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Introduction

“...ad alcuno, dico, di quelli, che troppo laconicamente vorrebbero
vedere, nei piu’ angusti spazii che possibil fusse, ristretti 1 filosofici
insegnamenti, si’ che sempre si usasse quella rigida e concisa maniera,
spogliata di qualsivoglia vaghezza ed ornamento, che e’ propria

dei puri geometri, li quali ne’ pure una parola proferiscono che dalla
assoluta necessita’ non sia loro suggerita.

Ma io, all'incontro, non ascrivo a difetto in un trattato, ancorche’
indirizzato ad un solo scopo, interserire altre varie notizie, purche’

non siano totalmente separate e senza veruna coerenza annesse

al principale instituto.”

Galileo Galilei
“Lettera al Principe Leopoldo di Toscana” (1623)

Hydrodynamics is one of those fundamental areas in mathematics where progress at
any moment may be regarded as a standard to measure the real success of mathemat-
ical science. Many important achievements in this field are based on profound theories
rather than on experiments. In turn, those hydrodynamical theories stimulated develop-
ments in the domains of pure mathematics, such as complex analysis, topology, stability
theory, bifurcation theory, and completely integrable dynamical systems. In spite of all
this acknowledged success, hydrodynamics with its spectacular empirical laws remains a
challenge for mathematicians. For instance, the phenomenon of turbulence has not yet
acquired a rigorous mathematical theory. Furthermore, the existence problems for the
smooth solutions of hydrodynamic equations of a three-dimensional fluid are still open.

The simplest but already very substantial mathematical model for fluid dynamics is
the hydrodynamics of an ideal (i.e., of an incompressible and inviscid) homogeneous fluid.

From the mathematical point of view, a theory of such a fluid filling a certain domain is

L« Some prefer to see the scientific teachings condensed too laconically into the smallest possible

volume, so as always to use a rigid and concise manner that whatsoever lacks beauty and embellishment,
and that is so common among pure geometers who do not pronounce a single word which is not of absolute
necessity.

I, on the contrary, do not consider it a defect to insert in a treatise, albeit devoted to a single aim, other
various remarks, as long as they are not out of place and without coherency with the main purpose,” see

[Gal].
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nothing but a study of geodesics on the group of diffeomorphisms of the domain that pre-
serve volume elements. The geodesics on this (infinite-dimensional) group are considered

with respect to the right-invariant Riemannian metric given by the kinetic energy.

In 1765, L. Euler [Eul] published the equations of motion of a rigid body. Eulerian
motions are described as geodesics in the group of rotations of three-dimensional Euclidean
space, where the group is provided with a left-invariant metric. In essence, the Euler theory
of a rigid body is fully described by this invariance. The Euler equations can be extended
in the same way to an arbitrary group. As a result, one obtains, for instance, the equations
of a rigid body motion in a high-dimensional space and, especially interesting, the Euler

equations of the hydrodynamics of an ideal fluid.

Euler’s theorems on the stability of rotations about the longest and shortest axes of the
inertia ellipsoid have counterparts for an arbitrary group as well. In the case of hydrody-
namics, these counterparts deliver nonlinear generalizations of Rayleigh’s theorem on the

stability of two-dimensional flows without inflection points of the velocity profile.

The description of ideal fluid flows by means of geodesics of the right-invariant metric
allows one to apply the methods of Riemannian geometry to the study of flows. It does
not immediately imply that one has to start by constructing a consistent theory of infinite-
dimensional Riemannian manifolds. The latter encounters serious analytical difficulties,
related in particular to the absence of existence theorems for smooth solutions of the

corresponding differential equations.

On the other hand, the strategy of applying geometric methods to the infinite-dimensional
problems is as follows. Having established certain facts in the finite-dimensional situation
(of geodesics for invariant metrics on finite-dimensional Lie groups), one uses the results to
formulate the corresponding facts for the infinite-dimensional case of the diffeomorphism
groups. These final results often can be proved directly, leaving aside the difficult ques-
tions of foundations for the intermediate steps (such as the existence of solutions on a given
time interval). The results obtained in this way have an a prior: character: the derived
identities or inequalities take place for any reasonable meaning of “solutions,” provided

that such solutions exist. The actual existence of the solutions remains an open question.

For example, we deduce the formulas for the Riemannian curvature of a group en-
dowed with an invariant Riemannian metric. Applying these formulas to the case of the
infinite-dimensional manifold whose geodesics are motions of the ideal fluid, we find that
the curvature is negative in many directions. Negativeness of the curvature implies in-
stability of motion along the geodesics (which is well-known in Riemannian geometry of
finite-dimensional manifolds). In the context of the (infinite-dimensional) case of the dif-
feomorphism group, we conclude that the ideal flow is unstable (in the sense that a small

variation of the initial data implies large changes of the particle positions at a later time).
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Moreover, the curvature formulas allow one to estimate the increment of the exponential
deviation of fluid particles with close initial positions and hence to predict the time period
when the motion of fluid masses becomes essentially unpredictable.

For instance, in the simplest and utmost idealized model of the earth’s atmosphere
(regarded as two-dimensional ideal fluid on a torus surface), the deviations grow by the
factor of 10° in 2 months. This circumstance ensures that a dynamical weather forecast
for such a period is practically impossible (however powerful the computers and however

dense the grid of data used for this purpose).

The table of contents is essentially self explanatory. We have tried to make the chapters
as independent of each other as possible. Cross references within the same chapter do not

contain the chapter number.

For a first acquaintance with the subject, we address the reader to the following sections
in each chapter: Sections I.1-5 and .12, Sections II.1 and I1.3-4, Sections I11.1-2 and III1.4,
Section IV.1, Sections V.1-2, Sections VI.1 and VI.4.

Some statements in this book may be new even for the experts. We mention the classi-
fication of the local conservation laws in ideal hydrodynamics (Theorem 1.9.9), M. Freed-
man’s solution of the A. Sakharov—Ya. Zeldovich problem on the energy minimization of
the unknotted magnetic field (Theorem II1.3), a discussion of the construction of manifold
invariants from the energy bounds (Remark II1.2.6), a discussion of a complex version of
the Vassiliev knot invariants (in Section III.7.E), a nice remark of B. Zeldovich on the
Lobachevsky triangle medians (Problem IV.1.4), the relation of the covariant derivative
of a vector field and the inertia operator in hydrodynamics (Section IV.1.D), a digression
on the Fokker—Planck equation (Section V.3.C), and the dynamo construction from the

geodesic flow on surfaces of constant negative curvature (Section V.4.D).
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