthe M�obius transforms into bijections of the 3-sphere R3 [ f1g.Theorem 6.3 [BFHW, FHW]. Let 
 be a simple closed curve in R3 and letMTbe a M�obius transformation of R3 [ f1g. The following statements hold:(i) If MT � 
 � R3, then E(MT � 
) = E(
).(ii) If MT � 
 passes through 1, then E((MT � 
) \ R3) = E(
)� 4.O'Hara [OH1] proved that there exist only �nitely many knot types among thecurves with a given simultaneous upper bound on energy, length, and L2-norm ofthe curvature. The conditions on the length and the L2-norm of the curvature canbe dropped, as the following theorem shows.Theorem 6.4 [FHW]. Let 
 be a simple closed curve in R3 and let cn(
) (respec-tively, c(
; 
)) denote the topological (respectively, average self-) crossing numberof the knot type of 
 (respectively, of the curve 
 itself). Then2� � cn(
) + 4 � E(
);



172 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDS12� � c(
; 
) � 11E(
) + 12:Notice that the average self-crossing number c(
; 
) given by the Gauss-typeintegral (5.1) is bounded, since the numerator undergoes a double degeneracy onthe diagonal of S1 � S1.The energy of any round circle is E(circle) = 4, being the minimum of theenergy for closed curves in R3. The theorem implies that if a closed curve satis�esthe inequality E(
) < 6�+4 � 22:849, then 
 is unknotted (the number of crossingscn(
) � 3 for any essential knot 
).Using the exponential upper bound of the number of distinct knots with a givenbound for the number of crossings, one obtains the followingCorollary 6.5 [FHW]. The number of (the isomorphism classes of) knots thatcan be represented by curves whose energy E does not exceed N is bounded by2 � (24�4=2�) � (241=2�)N � (0:264)(1:658)N :Milnor [Mil1] showed that for the total curvatureTK(
) = Z ������ _
(u)jj _
(u)jj�0����� du(where 0 and � stand for the derivative in u), the inequality TK(
) � 4� impliesthat 
 is unknotted (TK(circle) = 2�). However, for any given � > 0 there existin�nitely many knot types having representatives of total curvature TK � 4� + �.Remarks 6.6. The total energy can be similarly assigned to a link (
1; : : : ; 
k),which consists of k disjoint embeddings of S1 to R3:TE(
1; : : : ; 
k) = kXi=1E(
i; 
i) + 12 kXi;j=1;i6=jE(
i; 
j);where E(
i; 
i) = E(
i), and for i 6= j,E(
i; 
j) = ZZS1�S1 k _
i(u)k � k _
j(u)kk
i(u) � 
j(u)k2 dudv:Given N > 0 there are �nitely many link types that have representatives withTE � N (see [FHW]).Remarks 6.7. For a divergence-free �eld con�ned to nontrivially knotted orlinked tubes there is a lower bound of the magnetic energy, as discussed in Sec-tion 2.B. Mo�att [Mof5] suggested using these lower bounds of the energy as theinvariants of (the tubular neighborhoods of) knots and links.



x6. ENERGY OF A KNOT 173Namely, for any knot, consider a satellite 
ux-tube of volume vol carryingan \untwisted" vector �eld � of 
ux Flux (across any meridian section of thetube) and look at the associated energy of this vector �eld. This energy canbe decreased by a di�eomorphism action, preserving both vol and Flux, to atopological accessible minimum. On dimensional grounds, this minimal energyE(�) = m � (Flux)2(vol)�1=3, where m = m(Flux; vol) is a positive real numberdepending on the knot topology. If for a given knot, di�erent local minima of theenergy exist, then the sequence fm0;m1; : : : ;mrg of possible values could be rea-sonably described as the energy spectrum of the knot (neighborhood). The lowestnumber m0 provides a possible natural measure of the knot complexity (see also[C-M]).It would be interesting to relate the �nal positions of the vortex magnetic tubesunder the E2-energy relaxation to the shape of the curves, realizing the minimumof an appropriate energy function on curves. The critical points of such an energywould correspond to the equilibrium states for the Mo�att spectrum.6.B. Generalizations of the knot energy. There is a variety of M�obiusinvariant generalizations of the knot energy (see, e.g., [D-S, AuS, KuS]). Imagine acharge uniformly spread over a k-dimensional submanifold M � Rn.Definition 6.8. Given a function f , de�ne the f-energy to beEf (M) = ZZM�M f(x; y)jjx � yjj2k dvolM (x) dvolM (y):Regard the function f onM�M as a function of three arguments, f = f(M;x; y).Definition 6.9. A function f(M;x; y) is g-invariant under the action of a mapg :M !M if f(g�M;g(x); g(y)) = f(M;x; y).Theorem 6.10 [D-S, AuS, KuS]. Any scale and M�obius invariant factor f givesrise to the energy Ef invariant with respect to the M�obius transformations of Rn[f1g.The scale invariance of the integrand justi�es the choice of the power 2k ratherthan the physically meaningful n� 2 in the denominator of the energy in Rn. ThesubmanifoldM � Rn[ f1g can be viewed as a submanifold of Sn � Rn+1 via thestereographic projection. Such a projection extends to a M�obius transformation ofRn+1, while the energy formula does not depend on the ambient dimension.
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x

yy

x~

O ~Figure 37. Triangles Oxy and O~x~y are similar (where ~x; ~y are theinverses of x; y).Proof. The statement follows from the M�obius invariance of the integrand withf � 1. For the latter case the scale invariance is evident, while the invariance underinversion r 7! ~r := r=jjrjj2 follows from Fig.37.The similar triangles Oxy and O~x~y provide the identityjj~xjj � jj~yjjjj~x� ~yjj2 = jjxjj � jjyjjjjx� yjj2 :On the other hand, the inversion transforming M into ~M expands conformallythe lengths at x by the factor jj~xjj=jjxjj. The corresponding change of the volumeelement is dvol ~M (~x) = (jj~xjj=jjxjj)k dvolM (x):This shows that the integrand, as a whole, remains invariant under inversion, andhence under an arbitrary M�obius transformation. �If f � 1, the integrand blows up as x approaches y, and therefore the energyis in�nite for any M . The regularizing factor f is designed to compensate thesingularity, and so it vanishes as x! y.The list of properties desired from a particular regularization usually includesthe in�nite barrier against self-crossings, the M�obius invariance, and boundednessof the energy from below. More restrictive is the property of approximate additivityfor the connected sum of two remote knots, and the requirement that the energycontribution of any two disjoint arcs would be independent of whether they are inthe same component of the link (see the discussion in [AuS]).To give an example, return to the case of a knot 
 2 R3. De�ne a speci�cregularization f0 : 
 � 
 ! R by the following construction.



x6. ENERGY OF A KNOT 175Definition 6.11 [D-S]. Given a point x 2 
 and any other point p 2 R3 thereis a unique circumference (or straight line) Sx(p) tangent to 
 and passing throughp. Thus given two points x and y of 
, we have two oriented circumferences Sx(y)and Sy(x) that meet at equal angles at x and y. Let � be the angle at whichthese two circles meet in R3. These circles and, in particular, the angle � arede�ned in a M�obius invariant manner. Set the special weight f0 to be the functionf0 := 1 � cos�. (The angle � can also be de�ned in the case of an arbitrary k-dimensional submanifold in Rn by replacing the circumferences Sx(y) by k-spheres[KuS]).Proposition 6.12 [D-S]. The knot energy Ef0 de�ned by the special weight f0is equivalent to O'Hare's energy E modulo a constant: If 
 is a closed curve in R3,then Ef0 (
) = E(
)� 4:It was shown in [FHW] that for an irreducible knot there is a representativehaving minimal energy among all simple loops of the same knot type. A criteriondescribing the \optimal" (minimizing the energy) states was obtained in [OH2]. Wealso refer to the paper [KuS] for nice stereo-pairs of optimal links (with the numberof crossings cn � 8) that allow one to visualize the three-dimensional picture.Remark 6.13. Note that the number of critical points of a function on thespace of embeddings S1 ! R3 can be minorized by Morse theory and by Vassiliev'scalculation of the Betti numbers of the space of embeddings [VasV].Unlike knots, plane curves (immersionsS1 ! R2) generically have self-intersectionpoints. The simplest singular plane curves (forming the discriminant hypersurfacein the space of maps S1 ! R2) have either a triple point or a point of self-tangency(see Fig.38). A treatment of the corresponding theory of Vassiliev-type invariantsfor the plane and Legendrian curves can be found in [Arn21, Aic, L-W, Vir, Pl1,2,PlV, Shm, Tab2, Gor, FuT].
Figure 38. Plane curves with triple points and self-tangencies.



