CHAPTER 11

TOPOLOGY OF STEADY FLUID FLOWS

Cold and warm ocean currents (for instance, the Gulf Stream) determine the climate
of continents beyond the reach of human intervention. The power of the currents influ-
ence is due to their permanentness and stability. In this chapter we are going to study
the corresponding idealized model of steady flows of an incompressible fluid. Such flows
are stationary solutions of the Euler equation, and they have very peculiar topology and
existence conditions. They often turn out to be “attractors” in phase space of the viscous
Navier—Stokes equation. In this case the structure of such flows might give an “approximate

picture” of an arbitrary fluid motion after a long period of time.

§1. Classification of three-dimensional steady flows

1.A. Stationary Euler solutions and Bernoulli functions. In this chapter we will

be dealing with solutions of the Euler equation that do not depend on time.

DEFINITION 1.1. An ideal steady (or stationary) incompressible fluid flow v(z) in a

domain M C R"™ is a divergence-free solution ( div v = 0) of the stationary Euler equation
0=—(v,V)v—Vp,

for some pressure function p on M.
The same equation in the form —V,v — Vp = 0 for a velocity field satisfying L,u =0

is valid for an arbitrary n-dimensional Riemannian manifold M with measure pu.

For the three-dimensional case (n = 3), a virtually complete description of analytic

stationary flows is given by the following theorem:

THEOREM 1.2 [Arn3,4,16]. Assume that the region M C R? is bounded by a compact
analytic surface, and that the field of velocities s analytic and not everywhere collinear
with its curl. Then the region of the flow can be partitioned by an analytic submanifold
into a finite number of cells, in each of which the flow 1s constructed in a standard way.
Namely, the cells are of two types: those fibered into tori invariant under the flow and

those fibered into surfaces invariant under the flow, diffeomorphic to the annulus R x St
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74 II. TOPOLOGY OF STEADY FLUID FLOWS

(see Fig.9). On each of these tori the flow lines are either all closed or all dense, and on

each annulus all flow lines are closed.

C) (b)

FIGURE 9. Regions of a steady flow fibered (a) into tori and (b) into

annuli.
The stationary Euler equation (v, V)v = —Vp in M C R® can be rewritten as
v X curl v = Va

2
for the function o = p + @

DEFINITION 1.3. The function « : M — R defined by the relation v x curl v = Va

(modulo an additive constant) is called the Bernoulli function of the steady flow v.

By the very definition, the velocity field v, as well as the vorticity field curl v, is tangent
to the level surfaces of the Bernoulli function «. In other words, « is the first integral of
the flow defined by the field v in the domain M.

Note that the stationary three-dimensional Navier—Stokes equation (describing a viscous

incompressible fluid) generically does not admit any nontrivial first integrals [Ko3].

REMARK 1.4. In invariant terms the stationary Euler equation

is equivalent to i,du 4+ di,u = —dp , or to the equation
1pdu = —do for a = p+i,u.

The invariance of « (i.e., L,a = 0) follows from the relation i,da = 0.
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Note that the condition v x curl v = Va in R? can be reformulated in a form valid for
any manifold M: The vector fields v and curl v commute ( {v,curl v} =0 ). To verify
this for a three-dimensional Riemannian manifold M, one employs the following formula

of vector calculus:

(1.1) curl (7 x &) = {&,n} +n (div §) — £ (div n)

on any three-dimensional Riemannian manifold. (Here (1 x &) is the vector field dual to
the 1-form tgeyp on M @ (iginp)C = p(n,€,¢) = (n x £,¢).) By taking vorticity of both

sides of v x curl v = grad a, we obtain {v, curl v} = 0.

The classification theorem above relies on the following observation about the structure

of a-level surfaces for a three-dimensional manifold M.

PROPOSITION 1.5. Ewery noncritical level surface of a that does not intersect the bound-
ary of M? is diffeomorphic to a torus. For appropriate variables (1,92 | mod 27) and
z an a neiwghborhood of such a torus both fields v and & = curl v have constant components

0 0 0 0

v:v1(2)—+v2(2)— £ = curlv:§1(2)7+§2(z)a_m7

along the torus with angular coordinates (p1,p2), while z indezes the tori.

The coordinates @1, @2,z are analogues of the action-angle variables of classical me-
chanics. The theorem means, in particular, that the field lines of both v and curl v lie
on the tori @ = const. These lines on a given torus are either closed (if the ratio of the
frequencies vy /vy for the field v, resp. £2/&; for the field £ = curl v, is rational) or dense.

The proof is given in Section 1.B.

REMARK 1.6. In the case of a = const (all a-levels are critical), the fields v and curl
v are collinear at each point (v x curl v = 0). Such fields are called force-free fields in
magnetohydrodynamics.

If a force-free field v is nowhere zero, then curl v = s - v, where the “ratio” » : M — R
is a smooth function. The function s is a first integral of the field v (as well as of the
field curl v). Indeed, 0 = div (curl v) = div » - v = (grad »,v). Hence, every connected
component of a nonsingular level surface of sr is a torus, since such a surface is oriented
and it admits a nonvanishing tangent vector field v (the same reasoning is used in the proof
of Proposition 1.5, see Section 1.B). The field lines of v are windings on these tori (in the
corresponding coordinates 1,2, z, the frequency ratios @1 /¢2 = r(z) will be constant

along the field lines of v). Therefore, even in the case of a force-free field the field lines lie
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on two-dimensional tori, provided that the field does not have zeros and the function s is

not constant.

A force-free field v with curl v = Av, where A is a constant (i.e., an eigenfield v of the

curl operator), can have a much more complicated topology.
DEFINITION 1.7. The eigenfields of the operator “curl” are called Beltram: fields.

COROLLARY 1.8. If a steady analytic flow has a trajectory that is not contained in any
analytic (singular) surface, then the flow is defined by a Beltrami field.

Indeed, non-Beltrami flows enjoy a first integral (either the Bernoulli function a or the

ratio function ).

EXAMPLE 1.9. On the three-dimensional torus {(x,y,z) | mod 27}, a family of Bel-
trami fields 1s given by the so-called ABC flows

vy, = Asinz + Ccosy,
vy = Bsinz 4+ Acos z,

v, = Csiny + B cosx.

The divergence-free vector fields of this three-parameter family are eigen for the vor-
ticity operator curl v = v. The ABC flows have been discovered by Gromeka in 1881,
rediscovered by Beltrami in 1889, and proposed for study in the present context in [Arn4,
Chil] (see the references and details in [VasO]).

When one of the parameters A, B, or C vanishes, the flow is integrable (Fig.10). Pertur-
bation techniques used in the near-integrable cases allows one to predict strong resonances
(see discussion and results of numerical simulations in [Dom]). For such perturbations
some tori filled out by field lines (magnetic surfaces) persist (see, e.g., [AKN]), whereas
others are disrupted, leading to regions with chaotic behavior of trajectories. There is nu-
merical evidence that certain trajectories densely fill three-dimensional domains (Fig.11).
In particular, the search for integrable cases, carried out in [Dom] by studying complex-
time singularities of field trajectories, showed (numerically) the absence of integrability
for ABC # 0. For the case A = /3,B = /2,C = /1 see [Hen], while the more general
situation was treated in [Dom]|. The absence of meromorphic integrals for generic ABC
flows with A = B and for the ABC flows with 0 # A # B # 0 and small C # 0 has been
proven by Ziglin [Zig2].

A similar study of field symmetries and of the mutual location of stagnation points for

an analogue of the ABC flow in a three-dimensional ball can be found in [Zhel].
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FIGURE 10. The projection of the streamlines on the (x,z)-plane in
the integrable case C' = 0 (see [Dom]). The field components do not
depend on y.
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FIGURE 11. A typical Poincaré section for the ABC flows (A? = 1,

B? = %, and C? = %) Some field lines seem to fill three-dimensional

regions ([Hen] or [Dom]).
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Note that if the field v satisfying curl v = s-v is not divergence free, then the topological
properties of its trajectories are different from those discussed here: The flow is generically

nonintegrable even for a nonconstant function » : M — R (see [MYZ]).

1.B. Structural theorems. We first prove a smooth analogue of (real-analytic) The-
orem 1.2 for a closed manifold.
Let « be the Bernoulli function for a steady flow v on an orientable 3-dimensional

manifold M without boundary. Denote by I' C M the preimage of the critical values of «.

THEOREM 1.10 (=1.5"). Every connected component of the set M\I" is fibered into two-
dimensional tori invariant under the flow of v. The motion on each torus is quasiperiodic
(the field lines are either all closed or all dense).

PRrROOF. The function « is the first integral for the vector fields v and £ := curl v. Since
these fields commute, their flows give rise to an R?-action on every level surface of a. Each
noncritical a-level is a smooth closed surface, and hence it is a torus or a Klein bottle. (In
other words, the Euler characteristic of any noncritical a-level is zero: If Va # 0, then the
velocity field v provides an example of a tangent vector field nonvanishing on the surface.)
Furthermore, this surface is cooriented by Va. As a result, we see that the surface is
orientable; i.e., it is a torus.

On each a-level the flow of £ acts transitively on integral curves of v, and thus the latter
are either all closed or all dense in the level surface. In the coordinates on a torus in which
the R2-action is given by linear translations, the fields v and curl v become the vector

fields with constant coefficients. O

We now turn to the real-analytic theorem (we follow the exposition in [GK?2]).

DEFINITION 1.11. A subset of a real analytic manifold is called semianalytic if locally

it may be defined by a finite number of real-analytic equations and inequalities.
We will need certain properties of such sets summarized in the following

LEMMA 1.12. Let M and N be compact connected real-analytic manifolds (possibly with
boundary) and f: M — N a real-analytic map. Then

(i) Any semianalytic subset X of M divides M into a finite number of connected
components.

(ii) The wmage f(X) s a semianalytic subset of N, provided that dim N < 2.

(iii) Assume that the rank of f is equal to dim N at at least one point of M, and
Y is a nowhere dense semianalytic subset of N. Then the preimage f~1(Y) is

semaanalytic and nowhere dense in M.
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PROOF. Assertions (i) and (ii) are classical results due to Lojasiewicz [Loj]. To prove
(iii) consider the set I of critical points of f. The set f~1(Y)N (M \ K) is nowhere dense
because the restriction of f to M \ I is a submersion. Since rankf = dim N somewhere
on M, the set K is, in turn, nowhere dense in M. Thus f~1(Y) is nowhere dense, for it is
the union of two sets, each of which is nowhere dense. It is clear by definition that f~!(Y")

is semianalytic. O

PROOF OF THEOREM 1.2. Suppose first that M is a connected manifold without bound-
ary (OM = (}). Assume also that all the data (the volume form, the metric, and the velocity
field v) are real-analytic. In this case one claims that U = M \ I' has a finite number of
connected components, and each of them is fibered into two-dimensional tori invariant
under the flow.

Indeed, under the hypothesis of the theorem, the map « : M — R is analytic, and we
can take f = a. As above, let I{ be the critical set of . Then a(K) is semianalytic by (ii)
and nowhere dense by the Sard lemma. Therefore by (iii), I' = a™! («(K)) is semianalytic
and nowhere dense in M. Applying (i) to X =T, we see that U is dense in M, and U has
a finite number of connected components.

To complete the proof for M without boundary, it suffices to apply Theorem 1.10.

Consider now the case of M with boundary (OM # (). Again, let K be the critical
set of @ and C the critical set of o |gar. As above, the union Y of the sets a(K) and
«(C) is a semianalytic set nowhere dense in R%. Therefore, I' = «~!(Y") is nowhere dense,
semianalytic, and invariant with respect to the flow.

Although we may not have an R2-action now, since M is a manifold with boundary, we
do have a local R?-action on M \ M. Furthermore, the maps « |y and « sy are still
proper submersions onto their images. Consider the orbit O, through a point = € U of
the local R%-action. The same argument as in the proof of Theorem 1.10 shows that O, is
either a torus or an annulus. In the former case the integral curves of v are all closed or
all dense on O,. Observe that L = O, N dM is invariant under the flow of v, and thus O,
is an annulus if and only if it meets OM. By the definition of U, the field £ is transversal
to OM along L. This implies that L is the union of two closed integral curves of v. Since
we have a locally well-defined R2-action, all the v-streamlines on O, must be closed.

Let Uy be a connected component of U. The orbits O,,x € Uy, are either all tori or
all annuli. Indeed, for all € U the levels F, = o~ ! (a(z)) are transversal to M, and
hence the connected components O, of F, are diffeomorphic to each other for all x € Uy.

Theorem 1.2 is proved. O
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§2. Variational principles for steady solutions

and applications to two-dimensional flows

2.A. Minimization of the energy. Consider the following variational problem (which
a priori is not related to the stationary Euler solutions). Let M be a three-dimensional
closed Riemannian manifold equipped with a volume form p, and £ a divergence-free vector

field on M. The energy of the field is the integral
1 1
E=- == :
s =3 [ €O

ProBLEM 2.1. Find the minimum energy and the extremals among all fields obtained

from a given field ¢ by the action of volume-preserving diffeomorphisms of the manifold

M.

Here the action of a volume-preserving diffeomorphism ¢ : M — M associates to a
divergence-free field £ on M another divergence-free field ¢,£ such that the flux of the field
¢ across any surface o is equal to the flux of ¢g.£ across g(o). In other words, the field is
frozen into an incompressible fluid filling M: The vector field can be thought of as drawn
on the elements of the fluid and expanding as these elements expand.

