TOPOLOGICAL METHODS IN HYDRODYNAMICS

Vladimir I. Arnold Boris A. Khesin

Vladimir I. Arnold

Steklov Mathematical Institute (Moscow) and Université Paris-Dauphine

Boris A. Khesin

Yale University and University of Toronto

TABLE OF CONTENTS

т ,	1	, •
Intro	duc	tion
	~ ~ ~	

Chapter I. Group and Hamiltonian Structures of Fluid	
Dynamics	1
$\S1.$ Symmetry groups for a rigid body and an ideal fluid	1
$\S 2.$ Lie groups, Lie algebras, and adjoint representation	3
§3. Coadjoint representation of a Lie group	10
3.A. Definition of the coadjoint representation	10
3.B. Dual of the space of plane divergence-free vector fields3.C. The Lie algebra of divergence-free vector fields and its dual in arbitrary dimension	12 14
§4. Left-invariant metrics and a rigid body for an arbi-	11
trary group	15
§5. Applications to hydrodynamics	20
$\S 6.$ Hamiltonian structure for the Euler equations	26
$\S7$. Ideal hydrodynamics on Riemannian manifolds	33
7.A. The Euler hydrodynamic equation on manifolds	33
7.B. Dual space to the Lie algebra of divergence-free fields 7.C. Inertia operator of an n -dimensional fluid	$\frac{34}{39}$
§8. Proofs of theorems about the Lie algebra of divergence- free fields and its dual	41
\S 9. Conservation laws in higher-dimensional hydrodyna-	
mics	45
§10. The group setting of ideal magnetohydrodynamics 10.A. Equations of magnetohydrodynamics and the Kirchhoff	52
equations	52
10.B. Magnetic extension of any Lie group	53
10.C. Hamiltonian formulation of the Kirchhoff and magneto-	
hydrodynamics equations	57
$\S 11.$ Finite-dimensional approximations of the Euler equa-	
tion	59
11.A.Approximations by vortex systems in the plane	59
11.B. Nonintegrability of four or more point vortices	62
11.C.Hamiltonian vortex approximations in three dimensions	63

ix

$11. { m D.Finite-dimensional} { m approximations} { m of} { m diffeomorphism} { m group}$)S
	63
$\S12$. The Navier–Stokes equation from the group view-	a F
point	67
Chapter II. Topology of Steady Fluid Flows	73
$\S1.$ Classification of three-dimensional steady flows	73
1.A. Stationary Euler solutions and Bernoulli functions	73
1.B. Structural theorems	78
$\S 2$. Variational principles for steady solutions and appli-	
cations to two-dimensional flows	80
2.A. Minimization of the energy	80
2.B. The Dirichlet problem and steady flows	82
2.C. Relation of two variational principles	85
2.D. Semi-group variational principle for two-dimensional steady	0.0
flows	86
§3. Stability of stationary points on Lie algebras	89
§4. Stability of planar fluid flows	94
4.A. Stability criteria for steady flows	94
4.B. Wandering solutions of the Euler equation	102
§5. Linear and exponential stretching of particles and	
rapidly oscillating perturbations	104
5.A. The linearized and shortened Euler equations	105
5.B. The action–angle variables \tilde{c}	106
5.C. Spectrum of the shortened equation $\mathbf{F} \mathbf{D} = \mathbf{T} \mathbf{L} \mathbf{C}$	107
5.D. The Squire theorem for shear flows	108
5.E. Steady flows with exponential stretching of particles	$\begin{array}{c} 110\\111 \end{array}$
5.F. Analysis of the linearized Euler equation 5.G. Inconclusiveness of the stability test for space steady flows	$111 \\ 112$
§6. Features of higher-dimensional steady flows 6.A. Generalized Beltrami flows	116 116
6.B. Structure of four-dimensional steady flows	117
6.C. Topology of the vorticity function	$117 \\ 119$
6.D. Nonexistence of smooth steady flows and sharpness of the	113
restrictions	124
	121
Chapter III. Topological Properties of Magnetic and	
Vorticity Fields	127
$\S1$. Minimal energy and helicity of a frozen-in field	127
1.A. Variational problem for magnetic energy	127
1.B. Extremal fields and their topology	121
1.C. Helicity bounds the energy	$120 \\ 129$
1.D. Helicity of fields on manifolds	132