176 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSProblems 6.14. A) Is there an energy functional on the space of immersionsthat is in�nite on the discriminant and possesses the property of M�obius invariance(and/or other properties from the discussion above)? Conjecturally, there will beonly �nitely many homotopy classes of immersed curves whose would-be energy isbounded from above.B) Are there asymptotic generalizations of invariants of plane curves similar tothose discussed above for the linking of space curves? We refer to [Aic, L-W] forvery suggestive integral formulas of the invariants.Remark 6.15 (D. Kazhdan). The growth rate of the number of types of im-mersions into the plane as a function of the crossing number suggests the existenceof a negative curvature metric in the corresponding spaces of immersions.x7. Generalized helicities and linking numbersThis section describes various generalizations of the helicity integral to manifoldswith boundary, to the non-simply connected and higher-dimensional cases, as wellas to magnetic tubes forming links detected by certain higher-order link invariants.7.A. Relative helicity. The helicity of a vector �eld in a simply connectedmanifold with boundary (say, in a domain of R3) is well-de�ned, provided onlythat the �eld is tangent to the boundary. A vector �eld crossing the boundarypossesses neither the ergodic version of the de�nition (some of its trajectories leavethe region, and therefore their asymptotic linking cannot be speci�ed) nor theintegral one (the formula has to include a boundary term). However, the vector�elds identical outside the region can be compared by means of the relative linking oftheir trajectories in the interior [Ful, B-F].The de�nition of the relative linking number for nonclosed curves rests on theintroduction of \reference arcs" with the same endpoints and closing up the curves,Fig.39 (see [Ful], where this construction is applied to the study of DNA knotted-ness).The continuous version is as follows [B-F]. Suppose that a domain in the spaceR3 (or a closed simply connected manifold M3) is split into two simply connectedregions A and B separated by a boundary surface S. Assume further that twodivergence-free vector �elds � and � in A coincide on the boundary S and have thesame extension � into the region B. Call the extended �elds in M respectively ~�and ~�. Abusing notation we will denote them as the sums ~� = � + � and ~� = � + �
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Figure 39. Nonclosed curves have relative linking with respect to arcsoutside the region.(where �; �; � are regarded as the (discontinuous) vector �elds in the entire manifoldM with supports supp �, supp � � A, and supp � � B).Lemma{definition 7.1. The di�erence of the helicities of the �elds ~� and ~��H = H(~�)�H(~�)is independent of their common extension � in the region B, and hence it measuresthe relative helicity of the �elds � and � in A.Proof. De�ne the (closed) two-forms �; �; and ! (by substituting the vector�elds �; �; and � with respect to the volume form � on M : i�� = �, etc.). Thenone has to show that the di�erenceH(~�)�H(~�) := ZM (�+ !) ^ d�1(� + !) � ZM (� + !) ^ d�1(� + !)does not depend on !. One readily obtains�H = ZM � ^ d�1�� ZM � ^ d�1� + ZM (� � �) ^ d�1! + ZM ! ^ d�1(�� �):Here d�1 applied to a discontinuous 2-form is a continuous 1-form (the \form-potential"). The terms in �H containing ! are RM (���)^d�1!+RM !^d�1(���),and we want to show that their contribution vanishes.Integrating by parts one of the terms, we come to 2 RM (� � �) ^ d�1!, which,in turn, is equal to 2 RA(� � �) ^ d�1!, since supp(�� �) � A.



178 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSOn the other hand, in A the 1-form d�1! is the di�erential of a function: d�1! =dh. Indeed, it is closed (the di�erential d(d�1!) = ! vanishes in A due to the con-dition on supp � = supp ! � B), and hence it is exact in the simply connectedregion. Hence,2ZA(�� �) ^ d�1! = 2ZA(�� �) ^ dh = 2ZS h(� � �) = 0;where the last equality is due to the assumption on the identity of the �elds � and� on the boundary S. This proves that �H is not a�ected by the choice of theextension �. �The relative helicity of a �eld transversal somewhere to the boundary of M isno longer invariant under the action of volume-preserving di�eomorphisms of M .Remark 7.2. The phenomenon of the same type holds for divergence-free vector�elds on non-simply connected manifolds. A true linking number does not exist forsuch a case, but two \homologically equivalent" �elds can be compared with eachother. A nice application to the linking numbers for cascades can be found in [GST].Choose a nonsingular C1 vector �eld inside a solid torus such that the 
owlines are transversal to its 2-disks, as in Fig. 40a. In this setting one can de�nethe following version of the linking number. We �x the direct product structureS1 �D2 in the solid torus trivializing its �bration over S1.The topological linking of two long pieces of orbits is the algebraic number oftimes one trajectory winds around the other. Namely, the projections of the orbitsto the disk form a moving pair of points in the same 2-disk. The linking numberis the rotation number of one point around the other. This de�nition extends tothe case of the cascades of periodic orbits in a solid torus. A cascade 
ow in thesolid torus cyclically interchanges smaller invariant disks in the transverse sectionand repeats itself inside these disks (Fig.40b).On the other hand, to the piece 0 � t � T of a single orbit of a C1-
ow onecan associate the (in�nitesimal) self-linking number by counting how many times atangent vector in the disk direction turns around the orbit. For almost all points,the in�nitesimal self-linking number has a limit as T ! 1, and this limit can bedescribed by a spatial integral of the appropriate derivative [Rue].Gambaudo, Sullivan, and Tresser showed in [GST] that the sequence of the topo-logically de�ned average linking numbers between successive orbits in the cascadeconverges to the average self-linking number of the invariant set. They also de-scribed the sequences of rational numbers (in a sense, counterparts of the rotation
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(a)

(b)Figure 40. a) A solid torus with a vector �eld transversal to the 2-diskD2. b) Cascade of embedded solitori.numbers of maps of a circle into itself) that can appear as the average linkingnumbers in a cascade of iterated torus knots.7.B. Ergodic meaning of higher-dimensional helicity integrals. Thehigher-dimensional integrals generalizing the helicity of a vector �eld in R3 wereintroduced by Novikov [Nov1]. His idea was to extend to closed di�erential formson higher-dimensional spheres (which are not necessarily the pullbacks of the formsfrom the spheres of smaller dimension) the Whitehead operations in the homotopygroups of the spheres (simulating the approach, transforming the Hopf invariant onthe homotopy group �3(S2) into the helicity of divergence-free vector �elds on S3).An ergodic interpretation of Novikov's constructions encounters the followingdi�culty. Unlike the three-dimensional case, where the asymptotic linking numberis de�ned for almost every pair of trajectories, the �eld lines are not linked if thedimension of the ambient manifold is greater than 3. Thus, instead of the curves,one should consider the submanifolds of higher dimensions. But for nonclosedsubmanifolds of dimension � 2 one lacks a satisfactory generalization of the systemof short paths.We consider the geometric meaning of the invariants of closed two-forms onmanifolds of arbitrary dimension. For odd-dimensional manifolds quantities likeR d�1� ^ � ^ � � � ^ ! arise as �rst integrals in the theory of an ideal or barotropic
uid (Sections I.9, VI.2) or in the Chern{Simons theory (Section 8.A). Here the