In the case of the manifold M with boundary M, the field ¢ is assumed to be tangent
to OM, and the diffeomorphisms send the boundary M into itself.

In the next chapter we will be concerned with the energy minimum and explicit estimates
on it in terms of the field topology. Here we deal exclusively with the topology of the

extremal fields.

THEOREM 2.2 (SEE, E.G., [Arn9]). The extremals of the problem stated above are the
divergence-free vector fields that commute with their vorticities. In particular, they coincide

with the steady Euler flows in M.

PROOF. Let n be any divergence-free field on M. The variation 6£ of a field £ under the
infinitesimal diffeomorphism defined by 7 is given by the Lie bracket 6£ = [n,¢] = {&,n}
(in the coordinate form the Poisson bracket of the vector fields £ and n is {{,n} = (£, V)n—
(1, V)E).

Consequently, the variation of the energy is 6 FE = (£,6&) = (£,{{,n}). Assume that the
vector field € is extremal for the energy functional.

By formula (1.1) — curl (n x ) = {&,n} + n (div £) — € (div ) — which is valid on
any three-dimensional Riemannian manifold, and by the divergence-free property for the

fields £ and 7, one can rewrite the energy variation at the extremal field £ as

0= 6 = (£ curl (y x €)) = (curl & (5 x €)) = {n, (€ x ewl €)).
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Since n 1s divergence free, the cross product £ x curl € is orthogonal to all divergence-free
fields. Therefore, it is a gradient: £ x curl £ = grad «, whence, by taking the curl of both
sides we obtain {£, curl £} = 0, as required. O

REMARK 2.3. In the case of a two-dimensional manifold M, we obtain the equation
Vux VAu =0

on the stream function u of the extremal field ¢ = grad u. This equation says that the

gradient of the extremal function is collinear with that of its Laplacian (see Section 2.C).

The above result is valid not only for smooth vector fields &, but it holds also in a
weaker form of the integral identity (n, (£ x curl £)) = 0, provided that a minimizer ¢
exists. Note that existence of smooth and nonsmooth extremals in this problem is a very
subtle question. We refer to [Bur, ATL] (see also Sections 2 and 6 below) for existence
theorems (of, generally speaking, nonsmooth minimizers) in the two-dimensional case. For

dimension greater than 2, there is no proof that the extremals exist except for certain

partial results (cf. [L-A, LS4, Vai, GK2]).

REMARK 2.4. A similar calculation leads to the following expression for the second

variation of the energy:

8B = ({&n}hA&n}) + ({&n s ((curl €) xn)),

where ¢ is an extremal field whose first and second variations are given by the Taylor

formula

(2.1) (o) =+ elem + S HEm +--, =0,

in terms of a divergence-free vector field .

REMARK 2.5. The Taylor series (2.1) for £(¢) is obtained while solving the ordinary

differential equation on &(%),

by substituting the series
t2
£(t) =&+t + 552 + ...
The field £(¢) is obtained from £ by the action of the phase flow transformation of n

corresponding to a small time interval e.
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All the fields that can be obtained from £ by the action of volume-preserving diffeomor-
phisms form a submanifold in the vector space of all divergence-free vector fields, that is,
the orbit of the point £. The tangent affine subspace to this “smooth” submanifold at the
point ¢ is formed by the vectors & + {£,n} with arbitrary divergence-free n’s.

To calculate the second differential of a function on a submanifold of a vector space
at a point 1t 18 not enough to calculate the second differential of the restriction of the
function to the affine subspace tangent to the submanifold at this point. The genuine
second differential of the restriction of the function to the submanifold and the second
differential of the restriction of the same function to the affine tangent space at a critical
point (of the function restriction to this submanifold) are two different quadratic forms on
the tangent space. (Here we consider the tangent space as the vector space centered at the
critical point.)

Formula (2.1) defines the mapping of a domain of “small” vector fields en to the orbit
of the field £. The energy of the image field, considered as a function of the field en, is the
functional on the vector space of divergence-free vector fields { en }.

The first variation of this functional vanishes if £ is a critical point of the restriction
of the energy to the orbit. Its second variation §?F is given by the above formula (as a

quadratic form of en).

PROPOSITION 2.6. If £ us a critical point of the restriction of the energy to the subman-
ifold, the value of the second variation quadratic form depends only on the tangent vector

¢ ={& en}, and it does not depend on the particular choice of the field 0.

PROOF. We can replace n by a field n + u where {{,u} = 0 (otherwise ¢ would

change). The contribution of u to the quadratic term in series (2.1) is then ‘€2—2w, where
w = {{&n},u}. Since {{,u} =0, we get from the Jacobi identity that w = —{{n,u},{}.

The latter vector is tangent to the orbit at £&. Hence the first variation of the energy is

<€2

vanishing on this vector w. Adding the vector S-w to the vector £(¢) (given by (2.1) and
being at a distance of order ¢ from ¢) we change the value of the energy by a quantity
of order £3. Thus the addition of u to n contributes nothing to the quadratic part of the
Taylor series of the energy restriction to the orbit of ¢ (provided that the vector field ¢ is

a critical point). O

2.B. The Dirichlet problem and steady flows. The energy minimization Problem
2.1 acquires the following form of the Dirichlet problem in the two-dimensional case. Let M
be a two-dimensional Riemannian manifold (possibly with boundary) with a Riemannian

volume form p.
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PrOBLEM 2.1’. Find the infimum and the minimizer of the Dirichlet integral

E(u) = %/M(VU,VU) L

among all the smooth functions v (on the manifold A) that can be obtained from a given
function ug by the action of area-preserving diffeomorphisms of M to itself.

In order to see that this is the two-dimensional counterpart of Problem 2.1, one can
consider the skew gradient sgrad u instead of the true gradient Vu (on which the functional
E has, of course, the same value). Then u is regarded as a Hamiltonian function, whose
definition is invariant: Any area-preserving change of coordinates for the function v implies

the corresponding diffeomorphism action on the field sgrad u.

For instance, let M be the disk 22 4+y? < 1, and let u be a function that vanishes at the

boundary and has only one critical point(for instance, a maximum) in the disk (Fig.12a).

€) (b)

FIGURE 12. Levels of (a) a function ug with the only critical point
(maximum) inside the disk, and (b) the centrally symmetrical Dirichlet

minimizer v among the functions area-preserving rearrangements of ug.

PROPOSITION 2.7 [Arn9,20]. The minimum of the Dirichlet functional 1s attained on
the function u that depends only on the distance to the center of the disk and whose sets
{(x,y) | u(x,y) < ¢} of smaller values have the same areas as those of the initial function

wo (Fig.12b).

The proof essentially is the application of the isoperimetric and Schwarz inequalities.

4

If the initial function has several critical points (say, two maxima and a saddle point,

Fig.13), the situation is far more subtle. Numerical experiments in [Mof4, Baj| suggest
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various types of minimizers according to the steepness of the initial function ug, all having
“singular” lines. We refer to the extensive surveys [Mof2,4, MoT] (and references therein)
for a discussion of the formation of field singularities in a fluid under the relaxation to an
extremal state. The obstructions to such relaxation in three dimensions are described in
Chapter III.

If instead of the initial function ug one prescribes just its boundary conditions, then one
may obtain an infinite number of C'*°-steady solutions (or minimizers) for the problem in

a rectangle, and a unique solution in the analytic category [Tro].

S ©
()| —
S ©),

FIGURE 13. A minimizer of the Dirichlet problem for a function with

two maxima has a singular line (see [Baj]).

THEOREM 2.8. A smooth minimizer u of the Dirichlet Problem 2.1' on a Riemannian
manifold M obeys the following condition: The gradients of the functions u and Au are

collinear at every point of M.

In other words, the extremal functions u have the “same” level curves as their Lapla-
cians: Locally there is a function F : R — R such that Au = F(u). This is just a
two-dimensional reformulation of Theorem 2.2. For instance, the axial symmetric function
with its only critical point in the disk (Fig.12) not only has the energy minimum among all
diffeomorphic fields, but also has the energy maximum among all isovorticed fields [KLe].

The Dirichlet Problem 2.1’ in higher dimensions has applications to scalar dynamos
[Bay2] and the theory of equilibrium of a confined plasma [LS1]. One can show that
Theorem 2.8 holds in n dimensions. (Hint: adapt the proof of Theorem 2.2.)

REMARK 2.9. As discussed above, minimizers of energy (i.e., of the Dirichlet integral)
among all smooth area-preserving changes of coordinates in a given function correspond to
steady flows. The problem of existence of smooth minimizers is still open in any reasonable

generality.
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This problem admits a natural extension to a more general class of functions (for in-
stance, from the LP or Sobolev spaces), to all measure-preserving rearrangements of such
functions on measure spaces, and to general variational functionals. There is vast liter-
ature on the existence of (usually, nonsmooth) extrema of variational problems in this
setting and on their relation to 2D hydrodynamics, when one minimizes (or maximizes)
the energy functional among the rearrangements (see [Bej, ATL, Bur]). In Section 2.D we
discuss a different variational principle proposed in [Shn3] for two-dimensional flows, where
one confines oneself to the same energy level, but constructs a partial order on functions.
Minimal elements in this partial order correspond to steady flows.

A step towards the intrinsic characterization of the weak closure (in H}) of the set of
functions obtained from a given one by composing it with diffeomorphisms (not necessarily
volume preserving) of the domain is obtained in [LS3]. It is done under the assumption
that the function is craterless, i.e., in an appropriate weak sense it has no local minima
in the interior of the domain. The authors define a subspace of this weak closure that

captures robust (under weak limits) topological properties of the level sets.

2.C. Relation of two variational principles. We have observed that the smooth
extremals of the energy functional among the vector fields diffeomorphic to a given one
commute with their vorticities, and hence they coincide with the description of ideal steady
flows (cf. Remark 1.4 and Theorem 2.2). This coincidence of the solutions in two problems
is a manifestation of the duality of the two variational principles: in ideal hydrodynamics
and in magnetohydrodynamics.

The steady solutions in ideal hydrodynamics correspond to critical points of the energy
[(v,v)?*/2 among all isovorticed fields, i.e., among the fields whose vorticities differ by the
action of a volume-preserving diffeomorphism. In the Lie-algebraic language, steady flows
correspond to stagnation points of the energy functional on the coadjoint orbits of the group
of volume-preserving diffeomorphisms SDiff(A/™) (see Chapter I). On the other hand, in
the above problem we are looking for an energy minimizer within the class of diffeomorphic
fields, 1.e., on the adjoint orbits of the same group of volume-preserving diffeomorphisms.
Note that the latter principle of energy minimization among the diffeomorphic fields is
encountered in the MHD theory (see Chapter III, or, e.g., [Arn9,20, Bej, Ser2, Mof2.4]).

Theorem 2.2 above can now be reformulated as follows: “Extrema for both variational
principles coincide.” This statement materializes in a very general phenomenon valid for
any nondegenerate quadratic form E on an arbitrary Lie algebra g. Let E* be the quadratic
form on the dual space g* corresponding to the form E on g. If the form E(x) = %(:1;, Azx)

is defined by means of an (invertible) inertia operator A : g — g*, then E* is determined
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by E*(y) = %(A‘ly,y> for any y € g*.

THEOREM 2.10. Conditional extrema of the quadratic functional E on adjoint orbits
in a Lie algebra g are sent by the inertia operator A : g — g* to the conditional extrema

of the quadratic form E* on the coadjoint orbits in g*.

PROOF. Let zy be a point of the Lie algebra g, and O the adjoint orbit of the point
xo. An arbitrary vector ( of the tangent space T, O can be written by definition as a
variation of zg, i.e., as ( = ad,zo for some element n € g. Therefore, one has the following

expression for the variation of the energy functional E(v) = %(:1;, Az) along the vector (:
dE(¢) = (¢, Azg) = (adyzo, Avg) = (x0,ad)(Azg)) = <A_1y0,ad:;y0> = dE*(("),

where yo € g* denotes the image of xy under the inertia operator (yo = Axg), and the
vector (* = adjyo represents an arbitrary vector tangent to the coadjoint orbit O* of the
point yo.

Now assume that ¢ € g is a critical point of the function E(x) restricted to the adjoint
orbit O of x¢. Then the differential of E vanishes on the tangent space T, O and so does
the differential of E* restricted to the tangent space to O* at yo. Hence gy is a critical
point of E* restricted to the coadjoint orbit O*. g

2.D. Semigroup variational principle for two-dimensional steady flows. In
[Shn3], Shnirelman proposed a different variational principle in two dimensions that re-
covers some of the steady solutions of the Euler equation. Roughly speaking, instead of
the energy minimization among all isovorticed fields, one can stay among the fields with
the same energy and construct a partial order on their vorticities. In a sense, the extremal
fields obtained by this method have the most mixed vorticity functions.

Consider a bounded connected two-dimensional domain M C R? with a measure p and
boundary I' = M. We wish to describe generalized area-preserving mappings of M into
itself that are not necessarily one-to-one. It is natural to define them in terms of their

actions on functions on M.

DEFINITION 2.11. A polymorphism is a bounded operator K in L?(M,R) of the form

Ku(z) = /M (e, y)uly) py,

where the (distributional) kernel K(z,y) obeys the following conditions:

i) K(x,y) >0, i.e., K(x,y) is a nonnegative measure on M x M;
i)

i)

K(x,y) pe =1 for every y € M; and
K(x,y) py =1 for every z € M.