§2.	Topological	obstructions	to energy	relaxation	137

2.A. Model example: Two linked flux tubes	137
2.B. Energy lower bound for nontrivial linking	140
$\S 3.$ Sakharov–Zeldovich minimization problem	143
§4. Asymptotic linking number	149
4.A. Asymptotic linking number of a pair of trajectories	149
4.B. Digression on the Gauss formula	152
4.C. Another definition of the asymptotic linking number	154
4.D. Linking forms on manifolds	156
§5. Asymptotic crossing number	162
5.A. Energy minoration for generic vector fields	162
5.B. Asymptotic crossing number of knots and links	165
5.C. Conformal modulus of a torus	169
§6. Energy of a knot	170
6.A. Energy of a charged loop	170
6.B. Generalizations of the knot energy	173
$\S7.$ Generalized helicities and linking numbers	176
7.A. Relative helicity	176
7.B. Ergodic meaning of higher-dimensional helicity integrals	179
7.C. Higher-order linking integrals	185
7.D. Calugareanu invariant and self-linking number	189
7.E. Holomorphic linking number	190
§8. Asymptotic holonomy and applications	196
8.A. Jones–Witten invariants for vector fields	196
8.B. Interpretation of Godbillon–Vey-type characteristic	200
classes	203
Charten IV Differential Connection of Differences him	
Chapter IV. Differential Geometry of Diffeomorphism Groups	207
§1. The Lobachevsky plane and preliminaries in differen-	
tial geometry	208
1.A. The Lobachevsky plane of affine transformations	208
1.B. Curvature and parallel translation	210
1.C. Behavior of geodesics on curved manifolds	213
1.D. Relation of the covariant and Lie derivatives	214
\S 2. Sectional curvatures of Lie groups equipped with a	
one-sided invariant metric	217
§3. Riemannian geometry of the group of area-preserving	
diffeomorphisms of the two-torus	222
3.A. The curvature tensor for the group of torus diffeomor-	
phisms	222
3.B. Curvature calculations	225
$\S4.$ Diffeomorphism groups and unreliable forecasts	228
4.A. Curvatures of various diffeomorphism groups	228
4.B. Unreliability of long-term weather predictions	231

§5. Exterior geometry of the group of volume-preserving	
diffeomorphisms	232
\S 6. Conjugate points in diffeomorphism groups	237
§7. Getting around the finiteness of the diameter of the	
group of volume-preserving diffeomorphisms	239
7.A. Interplay between the internal and external geometry of	
the diffeomorphism group	240
7.B. Diameter of the diffeomorphism groups	241
7.C. Comparison of the metrics and completion of the group	
of diffeomorphisms	242
7.D. The absence of the shortest path $\overline{2}$	244
7.E. Discrete flows	248
7.F. Outline of the proofs 7.G. Generalized flows	249 250
7.G. Generalized nows 7.H. Approximation of fluid flows by generalized ones	$\frac{250}{253}$
7.1. Existence of cut and conjugate points on diffeomorphism	200
groups	255
§8. Infinite diameter of the group of Hamiltonian diffeo-	200
morphisms and symplecto-hydrodynamics	257
8.A. Right-invariant metrics on symplectomorphisms	259
8.B. Calabi invariant	260
8.C. Bi-invariant metrics and pseudometrics on the group of	
Hamiltonian diffeomorphisms	267
8.D. Bi-invariant indefinite metric and action functional on the	
group of volume-preserving diffeomorphisms of a three-	
fold	271
Chapter V. Kinematic Fast Dynamo Problems	275
$\S1.$ Dynamo and particle stretching	275
1.A. Fast and slow kinematic dynamos	275
1.B. Non-dissipative dynamos on arbitrary manifolds	278
$\S 2.$ Discrete dynamos in two dimensions	281
2.A. Dynamo from the cat map on a torus	281
2.B. Horseshoes and multiple foldings in dynamo constructions	284
2.C. Dissipative dynamos on surfaces	287
2.D. Asymptotic Lefschetz number	289
§3. Main antidynamo theorems	290
3.A. Cowling's and Zeldovich's theorems	290
3.B. Antidynamo theorems for tensor densities	291
3.C. Digression on the Fokker-Planck equation	294
3.D. Proofs of the antidynamo theorems	298
3.E. Discrete versions of antidynamo theorems	301
§4. Three dimensional dynamo models	303
4.A. "Rope dynamo" mechanism	303
4.B. Numerical evidence of the dynamo effect	304