180 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSasymptotic linking number of every pair of �eld lines is replaced by the linking ofa trajectory with a foliation of codimension 2. For even-dimesional manifolds theNovikov invariants are described as the average nongeneric linkings [Kh1]. Theinterpretation presented here is an ergodic counterpart of the Poincar�e duality thattranslates facts on the di�erential forms into a description of the intersections oftheir kernel foliations (cf. Remark 4.7).Let Mn be a compact connected manifold without boundary and H1(M;R) =H2(M;R) = 0. Denote closed (and hence, exact) two-forms on M by �; �; � � � 2
2(M), while d�1�; d�1�; � � � 2 
1(M) are arbitrary primitive one-forms (form-potentials) for the corresponding two-forms. We start with the following simpleobservations:Proposition 7.3. i) For an odd-dimensional manifold M2m+1 and arbitrarym+1 closed two-forms �; �; : : : !, the Hopf-type integral I(�; �; : : : !) = RM d�1�^� ^ � � � ^ ! is symmetric under the permutations of �; : : : ; ! and does not dependon the choice of the primitive d�1�.ii) [Nov1] On a four-dimensional manifold M4 for any two 2-forms � and � thatobey the conditions � ^ � = � ^ � = � ^ � = 0, the integralsJ1(�; �) = ZM d�1� ^ � ^ d�1� andJ2(�; �) = ZM d�1� ^ � ^ d�1�do not depend on the choices of d�1� and d�1�.In [Nov1], Novikov de�ned a set of invariants on manifolds of an arbitrary di-mension, and we consider the case ofM4 for illustration. We are going to representthese integrals as the generalized linking numbers of certain foliations associated tothe di�erential forms.Definition 7.4. A closed 2-form � of rank � 2 on a manifoldMn determines a(singular) foliation (called a kernel foliation ) of codimension 2 in M : the tangentplane to this foliation at any point of M is spanned by the (n� 2)-vector being thekernel of � at that point.If the manifold is equipped with a volume form �, then this foliation is generatedby the �eld of (n � 2)-vectors A whose substitution iA into the volume form gives� (i.e., iA � = �).Proposition 7.5. The kernel �eld of a closed two-form is completely integrable.In particular, for the form of rank � 2, it spans a foliation of codimension � 2.Proof is an application of the Frobenius integrability criterion. �



x7. GENERALIZED HELICITIES AND LINKING NUMBERS 181Remark 7.6. Without the restriction on rank of the two-form � the correspond-ing kernel (n � 2)-vector �eld A is generically indecomposable. The conditions� ^ � = � ^ � = 0 on the pair �; � in ii) in the above proposition are exactly thelimitations on the ranks: rk(�); rk(�) � 2. The third condition � ^ � = 0 ensuresthat the kernel foliations (of dimension 2 in M4) determined by the forms � and� (near a point where rk(�) = rk(�) = 2) are allocated in the following peculiarway. The intersections of their leaves form a 1-dimensional foliation, provided that� and � are not proportional. Moreover, the distribution spanned by the kernelsof � and � determines in this case a 3-dimensional foliation [Arn9].Definition 7.7. The average linking of a curve � with the foliation A is the
ux of the two-form � = iA � through an arbitrary surface @�1� bounded by �:lk(�;A) = Z@�1� � = Z� d�1�:The following proposition motivates the de�nition of lk(�;A).Proposition 7.8. The number lk(�;A) coincides with the average linking num-ber (evaluated with the help of the linking form G 2 
n�2(M)�
1(M)) of the leavesof foliation A with the curve �.Proof. By de�nition of the form G the linking number of two submanifolds Pand Q in M is given by the integral RRP�Q�M�M G, see Section 4. Therefore,ZZA�� G = ZZM�� iAG ^ � = ZZM�� G ^ iA� = ZZM�� G ^ � = Z� d�1�:(Here the �rst identity is the de�nition of RRA��G, the last one is the main propertyof G: the operator corresponding to the linking form acts on the exact di�erential2-forms just like the operator d�1; see Section 4.D.) �By analogy with the three-dimensional case, we can now de�ne an asymptoticlinking lk�(x;A) of the trajectory of a vector �eld � passing through a point x 2 Mwith the foliation A. It is the time-average of the linking number with A of thecurve �T (x) consisting of the long segment (for time 0 � t � T ) of the �-trajectorygt�x starting at x 2M and of a short closing path:lk�(x;A) = limT!1 1T lk(�T (x);A):



182 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSDefinition 7.9. The average linking number of the vector �eld � with the foli-ation A de�ned on the manifold M equipped with the volume form � islk�(A) = ZM lk�(x;A)�:Theorem 7.10. Let �; �; : : : ; ! be a set of m+ 1 closed two-forms on M2m+1.Assume that the rank of one of the forms (for example, �) is at most 2. Then theHopf-type integral I(�; �; : : : ; !) = RM d�1� ^ : : : ^ ! coincides with the averagelinking number of the vector �eld � with the foliation A:I(�; : : : ; !) = lk�(A);where the �elds � and A are de�ned by i�� = � ^ : : : ^ ! and iA� = �.Proof is a straightforward application of the Birkho� ergodic theorem. �The rank of � is essential merely to de�ne the foliation A. In the general case, wewould consider a linking with an abstract (n� 2)-vector �eld instead of an (n� 2)-dimensional foliation. If, conversely, all these forms have rank � 2 (of course, this isseldom the case), then one can interpret the number I(�; : : : ; !) as the multilinkingof all the corresponding foliations.Namely, the usual linking number is a bilinear form on the space of disjointsubmanifolds of appropriate dimensions: It is de�ned for a pair of submanifolds P kand Ql in Mn, subject to the conditions k + l = n� 1 and P \ Q = ;. Similarly,we de�ne the multilinking number as a multilinear form on the space of r-tuples ofsubmanifolds (P1; : : : ; Pr) such that(7.1) rXi=1 codim Pi = n+ 1and(7.2) r\i=1Pi = ;:Definition 7.11. Themutual linking number of r oriented closed submanifoldsP1; : : : ; Pr in M = Rn (or Sn) satisfying the condition above is the signed numberof the intersection points of a manifold F � M bounded by one of these surfacesPi = @F with the intersection of all the other submanifolds.If these submanifolds are equipped with some transversal orientations, then soare all the manifolds bounded by them and all their intersections, and hence the
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(a) (b)
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SFigure 41. Links of a) three circles in the plane; b) two spheres anda circle in space.signs of the intersection points are well-de�ned. For example, it is possible to linkthree circles in the plane or two spheres and one circle in 3-space (Fig.41).Note that the mutual linking number of a collection P1; : : : ; Pr �M is the usuallinking number of the submanifold P1 � � � � � Pr �M � � � � �M with the diagonal� = f(x; : : : ; x) j x 2Mg �M � � � � �M .We recall that every closed 2-form of rank � 2 determines a foliation of codi-mension 2. If the leaves were compact, one could consider the mutual linking ofthese leaves for (m+ 1) two-forms in M2m+1 due tom+1Xi=1 (codimension of leaves) = 2m+ 2 = dimM + 1:So in these terms, Theorem 7.10 above reads asTheorem 7.100. The Hopf-type invariant is equal to the average asymptoticmultilinking number of the leaves determined by the given 2-forms.To describe the ergodic meaning of the Novikov integrals J1 and J2, we shallextend the concept of multilinking. We are going to drop the codimension condition(7.1) if it is compensated in (7.2) by an assumption on the nongeneric intersectionof the submanifolds. For example, two circles S1 and a sphere S2 cannot be linkedin R3 (one can untie any con�guration of them not passing through any triple point,Fig.42a). However, if these two circles are two meridians of the same ball (and sotheir intersection S0 consists of two points), the linking may be nontrivial (Fig.42b).
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Figure 42. a) Generic and b) nongeneric linkings of two circles and asphere.Namely, one cannot remove S2 far from the two meridians unless it passes throughan intersection point of these two meridians.In the de�nition of invariants Ji, the (� ^ � = 0)-type conditions provide thenongeneric intersections of the corresponding leaves.Theorem 7.12. The invariant J1(�; �) (respectively, J2(�; �)) coincides withthe average linking number of the foliation A of the 2-form � (respectively, of thefoliation B of �) with the vector �eld � satisfying i�� = d(d�1� ^ d�1�).Roughly speaking, each of these two amounts is the average linking number ofthe 1-dimensional foliation formed by the intersections ofA and B with the foliationA or B (determined, respecively, by � or by �).Remark 7.13. The Hopf-type invariants arise in [Nov1] in a context of quantumanomalies. Consider the space L of smooth mappings f : Sq ! Mn homotopic tozero. To a closed (q + 1)-form � on M one naturally associates a multivalued



x7. GENERALIZED HELICITIES AND LINKING NUMBERS 185function F�(f) (or a closed 1-form �F�) on the space L:F�(f) = Zf(Dq+1) �:Here f : Sq !Mn is extended to a mappingDq+1 !Mn of the ball Dq+1 boundedby the sphere. Closedness of the (q + 1)-form � implies that �F depends just onf j@Dq+1=Sq .The di�erential �F of a multivalued functional F (f) on the space L is said tobe local if it depends on f and on a �nite number of its derivatives. For n � q + 1all multivalued functionals F (f) with local di�erentials are the sums of a localunivalued functional and F�(f) [Nov2]. A construction of multivalued functionalsfor n � q + 1 that conjecturally describes all functionals with local di�erentials isgiven in [Nov1].There is an integer lattice inside the space of �'s consisting of homotopy invariantelements. The meaning of this lattice is exactly equivalent to the role of the usualinteger-valued Hopf invariant of mappings S3 ! S2 among all asymptotic linkinginvariants for arbitrary divergence-free vector �elds on S3. It is natural to call theappearance of the integral lattice a quantization condition [Nov1].7.C. Higher-order linking integrals. The Gauss linking integral fails to de-tect the entanglements of curves in R3 with an equal number of \oppositely signedcrossings." The Whitehead link and the Borromean rings are examples of this kind(see Fig.43). In this section we consider the higher-order invariants called Masseynumbers (see [Mas]) that generalize the linking number of two curves and allow oneto detect more general curve con�gurations.
Figure 43. Three solid tori form the Borromean rings.