S E— =



§2. VARIATIONAL PRINCIPLES FOR STEADY SOLUTIONS 87

EXAMPLES 2.12. Two obvious, yet important, examples of such operators are:

A) Let ¢ € SDiff(M) be an area-preserving diffeomorphism of M. Set K (z,y) =
§(y — o1 (x)), where 6(x) is the 2-dimensional §-function. Then the operator IN&’@ whose
kernel is K (x,y) sends a function u(x) to the function u(¢~!(x)) and is unitary in L?(M).

B) If Ko(z,y) = 1/u(M) where u(M) is the total measure of M, the operator Ko
maps a function u(x) to the constant that is the mean value of u(x).

In a sense, an arbitrary operator K interpolates between those two extreme cases.

Conditions ii) and iii) generalize the volume-preserving property of diffeomorphisms:
They demand that the probabilistic measure of the “image” of the element dy and the
“inverse image” of the element dr under an operator K be equal to the measures of the
elements dy and dx, respectively.

All polymorphisms form a (weakly compact) semigroup P of (contractive, or more
precisely, nonexpanding) operators in L*(M). The operators IN&’@ corresponding to dif-
feomorphisms constitute a weakly dense subset of P. Representations of the group of

diffeomorphisms can be extended to the semigroup of polymorphisms [Ner2].

DEFINITION 2.13. The partial ordering in L*( M) is dictated by the action of P: f < ¢
if there exists an operator K € P such that f= I:’g If f<g¢gandg < f, wesay that f

and ¢ are equivalent: f ~ g.
The following property of the relation < will be useful in the sequel.

PROPOSITION 2.14 [Shn3]. If f,g € L*(M) and f < g, then ||fll12 < |lg|lr2- For f <g¢
the equality of the norms ||f||rz = ||g|lrz s possible if and only if g < f.

Let L%2(M) be the Sobolev space that consists of functions ¢ obeying

> ID*¢llGe(ay <00, ¢ lan= const.
k<2

DEFINITION 2.15. Given a function ¢ € L?2(M), denote by Q, the set of such functions
Y € L**(M) that

(2.2a) Ay < Agp.

If ¢ is regarded as a stream function for a fluid flow, then the set (0, contains the fields
isovorticed with ¢, i.e., the fields with the stream functions ¢ for which there exists a

diffeomorphism ¢ : M — M such that AY(z) = Ap(g(x)). These fields constitute the
coadjoint orbit O, of ¢.
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Let Q, C Q. be the set of stream functions i obeying one extra condition of the

conservation of energy:

(2.20) E(y) = E(¢),

where E(¢)) = 1||V1||3, is the kinetic energy of the flow with the stream function .

An element v € Q, is minimal relative to the partial ordering on ., if Av' ~ Av

whenever v/ € Q, and Av' < Av.

THEOREM 2.16 [Shn3]. For each function ¢ € L*?(M) there exists a minimal element
v €, in the set Q.

A minimal element is not necessarily unique. The proof is essentially a combination of
the Zorn lemma (claiming that if for each linearly ordered decreasing chain of elements of
a partially ordered set there is a lower bound, then there exists a minimal element in the

set) with the relative weak compactness of the set of measures {K(z,y)}.

THEOREM 2.17 [Shn3|. Let u be a minimal element of Q,. Then u is the stream
function of a stationary flow, and moreover, there exists a single-valued monotone function
F such that Au = F(u) almost everywhere in M.

The equivalent statement is that if u is a minimal element of Q, then, for almost all
points @,y € M, the products (u(x) — u(y))(w(x) — w(y)), where w := Au, all have the
same sign. We refer to [Shn3] for the proof and all the details.

REMARK 2.18. Though a classical solution of the Euler equation is a trajectory on
the coadjoint orbit O, for some function ¢, for large times the flow transformations be-
come similar to the mixing described by polymorphisms. These are the heuristics lying
behind the relation between the minimal elements and the stationary solutions of the Euler

equation.

REMARK 2.19. For a non-simply connected M, the boundary conditions for functions
in the space L*%(M) are ¢
latter case the set 0, consists of the functions ¢ that, in addition to the condition (2.2a)

satisfy the property

r;= const;, where I'; is a connected component of M. In the

op . [ Op .
(2.2¢) o ds = / o ds for all z.
I'; I';

Property (2.2¢) follows from (2.2a) for a simply connected M.

One can classify minimal elements of the “orbit” {1, by comparing their energy to other
points of the set Q,, D Q., consisting of the stream functions obeying conditions (2.2a) and

(2.2¢), but without the requirement (2.2b) on the energy.
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THEOREM 2.20 [Shn3|. Each minimal element u € ., is one of the following three
types:
> E(¢),
b) energy-deficient, i.e., E(u) < E(v), or
c) neutral, v.e., E(u) = E(y)

a) energy-excessive, t.e., E(u)

for all b € Q. All the minimal elements of Q, are of the same type.

PrROBLEM 2.21. It would be interesting to relate these types of minimal elements and
the above variational principle to various types of energy relaxation discussed in Section
2.B (cf. numerical simulations in [Mof4, Baj]).

This variational principle might be a basis for formulating for semigroups an analogue of
the (geodesic) variational principle for groups (Chapter I). In Section IV.7.G, we discuss a
natural passage from the geodesics on the group of volume-preserving diffeomorphisms of
a manifold to the extremals of the least action principle for the so-called generalized flows
(which are similar to the semigroup of polymorphisms), i.e., the passage from classical

fluid motions to generalized solutions of the Euler equation; see [Brel, Shn5].

§3. Stability of stationary points on Lie algebras

In order to study the stability of stationary fluid flows in the next section, we obtain
below a stability criterion for the Euler equation on an arbitrary Lie algebra.

Consider a system of ordinary differential equations
(3.1) &= f(z), x€eR™

DEFINITION 3.1. A point x¢ at which f(xg) = 0 is (Lyapunov) stable if for every ¢ > 0
there exists 6 > 0 such that |x(¢) — 29| < € for all ¢+ > 0, provided that |2(0) — x¢| < ¢.

Assume that we are also given a foliation in the space R™. A point x( is called regular
for the foliation if the partition of a neighborhood of zy into the leaves of the foliation is
diffeomorphic to a partition of the Euclidean space into parallel planes (in particular, all

leaves near the point xy have the same dimension).

EXAMPLE 3.2. In the case of the Lie algebra so(3) the orbits form a partition of three-
dimensional space 50(3) ~ R? into spheres centered at 0 and the point 0 itself. Then all

points of the space R3, except the origin, are regular for the partition into orbits.
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Suppose now that the system (3.1) leaves the foliation invariant, and E is a first integral

of the system such that

i) xg is a critical point of E restricted to the leaf containing xo;
it) xg is a regular point of the foliation; and
i11) the second differential of E restricted to the leaf of ¢ is a nondegenerate quadratic

form.

The following statement is essentially a reformulation of Lagrange’s theorem.

THEOREM 3.3. A point x¢ obeying conditions 1)-1ii) is a stationary point of the system
(3.1). If, in addition, the second differential of E restricted to the leaf of xg 1s positively
or negatiely defined, then the point x¢ 1s (Lyapunov) stable.

PROOF. If y is a coordinate on the leaf such that y(xg) = 0, then the function E
restricted to the leaf can be written as E(y) = Ey + %(Egy,y) + O(y?) as y — 0, where
the matrix Ey is symmetric: (Eay,z) = (y,E3z). Hence the time derivative along the

trajectories of our system is
E= (Eyy,y) + O(y*)y  asy — 0.

If y # 0 at the origin y = 0, then one can choose a point y arbitrarily close to the origin
such that (E2y,y) # 0. The latter contradicts the invariance of E. Therefore, y = 0, and
xg 1s a stationary point.

The regularity of the leaves near z¢ implies that on every neighboring leaf there exists
near xg a point that is a conditional maximum or minimum of E. The stability part of
the statement is evident (Lagrange, Dirichlet, etc.): The definiteness of E ensures that
in every leaf near xy the E-levels form a family of ellipsoid-like hypersurfaces. Every
trajectory of the system (3.1) that begins inside such an ellipsoid will never leave it, due

to the invariance of E and of the foliation (see Fig.14). O

Let v be a stationary point of the Euler equation on a Lie algebra g (see Chapter I).
The space g is foliated by the images of the coadjoint orbits in the algebra, and we suppose

that v is a regular point of the foliation.

THEOREM 3.4 [Arnd,16]. The second differential of the kinetic energy restricted to the
image of an orbit of the coadjoint representation in the algebra g s given at a critical point

v € g by the formula
(32) 26°E |, (€) = (B(v. f), B(v, ) + ([f.v]. B(v. [)),

where £ 18 a tangent vector to this image expressed in terms of f € g by the formula

£ = B(v, f), and B(-,-) 1s the operation on g defined by (1.4.3).
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FiGURE 14. Trajectories enclosed in ellipsoid-like intersections of folia-
tion leaves (here, horizontal planes) and energy levels (paraboloids) will

never leave a vicinity of the stationary point.

COROLLARY 3.5. If the quadratic form above is positive or negative definite, then the

stationary point v 1s a stable solution of the Euler equation.

EXAMPLE 3.6. In the case of the rigid body (g = s0(3)), the coadjoint orbits are
spheres centered at zero, while the levels of the kinetic energy form a family of ellipsoids.
The energy restricted to every orbit has 6 critical points (being points of tangency of the
sphere with the ellipsoids): 2 maxima, 2 minima, and 2 saddles (Fig.15). The maxima
and minima correspond to the stable rotations of the rigid body about the shortest and
the longest axes of the inertia ellipsoid. The saddles correspond to the unstable rotations

about its middle axis.

FIGURE 15. Energy levels on a coadjoint orbit of the Lie algebra
50(3,R) of a rigid body.

We emphasize that the question under discussion is not stability “in a linear approx-

imation,” but the actual Lyapunov stability (i.e., with respect to finite perturbations in
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the nonlinear problem). The difference between these two forms of stability is substantial
in this case, since our problem has a Hamiltonian character. For Hamiltonian systems
asymptotic stability is impossible, so stability in a linear approximation is always neutral

and inconclusive on the stability of an equilibrium position of the nonlinear problem.

REMARK 3.7. In general, an indefinite quadratic form 62 E does not imply instability
of the corresponding point. An equilibrium position of a Hamiltonian system can be stable
even if the Hamiltonian function at this position is neither a maximum nor a minimum.
The quadratic Hamiltonian

P+ 4 P+ ¢
5“2

E:wl

is the simplest example of this kind. Note that the behavior of the corresponding eigen-
values under the introduction of a small viscosity is different: +iw; are moving into the

left (stable) hyperplane, while +iw, are moving into the right (unstable) one.

PROOF OF THEOREM 3.4. The action of an element ¢ - f € g on a point v is given by

the Taylor expansion for motion along a coadjoint orbit; cf. formula (2.1):

2
v i=vte-(+ 5 (+0(E),  e—0,

where £ = B(v, f), ( = B(B(v, f),f). Substitute v into the expression for the energy

E(v)=E(v)+¢c-0E+&*-8°E +0(c*), e —0,

where 6E = (v,£) and 26°FE = (£, &) + (v, ().

The first variation of the energy vanishes at v:
6E = (v,B(v, f)) = —(B(r,v), f) =0,

since v is stationary, and therefore B(v,v) = 0.

The required expression (3.2) for §?E follows due to the identity

(v, B(B(v, f), [)) = ([f,v], B(v, ).

Now we would like to show that the quadratic form §*F depends on ¢ = B(v, f) rather

than on f, so it is indeed a form on the tangent space in g.
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First verify that the auxiliary bilinear form C(z,y) := ([z,v], B(v,y)) is symmetric:
C(x,y) = C(y,x). It readily follows from the definition of B, the Jacobi identity in g, and
from the stationarity condition B(v,r) = 0 that

<[$7V]7B(V7y)> = <B(V7 [Vv l‘]), y> = <[[V7 x],y], V> = <[V7 [x,y]], V> + <[$, [yvy]]v V>
= <B(V7 V)v [l’,y]> + <B(V7x)7 [y71/]> = <[y,1/],B(l/,$)>.

Finally, assume that B(v, fi) = B(v, f2) and show that the corresponding values of §*F
coincide. Set ¥ = f1 — f2,y = f1, and notice that B(v,2) = 0. The expression (3.2) for
62 E, combined with the symmetry of C'(x,vy), gives the desired identity:

20°E(fi) = 6*E(f2)) = ([x.v], B(v,y)) = ([y,v], B(v,x)) = 0.

Thus, the quadratic form §*F indeed depends on ¢ = B(v, f), and Theorem 3.4 is proved.
O

REMARK 3.8. For the Euler equation on a Lie algebra g consider the equation in vari-

ations at a stationary point v:

(3.3) ¢ = B(v, &) + B(€,v).

PROPOSITION 3.9. The quadratic form d*E is the first integral of the equation in vari-
ations (5.3).

PRrROOF. The proposition can be verified by the following straightforward calculation.

From (3.2), it follows that

d

Z0'E = (6.6) +{[f.v),€).

Therefore the substitution of .f from the equation in variations (3.3) leads to

2B = (€. Br.&) + (& B&.w)) + (f. ) B, ) + ([f.1]. B(E.)

dt
= (& B(&v)) +([&v],6) + (v [F, 711, €)
= (I [f.v]], B, )) = =([f, ], Bv, [f,v])) =

) +
) +
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64. Stability of planar fluid flows

The analogy between the equations of a rigid body and of an incompressible fluid enables
one to study stability of steady flows by considering critical points of the energy function
on the sets of isovorticed vector fields (i.e., on the coadjoint orbits of the diffeomorphism
group).