4.C. A dissipative dynamo model on a three-dimensional Rie-	
mannian manifold	305
4.D. Geodesic flows and differential operations on surfaces of	
constant negative curvature	311
4.E. Energy balance and singularities of the Euler equation	317
§5. Dynamo exponents in terms of topological entropy	
5.A. Topological entropy of dynamical systems	317
5.B. Bounds for the exponents in non-dissipative dynamo mod-	
els	318
5.C. Upper bounds for dissipative L^1 -dynamos	319
Chapter VI. Dynamical Systems with Hydrodynamical	
Background	321
§1. The Korteweg–de Vries equation as an Euler equation	321
1.A. Virasoro algebra	321
1.B. The translation argument principle and integrability of	
the high-dimensional rigid body	326
1.C. Integrability of the KdV equation	331
1.D. Digression on Lie algebra cohomology and the Gelfand-	
Fuchs cocycle	334
\S 2. Equations of gas dynamics and compressible fluids	337
2.A. Barotropic fluids and gas dynamics	337
2.B. Other conservative fluid systems	342
2.C. Infinite conductivity equation	344
§3. Kähler geometry and dynamical systems on the space	
of knots	346
3.A. Geometric structures on the set of embedded curves	346
3.B. Filament-, Nonlinear Schrödinger-, and Heisenberg chain	
equations	352
3.C. Loop groups and the general Landau–Lifschitz equation	354
$\S4.$ Sobolev's equation	355
$\S 5.$ Elliptic coordinates from hydrodynamical viewpoint	361
5.A. Charges on quadrics in three dimensions	361
5.B. Charges on higher-dimensional quadrics	363
References	367
Index	387

Introduction

"...ad alcuno, dico, di quelli, che troppo laconicamente vorrebbero vedere, nei piu' angusti spazii che possibil fusse, ristretti i filosofici insegnamenti, si' che sempre si usasse quella rigida e concisa maniera, spogliata di qualsivoglia vaghezza ed ornamento, che e' propria dei puri geometri, li quali ne' pure una parola proferiscono che dalla assoluta necessita' non sia loro suggerita.

Ma io, all'incontro, non ascrivo a difetto in un trattato, ancorche' indirizzato ad un solo scopo, interserire altre varie notizie, purche' non siano totalmente separate e senza veruna coerenza annesse al principale instituto."¹

> Galileo Galilei "Lettera al Principe Leopoldo di Toscana" (1623)

Hydrodynamics is one of those fundamental areas in mathematics where progress at any moment may be regarded as a standard to measure the real success of mathematical science. Many important achievements in this field are based on profound theories rather than on experiments. In turn, those hydrodynamical theories stimulated developments in the domains of pure mathematics, such as complex analysis, topology, stability theory, bifurcation theory, and completely integrable dynamical systems. In spite of all this acknowledged success, hydrodynamics with its spectacular empirical laws remains a challenge for mathematicians. For instance, the phenomenon of turbulence has not yet acquired a rigorous mathematical theory. Furthermore, the existence problems for the smooth solutions of hydrodynamic equations of a three-dimensional fluid are still open.