186 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSThe formalism of di�erential forms for the hierarchy of higher link invariants wasdeveloped in [Mas] (see also [MRe]). This notion was introduced in a magnetohy-drodynamical setting in the paper [MSa] and rediscovered in [Be1, E-B], to whichwe refer for more detail (cf. [LS2]). The topological obstruction rules for the linksin nematics and in certain super
uids can be found in [MRe].The helicity of �eld tubes is quadratic in the magnetic 
uxes (see formula (2.1)),and therefore it describes a second-order invariant. For the Borromean rings theGauss integral taken over any two rings vanishes and so does the helicity of theentire tube con�guration. The Borromean rings can be distinguished from thethree totally unlinked rings by means of a third-order linking invariant, cubic in the
uxes.We start with the three closed curves forming the Borromean rings and encasedin toroidal volumes Tk; k = 1; 2; 3. The �eld �k is concentrated in the tube Tk,vanishes outside, and has unit 
ux in Tk. Denote by Ak a vector-potential for �kand by �k the associated 1-form-potential. (In invariant terms, one �rst �nds aclosed two-form �k = i�k �, which is the substitution of the �eld �k into the volumeform �, and then �k = d�1�k is any primitive one-form such that d�k = �k.)Having de�ned the two-forms !ij = �i ^ �j = ��j ^ �i for i 6= j (note: d!ij = 0outside of Ti [Tj), the helicity integral becomesHij := H(�i; �j) = ZTi[Tj �i ^ d�1�j = ZTi �i ^ �j = ZTi d!ijdue to supp �i � Ti. By virtue of the Stokes formula, the latter integral is equalto Hij = R@Ti !ij . All the quantities H12;H23;H31 vanish for the Borromean rings.One can modify the form !ij inside the tubes to make it closed everywhere.Namely, one has to add the 2-form h(j)i � �j to !ij inside Tj and to subtracth(i)j � �i from !ij inside Ti, where h(i)j is a scalar potential satisfying �j = dh(i)j.The function h(i)j exists in the tube Ti (but not globally), since the magnetic �eld�j (and the corresponding two-form �j = d�j) is zero there, and because Ti is notlinked with Tj. The Poincar�e lemma applied to the new !ij guarantees that thereis a one-form �ij such that !ij = d�ij .Definition 7.14. The third-order linking integral isHijk = Z@Ti !ijk = ZTi d!ijk = � Z@Tk !ijkfor distinct i; j; k, where !ijk is the Massey triple product!ijk = �i ^ �jk + �ij ^ �k:



x7. GENERALIZED HELICITIES AND LINKING NUMBERS 187As a matter of fact, the Massey product is a map de�ned on cohomology classes.This implies both the gauge invariance of the third-order linking integral Hijk andits invariance under deformations of the three curves. It vanishes for three unlinkedcircuits but is equal to �1 for the Borromean rings.Remark 7.15. In the language of vector calculus the Massey product becomes
ijk = Ai � curl�1
jk + curl�1
ij �Ak;where 
ij is the vector �eld Ai�Aj modi�ed inside the tubes to make it divergencefree and hence to provide the existence of a potential curl�1
ij (see [E-B]).The purely cohomological description of the numbersHijk is as follows (see, e.g.,[MRe]). Let the curves �k; k = 1; 2; 3, constitute the \axes" of the Borromean ringsTk in S3. A closed 1-form �k is the Alexander dual of the circle �k. It is de�nedin S3 n �k and can be regarded as a linking form: For any closed curve 
 in thiscomplement R
 �k = lk(�k; 
).The condition lk(�i;�j) = 0 allows one to �nd a 1-form !ij on S3 n (�i [ �j)such that d!ij = �i ^ �j . Now !123 = !12 ^ �3+�1 ^!23 is de�ned on S3 with thethree circles removed, and it can be integrated over the boundary @T1.Remark 7.16. This is the starting point for a hierarchy of the invariants. (Theinvariants of order n can be de�ned for con�gurations whose invariants of order� n� 1 vanish.)A fourth-order linking invariant capturing the Whitehead link was suggested in[A-R]. Consider Seifert surfaces corresponding to two closed disjoint curves. Foreach of the curves such a surface can be chosen not to intersect the other curve,provided that the linking number of the pair vanishes. Then, generically, the in-tersection of the two Siefert surfaces is a closed curve equipped with a framing.The self-linking number of the framed curve is a topological invariant; and it isindependent of the choice of the surfaces [Sat]. By making the curves into thinsolid tori, one can obtain an integral form of the invariant [A-R].Remark 7.17. Another way to generalize the linking number to more compli-cated links was suggested by Milnor [Mil2]. For all necessary de�nitions of higher-order Milnor coe�cients and for their relation to the higher-order Massey linkingnumbers see [Mil2, Tu1, Por, MRe].Remark 7.18. In all the constructions of this section, the magnetic �eld isassumed to be highly degenerate: It is concentrated in toroidal tubes with allthe trajectories closed inside the tubes. Such �elds form a slim set of in�nite



188 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDScodimension in the space of all divergence-free vector �elds. No asymptotic versionof these constructions is known.The dream is to de�ne such a hierarchy of invariants for generic vector �eldssuch that, whereas all the invariants of order � k have zero value for a given �eldand there exists a nonzero invariant of order k + 1, this nonzero invariant providesa lower bound for the �eld energy.Remark 7.19. It should be mentioned that the total helicity is approximatelypreserved even if the magnetic �eld is not frozen into the media but undergoes asmall-scale turbulence [Tay]. In this case the fast reconnections of the �eld trajec-tories drastically change the local topological characteristics of the �eld. However,averaged over the entire domain, the helicity persists for large time intervals.This phenomenon is based on the fact that small-scale components of the �eld(the components with wave vectors of large length k) contribute to the total helicitythe amount of order (amplitude)2=k, while their contribution to the energy is oforder (amplitude)2. Hence, a change of the higher harmonics of the �eld a�ectsthe helicity approximately k times more weakly than it a�ects the energy.Analytically, an evolution of the magnetic �eld B ( div B = 0) in the presenceof di�usion is described by the equation@B@t = �fv;Bg+ ��B:The helicity dissipation over a �xed time �t is�H = 2ZM (curl�1(��B);B) � = �2� ZM (j;B) �;whereas the energy E = RM (B;B) � dissipates as�E = 2ZM (��B;B) � = 2� ZM (j; j) �(here j = curl B is the current density). The Schwarz inequality gives the upperbound for �H of order �1=2: j�Hj � j� (�E) Ej1=2.The combinatorial arguments of [FrB] show that there are \reconnection path-ways" that remove other invariants while changing the helicity only at a rate �2.Neither of the linking invariants of higher order (� 3) de�ned above for tubes ofclosed trajectories persist under the reconnection deformations [MSa, FrB].The reconnection of magnetic lines under magnetic di�usion is similar to thevortex reconnection in a viscid incompressible 
uid. We refer to [KiT] for a surveyon vortex reconnection and to [Ryl] for other topological properties of various vortex
ows.