This approach was initiated in [Arnd], and we refer to Fjortoft [Fj] as a predecessor,
and to [HMRW] for further applications manifesting the fruitfulness of this method for a
variety of dynamical systems. In this section we touch on a few selected facts.

In Section 3 we saw that the variational approach to the study of the stationary solutions

of the Euler equation of an incompressible fluid suggests that:

i) A steady fluid flow is distinguished from all flows isovorticed to it by the fact that
it is a (conditional) critical point of the kinetic energy.

it) If the indicated critical point is actually an extremum, i.e., a local conditional
maximum or minimum, and this extremum is nondegenerate (the second differential
d*FE is positive or negative definite), then (under some regularity condition) the

stationary flow is Lyapunov stable.

Though these assertions do not formally follow from the theorems of Section 3 because
of the infinite-dimensionality of our consideration here, one can justify the final conclusion

about stability without justifying the intermediate constructions.

4.A. Stability criteria for steady flows. Let M be a two-dimensional domain, say,
an annulus with a steady flow in it (Fig.16). In what follows we show, in particular, that
the steady flow in M 1is stable if its stream function v satisfies the following condition on
the velocity profile:

Vi
(4.1) O<CSV—A¢§C<O@
for some constants ¢ and C'.

For an arbitrary stationary flow in two dimensions the gradient vectors of the stream
function and of its Laplacian are collinear. Therefore the ratio Vi) /V Aty makes sense.
Furthermore, in a neighborhood of every point that is not critical for the vorticity function
Az, the stream function ¢ is a function of the vorticity.

We begin the study of the two-dimensional case by obtaining the following explicit

expression for the second variation of the energy.

THEOREM 4.1 [Arn6,16]. The second variation of the energy E on the set of fields
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FIGURE 16. A profile of a stable steady flow in an annulus.

wsovorticed to a given steady field v with the stream function ¥ 18

SE| = // ( 2 4 V—A‘ib(éw) ) dxdy,

where 6v 18 a variation of the velocity field, ow 1s the corresponding variation of the vorticity

function w = curl v = Ay, and dxdy s the area form in M.

REMARK 4.2. The condition (4.1) on the ratio V¢ /V Ay implies that the quadratic
form 62 F, with respect to dv, is positively defined.
In the case of the negative ratio Vi) /V A satisfying

Vi
< —— <
0<e VAY C < oo,

the form 62 E is negatively defined, provided that the inequality ||[Ve||3. < a||A¢||7, holds
for all ¢ € C*(M) with 0 < a < ¢. The latter inequality is essentially an estimate on the
first eigenvalue of the Laplace operator in the domain M, and it relies on the shape and

size of the domain.

PRrROOF. Formula (3.2) for the second variation of the energy E = % Sy (v, v)dady gives

(4.2) 262F // ((6v)* 4 (bv, [f,v])) dady,

where 6v = B(v, f).

Integrating by parts the second term, we come to

(4.3) //M((Sv, [f,v]) dedy = //M((Sv, curl (f x v)) dedy = //M(&u)-(f « v) dedy
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with evident notations: f x v is a function on M whose value at any point is the oriented
area of the parallelogram spanned by f and v, and curl (f x v) = sgrad (f x v). The
formula v = sgrad ¢ = (—1,,1,) implies that

F o= f x (sgrad ) = (f, V)
On the other hand, for w = A, the variation 6w is the derivative of w along the field f:
bw = Lw = (f,VAY).

The comparison of the two formulas above immediately gives

_ V¥
fxv—méw,

which, along with (4.2-4.3), implies the statement of the theorem. O

The above heuristic consideration of stability, based on the definiteness of the quadratic
differential of the kinetic energy 6%E, can be justified to obtain the actual stability with

the following a prior: bound.

THEOREM 4.3 (STABILITY THEOREM, [Arn6,16]). Suppose that the stream function of
a stationary flow, v = (x,y), in a region M is a function of the vorticity function (i.e.,
of the function Ay ) not only locally but globally. Suppose that the derivative of the stream
function with respect to the vorticity satisfies the inequality

cg%ga where 0 < ¢ < C < .

Let p+@(x,y,t) be the stream function of another flow, not necessarily stationary. Assume
that at the initial moment, the circulation of the velocity field of the perturbed flow (with
the stream function ¢ + ¢ ) around every boundary component of the region M 1is equal to
the circulation of the original flow (with the stream function ). Then the perturbation
v = o(x,y,t) at every moment of time is bounded in terms of the initial perturbation

wo = p(x,y,0) by the inequality

//M(V¢)2 (Ap)dedy < //M(Vw)2 + C(Apo)*dudy.
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THEOREM 4.3’ (SECOND STABILITY THEOREM, [Arn6,16]). If the stationary flow sat-
wsfies the condition
Vi

g—v—M<C with  0<ce<C <o

(as well as other assumptions of the preceding theorem), then the perturbation ¢ is bounded

in terms of wo by the inequality

(4.4) / c(Ap)? — (V) dedy < // (Apo)? — (Vo) dady.

REMARK 4.4. If for a certain a satisfying 0 < a < ¢ the inequality ||[Ve||3. < o A¢]|3-
holds for all ¢ € C*(M), then the quadratic form [f, ¢(Ap)* — (Vi)?dudy is positive
definite:

/ c(Ap)? — (Vo) dedy > (c — a / (Ap)dedy.

Therefore it follows from (4.4) that

/ (Ap)?dedy < / (Apo)*ddy,
M M

c—
which manifests the stability of the stationary flow .

The underlying heuristic idea of the proof of the Stability Theorem is as follows. A
first integral H(¢) having a nondegenerate minimum or maximum at the stationary point
tp can be regarded as a squared “norm” (setting H(y) = 0). It gives us control of the
trajectory ; in the norm that is positive in a punctured neighborhood of ?) on the set of

1sovorticed fields.

EXAMPLE 4.5. Consider a circular motion with the stream function ¢» = (p), p =
\/m, in the annulus M = { Ry < p < Ry }. Rewriting the Laplace operator in polar
coordinates, we get the following sufficient condition for stability: If the ratio ;/)’/(;/}”—I—%;/}’)’
does not change sign, then the flow is stable (see [Arnl16]).

EXAMPLE 4.6. Consider a planar shear flow in the strip 0 < y < 27 in the (x,y)-plane
with a velocity profile v(y) (i.e., with a velocity field (v(y),0), Fig.17). Such a flow is
stationary for every velocity profile.

The form 62 F is positively or negatively defined if the velocity profile has no zeroes and
no points of inflection (i.e., v # 0 and vy, # 0). The conclusion, that the planar parallel

flows are stable, provided that there are no inflection points in the velocity profile, is a
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FIGURE 17. Lyapunov stable fluid flows in a strip. Profiles with the
ratio (a) v/vy, > 0 and (b) v/v,, <O0.

nonlinear analogue of the so-called Rayleigh theorem. Profiles with the ratio v/v,, > 0
and v /vy, < 0 are sketched in Figs.17a and 17b, respectively.

To make the region of the flow compact, we impose the periodicity condition = (mod X)
along the z-coordinate and obtain the torus {(z,y) | = (mod X), y (mod 27)}. Fix the
velocity field v = (siny,0) determined by the stream function ¢ = — cosy. Its vorticity
is w = —cosy. The velocity profile has two inflection points, but the stream function can
be expressed as a function of the vorticity. The ratio Vi/V A is equal to minus one. By
applying the Second Stability Theorem, we have obtained the stability of our stationary

27 X 27 X
[ [ aeranay= [ [ veran
0 0 0 0

for all functions ¢ of period X in = and 27 in y. It is easy to calculate that the last

flow in the case when

inequality is satisfied for X < 27 and is violated for X > 27.

Thus the Second Stability Theorem implies the stability of a sinusoidal stationary flow
on a short torus when the period in the direction of the basic flow (X) is less than the
width of the flow (27). On the other hand, one can directly verify that on a long torus
(for X > 27) our sinusoidal flow is unstable [MSi]. Hence, in this example, the sufficient
condition for stability from the Second Stability Theorem turns out to be necessary as

well.

Stability of certain plane-parallel and spherical two-dimensional flows was considered in

Dik].

PROOF OF STABILITY THEOREM. Assume that the stream function ¢ and the vorticity
function w = Ay are related by means of ¢» = U(A), and set ®(7) := [ ¥(F) db to be
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the primitive of ¥(f). Then the second derivative ®" evaluated at the function A is
O"(Avp) = Vo /VAY, and hence for 7 within the limits min Ay < 7 < max A, we have

(4.5) c<®'(r)<C.

We extend the definition of ®(7) to cover the whole 7-axis subject to this inequality, and
in what follows @ denotes the function extended in this way.

Form the functional
= M A Ap) — ®(AY) — '(AP)A dxd
mate) = [ (BF5 + a0+ a0) - a(a0) - 9(a0)av) dedy
LEMMA 4.7. The functional Hy 1s the first integral of the Euler equation,

H2(99(x7 Y, t)) = HZ(S‘Q(xv Y, 0))7

for the stream function o(x,y,t) of any velocity field evolving according to the Euler equa-

tion.

Proor or LEMMA. Consider the functional

H(u) = //M <(v2“)2 + @(Au)> dudy.

It is preserved along every solution of the Euler equation by virtue of the laws of energy and

vortex conservation. Therefore, I-:f(c,o) = H(¢p 4+ ¢) — H(%) is also a conserved functional
for a given steady flow #:

~ ~

(46) H(ple.y.1)) = Hlg(r.9.0)).
Decompose H(¢) into the sum H(p) = H;(¢) 4+ Hz(p), where

Hio) = [[ (Tp. T0)+ #(80)80) dody,

o) = [[ (T2 400+ a0 - 0(30) - #(30027)) dedy.

The term H;(p) vanishes, since it is the first variation of the invariant functional H(u) at

the stationary flow . Explicitly, after integration by parts we have

0
i) = [[ (oser¥@nag) dedys § oS

Recall that & = ¥ and U(Ay) = . Furthermore, by assumption the stream function
¢ is constant on the boundary components I'; (0M = [J; T;), and the perturbed fields
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have the same circulation around every boundary component: ﬁp Op/On dl = 0. Hence
Hi(p) = 0. Therefore H(p) = Hy(¢), and in accordance with (4.6), the functional Hy (i)

is preserved. This proves Lemma 4.7. g

Returning to the proof of the theorem, we note that it follows from (4.5) that for any
h

2
2 h2

c% <®(r+h)—B(7)— (I)/(T)h < C?.

2// <(v;)2+c(A;°)2 dzdy,
T (557 e257)

By combining these inequalities with the invariance of Hy(¢) we complete the proof of the
Stability Theorem. O

Hence,

We leave to the reader to complete the proof of stability for the negative ratio (the

Second Stability Theorem)
\Y
c<—v—§)¢<0 0<e<C < .

REMARK 4.8 [M-P]. Notice that the condition 0 < ¢ < VAzp < C cannot be obeyed in
domains without boundary. Indeed, the existence of a function ¥ obeying the condition
0 < ¢ <W¥(r)<C and such that ¢» = U(A¢) implies the existence of the inverse function
F for which Ay = F(), and moreover, 0 < ¢ < F'(¢) < C.

On the other hand, from Ay = F(v)) one gets 0,, Ay = F'(1))0,, ¢, and therefore

/ Op, ¥ (ADy,0) dady = // 2 dady.

Integrating by parts we come to the following:

/ 81;1¢ dﬁ / (VO,,10)? dedy = // )2 dedy.
oM

Now one can see that the absence of the boundary term leads to a contradiction: The

left- and the right-hand sides of the equality are of different signs unless ¢ is constant (the
trivial case of 9;,¢ = 0 is treated by replacing 0,, with 0,,). In particular, it excludes
unbounded domains (such as M = R? important for meteorological and oceanographic
simulations) from the scope of applicability of the Stability Theorem. A way to overcome
this difficulty is to exploit the symmetry properties of the domains accompanied by the

stability analysis outlined above.
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THEOREM 4.9 [M-P]. In the hypotheses of the Stability Theorem, the stability result is

achieved if the condition ¢ < % < C holds with ¢ > 0.

The proof is based on the use of a family of Lyapunov functions H(¢) for which the
first variation at the stationary flow 1 is given by Hi(p) =€ [[(Vp, VAY) dzdy.

REMARK 4.10. It turns out that the stability test based on the second variation of
steady flows is inconclusive in dimensions greater than two: The second variation of the

kinetic energy is never sign definite in that case (see Section 5.G).

Invariants of isovorticed fields (i.e., Casimir functions of the group of area-preserving
diffeomorphisms) play the role of Lagrange multipliers in the above study of the conditional
extremum. We refer to the survey [HMRW] for a study of stability by combining the
energy function with Casimir functions for a number of physically interesting infinite-
dimensional systems. Various modifications and extensions of the Routh (or Casimir-
momentum) method outlined above can be found in, e.g., [MaR, MaS, Vlal,2, W-G].