The simplest but already very substantial mathematical model for fluid dynamics is the hydrodynamics of an ideal (i.e., of an incompressible and inviscid) homogeneous fluid. From the mathematical point of view, a theory of such a fluid filling a certain domain is

¹ "... Some prefer to see the scientific teachings condensed too laconically into the smallest possible volume, so as always to use a rigid and concise manner that whatsoever lacks beauty and embellishment, and that is so common among pure geometers who do not pronounce a single word which is not of absolute necessity.

I, on the contrary, do not consider it a defect to insert in a treatise, albeit devoted to a single aim, other various remarks, as long as they are not out of place and without coherency with the main purpose," see [Gal].

nothing but a study of geodesics on the group of diffeomorphisms of the domain that preserve volume elements. The geodesics on this (infinite-dimensional) group are considered with respect to the right-invariant Riemannian metric given by the kinetic energy.

In 1765, L. Euler [Eul] published the equations of motion of a rigid body. Eulerian motions are described as geodesics in the group of rotations of three-dimensional Euclidean space, where the group is provided with a left-invariant metric. In essence, the Euler theory of a rigid body is fully described by this invariance. The Euler equations can be extended in the same way to an arbitrary group. As a result, one obtains, for instance, the equations of a rigid body motion in a high-dimensional space and, especially interesting, the Euler equations of the hydrodynamics of an ideal fluid.

Euler's theorems on the stability of rotations about the longest and shortest axes of the inertia ellipsoid have counterparts for an arbitrary group as well. In the case of hydrodynamics, these counterparts deliver nonlinear generalizations of Rayleigh's theorem on the stability of two-dimensional flows without inflection points of the velocity profile.

The description of ideal fluid flows by means of geodesics of the right-invariant metric allows one to apply the methods of Riemannian geometry to the study of flows. It does not immediately imply that one has to start by constructing a consistent theory of infinitedimensional Riemannian manifolds. The latter encounters serious analytical difficulties, related in particular to the absence of existence theorems for smooth solutions of the corresponding differential equations.

On the other hand, the strategy of applying geometric methods to the infinite-dimensional problems is as follows. Having established certain facts in the finite-dimensional situation (of geodesics for invariant metrics on finite-dimensional Lie groups), one uses the results to *formulate* the corresponding facts for the infinite-dimensional case of the diffeomorphism groups. These final results often can be proved directly, leaving aside the difficult questions of foundations for the intermediate steps (such as the existence of solutions on a given time interval). The results obtained in this way have an *a priori* character: the derived identities or inequalities take place for any reasonable meaning of "solutions," provided that such solutions exist. The actual existence of the solutions remains an open question.

For example, we deduce the formulas for the Riemannian curvature of a group endowed with an invariant Riemannian metric. Applying these formulas to the case of the infinite-dimensional manifold whose geodesics are motions of the ideal fluid, we find that the curvature is negative in many directions. Negativeness of the curvature implies instability of motion along the geodesics (which is well-known in Riemannian geometry of finite-dimensional manifolds). In the context of the (infinite-dimensional) case of the diffeomorphism group, we conclude that the ideal flow is unstable (in the sense that a small variation of the initial data implies large changes of the particle positions at a later time).

INTRODUCTION

Moreover, the curvature formulas allow one to estimate the increment of the exponential deviation of fluid particles with close initial positions and hence to predict the time period when the motion of fluid masses becomes essentially unpredictable.

For instance, in the simplest and utmost idealized model of the earth's atmosphere (regarded as two-dimensional ideal fluid on a torus surface), the deviations grow by the factor of 10^5 in 2 months. This circumstance ensures that a dynamical weather forecast for such a period is practically impossible (however powerful the computers and however dense the grid of data used for this purpose).

The table of contents is essentially self explanatory. We have tried to make the chapters as independent of each other as possible. Cross references within the same chapter do not contain the chapter number.