x7. GENERALIZED HELICITIES AND LINKING NUMBERS 1897.D. Calugareanu invariant and self-linking number. Let a narrow tubearound a curve 
 in R3 be �lled by the trajectories of a vector �eld �. Supposethat all the �-trajectories in the tube are closed and that one of them is the curve
 itself.The helicity of the �eld inside the tube is proportional to the linking number lkof any two trajectories inside the pencil:H(�) = lk �Q2;whereQ is the 
ux of � across any section of the tube. A straightforward applicationof the helicity formulas (4.1-4.2) for a �eld �lling an arbitrary volume, this formulacan also be visualized by presenting the tube as consisting of many slim solitori andby counting their mutual helicity (see formula (2.1)).On the other hand, the linking number lk between the curve 
 and a neighboringcurve 
0 is a quantity assigned to a ribbon bounded by 
 and 
0. Precisely, thelinking number is the sum lk =Wr + Twof the writhing numberWr and the total twisting number Tw de�ned as follows.Definitions 7.20. The writhing number is the algebraic number of crossoversof the curve 
 � R3 averaged over all the projection directions:Wr = � 14� ZS1 ZS1 ( _
(t1); _
(t2); 
(t1) � 
(t2))jj
(t1) � 
(t2)jj3 dt1dt2;where the curve 
 = 
(t) is parametrized by t 2 S1 (see, e.g., [Ful]). Just as it isfor the average self-crossing number c(
; 
) (see Theorem 6.4), the integral aboveis bounded. Its value is not supposed to be an integer, and it is not a topologicalinvariant. For instance, for a plane (or spherical) curve the writhing number is zero.The twist number is not de�ned for a curve, but it can be de�ned for a ribbon. Itspeci�es the total rotation number of the edge ~
 revolving about the \axis" curve
: Tw = 12� ZS1 (dn(t)dt ; n(t); 
(t)) dt;where 
(t) is an arc-parametrization of the curve 
, and the family n(t) consists ofthe unit normals attached along 
 and pointing in the direction of ~
.The formula lk =Wr + Tw is illustrated in Fig.44. This relation, due to Calu-gareanu [Cal], was extensively studied along with its numerous applications (e.g.,



190 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDS
Figure 44. The formula lk =Wr+Tw for a helical ribbon (see [Ful]).Here lk = n; Tw = n sin�; Wr = n(1 � sin�), where � is the pitchangle of a helix, and n is the number of turns.the helical DNA structure) by Fuller [Ful], Pohl [Poh], White [Wh], and in thehydrodynamical context by Berger and Field [B-F], and Mo�att and Ricca [MoR,RiM]. We refer to [MoR] for a derivation of the Calugareanu invariant from basichydrodynamical principles, as well as for the invariant history and extensive bibli-ography. The decomposition lk = Wr + Tw corresponds to the writhe and twistcontributions to the helicity of a bundle of �eld lines, which is a substitution for aribbon in the hydrodynamical setting.We also refer to the paper by Bott and Taubes [B-T] for a purely topologicalnotion of the self-linking number of a knot, which has been conceived in the contextof the Chern{Simons topological quantum �eld theory and then decoupled from thegroup structure involved (see the references therein for the earlier papers by D. Bar-Natan, by A. Guadaguini, M. Martinelli, and M. Mintchev, and by M. Kontsevich).In the next section we describe the relation of the linking numbers to the Chern{Simons functional.7.E. Holomorphic linking number. Many real notions in mathematics havetheir complex counterparts. The analogies can be as \straightforward" as the cor-respondence of real and complex manifolds, or of the groups of orthogonal andunitary matrices (O(n); U(n)), or much more elaborate, say, the Stiefel{Whitneyand Chern characteristic classes of vector bundles. Another nontrivial example isthe duality of the homotopy groups �0 (in the real setting) and �1 (in the complexsetting). It can be understood as follows: The number of connected components(�0) is a measure of complexity of the complement to a hypersurface in a real mani-fold. On the other hand, a complex hypersurface does not split a complex manifold,and it can be bypassed. The fundamental group (�1) measures the complexity ofthe complement in the latter case. We refer to [Arn23, Kh2] for other examples of



x7. GENERALIZED HELICITIES AND LINKING NUMBERS 191informal complexi�cation.Here we discuss a complex counterpart of the notion of linking number (followingthe ideas of [At]; see [KhR, FKT, Ger, F-K]). Instead of linking two smooth closedcurves in a simply connected real three-manifold, we will deal with an invariantassociated to a pair of closed complex curves (Riemann surfaces) in a complex three-dimensional (i.e., of real dimension 6) manifold. In the scketch below we alwaysassume that the described manifolds and forms exist, and we brie
y mention thenecessary existence conditions.Remark 7.21. The classical linking number lk is an integer topological invariantequal to the algebraic number of crossings of one curve in R3 with a two-dimensionalsurface bounded by the other curve (Fig.25). The topological invariance of lk andits independence of the choice of surface follow from the fact that the algebraicnumber of intersections of a closed curve and a closed surface is equal to zero.The latter invariance can also be viewed as the Stokes formula for �-type formssupported on closed curves and surfaces (cf. Remark 4.7). The Stokes formula, andmore generally, the De Rham theory of smooth di�erential forms, has a genuine real
avor: One considers real manifolds with boundary and an appropriate orientation,the Z=2Z-valued invariant.One argues in [F-K, Kh2] that the Leray theory of meromorphic forms on com-plex manifolds is an informal complexi�cation of De Rham theory. The Lerayresidue formula is a higher-dimensional generalization of the Cauchy formula, whichgives the value of a contour integral of a meromorphic 1-form via the form's residueat the pole. It \replaces" the Stokes formula in the complexi�cation. Instead ofrestricting a form to the boundary, one takes the residue of a meromorphic form atthe polar set.To de�ne the Leray residue, let ! be a closed meromorphic k-form on a compactcomplex n-dimensional manifoldM with poles on a nonsingular complex hypersur-face N �M . All poles here and below are supposed to be of the �rst order. Let  be a function de�ning N in a neighborhood of some point p 2 N . Then locally, ina certain neighborhood U(p), the k-form ! can be decomposed into the sum(7.3) ! = d  ^ �+ �;where � and � are holomorphic in U(p). One can show that the restriction ���N isa well-de�ned (i.e., independent of  ) holomorphic (k � 1)-form (see [Ler]).



192 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSDefinition 7.22. The form-residue res ! of the closed meromorphic k-form !is the holomorphic (k � 1)-form on N such that, in any neighborhood U(p) of anarbitrary point p 2 N , it coincides with the form � jN of the decomposition (7.3):res ! = � jN :Similarly, one de�nes the residue in the case of polar sets consisting of severalcomplex hypersurfaces in a general position in M .Remark 7.23. For a complex manifold M with hn;1(M) := dimH1(M;
n) =0, every holomorphic (n�1)-form on N is the residue of some meromorphic n-formon M with poles on N of the �rst order; see, e.g., [Chr]. This meromorphic n-formon M is de�ned by its residue on N uniquely up to a holomorphic n-form on M .Note that the condition hn;1(M) = 0 in the complex setting can be thought of asan analogue of simple-connectedness of a real manifold.Now let C1; C2 �M be two complex closed nonintersecting curves in a complexclosed three-fold M : C1\C2 = ;. Fix some holomorphic di�erentials �1 and �2 onthe curves C1 and C2, respectively, and a meromorphic 3-form � on M , satisfyingthe following condition: The zero locus of � intersects neither of the curves C1 andC2 (e.g., if M is a Calabi{Yau manifold, it possesses a nonvanishing holomorphic3-form �, unique up to a factor). The number we are going to assign to this pairof curves depends linearly on �1; �2; and ��1.Suppose that there exists a complex surface S1 in M that contains the complexcurve C1. Denote by �1 any meromorphic 2-form on S1 with a polar set on thecurve C1, and such that the residue of this 2-form �1 is equal to �1: res �1jC1 = �1.By virtue of the remark above, such a 2-form �1 exists as soon as there is a complexsurface S1 �M containing the curve C1 and such that H1(S1;
2) = 0.Definition 7.24 [KhR, FKT]. The holomorphic linking number lk C of the pairof complex curves Cj with chosen holomorphic di�erentials �j on them (in themanifoldM with the meromorphic form �) is the following sum over all intersectionpoints of the surface S1 and the curve C2:(7.4) lk C ((C1; �1); (C2; �2)) := XS1\C2 �1 ^ �2� :Note that the 3-form �1 ^ �2 is well-de�ned at the points of intersection S1 \ C2,and the ratio on the right-hand side measures its proportionality coe�cient withthe 3-form � at the same points.



x7. GENERALIZED HELICITIES AND LINKING NUMBERS 193Unlike the real case, the holomorphic linking number is not integer valued, andit is not an isotopy invariant. Its value can be any complex number, and it dependson the mutual location of the complex curves C1 and C2 in M , as well as on thedi�erential forms �1, �2, and � involved. However, it will be the same for alladditional choices.Proposition 7.25.i) The holomorphic linking number lk C is well-de�ned; i.e., it does not dependon the choice of complex surface S1 � C1 or the meromorphic two-form �1on it, provided that res �1jC1 = �1 (Fig.45).ii) The value lk C is a symmetric function of its arguments: One gets the samelinking number by embedding the curve C2 into a complex surface S2, takinga meromorphic form �2 such that res �2jC2 = �2, and forming the sumlk C ((C1; �1); (C2; �2)) = XC1\S2 �1 ^ �2� : = lk C ((C2; �2); (C1; �1)) :
S1

S1

C1 C2

'Figure 45. The holomorphic linking number of complex curves C1and C2 counts the contributions of the intersections of the curve C2with a surface S1 � C1, or equivalently with another surface S01 � C1.Proof. Assume that the complex curve C1 is a transversal intersection of twocomplex surfaces S1 and S01, and each of the surfaces is equipped with a mero-morphic 2-form (respectively, �1 and �01) whose residues on C1 are �1. De�ne ameromorphic 3-form 
1 on M with poles (of the �rst order) on S1 and S01 andresidues �1 and ��01, respectively. These conditions on the form 
1 are consistent.