REMARK 4.11 (J. MARSDEN). ABBREVIATED GUIDE TO THE ENERGY-MOMENTUM
METHOD. For a more complete guide to the literature, see http://www.cds.caltech.edu/
~marsden /

The energy-—momentum (em) method extends the Arnold (or the energy—Casimir ) method,
which was developed for Lie—Poisson systems on duals of Lie algebras, especially those of
fluid dynamical type. The motivation for this extension is threefold. First, it can deal
with Lie-Poisson systems for which there are not sufficient Casimir functions available,
such as 3D ideal flow and certain problems in elasticity. In fact, [A-H] use (with hindsight)
the em-method to show that 3D equilibria for ideal flow are always formally unstable due
to vortex stretching. Other fluid and plasma situations, such as ABC flows and certain
multiple hump situations in plasma dynamics, provided additional motivation in the Lie—
Poisson setting. Second, it extends the method to systems that need not be Lie-Poisson.
Examples such as rigid bodies with vibrating antennas (see [KrM]) motivate this need. Fi-
nally, it gives sharper stability conclusions in material representation (stability is modulo
a subgroup of the symmetry group) as well as giving links with geometric phases (Berry
phases); see [Pat, MMR]. This is seen already in rigid body problems.

The setting of the energy-momentum method is that of a mechanical system with
symmetry with a configuration space ) and phase space T*() and a symmetry group G
acting, with a standard momentum map J : T*Q) — g*, where g* is the Lie algebra of G.
One gets the Lie-Poisson case when @) = G.

The rough idea is first to formulate the problem on the unreduced space T*(). Here,

relative equilibria associated with a Lie algebra element ¢ are critical points of the aug-
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mented Hamiltonian He := H — (J,€). One now computes the second variation 6% He(z.)
at a relative equilibrium z, with the momentum value p, subject to the constraint J = pu,
and on a space transverse to the action of G, . Although the augmented Hamiltonian H
plays the role of E+ Casimir in the Arnold method, Casimir functions are not explicitly
needed.

In explicit splittings based on the mechanical connection, the second variation 62 He(z.)
is block diagonal. In the same coordinates the symplectic structure has a simple block
structure, so the linearized equations also have a canonical form. Even in the Lie-Poisson
setting, this often leads to simpler second variations. This block diagonal structure is what
gives the method its computational power. The theory for the em-method can be found in
[MaS, SPM, SLM] (see also the exposition in [Mar]). For Lagrangian versions, see [Lew].
There is also a converse, building on classical work of Thompson and Tait, Chetayev,
and others, which states that when one has a saddle point for §*H¢(z.), the addition
of dissipation linearly (and hence nonlinearly) destabilizes the relative equilibrium; see
[BKMR).

The energy-momentum method is effective in many examples. For instance, [LeS] dealt
with the stability problem for pseudo-rigid bodies, which was thought to be analytically
intractable. For the heavy top, see [LRSM]; for underwater vehicle dynamics, see [LMal;
and for ABC flows, see [CMa]. The em-method has also been used in the context of free
boundary and Hamiltonian bifurcation problems [LMMR, LMR). Finally, the method also

extends to nonholonomic systems (systems with rolling constraints), as shown in [ZBM].

4.B. Wandering solutions of the Euler equation. Poincaré’s recurrence theorem
claims that for any volume-preserving continuous mapping of a bounded region into itself,
almost every moving point returns repeatedly to the vicinity of its initial position.

In particular, the phase flow of the Euler equation on any finite-dimensional Lie algebra
acquires this property. Indeed, level surfaces of the kinetic energy (i.e., of a positively
definite quadratic form) E are compact. Every trajectory of the Euler equation belongs

to the intersection of some energy level with a certain coadjoint orbit of the Lie algebra.

PROPOSITION 4.12. The intersections of the coadjoint orbits with the noncritical energy

levels can be equipped with a natural volume form conserved by the Euler equation.

PROOF. If w is the symplectic structure on a 2m-dimensional coadjoint orbit O, then
the symplectic volume form g = w™ is preserved by any Hamiltonian flow on the orbit. The
flow with the Hamiltonian function E preserves the differential (2m—1)-form pp := w™/dE
on the intersections of the orbit O with the E-levels. These intersections are compact, due

to the positive-definiteness of the form FE. O
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COROLLARY 4.13. The Poincaré recurrence theorem is applicable in this case: almost

every trajectory of the Euler equation returns at times to a neighborhood of the initial point.

REMARK 4.14. The Euler equation with a nondegenerate inertia operator has an in-
variant C''-measure on the whole dual Lie algebra g* (not only on the coadjoint orbits
O C g* of the group) if and only if the group G is unimodular, i.e., the operators ad, are
traceless for all n € g [Ko2].

However, the Euler equation of an ideal fluid does not enjoy the recurrence property:
The passage to the infinite-dimensional case is not harmless (see [Shn6] for other peculiar
features of 2D fluid dynamics). Fix, for instance, the region M = {1 < |z| < 2 | € R?*}
and consider the space V of C''-smooth divergence-free vector fields in M tangent to the

boundary OM =Ty UT5, Fig.18.

THEOREM 4.15 [Nad]. There exists a smooth divergence-free vector field & on M (tan-
gent to the boundary OM ) such that for any initial condition C'-close to & the corre-
sponding solution of the FEuler equation in M does not return to a vicinity of the point £
after a certain moment of time (i.e., there exist &, T > 0 such that for any initial condition
v(0) € V satisfying [|[v(0)—E&||cr < &, the corresponding solution v(t) satisfies the inequality
|o(t) —&]|cr > e, whereas t > T ).

PRrROOF. Consider the steady flow v* with the stream function ¢(z) = In|z| : o* =
sgrad(In |2]). Let v* + h be a Cl-small (divergence-free) perturbation of the field v* :
hes < 6.

LEMMA 4.16. There exists 6 > 0 such that for any perturbation h with ||h|c1 < 6, the
solutron v(t) with the initial condition v(0) = v* + h obeys the inequality |[v(t) —v*||co < i
for allt > 0.

PROOF OF LEMMA. The vorticity function curl v(t) of the solution v(#) is transported
by the flow, and so is the function curl (v(t)—v*) = curl v(t), since curl v* = 0. Therefore,
the C%norm of the function curl (v(t) — v*) is conserved as well as the circulation of the
field v(t) — v* along the circumferences I'y and I'y. Therefore, the statement of the lemma
is essentially the maximum principle for the stream function ¢ (¢) of the field v(t), which
obeys the equation Ay (t) = — curl (v(t) — v*). O

Denote by M_ = {x € M, 21 < 0}and ( = {x € M,x5 = 0,27 > 0} the semiannulus and
the segment, respectively (Fig.18). Choose some smooth divergence-free field u satisfying

the following conditions:

o

=0, curlu‘£>1.

1)
HuHcl < 5, U‘M_
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M

FIGURE 18. Pick a smooth field on the annulus M vanishing on the left

semiannulus M_ and whose vorticity is greater than 6/4 on the segment

L.

Finally, set £ = v* + w, and notice that curl £ [3,_= 0.

Now let v(0) € V be the initial condition close enough to £ : |[v(0) — &||cr < &, and v(t)
the corresponding solution of the Euler equation on M. Such a solution defines for each
t € R an area-preserving diffeomorphism ¢! of the annulus M. The circumferences I'y and
I'; are mapped by ¢! into themselves.

Moreover, by choosing ¢ to be ¢ = /4, we ensure that the solution v(t) is close enough
to v*. According to the lemma, the linear velocity of every point on the inner circumference
I’y is greater than 3/4, while that on the outer circumference I'y is smaller than 3/4. The
corresponding angular velocities are greater than 3/4 on I'y and smaller than 3/8 on T's,
respectively.

The image {; := ¢g*({) of the segment ¢ under the action of transformation ¢* joins the
points on different circumferences. The angular coordinates of the connected points diverge
from each other at the rate 3t/8. It follows that for ¢+ > 87/3, the curve {; definitely hits
M_ : ;N M_ # 0. On the other hand, curl v(t) is carried over by the flow ¢* and is greater
than 6/4 = ¢ when restricted to (;. Hence, for t > 87/3, we have || — v(t)||cr > e. O

§5. Linear and exponential stretching of

particles and rapidly oscillating perturbations

In this section we study the short-wave asymptotics of the perturbations of a stationary

motion of an ideal fluid (following [Arn8]).
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5.A. The linearized and shortened Euler equations.
DEFINITIONS 5.1. The 3D Euler equation in the vortez (or Helmholtz) form

ow
ot

= [v,w], where w = curl v,

can be linearized in a neighborhood of a steady flow v:

(5.1) % = [v, 8] + [curl™'s, w].
Here [, | = —{, } is the Lie bracket (i.e., minus the Poisson bracket) of two vector fields,

and s is a perturbation of the vorticity field: curl (v + u) = w + s, where u is a small
perturbation of the steady flow v. The operator curl™! is understood as the reconstruction
of the divergence-free vector field from its vorticity (and from the circulations over the
boundary components if M # ().

We will examine the behavior of solutions of this equation linear in s. Note that the
first term on the right-hand side of (5.1) is a more powerful linear operator on functions
s than the second. This means that the value of [v,s] on the rapidly oscillating s of the

type s = e'k®

will contain a higher degree of the wave number k than those occurring in
[curl™1s, w]. Hence, for the rapidly oscillating perturbing field s, the second term in (5.1)
may be considered as a perturbation of the first. In this way we obtain the shortened

equation

0s

(5:2) ==

v, 8].

If the stationary flow is potential (w = 0), the second term in Equation (5.1) vanishes,
and in that case the shortened Equation (5.2) is the same as the linearized Euler equation
(5.1). In accordance with perturbation theory [Fad], it is reasonable to assume that the

shortened equation defines the continuous part of the spectrum of the linearized equation

(5.1).

The shortened Equation (5.2) implies that vector s is carried by the steady flow. If the
geometry of the steady flow v is known, this equation can be solved explicitly. Let ¢* be
a one-parameter group of diffeomorphisms generated by the field v. Then the solution of

the shortened equation is expressed in terms of its initial conditions by the formula

(5.3) s(t, ) = g,5(0,97"(2)),

where ¢! is the derivative of the image of ¢'.
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5.B. The action—angle variables. Below we present two lines of reasoning for the

following statement.

PROPOSITION 5.2. For a non-Beltrami steady field (i.e., for a steady field that is not
collinear with its vorticity in any region) on a closed three-dimensional manifold M, almost

all solutions of the shortened equation are linearly unstable.

PRrROOF. If the fields v and w are not identically collinear in any region, then the manifold
without boundary splits into cells in each of which the stream and vorticity lines lie on two-
dimensional tori (see Theorems 1.2 and 1.10 in Section 1, or [Arn3,4]). One can introduce
the angular coordinates ¢ = (1, p2) mod 27 along the tori and the “action variable” z,
which provides the numbering for the tori, such that the volume element is defined by
dy1dpadz, and the fields v and w are given by

0 0 0 0
v(p,2) = 01(2)—&,91 + 02(2)—8@27 w(p,z) = wl(Z)—a@l + wz(Z)—aW-
These equations are integrable in the system of coordinates (1, @3, z). For the compo-

nents of the field

(t‘ )_ i_|_ i_|_ g
S\, 2) = 31 8991 52 8992 53 92’

by using (5.3) we obtain the expressions

(5.4) si(tip,2) = si(0500,2) + 1 v 83(05900,2), k=12,

s3(t; 0, 2) = 53(05 0, 2),

where g = ¢ — vt, and the prime denotes the derivative with respect to z. Formulas (5.4)
imply that solutions of the shortened Equation (5.2) (for v’ # 0) usually increase linearly
with time. O

Hence the conventional (exponential) instability of the linearized Euler equation for
non-Beltrami flows can be due only to the second term in formula (5.1). In accordance
with perturbation theory, it is reasonable to expect the appearance of a finite number of
unstable discrete eigenvalues.

The question of retention of the (detected above) slow instability, when passing from the
shortened Equation (5.2) to the complete linearized equation (5.1), is discussed in Section
5.D below.

The other possibility of exponential instability is related to the collinearity of v and w,

when the action—angle variables cannot be introduced and the geometry of the steady flow
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differs from the one described above (cf. [Hen]). This form of instability is examined in
Section 5.E.

REMARK 5.3. An integrable (non-Beltrami) steady flow can be thought of as a Hamil-
tonian system with two degrees of freedom that is restricted to a three-dimensional en-
ergy level. The KAM theory for volume-preserving flows on three-dimensional manifolds
guarantees that under certain nondegeneracy conditions, all flows sufficiently close to the
integrable ones preserve a large set of two-dimensional invariant tori (see, e.g., the survey
on the KAM theory of Hamiltonian systems [AKN] or the volume-preserving case in [C-S,
D-L, B-L]).

The above implies that for nonstationary Euler solutions that get close enough to a
steady non-Beltrami field, the vorticity fields of the solutions have plenty of invariant tori.
Indeed, those vorticity fields of the solutions approach the integrable vorticity field of the
steady flow. (The vortex form of the Euler equation is more suitable for this consideration,
since the vorticity, unlike the velocity, is frozen into the flow.) Similarly, for the Navier—

Stokes equation the steady flows close to the Beltrami ones have many invariant tori.

5.C. Spectrum of the shortened equation. For a more detailed analysis of solutions
of Equation (5.2) (and another viewpoint at Proposition 5.2), we expand s into a Fourier
series in terms of ¢, using the following notation. Let m, which we shall call the wave
vector, be a pair of integers m; and mz. We denote mip1 + map2 by (m,¢), the number
\/m by |m/|, and the pair ny = —msy and ny = my by n.

For each wave vector we determine the “longitudinal,” “transverse,” and “normal”
vector fields

mla mza mza mla 8

€m €n —

T Iml g1 " m| dps
(For m = 0 we assume, e.g., €, = 0/0¢1 and e, = 0/0p3.)