For a first acquaintance with the subject, we address the reader to the following sections in each chapter: Sections I.1-5 and I.12, Sections II.1 and II.3-4, Sections III.1-2 and III.4, Section IV.1, Sections V.1-2, Sections VI.1 and VI.4.

Some statements in this book may be new even for the experts. We mention the classification of the local conservation laws in ideal hydrodynamics (Theorem I.9.9), M. Freedman's solution of the A. Sakharov–Ya. Zeldovich problem on the energy minimization of the unknotted magnetic field (Theorem III.3), a discussion of the construction of manifold invariants from the energy bounds (Remark III.2.6), a discussion of a complex version of the Vassiliev knot invariants (in Section III.7.E), a nice remark of B. Zeldovich on the Lobachevsky triangle medians (Problem IV.1.4), the relation of the covariant derivative of a vector field and the inertia operator in hydrodynamics (Section IV.1.D), a digression on the Fokker–Planck equation (Section V.3.C), and the dynamo construction from the geodesic flow on surfaces of constant negative curvature (Section V.4.D).

Acknowledgments

We greatly benefited from the help of many people. We are sincerely grateful to all of them: F. Aicardi, J.-L. Brylinski, M.A. Berger, Yu.V. Chekanov, S. Childress, L.A. Dickey, D.G. Ebin, Ya. Eliashberg, L.D. Faddeev, V.V. Fock, M.H. Freedman, U. Frisch, A.D. Gilbert, V.L. Ginzburg, M.L. Gromov, M. Henon, M.-R. Herman, H. Hofer, Yu.S. Ilyashenko, K.M. Khanin, C. King, A.N. Kolmogorov, E.I. Korkina, V.V. Kozlov, O.A. Ladyzhenskaya, P. Laurence, J. Leray, A.M. Lukatsky, M. Lyubich, S.V. Manakov, J.E. Marsden, D. McDuff, A.S. Mishchenko, H.K. Moffatt, R. Montgomery, J.J. Moreau, J. Moser, N. Nekrasov, Yu.A. Neretin, S.P. Novikov, V.I. Oseledets, V.Yu. Ovsienko, D.A. Panov, L. Polterovich, M. Polyak, T.S. Ratiu, S. Resnick, C. Roger, A.A. Rosly, A.A. Ruzmaikin, A.D. Sakharov, L. Schwartz, D. Serre, B.Z. Shapiro, A.I. Shnirelman, M.A. Shubin, Ya.G. Sinai, S.L. Sobolev, D.D. Sokolov, S.L. Tabachnikov, A.N. Todorov, O.Ya. Viro, M.M. Vishik, V.A. Vladimirov, A. Weinstein, L.-S. Young, V.I. Yudovich, V.M. Zakalyukin, I.S. Zakharevich, V. Zeitlin, Ya.B. Zeldovich, E. Zehnder, A.V. Zorich, V.A. Zorich and many others.

Section IV.7 was written by A.I. Shnirelman, and the initial version of Section VI.5 was prepared by B.Z. Shapiro. Remark 4.11 was written by J.E. Marsden. Special thanks go to O.S. Kozlovsky and G. Misiołek for the numerous discussions on different topics of the book and for their many useful remarks. O.S. Kozlovsky has also provided us with his recent unpublished results for several sections in Chapter V (in particular, for Sections V.1.B,V.2.C,V.3.E).

Boris Khesin is deeply indebted to his wife Masha for her tireless moral support during the seemingly endless work on this book. We are grateful to A. Mekis for his help with figures and to D. Kramer for his careful reading of the manuscript.

B.K. appreciates the kind hospitality of the Max-Planck Institut in Bonn, Institut des Hautes Etudes Scientifiques in Bures-sur-Yvette, Research Institute for Mathematical Sciences in Kyoto, and Forschungsinstitut für Mathematik in Zürich during his work on this book. The preparation of this book was partially supported by the Russian Basic Research Foundation, project 96-01-01104 (V.A.), by the Alfred P. Sloan Research Fellowship, and by the NSF and NSERC research grants DMS-9627782 and OGP-0194132 (B.K.).