194 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSIndeed, on the intersection of two surfaces the form (second) residue depends onthe order in which the repeated residue is taken: It di�ers by the sign. For example,according to the order, the form dx ^ dy=xy has the second residue 1 or �1 at theorigin: resjy=0resjx=0 dx ^ dyxy = resjy=0 dyy = 1; whileresjx=0resjy=0 dx ^ dyxy = �resjx=0dxx = �1:Similarly, the second residue of the 3-form 
1 on the curve C1 = S1 \ S01 is the1-form �1 or ��1. For instance,resjC1resjS1
1 = resjC1�1 = �1:Then, by the de�nition of the holomorphic linking number (7.4),lk C ((C1; �1); (C2; �2)) = XS1\C2 (res 
1) ^ �2� ;since res 
1jS1 = �1. The latter ratio at every point of S1 \ C2 is equal tores (
1� ^ �2);where 
1� is a meromorphic function on M , and 
1� ^ �2 is a meromorphic 1-formde�ned on C2. Indeed, one can easily see that the equality(res 
1) ^ �2� = res (
1� ^ �2)holds at every point of the intersection S1 \ C2 by doing calculations in localcoordinates.Then lkC is the sum of residues of the meromorphic 1-form 
1� ^�2 on the complexcurve C2 at the poles S1 \ C2. By using the surface S01 instead of S1 for the samecalculation, one obtains minus the sum of residues of the same 1-form 
1� ^ �2 onC2, where the residues are taken at the poles S01 \ C2. The latter follows from theassumption that res 
1jS01 = ��01.The Cauchy theorem states that the sum of residues of a meromorphic 1-form ona complex curve is equal to zero. We apply it to the meromorphic 1-form 
1� ^ �2on the complex curve C2. Then the sum of the form's residues at all poles, i.e., atthe points of intersection of C2 with both S1 and S01, is equal to zero. This showsthat lkC does not depend on whether we use the surface S1 or S01 (statement (i)).



x7. GENERALIZED HELICITIES AND LINKING NUMBERS 195The symmetry of lkC can be immediatelly seen if we present C2 as a transversalintersection of two surfaces S2 and S02 and associate to it a meromorphic 3-form 
2in the same way as above. Thenlk C ((C1; �1); (C2; �2)) = XS1\S02\S2 res3�
1 ^ 
2� � ;where res3 is the residue of the meromorphic 3-form
1 ^ 
2�at the triple intersections S1 \ S02 \ S2. The skew symmetry of the wedge productand the sign change when passing to the intersections S1 \ S01 \ S2 complete theproof of (ii). �Remark 7.26. The main reason for introducing the complex linking number isthat it arises as the \�rst approximation" of the complex analogue of the Chern{Simons functional (see [FKT, FKR] and Remark 8.9). The standard linking numbergoverns the asymptotics of the classical Chern{Simons functional ([Pol, Wit2], Sec-tion 8 below).Remark 7.27. In a real three-dimensional manifold M , a knot (or link) invari-ant is a locally constant function on the space of embeddings of a circle (respectively,a union of circles) into the manifold M . In [VasV], V. Vassiliev de�ned the jumpof an invariant as the function assigned to the immersions of the circle with onepoint of self-intersection and whose value is equal to the di�erence of the knotinvariant on the embeddings \before" and \after" the self-intersection. (Here thenotions of \before" and \after" are determined by the orientation of the circle andof the ambient manifold M .) One can iterate the jumps and de�ne the function onimmersions with any �nite number of self-intersection points.By de�nition, the Vassiliev invariant of order k is a knot or link invariant whosejump function vanishes on all immersions with at least k+1 self-intersection points.In particular, one has the followingProposition 7.28. The linking number of two curves in R3 is an invariant oforder 1.Remark 7.29. The holomorphic linking number lk C is not de�ned if the twocomplex curves C1 and C2 intersect, and it tends to in�nity as the curves approacheach other. We suggest the following \meromorphic" counterpart of the Vassilievtheory.



196 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSLet M be a complex three-dimensional manifold equipped with a nonvanishingholomorphic form �. Denote byMj the moduli space of all embedded holomorphiccurves of �xed genus gj (j = 1; 2) in the complex manifold M . The space Mj is a�nite-dimensional complex manifold by itself (and we assume that its dimension isnonzero). The product M =M1 �M2 can be thought of as a complex analog ofthe space of (real) knots or links.Similar to the real case, it is natural to call the discriminant � �M the subsetof all con�gurations in the moduli space M such that the curves C1 and C2 hiteach other. The discriminant � is a (singular) complex hypersurface in M, andits regular points �0 correspond to simple intersections of the curves C1 and C2.Further degenerations of the discriminant variety � � �0 � �1 � : : : are strati�edby the number and multiplicity of the intersections.It would be interesting to de�ne the holomorphic linking number lk C as a closeddi�erential form on the moduli spaceM or on some bundle over it. Since lk C tendsto in�nity as the two curves get close to each other, this di�erential linking form issupposed to have a pole of �rst order along (the regular part �0 of) the discriminant�. In particular, the corresponding residue might be well-de�ned along �0.More generally, one can call a complex link invariant of complex curves of generag1; g2; : : : ; gm in a complex three-manifold M any closed meromorphic k-form onthe appropriate moduli space M := M1 �M2 � � � � � Mm of the holomorphicembeddings in M .Definition 7.30. A complex link invariant of order k is a closed meromorphicform on the moduli space M whose (k + 1)-st residue vanishes on all strata �k ofthe discriminant � �M that correspond to embeddings of complex curves with kpoints of pairwise intersections.Problems 7.31. A) Show that the complex linking form lk C can be de�ned asa complex link invariant of order 1. Similarly, one can try to de�ne the complexanalogues of Massey products and of other cohomological operations on knots andlinks.B) Give an ergodic interpretation of the holomorphic version of the linking num-ber in the spirit of Section 4.x8. Asymptotic holonomy and applications8.A. Jones{Witten invariants for vector �elds. There is a diversity of



x8. ASYMPTOTIC HOLONOMY AND APPLICATIONS 197subtle invariants for knots and links. For instance, one might consider the knotpolynomials (of Alexander, Kau�man, Jones, HOMFLY, Reshetikhin and Turaev,etc.) or the Vassiliev invariants of �nite order (see, e.g., [Tu2, VasV]). It is of greatinterest to extend the domain of such invariants to the case of (divergence-free)vector �elds, to \di�use knots" in the three-space R3. From this standpoint, aregular knot is understood as a vector �eld supported on a single closed curve.The classical (combinatorial) approach to introducing the knot invariants isbased on some type of recurrence relation: One starts with an unknot and de�nesa precise recipe for how the invariant changes under elementary surgeries (for ex-ample, the connected sum). This strategy seemed to be nonapplicable to extendingthe de�nitions to vector �elds.The situation changed after Witten's generalization [Wit2] of the Jones poly-nomial to arbitrary closed 3-manifolds in terms of the asymptotics of the Chern{Simons functional on the space of connections over the manifold. The structuregroup of the connection gives one more parameter to the problem, and the actualJones polynomial corresponds to the SU(2)-connections.The extension of Witten's approach from links to \di�use knots" was startedby Verjovsky and Freyer in [V-F], and we present below the main steps of thatpaper. In the abelian case of the U(1)- (or GL(1)-)connections the asymptotics inquestion are essentially determined by the helicity invariant of the correspondingdivergence-free vector �eld. TheGL(n)-version of the asymptotic monodromy alonga nonclosed trajectory of a vector �eld is provided by Oseledets's multiplicativeergodic theorem [Ose1]. However, the extension of the invariants to the nonabeliancase encounters serious obstacles arising from the lack of a nonabelian version ofthe Birkho� ergodic theorem on the equality of time and space averages.Let M be a closed compact real three-manifold M and let L � M be a link (adisjoint union L = [ni=1Ci of smoothly embedded circles Ci). Further, let P =M �G be the G-principal bundle over M , where the structure group G might beU(1) or SU(2).Denote by A the space of all connections in the (trivial) bundle P . It can beidenti�ed with the a�ne space �1(M; g) of 1-forms on M with values in the Liealgebra g of G. Finally, let ~G = C1(M;G) be the current group of �ber-preservingautomorphisms of P .Definition 8.1. The Jones{Witten invariant of a link L � M is the following