The Fourier expansion of a field s can now be written as

s = Z(Amem + Bnen + C’mez)ei(m’“”),

where A,,, By, and C,, are functions of z.
It can be readily verified that the vector fields e,,, €,, and e, have zero divergence with

respect to the volume element dpidpsdz. Hence,

: d
1 — 3 z(m,ap) = —
div s E (i|m|Am + 0.Ch e <8Z : dz) )

m
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Consequently, the divergence-free fields are determined by the condition i¢|m|A,, +0.C,, =
0 satisfied for all m.

By virtue of this condition, the set of functions B,, and C,, (for m = 0, we have
Cy = const, but Ay is to be added) can be taken as the “coordinates” in the space of
all fields. In this coordinate system Equation (5.2) decouples into a series of triangular

systems

(55) { By, = —i|m|vmBum + 0! Con,

C’m = —1|m|vy,, Ch,

where v = vy em + vpey is the velocity field of the steady flow (for m = 0 we add the
equation Ay = vy Cp); the prime and the dot denote differentiation with respect to z and
t, respectively.

Formula (5.5) again implies the nonexponential instability of Equation (5.2) (and proves
Proposition 5.2). Furthermore, it determines the spectrum of the latter equation: To each
wave vector m one associates a segment of the continuous spectrum along the imaginary
axis. The related “frequencies” |m|v,, are equal to all kinds of frequencies (m,v) of the
stationary flow on the tori, corresponding to various values of the z-coordinate. The
multiplicity of each segment is not less than two (the B- and C-components have the same

frequencies).

5.D. The Squire theorem for shear flows. Though the coordinates introduced
above are suitable for analyzing the shortened Equation (5.2), analysis of the complete
equation (5.1) is generally difficult, since in curvilinear coordinates the operator curl™!
is of a complicated form. A particular case in which the analysis can be reduced to a
one-dimensional problem is that of a flow with straight streamlines. All plane rectilinear
flows, as well as the more general ones in which the fluid particles move in parallel planes
at constant velocity, which varies in magnitude and direction when passing from one plane
to another, belong to this class. Study of the latter may be considered as an approximate
analysis of a generic flow in the torus geometry, in which the torus curvature is neglected,
while the shear (i.e., the variation of the direction of the streamlines from one torus to

another) is taken into consideration.

Let (01, @2, and z be Cartesian coordinates and the length element d(* = dp?+dp2+dz?.
Let v = vymem + vpe, be the velocity field of a shear (rectilinear) flow in three-dimensional

space (or in a three-torus, whose curvature is neglected).

PROPOSITION 5.4. The rectilinear three-dimensional flow s exponentially unstable if
and only if at least one of the two-dimensional flows of a perfect flurd obtained by the
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substitution for the wvelocity vector v of its longitudinal component vy, s exponentially

unstable.

Thus, the problem of exponential instability of the considered class of three-dimensional
flows of a perfect fluid is reduced to a similar problem for a set of the two-dimensional
flows corresponding to different values of the wave vector m. In the particular case of a
nonshear flow (i.e., with a constant direction of the velocity v), all velocity profiles are
proportional to each other, and the obtained result agrees with the Squire theorem for a

perfect fluid [Squ].

PROOF. In this case it is expedient to consider periodic flows of not necessarily 27-
periodicity (e.g., we can assume the periods of ¢ and @2 to be 27X and 27X, respec-
tively). The only alteration to be introduced in the formulas of Section 5.C is that now
the wave vector m runs not through the lattice of integral points but through the lattice
{(m1/ X3, m2/X5)}.

Under these assumptions, the expansion of the vortex field w in terms of the unit vectors
€m,en, and e, is of the form w = —v! ¢,, + v/ e,. The matrices of the operator curl in the
coordinates B,,,C),, and of the operator corresponding to the Poisson bracket containing

w are, respectively,

i{m| 0 —Id +|m|~? &2 and  — i|mlvl, olh
Id 0 0 iimlol )7

where Id is the identity transformation. Hence, in our coordinates the linearized Euler
equation (5.1) decomposes into the systems of equations corresponding to various m. After

some calculation, we obtain for m # 0 the triangular system

Bm :<imvm—|—iid—m_28§_l>3m,
o { ' o + i (id — |m|~* 32)
Co = im|vnCp + vl (id —|m|™2 0*)7 1B,
and for m = 0, we have the system Ay = By = Cy = 0. The first equation contains

the B-component only. If the B-component does not have exponential instability, neither
does the C-component (this is implied by the nonhomogeneous linear equation obtained
for Cp,). Finally, note that the equation for B,, contains only the longitudinal velocity

component v,. 0

The Jordan form of system (5.6) indicates that in three-dimensional incompressible
flows, unlike the two-dimensional ones, the linear increase of vortex perturbations with
time is typical, even in the absence of exponential instability. Notice also that Equation

(5.6) is the same as that derived in the analysis of the two-dimensional flow of a perfect fluid
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whose velocity profile is the component vy, (z) of the velocity vector of a three-dimensional

flow in the direction of the wave vector m.

5.E. Steady flows with exponential stretching of particles. In this section we
will define a steady flow of an incompressible fluid for which the velocity field is Beltrami,
i.e., it is proportional to its own vorticity, and the field does not have a family of invariant
surfaces, as mentioned in Section 5.B. This simple example plays a key role in many other
constructions of ideal hydrodynamics and of dynamo theory discussed in the sequel (see,
e.g., Section V.4).

Imagine an ideal fluid filling a three-dimensional compact manifold M constructed in
the following way. First consider the Euclidean three-dimensional space with coordinates

x,y,z and define the following three diffeomorphisms of the space:

Tl(l’,y,Z) :($+17y72)7 T2($,y72):($,y‘|‘172),
T3($,y72) = (21‘ +y,r+y,z+ 1)

Each of these transformations maps the integer lattice in the space z,y, z into itself. Iden-
tify all points of xyz-space that can be obtained from each other by the successive ap-
plication of T; and Ti_1 (in any order). The resulting compact analytic manifold M may
be thought of as the product of a two-dimensional torus {(x,y) mod 1} by the segment
0 < z <1, whose end-tori are identified by means of the formula (z,y,0) = (2e+y, x4y, 1).

To equip the manifold M with a Riemannian metric, we define a metric in zyz-space
invariant with respect to all T;. We first examine the linear transformation of the zy-plane

given by the matrix A (“cat map,” Fig.19):

(21 . r\  [(2v+y
(1) e ()= (20,
The operator A has the eigenvalues y1 9 = (34£1/5)/2. Note that x; > 1> x2 > 0, x1-x2 =
1, and the eigendirections are orthogonal to each other. Let (p,¢) be a Cartesian system
of coordinates in the xy-plane with the axes p and ¢ directed along the eigenvectors with

the eigenvalues y; > 1 and Y2 < 1, respectively.
Set the metric to be

(5.7) dr? = e 2%qp? 4+ €25%d¢* + dz? | where B =1Iny;.

The metric d(? is invariant with respect to the transformations T}, and therefore it defines

an analytic Riemannian structure on the three-dimensional compact manifold M.
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“A A

@

FIGURE 19. The cat map A of the torus onto itself.

Now consider the vector field grad z = 9/0z in xyz-space. Since it is invariant with
respect to the transformations 75, it descends to a vector field v on the Riemannian man-
ifold M. The field v is harmonic on M : div v =0, curl v = 0. Hence, v can be taken as
the velocity field of a stationary potential flow of an ideal fluid. Every particle of the fluid
moving along that field is stretched exponentially in the ¢-direction, and it is squeezed in

the p-direction, as implied by formula (5.7).

5.F. Analysis of the linearized Euler equation. The Euler equation (5.1), lin-
earized at v, is equivalent to the shortened equation (5.2), since the flow under considera-
tion is potential. The simple geometry of the flow v allows one to solve the latter equation
by using formula (5.3). It is convenient to express the solution in the following form.
Consider the vector fields
g: 0

op’

5. 0 9

e, =€ —, e, = —
P d¢" 7 0z

€qg = €

in pgz-space. These fields are invariant with respect to all transformations T;, and hence,
they can be regarded as vector fields on the manifold M. The directions of the fields e, ¢4,
and e, are invariant with respect to the phase flow ¢’ of the field e, (in coordinate form

' (p,q,2) := (p,q,z + 1)), while the fields themselves are transformed as follows:

Bt Bt

t - t _ t _
Jx€p = € €p, Jy€q = € €q, Ju€z = €,

(this explains the names of the stretching direction e, the compressing direction e,, and

the neutral direction e ). Every vector field v on M can be decomposed in these directions,

U = Up€y + UgEq +uze,,
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where up, u,, and u. are functions on the manifold M.

Formula (5.3) applied to the stationary flow v = e, has the form
(5.8) sp(t) = e_ﬂtUtsp(O), sq(t) = eﬁtUtSq(O)v s:(t) = U's.(0),

where U? is a linear operator acting on functions on the manifold M by the formula
(U'f)(a) = f(¢g"a) for any point a € M. Note that the operator U’ is unitary, since the
flow ¢! preserves the volume element.

Formulas (5.8) provide rather complete answers to all kinds of questions on the growth
of perturbations of the steady flow v. First, they show that the ¢g-component of any vortex
perturbation exponentially increases with time, while the p-component decays exponen-
tially.

Further, the spectrum of the operator U’ can be easily analyzed by the Fourier series
expansion in terms of (x,y) with fixed z, and for functions independent of & and y by such
expansion in terms of z. This spectrum has a countably multiple continuous (Lebesgue)
component along the unit circle in C, and also a discrete set of eigenvalues corresponding
to the eigenfunctions ¢x(z) = ¢>™** (k are integers). This implies that the Euler equation
(5.1) linearized at the stationary flow v = e, has a countable set of the (unstable) eigen-
values o — 2mik, related to the countable set of increasing perturbations of the vorticity
s=pp(z)e, (k==+1,4£2,...).

The difficulty of predicting solutions of the linearized Euler equation (5.1) for flows
with the exponential stretching of particles is also indicated by formulas (5.8): To find
an approximate solution, it is necessary to know, with considerable precision, a number
of high-order harmonics of the initial perturbation s(0), which rapidly increase with ¢.
Formulas (5.8) and (5.4) show that the exponential particle stretching increases drastically
the difficulty of predicting the perturbation growth, as compared to the flows defined by the
“generic” stationary solutions of the Euler equation with the linear stretching of particles
(see Sections 5.B-5.D).

Phenomena similar to those outlined in this example are also encountered in other flows

with exponentially stretched particles, e.g., in the ABC' flows
vy = Asinz 4+ Ccosy, vy = Bsinxz 4+ Acosz, v, =Csiny + Bcose

(see Sections II.1.A, V.4.B, and [Hen, Dom]| for a study of symmetries and results of
computer simulations) or in the geodesic flows on surfaces of negative curvature (see Section

V.4.D).
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5.G. Inconclusiveness of the stability test for space steady flows. In Section 4.A
we gave a sufficient condition for stability of planar fluid flows. Unlike the two-dimensional
case, the second variation of the kinetic energy of a stationary flow among isovorticed fields
is never sign definite in higher dimensions. It implies that the sufficient stability criterion,
based on the second variation, is inconclusive (see Remark 3.7): Quadratic Hamiltonians
of a saddle type can govern both stable and unstable flows. This study is based on the

consideration of rapidly oscillating perturbations of the steady flow.

THEOREM 5.5. Let M be a three-dimensional closed manifold and v be a steady Euler
flow. If curl v is not identically zero, then the spectrum of the quadratic form 6°F (i.e., of
the corresponding self-adjoint operator) on the tangent space to the coadjoint orbit of v is

neither bounded from below nor from above.

REMARK 5.6. This theorem, along with its higher-dimensional version formulated be-
low, has been proved in [S-V]. Indefiniteness of the second variation d*E for the 3D case
was earlier established in [Roul] (and hinted at already in [Arnd]; see also [A-H], where the
consideration was put forward for a generic equilibrium in the 3D case). The main idea
underlying all the proofs is that the form §?E is a sum of two terms, one of which is always
positive, but of smaller order than the other. Picking the rapidly oscillating variation &,
one can explicitly compute the asymptotic expression for 62 E and thus obtain an arbitrary

sign for the second variation in the direction €.

The unboundedness of the spectrum of the second variation holds for the higher-
dimensional generalization of the Euler equation as defined in Section I.7. Namely, let
M be an n-dimensional smooth Riemannian manifold (n > 3) endowed with a volume
form 1, and v” the one-form on M obtained from a p-divergence-free vector field v by
means of the identification v”(w) = (v, w) determined by the Riemannian metric ( , ).

1

The kinetic energy is given by E(v) = (v, v) = %fM(v, V) b

THEOREM 5.5 [S-V]. Let u be a smooth steady solution of the Euler equation in M. The
second variation 6*E of the energy among the isovorticed vector fields is identically zero,
whereas v° is locally “potential” in the sense that d(vb) = 0. Otherwise, the spectrum of the
self-adjoint operator corresponding to the quadratic form 6*E on the space of isovorticed

fields 1s nesther bounded from below nor from above.

REMARK 5.7. Actually, the Euler equation is defined on cosets of 1-forms on M : [v°] €
QY (M)/dQ° (M) (see Chapter I). There are as many cosets furnishing the condition d[v°] =
0 as elements in H' (M), i.e., a finite-dimensional space. Hence, among all stationary flows

on the manifold M, there are exactly by(M) := dim H' (M) linearly independent ones for
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which the second variation of the kinetic energy is zero. For all other steady flows this

variation is indefinite.

