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ixIntroduction\...ad alcuno, dico, di quelli, che troppo laconicamente vorrebberovedere, nei piu' angusti spazii che possibil fusse, ristretti i �loso�ciinsegnamenti, si' che sempre si usasse quella rigida e concisa maniera,spogliata di qualsivoglia vaghezza ed ornamento, che e' propriadei puri geometri, li quali ne' pure una parola proferiscono che dallaassoluta necessita' non sia loro suggerita.Ma io, all'incontro, non ascrivo a difetto in un trattato, ancorche'indirizzato ad un solo scopo, interserire altre varie notizie, purche'non siano totalmente separate e senza veruna coerenza annesseal principale instituto."1 Galileo Galilei\Lettera al Principe Leopoldo di Toscana" (1623)Hydrodynamics is one of those fundamental areas in mathematics where progress atany moment may be regarded as a standard to measure the real success of mathemat-ical science. Many important achievements in this �eld are based on profound theoriesrather than on experiments. In turn, those hydrodynamical theories stimulated develop-ments in the domains of pure mathematics, such as complex analysis, topology, stabilitytheory, bifurcation theory, and completely integrable dynamical systems. In spite of allthis acknowledged success, hydrodynamics with its spectacular empirical laws remains achallenge for mathematicians. For instance, the phenomenon of turbulence has not yetacquired a rigorous mathematical theory. Furthermore, the existence problems for thesmooth solutions of hydrodynamic equations of a three-dimensional 
uid are still open.The simplest but already very substantial mathematical model for 
uid dynamics isthe hydrodynamics of an ideal (i.e., of an incompressible and inviscid) homogeneous 
uid.From the mathematical point of view, a theory of such a 
uid �lling a certain domain is1\... Some prefer to see the scienti�c teachings condensed too laconically into the smallest possiblevolume, so as always to use a rigid and concise manner that whatsoever lacks beauty and embellishment,and that is so common among pure geometers who do not pronounce a single word which is not of absolutenecessity.I, on the contrary, do not consider it a defect to insert in a treatise, albeit devoted to a single aim, othervarious remarks, as long as they are not out of place and without coherency with the main purpose," see[Gal].



x TOPOLOGICAL METHODS IN HYDRODYNAMICSnothing but a study of geodesics on the group of di�eomorphisms of the domain that pre-serve volume elements. The geodesics on this (in�nite-dimensional) group are consideredwith respect to the right-invariant Riemannian metric given by the kinetic energy.In 1765, L. Euler [Eul] published the equations of motion of a rigid body. Eulerianmotions are described as geodesics in the group of rotations of three-dimensional Euclideanspace, where the group is provided with a left-invariant metric. In essence, the Euler theoryof a rigid body is fully described by this invariance. The Euler equations can be extendedin the same way to an arbitrary group. As a result, one obtains, for instance, the equationsof a rigid body motion in a high-dimensional space and, especially interesting, the Eulerequations of the hydrodynamics of an ideal 
uid.Euler's theorems on the stability of rotations about the longest and shortest axes of theinertia ellipsoid have counterparts for an arbitrary group as well. In the case of hydrody-namics, these counterparts deliver nonlinear generalizations of Rayleigh's theorem on thestability of two-dimensional 
ows without in
ection points of the velocity pro�le.The description of ideal 
uid 
ows by means of geodesics of the right-invariant metricallows one to apply the methods of Riemannian geometry to the study of 
ows. It doesnot immediately imply that one has to start by constructing a consistent theory of in�nite-dimensional Riemannian manifolds. The latter encounters serious analytical di�culties,related in particular to the absence of existence theorems for smooth solutions of thecorresponding di�erential equations.On the other hand, the strategy of applying geometric methods to the in�nite-dimensionalproblems is as follows. Having established certain facts in the �nite-dimensional situation(of geodesics for invariant metrics on �nite-dimensional Lie groups), one uses the results toformulate the corresponding facts for the in�nite-dimensional case of the di�eomorphismgroups. These �nal results often can be proved directly, leaving aside the di�cult ques-tions of foundations for the intermediate steps (such as the existence of solutions on a giventime interval). The results obtained in this way have an a priori character: the derivedidentities or inequalities take place for any reasonable meaning of \solutions," providedthat such solutions exist. The actual existence of the solutions remains an open question.For example, we deduce the formulas for the Riemannian curvature of a group en-dowed with an invariant Riemannian metric. Applying these formulas to the case of thein�nite-dimensional manifold whose geodesics are motions of the ideal 
uid, we �nd thatthe curvature is negative in many directions. Negativeness of the curvature implies in-stability of motion along the geodesics (which is well-known in Riemannian geometry of�nite-dimensional manifolds). In the context of the (in�nite-dimensional) case of the dif-feomorphism group, we conclude that the ideal 
ow is unstable (in the sense that a smallvariation of the initial data implies large changes of the particle positions at a later time).



INTRODUCTION xiMoreover, the curvature formulas allow one to estimate the increment of the exponentialdeviation of 
uid particles with close initial positions and hence to predict the time periodwhen the motion of 
uid masses becomes essentially unpredictable.For instance, in the simplest and utmost idealized model of the earth's atmosphere(regarded as two-dimensional ideal 
uid on a torus surface), the deviations grow by thefactor of 105 in 2 months. This circumstance ensures that a dynamical weather forecastfor such a period is practically impossible (however powerful the computers and howeverdense the grid of data used for this purpose).The table of contents is essentially self explanatory. We have tried to make the chaptersas independent of each other as possible. Cross references within the same chapter do notcontain the chapter number.For a �rst acquaintance with the subject, we address the reader to the following sectionsin each chapter: Sections I.1-5 and I.12, Sections II.1 and II.3-4, Sections III.1-2 and III.4,Section IV.1, Sections V.1-2, Sections VI.1 and VI.4.Some statements in this book may be new even for the experts. We mention the classi-�cation of the local conservation laws in ideal hydrodynamics (Theorem I.9.9), M. Freed-man's solution of the A. Sakharov{Ya. Zeldovich problem on the energy minimization ofthe unknotted magnetic �eld (Theorem III.3), a discussion of the construction of manifoldinvariants from the energy bounds (Remark III.2.6), a discussion of a complex version ofthe Vassiliev knot invariants (in Section III.7.E), a nice remark of B. Zeldovich on theLobachevsky triangle medians (Problem IV.1.4), the relation of the covariant derivativeof a vector �eld and the inertia operator in hydrodynamics (Section IV.1.D), a digressionon the Fokker{Planck equation (Section V.3.C), and the dynamo construction from thegeodesic 
ow on surfaces of constant negative curvature (Section V.4.D).
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