198 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSfunction of k:WL(k) = ZA= ~G 8<:exp (ik ZM tr(A ^ dA + 23A ^A ^ A)) � YCi�L tr(P exp ZCi A)9=; �DA;where P exp is the path ordered exponential integral, and DA is \an appropriatemeasure on the moduli space of the connections." From the mathematical point ofview, neither DA nor W has a sound de�nition.Witten showed in [Wit2] that for M = S3 and G = SU(2) this corresponds tothe Jones polynomial (in k) for the link L. Though justi�cation of the meaning ofthis integral is still not complete, it looks a lot simpler for an abelian group G, sayU(1):(8.1) WL(k) = ZA= ~G 8<:exp (ik ZM A ^ dA) � YCi�L(expZCi A)9=; �DA:One can think of RM A^ dA as a quadratic form Q(A) on A, while the line integralRCi A is regarded as a linear functional (the so-called De Rham current) ICi(A)evaluated at the 1-form A.For the abelian case (see [SchA, Pol]), the path integral modulo factors relatedto a regularization and topology of the manifold M is equal to(8.2)WL(k) = const � exp 8<: i2kXi;j hICi ; d�1ICji9=; = const � exp 8<: i2kXi;j lk(Ci; Cj)9=; :The regularization is needed to de�ne the linking number for each curve Ci withitself (cf. the de�nition of self-linking number in Section 7.D). The topologicalfactor, being the value of WL(k) in the case without any link (L = ;), is theRay{Singer torsion of the manifold M [SchA].Remark 8.2. Heuristically, one computes here a quadratic Gaussian integral ofthe type ZRn eikhx;Qxieihb;xi(��n=2) dx;which, upon the extraction of a complete square, is equal toe i2k hb;Q�1bi ZRn eikhx+Q�1b;Q(x+Q�1b)i(��n=2) dx=e i2k hb;Q�1bi(detQ)�1=2(e( i�4 �signQ)):



x8. ASYMPTOTIC HOLONOMY AND APPLICATIONS 199One can apply this formula to the (completion of the) in�nite-dimensional spaceA = 
1(M; g) in the case of the quadratic form Q(A) = RM A ^ dA. Since theform Q is degenerate, the integration is carried out only along a subspace in thespace A transversal to the kernel of Q. This corresponds to integration over the~G-quotient of the space A, see [Wit2, V-F]. Although this di�ers from the abovecase of a nondegenerate form, here we are interested only in the factor e i2k hb;Q�1bi,which has a straightforward analogue.In our context, this factor turns out to be the linking term:e i2k hb;Q�1bi = exp8<: i2kXi;j hICi ; d�1ICj i9=; :The ergodic (\di�use") version of this approach has to do with notions of as-ymptotic and average holonomy. (One can think of di�using the knot as the wayof its regularization: The neighboring trajectories can be regarded as a framing. Inparticular, it allows one to determine the knot self-linking as the linking number ofthe knot with its shift in the direction of the frame.)Definition 8.3. The asymptotic holonomy of a connection A along the trajec-tory ��(p) = fgt� j t � 0g of a vector �eld � issuing from a point p 2 M is thefollowing element of the Lie group G:P expZ��(p)A := limT!1P exp Zfgt� j 0�t�Tg ( 1T A):The last integral is de�ned by the limiting procedure T ! 1, due to the trivial-ization of the bundle P =M �G (or by means of a system of short paths used forthe asymptotic linking number, see De�nition 4.13).It can also be thought of as follows. The (inde�nite) integrationP exp Zfgt� j t�0g Aalong the trajectory ��(p) de�nes a curve in the Lie group G. Choose the one-parameter subgroup in G approximating this curve as t!1. Then the asymptoticholonomy is the point t = 1 on the subgroup. The existence of this limit for anarbitrary group G is obscure. However, in some cases the limiting eigenvalues foralmost all initial points p 2 M are provided by the multiplicative ergodic theorem[Ose1].



200 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSThough in the nonabelian case no simple answer for the space average of theasymptotic holonomy is known (there is no matrix analogue to the Birkho� ergodictheorem on the equality of time- and space-averages), we present the would-bede�nition in \full" generality (see [V-F]).Definition 8.4. The average holonomy hol�;�(A) of a connectionA on a divergence-free �eld � preserving the measure � on M is the group exponent of the Lie algebraelement RM A(�) �.Remark 8.5. In general, neither the average holonomy hol�;�(A) nor its con-jugacy class in the group G is gauge invariant (i.e., preserved under the change ofthe connection A to A+ �([A; f ] + df) for an arbitrary f 2 C1(M; g)).In the case of abelian (say, GL(1)) connection, the formA is a real-valued 1-formon M , and the ordered exponent P exp becomes an ordinary exponent. Then theholonomy hol�;�(A) is gauge invariant, and the above de�nitions exactly correspondto the ergodic interpretation of the Hopf (helicity) functional in terms of averagelinking number considered above:Theorem 8.5 (= Helicity Theorem 4.4). For an abelian group G the multi-plicative average of the asymptotic holonomy over the entire manifold M coincideswith the average holonomy calculated by total integration of the \in�nitesimal trans-forms" A(�): expZM  Z��(p)A! �p = hol�;�(A):The latter identity of the two invariants suggests the following de�nition.Definition 8.6 [V-F]. The Jones{Witten functional for a divergence free vector�eld � on a closed three-manifold M endowed with a measure � is the expressionW�;�(k) = ZA= ~Gfexp(ik ZM tr(A ^ dA+ 23A ^ A ^A)) � tr(hol�;�(A))g �DA;where the average holonomy hol�;�(A) is de�ned above.Remark 8.7. Note that the case of an actual knot or link L = Sni=1Ci can beunderstood as a particular case of this de�nition for a \�-type" measure � supportedon a �nite number of curves fCig.Assume now that M is a closed three-manifold, � is a smooth volume form onM , and � is a null-homologous trivial vector �eld on M , i.e., the two-form i�� isexact: i�� = d� for some 1-form �. The case of the abelian connection can behandled completely:



x8. ASYMPTOTIC HOLONOMY AND APPLICATIONS 201Theorem 8.8 [V-F]. For a topologically trivial linear bundle over M (with G =U(1) or GL(1)), the Jones{Witten functional for the vector �eld � reduces to itshelicity invariant: W�;�(k) = const � exp( i2k ZM d� ^ �):Proof sketch. The average holonomy in the abelian case ishol�;�(A) = exp ZM A(�) ^ � = expZM A ^ d� = exp(I�(A));where I� is the De Rham current corresponding to the �eld �. (The \di�use" termhol�;�(A) = exp ZM A(�) ^ � = expZM Z��(p)A ^ �preplaces the \discrete" counterpartYCi�L(exp ZCi A) = exp(XCi�LZCi A)in (8.1).) Then the expression (8.2) for the abelian case becomesW�;�(k) = const � expf i2k hI�; d�1I�ig = const � exp( i2k ZM d� ^ �): �Remarks 8.9. The Chern{Simons functionalCS(A) = ZM tr(A ^ dA + 23A ^A ^ A)on G-connections fAg over real three-dimensional manifoldsM has a complex ana-logue for Calabi{Yau manifolds, or, more generally, for any three-dimensional com-plex manifold N ; see [Wit3]:CSC (A) = ZN tr(A ^ dA+ 23A ^A ^ A) ^ �;where � is a holomorphic (or meromorphic) 3-form on N . In the case of the abeliangroup G = GL(1; C ) and a complex link L, being a disjoint union of complex curvesCi with holomorphic di�erentials �i on them, the asymptotics of the correspondingcomplex analogue of the Jones{Witten functional WL is given by the holomorphiclinking number lkC ((Ci; �i); (Cj ; �j)) de�ned in Section 7.E (see [FKT, FKR, Ger]).