LEMMA 5.8. The second variation of the energy E(v) = %(v, v) = %(vb, v*) on the
(image in the Lie algebra of the coadjoint) orbit of the “isovorticed fields” is given by the

quadratic form
2 Lo b Lo o b
(5.9) SE(E) = & liedy? + dp.icde” +dp) + L (ig + dp, Le(v")).
where the function p 1s chosen to make the 1-form igdvb—l—dp correspond to a divergence-free

field after the Riemannian identification.

PROOF OF LEMMA is a straightforward application of formula (3.2) to the coadjoint
operator B(v,§) = igd(vb) + dp. All fields are supposed to be square-integrable. The

formal tangent space to the coadjoint orbit of the 1-form »” is the image of the operator

B. 4

For a three-dimensional manifold M, this formula reads as
PE(E) = =((V xv) x £+ Vp, (V x0v) x &+ Vp)

_|_

N = o) =

((Vxv)x&+Vp, Vx(€xv)).

The operator B(v,¢) in this case becomes B(v, &) = (V x v) X £ + Vp, where the pressure
function p is chosen to make the vector field (V x v) x £ + Vp divergence free.

PROOF OF THEOREM 5.5'. Certainly, dv” = 0 implies dp = 0, and hence, 62 E(¢) = 0.

Assume now that the 2-form dv” and the vector field v are both nonzero at a point
xo € M. Fix some function ¢(z) for which (v, Vi) and dp A dv® are both nonzero in a
neighborhood U of zy. Pick smooth vector fields arp and ar that are orthogonal to Ve
everywhere, vanish outside ¢/, and obey the inequalities dub(aR, ar) > 0 everywhere, and
dub(aR, ar) > 0 in a smaller neighborhood U’ C U. Finally, define a complex vector field
a = ap + v/—1 a; (where we use the notation \/—1 for the imaginary unit to distinguish
it from the operator i, ).

Our goal is to construct deformations . (uniformly bounded in ¢) for which §? E(£.) is
arbitrarily large positive or negative. Note that it is enough to choose £. to be a complex
vector, if we extend the operator §?FE, as well as the Hermitian inner product, to the
complexification of the space of vector fields on the manifold M. Indeed, consider the
Hermitian inner product { , )¢, linear in the first argument and antilinear in the second,

that extends the real inner product { , ) on the vector fields. Then boundedness of the
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spectrum of §?F implies that the real part of the value ((6?E)., ¢ )¢ is bounded both
from below and from above whenever £. belongs to some fixed ball in the Hilbert space of
square-integrable complex vector fields.

To construct such deformations £., consider for simplicity the case where u is the Rie-

> corresponds to a divergence-free

vector field u if and only if d*(u”) = 0 (where the operator d* : Q¥(M,C) — Q=1 (M, C)
is dual to the exterior derivative operator d : Q¥(M,C) — Q*1(M,C) by means of the
identification of Q¥(M™,C) and Q"~*(M",C) provided by the metric).

Define the rapidly oscillating vector fields . as the following O(e)-correction of the field
a - exp(yv/—1g/e) to make it divergence free: £, is dual to the 1-form

mannian volume form on the manifold. Then a one-form u

a’
£ =cy/—1d* (CT‘Z;\HZ exp(\/—_lc,o/e)> = o’ exp(vV/—1gp/e) + O(e).

Then the leading term of § E(£.) in the s-expansion as ¢ — 0 is

PE(E) = o-lic.du’ + dp, v T(w, V) @ exp(v/ Tg /o)) + O(1)
V-1

=5 | (@Y%) du’(a,a) g+ O(1) = —é/M(u,ch) du’(ag,ar) p+ O(1),

where (, )¢ is the Hermitian inner product, extending the real inner product ( , ).

By assumption, the inner product (u, V) is nonzero on U, while du’(ag, as) is positive
in Y’ and nonnegative otherwise. Hence the integral is nonzero. Therefore, we can make the
real part of §2 E(£.) arbitrarily large positive or negative by choosing ¢ to be of appropriate
sign and sufficiently close to zero. Thus, 62F is not a sign-definite form, and it has a

spectrum unbounded in both directions. O

REMARK 5.9 [S-V]. For a manifold with boundary the same conclusion holds. One
can take £, vanishing near the boundary and obtain arbitrarily large negative or positive
values of 62 E(£.). The domain of the corresponding self-adjoint operator §* E contains all

smooth divergence-free vector fields with compact support in the interior of M.

REMARK 5.10. One can argue that indefiniteness of the second variation is indicative
of instability (see, e.g., [A-H]). Though the sufficient criterion discussed above says noth-
ing in this case, other methods can be applied to certain flows (see [Vla2] for the direct
Lyapunov method and [FGV, FV1] for an instability criterion valid for some particular
three-dimensional flows).

For instance, a fluid possessing surface tension and filling an upside-down cylindrical

glass (with any cross section) is shown to be unstable [VIB, Vla2]. To the best of our
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knowledge, there is no proof of (actual nonlinear) instability if the shape of the container

is not cylindrical.

The situation changes slightly for the system of MHD equations. In contrast with the
purely hydrodynamical setting, it is possible to obtain three-dimensional examples of MHD
equilibria for which the second variation of the total energy is definite [FV2]. The class
of flows whose stability may be determined by the sufficient criterion discussed in this
and preceding sections is very restricted. In particular, the second variation of energy
turns out to be indefinite for the flows having a point where the vectors of the velocity v
and of the vorticity curl v are nonzero and nonparallel to the vector of the magnetic field
B. The same statement holds for fields with parallel magnetic and velocity fields if the
magnetic field is weak enough: ||v|| > ||B|| at some point [FV2]. Other applications of
the stability analysis to MHD can be found in [VIM, VMI]. Stability of steady two- and
three-dimensional flows of an ideal fluid with a free boundary was studied in [SYu]; for the
stability analysis of stratified ideal, barotropic, and other fluids see [Dik, A-H, HMRW, Gri,
Vla3]. We also refer to [Arnl4, DoS, FV1, Lif, Shf] for various stability and asymptotic

results for perturbations of steady solutions of the Euler and Navier—Stokes equations.

66. Features of higher-dimensional steady flows

The existence of the Bernoulli function for a steady fluid flow is a general phenomenon
valid for any dimension (see Section 1.A). In this section we discuss (following [GK1,2])
the consequences of the presence of this extra first integral for steady solutions of the Euler

equation of an ideal fluid in higher dimensions.

6.A. Generalized Beltrami flows. Let v be an analytic divergence-free field of a
steady flow on an odd-dimensional compact manifold AM?"t! equipped with a volume

form p.

DEFINITION 6.1. A trajectory of the field v is called chaotic if it is not contained in

any analytic hypersurface in M?7 11,
For instance, a generic trajectory of an ergodic flow is chaotic.

PROPOSITION 6.2 (=1.8", [GK2]). An analytic steady field v with at least one chaotic
trajectory s proportional to its vorticity &; 1.e., £ = C' - v, where C € R.

REMARK 6.3. Recall that in the odd-dimensional case the vorticity field is defined by
the relation ¢t = w", where the two-form w = du is the differential of the one-form u
dual to the vector field v : wu(-) = (v,-); see Chapter I. Thus, by the proposition, the

field v with a chaotic trajectory is an “eigenvector” of the operator curl: v — £, even
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though for n > 1 this operator is nonlinear! It is natural to call such a field v a generalized
Beltram: flow. The theorem manifests that higher-dimensional Beltrami flows, as well as
the three-dimensional ones, have quite a complicated structure. In particular, the mixing
in a steady flow might occur only if at least one chaotic trajectory exists, i.e., only for
the generalized Beltrami flows. On the contrary, a non-Beltrami steady flow is fibered by
a family of hypersurfaces invariant under the flow, and therefore actual mixing for such
a flow is impossible. The proof of the theorem closely follows the argument used for the

three-dimensional case in [Arn3,4]; cf. Section 1.A.

PROOF. The vorticity field £ commutes with the velocity field v for any steady flow (see
Remark 1.4). The fields £ and v are both tangent to the “Bernoulli surfaces,” i.e., to the
level hypersurfaces of the analytic Bernoulli function o« = p + 72, u, which is defined by the
stationary Euler equation 7,du = —da.

If the Bernoulli function « is nonconstant, then trajectories of v lie on level hypersurfaces
of «, which contradicts the assumption. (Note that similar to the three-dimensional case,
the nonsingular Bernoulli surfaces (da # 0) have zero Euler characteristic, since the tangent
field v has no singular points on them.) If the function « is constant, then the fields ¢
and v are collinear (Remark 1.6). Consider the function x := v?/£? (or, alternatively,
(£,6) = k-(v,v) ). Owing to the commutativity of £ and v, the function & is invariant under
the flow of v. Therefore, the field v 1s tangent to the level surfaces of k. Since v has a chaotic
trajectory, the only possibility remaining is that x = const. (Note that the Bernoulli
function « is analytic, and the function s is the ratio of two analytic functions.) Hence

the functions o and & are both constant, and the fields ¢ and v are locally proportional:

£ =C v, where C = +1//k = const. O

EXAMPLE 6.4. The Hopf vector field (xg, —21, 24, —23,...,%2n42, —Topt1) 18 an ex-
ample of an eigenvector field for the curl operator on S§?"*! C R2?"*? without chaotic
trajectories. The theorem above claims that the existence of such a trajectory makes the
vector field an “eigenvector” of curl. It would be interesting to find a nontrivial example
of a higher-dimensional ABC flow and to compare its ergodic properties with those in the
three-dimensional case (see, e.g., [Hen]). In particular, one wonders if there is an analogue

for higher dimensions of the analytic nonintegrability of certain ABC flows, proved in

[Zig2].

6.B. Structure of four-dimensional steady flows. The main result of this sec-
tion shows that the steady flows of a four-dimensional fluid are very similar to integrable

Hamiltonian systems with two degrees of freedom.
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Here and below we deal with an even-dimensional orientable Riemannian manifold M?"?
endowed with a volume form p. In this case, a generic steady solution v gives rise to the
closed 2-form w = du, which is symplectic (nondegenerate) almost everywhere on M. In
particular, it allows one to define another (besides «) invariant function on the manifold:
Alz) = w™/p, called the vorticity function (or “symplectic volume” element). The function
A 1s invariant, since L,w = 0 and L, = 0. This means that the vorticity function A and
the Bernoulli function « are first integrals of the flow of v on M.

Let p = (o, \) : M — R? and T be the set formed by all # € M such that either A\(z) =0
or p(x) is a critical value of p. In other words, I' is the union of the zero A-level A and of

the preimage of the set of critical values of p.

THEOREM 6.5 [GK1,2]. Let M be a closed orientable four-dimensional manifold. Then
(1) the open set U = M\ T is invariant under the flow of v;

(2) every connected component of U is fibered into two-dimensional tori invariant under
the flow; and

(3) on each of these tori the flow lines are either all closed or all dense.

PROOF. The form w is symplectic on the complement to the set A = {A = 0}. The
vector field v is Hamiltonian (relative to this symplectic form) with the Hamiltonian func-
tion «: by definition 7,0 = —da. Let ¢ be the Hamiltonian vector field on M \ A with the
Hamiltonian A. Observe that the Poisson bracket of the functions o and A is identically
zero on M \ A, since {a, A} = L,A = 0. Therefore, the fields v and ¢ commute, and their
flows together give rise to an R%-action on M \ A. The map p is, in fact, the momentum
mapping for this action. The map p is invariant with respect to the action, and the orbits
coincide with the connected components of p-levels. The projection p |[: U — p(U) is
a proper submersion, since defining U we have excluded from M all critical points of p.
Hence each orbit in U is a smooth closed surface, and so it is either a torus or a Klein
bottle. Furthermore, this surface is cooriented by da A dA. As a result, we see that the
surface is orientable, i.e., a torus. Therefore, p fibers every connected component of U into
tori.

On each orbit, the flow of £ acts transitively on integral curves of v. Moreover, the field
¢ does not have zeroes on U since its Hamiltonian function A does not have critical points
there. Thus the integral curves of v, on which £ acts, are either all closed or all dense on

each torus. O

Note that for a “generic” pair of & and A the set U is open and dense in M. Thus the

theorem gives an almost complete description of the flow of v.
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The real-analytic version of the latter theorem for a manifold without boundary now

looks as follows.

THEOREM 6.6 [GK2]. Let M be as in the theorem above. Assume, in addition, that all
the data (i.e., M, u, and the metric), as well as w, are real-analytic, and da N d\ # 0
somewhere on M. Then T' is a semianalytic subset nowhere dense in M, and U = M\ T
has a finite number of connected components. Every connected component s fibered into
two-dimensional tori invariant under the flow. On each of these tori the flow lines are

either all closed or all dense.

A version of this theorem holds for a manifold M with boundary (see [GK2] for more
detail).

REMARKS 6.7. A) For an arbitrary even-dimensional manifold M?", we can assert that
M is a union of (2n — 2)- (or less) dimensional submanifolds, such that the steady vector
field v is tangent to them. These submanifolds are obtained as intersections of the levels

o = const and A = const and have zero Euler characteristic.

B) For an arbitrary odd-dimensional M?"*! instead of the function A\ = w"/u (and
of the covector field dA), we define the vorticity vector field £ by ¢gp = w™. The fields £
and v commute and thus give rise to an R*-action on M?"*1. So in this case a steady
flow gives rise to a foliation of dimension 2, unlike the foliation of codimension 2 in the

even-dimensional case.

6.C. Topology of the vorticity function. Let w be the two-form associated to a
stationary divergence-free solution v on M*" (i.e., w = du, where u is the differential 1-
form u(-) = (v,-) defined by the Riemannian metric ( , ) on M). In this section, we study
the topology of the vorticity function A = w”/u of the steady flow v. We describe some
special features of such A that the pair (A, w) (under a mild condition) does not admit “too
many symietries.”

Let g be the Lie algebra of all divergence-free vector fields on M. Steady flows are
critical points of the energy on the coadjoint orbit O C g* that consists of the 2-forms
associated to the fields on M isovorticed with v. It is clear that topological invariants of
A, such as the number of its critical points and their indices, depend only on the orbit O.

This simple observation will enable us to find orbits with no stationary solutions at all (see

Section 6.D).

DEFINITION 6.8. A function f on a compact symplectic manifold (P,w) does not admit

extra symmetries if an arbitrary function ¢ satisfying {f,¢} = 0 is constant on connected
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components of the level sets of f (i.e., {f, g} = 0 implies that the differential dg is propor-
tional to df with coeflicient depending on the point on P).

REMARK 6.9. On a two-dimensional symplectic manifold no functions admit extra sym-
metries. Conjecturally, a generic function on a compact symplectic manifold of any dimen-
sion does not admit extra symmetries. It is true for dim M = 4 (cf. [MMe]). The question
turns out to be closely related to some subtle problems in Hamiltonian dynamics. The
general conjecture can be regarded as a Hamiltonian version of the following problem of

generic nonintegrability.

REMARK 6.10: DIGRESSION ON NONINTEGRABILITY. From the time of Poincaré one
usually has used the term “a nonintegrable dynamical system” in the sense of “a dynam-
ical system having no analytic first integrals.” However, there exists a number of other

possibilities. For instance,

(1) the absence of invariant hypersurfaces (or of principal ideals),

(2) the absence of invariant closed 1-forms (or of multivalued first integrals),

(3) the absence of invariant distributions of tangent subspaces (or of invariant Pfaff
modules), and

(4) the absence of invariant foliations (or of invariant completely integrable Pfaff sys-

tems).

Consider a dynamical system with discrete time (a diffeomorphism of a compact man-
ifold) and an object of one of the above types (a function, an ideal, a closed 1-form,
etc.) The images of this object under the iterations of the diffeomorphism may form a
finite set (if they are repeated periodically) or an infinite sequence and may generate a
finite-dimensional or infinite-dimensional space. These properties reflect the “degree of

chaoticity” of the dynamical system.

PROBLEM 6.11. Do the nonintegrable systems (in the sense of each of the four defini-
tions above) form an open set in the space of dynamical systems on manifolds of sufficiently
high dimension? Conjecturally, this is the case in the space of Hamiltonian systems near
an elliptic equilibrium point.

Even specific examples of systems that are nonintegrable in the strong sense ((1),(2),(3),
or (4)) would be interesting. The following example of chaotic behavior is due to Kozlovsky

[Kozl]. Consider a germ of an analytic mapping
2 = ewz + 22

of the complex line z € C to itself in a neighborhood of the (elliptic) fixed point 0. Let

an irrational 6 be unusually well approximated by rational numbers. Then there are
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infinitely many periodic trajectories in any neighborhood of the origin. Such mappings are

nonintegrable in the sense of (1)-(4).

One more extension of the integrability property has been suggested by Yudovich [Yu2].
He introduced the notion of cosymmetry of a vector field. A cosymmetry is a field of
hyperplanes in the tangent spaces containing the given vector field (one might call them
nonholonomic constraints). This field of hyperplanes is allowed to degenerate at some
points of the manifold, and it is defined by a 1-form (possibly with zeroes) annihilated at
every point by the given vector field.

Every nonzero vector field has locally some trivial cosymmetries. The existence of a
global cosymmetry implies some restrictions on the topological properties of the field.
Example: If a field with an equilibrium has a nontrivial cosymmetry, then the equilibrium
is nonisolated (and generically belongs to a curve of equilibria). If a vector field admits two
cosyminetries, it generically has a surface of equilibria, etc. This phenomenon is described
by a “cosymmetric version” of the implicit function theorem [Yu2]. Furthermore, for
dynamical systems with cosymmetries one observes generic bifurcations of an equilibrium
point into a family of those points (the phenomenon of infinite codimension among all
dynamical systems).

Yudovich has discovered nontrivial cosymmetries in some physical problems of hydro-
dynamical origin (fluid convection in porous media) and of Newtonian mechanics. For
instance, if a vector field has a first integral ¢, then the differential d¢ is a (holonomic)
cosymmetry. (Example: For Newton’s second law & = F(x) with a potential force F(x),
the sum of the kinetic and potential energy is the first integral of the equation.) The
notion of cosymmetry provides a natural framework for the validity of the result of the
Noether theorem on the existence of momentum-like first integrals for the Newton equation
i = F(x) with a nonpotential force F(x) [Yu2]. The nonholonomic cosymmetries of this
equation ensure (generically) the existence of continuous families of equilibria even for this

classical situation.
Returning to steady fluid flows in even dimensions, we need the following

DEFINITION 6.12. A coadjoint orbit O C g* does not admit extra symmetries if for
any (or, equivalently, for some) 2-form w € O the corresponding vorticity function A does
not admit extra symmetries on A™!([a, b]) for any pair of its regular values 0 < a < b or

a < b < 0. (Note that the form w is symplectic precisely on the complement to the zero
level of A =w™/p.)

Definitions 6.8 and 6.12 are consistent: A function f on a compact symplectic manifold

does not admit extra symmetries if and only if its restriction to the preimage of any segment
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with regular endpoints does not admit them.

DEFINITIONS 6.13. A function on a compact manifold is a Morse function if all its
critical points are nondegenerate, i.e., the Hessian matriz of the second derivatives of the
function is nondegenerate at every critical point. The number of negative eigenvalues of
the Hessian matrix is called the Morse index of the critical point.

An orbit O C g* has Morse type if for any (or, equivalently, for some) w € O the
function A is a Morse function on M constant on every connected component of M. The
orbit is called positive if A\(x) is positive for all @ € M \ OM.

THEOREM 6.14 [GK2]. Let dim M = 2n > 4 and O be a Morse-type orbit without extra
symmetries. Assume that O contains a steady solution. Then, for every w € O all the
critical points of the vorticity function A have indices either no less than n or no greater

than n on every connected component of M \ {\ = 0}.
EXAMPLE 6.15. If O is as above and A > 0 on M \ 0M, then A cannot have both a

local maximum (index 2n) and a local minimum (index 0) on M \ OM.

PrROOF OF THEOREM. For simplicity assume that O is a positive orbit, i.e., A > 0
on M. Only a minor modification is required to prove the general case. Let w € O be
a stationary solution (L,w = 0) and « the corresponding Bernoulli function such that
da = —1,w.

Since A = w™/u does not admit extra symmetries and {«a, A} = 0, the function o must

be constant on the connected components of A-levels.

LEMMA 6.16. The functions A and « have the same critical points. In particular, the

critical points of a are 1solated.

PROOF OF LEMMA. Since A does not admit extra symmetries, dA(z) = 0 implies that
da(x) = 0. The rest of the critical set of & may only be the union of some connected
components of A-levels. For a vector field v and the Riemannian dual 1-form u(-) = (v,-)
one has u(v) = (v,v) > 0.

Consider the vector field n on M defined by the formula ¢,w = w. The field 5 is
expanding for the 2-form w = du: L,w = w. Furthermore, the field 5 is gradient-like for

the Bernoulli function «:
Lya =iyda = —iyi,w0 = t,u = u(v) > 0.
Moreover,

(6.1) Lya=0&u(v)=0<u=0.
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If the critical set of o contains a connected component I' of a A-level, then L, a =0
for all + € T', and as a consequence of (6.1), u|p = 0. Hence, w|r = du|r = 0. This
is impossible, because I' is a hypersurface in the symplectic manifold (M,w) and 2n =
dim M > 4. The lemma is proved. O

Now observe that all zeroes of the vector field n are nondegenerate, as follows from
L,w = w. Therefore, the field n has smooth complementary dilating and contracting
manifolds in a neighborhood of each of its stagnation points. Moreover, the dimension
of the dilating manifold for each point must be at least n. Indeed, the restriction of the
symplectic form w to the contracting manifold of  must be zero by virtue of the expanding
property of 1, and hence all the contracting manifolds have dimension at most n.

Now we are ready to complete the proof of the theorem. The field 5 is gradient-like for
the function «. Therefore, n is either gradient- or antigradient-like for A on the whole of
M, since the A- and a-levels coincide in a neighborhood of every critical point and A is a
Morse function. Thus, at all critical points of the vorticity function A the dimensions of all
its dilating or of all its contracting manifolds are simultaneously bounded by n from below.

This gives the desired inequality for the Morse indices of the A-critical points. O

One may prove that all the critical points of o are nondegenerate except, possibly, for

1ts maxima and minima.

THEOREM 6.17 [GK2]. Let M be diffeomorphic to the two-dimensional disk B*. If a
Morse-type orbit O C g* contains a stationary solution, then for any w € O the vortic-

ity function A cannot simultaneously have a local mazimum and a local minimum in M,

provided that A > 0 on M \ OM.

Note that since dim M = 2, the orbit O does not automatically admit extra symmetries.
The proof below is a formalization of the following argument, which is evident from a
physical viewpoint. Minima and maxima of the vorticity function correspond to rotations
of the fluid in opposite directions. On the other hand, the positivity of A prescribes a

priors a counterclockwise drift.

PRrROOF. First, recall that « cannot have maxima. Indeed, in a neighborhood of a
maximum the gradient-like (for n) field  would shrink the area, which contradicts the
equation Lyw = w. Let I" be the critical set of @. Observe that since « is constant on dM,
the set I' either contains the boundary dM or does not meet it. We claim that M \ T is
connected. To prove this, assume the contrary. Then there exists an open set U C M \ T’

such that OU C I'. The set U is invariant under the flow of 5, since da (and thus 7)



124 II. TOPOLOGY OF STEADY FLUID FLOWS

vanishes on I'. On the other hand, as above, the existence of such a set U contradicts the
area expansion.

Observe that the field n is gradient-like for A in a neighborhood of every local minimum
of A: Indeed, every local minimum of A is a local minimum of «, and the field n is gradient-
like for a. Meanwhile, near a local maximum of A, the field n must be antigradient-like for
A. Switching from being gradient-like to antigradient-like (and vica versa) may occur only
on I'. But I' does not divide M. Hence 5 is either gradient-like or antigradient-like on all
of M. The theorem follows. O

6.D. Nonexistence of smooth steady flows and sharpness of the restric-
tions. Applying Theorems 6.14 and 6.17, one can easily find a coadjoint orbit that does
not contain a steady solution.

The case of a two-dimensional M is particularly simple. Consider a disk M = B? C Ri,y
with ¢ = de A dy and w = A -y, where A is a positive Morse function on B such that
A ap = const. Assume also that A has both a local maximum and a local minimum in the

interior of B (see, e.g., Fig.20).

FIGURE 20. Level curves and a profile of the vorticity function having

no smooth steady flow.

COROLLARY 6.18 (OF THEOREM 6.17). There is no smooth steady solution on B*
whose vorticity function s obtained from the function \ by an area-preserving diffeomor-

phism.

Note that a “generalized steady solution” with a discontinuous vorticity function may

still exist and be of certain interest for applications [Mof4].
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REMARK 6.19 [GK2]. It turns out that Theorems 6.8 and 6.10 are almost sharp as long
as we are not concerned about the metric. Namely, there is no general restriction on the
topology of the vorticity function except that given by the theorems.

In the two-dimensional case one can consider, for example, a positive smooth subhar-
monic function A on C ~ R?2, constant on the unit circle. Then on the unit disk B? there
exists a metric (-,-) and an area form p such that A is the vorticity function of a steady
solution. In particular, the vorticity function may have saddle critical points, at least for

some metrics and volume forms.

A higher-dimensional version of Corollary 6.18 follows from Theorem 6.14. Let O C g*

be a Morse-type orbit that is positive (i.e., A > 0) and has no extra symmetries.

COROLLARY 6.20 (OF THEOREM 6.14). Assume that for some w € O the vorticity
function X has a critical point of index k1 < n and a critical point of index ky > n, where

2n = dim M. Then the coadjoint orbit O contains no steady solutions. g

COROLLARY 6.21. Assume that H** (M,R) # 0 and H**(M,R) # 0 for some k; < n

and ks > n. Then the coadjoint orbit O contains no steady solutions.
PROOF is the application of the Morse inequalities. O
Now the sharpness result reads as follows.

THEOREM 6.22 [GK2]. Let M be a compact manifold with boundary, dim M = 2n > 6,
and A a smooth positive function on M such that f 1s constant on connected components
of OM and all the critical points of A have indices no greater than n. Assume, in addition,
that M admats an almost complex structure. Then there exist a metric and a volume form

on M such that X\ 1s the vorticity function of a steady solution.

The proof uses the result of Ya. Eliashberg [E12] that the manifold M admits a complex
structure such that the closed 2-form w = —2Im 99\ is a symplectic form on M.

Various connections between the steady solutions and complex structures, as well as
further details and other subtle restrictions on the pairs (w, A) imposed by the existence

of a steady solution, are discussed in [GK2].