202 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSRemarks 8.10. The higher linking numbers introduced in Section 7.B arise inthe calculation of correlators in Chern{Simons theories in dimensions greater than3 (see [FNRS]).A higher-dimensional version of the Chern{Simons path integral can be regardedas a nonabelian counterpart of the corresponding hydrodynamical integral. Beingan example of so-called topological �eld theories, by its very de�nition it doesnot require a metric to specify the action functional. Hence, all gauge-invariantobservables in the theory are topologically invariant, provided that the measure inthe path integral does not spoil the invariance under di�eomorphisms.Let fAg be the space of U(1)-connections on a manifold M2m+1; DA is a shift-invariant integration measure. For a collection of cycles C1; : : : ; Cr of dimensionsdim Ci = 2di + 1; i = 1; : : : ; r, de�ne the gauge-invariant functional�fC1;:::;Crg(A) := rYi=1 exp0@ZCi A ^ (dA)di1A :Suppose that the cycles obey the linking condition (7.1): Pri=1(m � di) = m + 1.Then asymptotically for large k the expectation value of the functional �, that is,< �fC1;:::;Crg(A) >= Z �fC1;:::;Crg(A) � exp� ik2m+ 1 ZM A ^ (dA)m�DA;is given by the exponent of the mutual linking number for the collection of cycles:exp (lk(C1; : : : ; Cr) =kr�1), where the number lk(C1; : : : ; Cr) is the linking numberof, say, Cr with the intersection of all other cycles; see Section 7.B. (To avoid thecontribution of the self-linking of the cycles into the integral, one assumes the so-called normal ordering of the operators involved.) If the linking condition is notful�lled, but there are sublinks saturating the condition, then the leading term inthe asymptotics is given by the mutual linking numbers of these sublinks.Remarks 8.11. The above holonomy functional can be regarded as a counter-part of the Radon transform: given a Lie group G it sends a gauge equivalence classof the G-connections on M to a G-valued functional on the space of loops in M .The value of the holonomy functional on a loop � is the holonomy of a connectionA around �. In the abelian case (G = R) the Radon transform associates to a one-form � onM the corresponding functional I� on the free loop space LM (the spaceof smooth maps S1 !M): I�(�) = Z� �:In [Bry2], Brylinski characterizes the range of the Radon transform as the setof functionals on LM obeying a certain system of second-order linear PDE (called



x8. ASYMPTOTIC HOLONOMY AND APPLICATIONS 203the Radon{John system). The necessary and su�cient conditions are constraintson the partial derivatives @2I�=@xik@xjl , where the coordinates fxikg are the Fouriercomponents of small variations of the curve �. In dimension 2, this system givesrise to the hypergeometric systems in the spirit of [GGZ]. A nonabelian counterpartof the Radon{John equations involves the bracket iterated integrals (see [Bry2]).Note that in three dimensions the Radon transform displays the kind of function-als on vector �elds that can be de�ned as 
uxes of �elds through surfaces boundedby embedded curves (or, the same, as the average linking number of the �elds andthe curves). Indeed, the embedded nonparametrized curves in R3 form a subsetin the dual SVect(R3)� of the Lie algebra of divergence-free vector �elds in thespace (see Section VI.3). A curve � � R3 de�nes the functional whose value at adivergence-free �eld � is the 
ux of � through �.To relate it to the description above, �x a vector �eld � and assume that � is avolume form in the space. Let � be a one-form such that i�� = d� (� is the vorticity�eld for �). Then I�(�) := R� � = f 
ux of � through � g can be regarded as thefunctional on the �'s. A regular element of the dual space SVect(R3)� is a \di�use"loop �, a divergence-free vector �eld � (see Section I.3), while the pairing isI�(�) := ZR3 �(�) � = H(�; �):8.B. Interpretation of Godbillon{Vey-type characteristic classes. LetF be a cooriented foliation of codimension 1 on the oriented closed manifold M ,and � a 1-form determining this foliation. Then d� = � ^w for a certain 1-form w.Proposition 8.12 (see, e.g., [Fuks]). The form w ^ dw is closed, and itscohomology class does not depend on the choices of � and w.Definition 8.13. The cohomology class of the form w ^ dw in H3(M;R) iscalled the Godbillon{Vey class of the foliation F .On a three-dimensional manifold this class is de�ned by its value on the funda-mental 3-cycle: GV (F) = ZM w ^ dw:Let v be an arbitrary vector �eld with the sole restriction �(v) = 1, and let Lkvdenote the kth Lie derivative along v.Theorem 8.14 (see [Sul, Th1]). GV (F) = � RM L2v� ^ d�:If M3 is a manifold equipped with a volume form �, the class GV admits anergodic interpretation in terms of the asymptotic Hopf invariant of a special vector�eld.



204 III. TOPOLOGICAL PROPERTIES OF MAGNETIC FIELDSDe�ne the vector �eld � by the relationi�� = L2v� ^ �:Corollary 8.15 [Tab1]. The vector �eld � is null-homologous, and its asymp-totic Hopf invariant is equal to the Godbillon{Vey invariant of the foliation F .Proofs. By the homotopy formula (see Section I.7.B)Lv� = div� + ivd� = iv� ^ w = w � f�;where the function f is f = w(v). This implies that (Lv�) ^ � = w ^ � = �d�, andmoreover,(L2v�) ^ � = Lv((Lv�) ^ �) = Lv(�d�) = �dLv� = �d(w � f�):Hence we can take w0 = w�f� as a new 1-formw in the de�nition of the Godbillon{Vey class. Theorem 8.10 readily follows:ZM L2v� ^ d� = ZM L2v� ^ � ^ w0 = �ZM dw0 ^ w0 = �GV (F):The null-homologous property for the �eld � also follows from the fact that the2-form (L2v�) ^ � = i�� is a complete di�erential. Furthermore, the asymptoticHopf invariant of � isH(�) = ZM i�� ^ d�1(i��) = ZM dw0 ^ w0 = GV (F): �Remark 8.16 [Sul, Th1, Tab1]. Having de�ned an auxiliary vector �eld � (tan-gent to the leaves of F) by the relationi�� = Lv� ^ �;one may argue that it measures the rotation of the tangent planes to the foliationin the transversal direction v. Namely, the direction of � is the axis of rotation, andthe modulus of � is the angular velocity of the rotation. Then one may say that �measures the acceleration of the rotation, and the above statement reads: GV (F)is the asymptotic Hopf invariant of this rotation acceleration �eld.As an element of H3(M;R), the Godbillon{Vey class on manifolds of higherdimensions is determined by its values on 3-cycles. Any such value coincides with



x8. ASYMPTOTIC HOLONOMY AND APPLICATIONS 205the asymptotic Hopf invariant of the corresponding �eld �, constructed for theinduced foliation on the 3-cycle.Similarly, one can de�ne the asymptotic and integral Bennequin invariants fora null-homologous vector �eld on a contact simply connected three-manifold (see[Tab1]). These invariants generalize the classical Bennequin de�nition of the self-linking number of a curve transverse to the contact structure [Ben]. Interestingpolynomial invariants of Legendrian curves (and more generally, of framed knots)in a solid torus, generalizing the Bennequin invariant, have been introduced byAicardi [Aic] (see also [FuT, Fer, Pl2]).In conclusion, we refer to [DeR, SchL, SchS, GPS, Sul] and references therein forvarious questions related to structure cycles, asymptotic cycles, approximations ofcycles by 
ows and foliations, and the corresponding smoothness conditions.Problems 8.17. A) Give an ergodic interpretation of the global real-valuedinvariant of three-dimensional CR-manifolds found in [B-E].Roughly speaking, a CR-structure on a (2n+1)-dimensional manifold is de�nedby choosing an n-dimensional integrable subbundle T 1;0M of the complexi�ed tan-gent bundle of M . In particular, this subbundle determines a distribution of thecorresponding contact elements onM . The CR-structure gives rise to a real-valued(Chern{Simons-type) 3-form (de�ned modulo an exact form) on the manifold.B) It would be interesting to consider whether similar techniques can be appliedto generalize the Casson invariant and the Floer homology of homological 3-spheresto aspherical (4k� 1)-manifolds with an additional structure (say, to contact man-ifolds); see [CLM, Arn24].


