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Preface

Many different mathematical methods and concepts are used in classical
mechanics: differential equations and phase flows, smooth mappings and
manifolds, Lie groups and Lie algebras, symplectic geometry and ergodic
theory. Many modern mathematical theories arose from problems in
mechanics and only later acquired that axiomatic-abstract form which
makes them so hard to study.

In this book we construct the mathematical apparatus of classical
mechanics from the very beginning; thus, the reader is not assumed to have
any previous knowledge beyond standard courses in analysis (differential
and integral calculus, differential equations), geometry (vector spaces,
vectors) and linear algebra (linear operators, quadratic forms).

With the help of this apparatus, we examine all the basic problems in
dynamics, including the theory of oscillations, the theory of rigid body
motion, and the hamiltonian formalism. The author has tried to §how the
geometric, qualitative aspect of phenomena. In this respect the book is
closer to courses in theoretical mechanics for theoretical physicists than to
traditional courses in theoretical mechanics as taught by mathematicians.

A considerable part of the book is devoted to variational principles and
analytical dynamics. Characterizing analytical dynamics in his *‘ Lectures on
the development of mathematics in the nineteenth century,” F. Klein wrote
that ““. . . a physicist, for his problems, can extract from these theories only
very little, and an engineer nothing.” The development of the sciences in the
following years decisively disproved this remark. Hamiltonian formalism
lay at the basis of quantum mechanics and has become one of the most often
used tools in the mathematical arsenal of physics. After the significance of
symplectic structures and Huygens’ principle for all sorts of optimization
problems was realized, Hamilton’s equations began to be used constantly in
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Preface

engineering calculations. On the other hand, the contemporary development
of celestial mechanics, connected with the requirements of space exploration,
created new interest in the methods and problems of analytical dynamics.

The connections between classical mechanics and other areas of mathe-
matics and physics are many and varied. The appendices to this book are
devoted to a few of these connections. The apparatus of classical mechanics
is applied to: the foundations of riemannian geometry, the dynamics of
an ideal fluid, Kolmogorov’s theory of perturbations of conditionally
periodic motion, short-wave asymptotics for equations of mathematical
physics, and the classification of caustics in geometrical optics.

These appendices are intended for the interested reader and are not part
of the required general course. Some of them could constitute the basis of
special courses (for example, on asymptotic methods in the theory of non-
linear oscillations or on quasi-classical asymptotics). The appendices also
contain some information of a reference nature (for example, a list of normal
forms of quadratic hamiltonians). While in the basic chapters of the book the
author has tried to develop all the proofs as explicitly as possible, avoiding
references to other sources, the appendices consist on the whole of summaries
of results, the proofs of which are to be found in the cited literature.

The basis for the book was a year-and-a-half-long required course
in classical mechanics, taught by the author to third- and fourth-year
mathematics students at the mathematics-mechanics faculty of Moscow
State University in 1966-1968.

The author is grateful to 1. G. Petrovsky, who insisted that these lectures
be delivered, written up, and published. In preparing these lectures for
publication, the author found very helpful the lecture notes of L. A. Buni-
movich, L. D. Vaingortin, V. L. Novikov, and especially, the mimeographed
edition (Moscow State University, 1968) organized by N. N. Kolesnikov. The
author thanks them, and also all the students and colleagues who communi-
cated their remarks on the mimeographed text; many of these remarks were
used in the preparation of the present edition. The author is grateful to
M. A. Leontovich, for suggesting the treatment of connections by means of a
limit process, and also to I. I. Vorovich and V. 1. Yudovich for their detailed
review of the manuscript.

V. ARNOLD

The translators would like to thank Dr. R. Barrar for his help in reading
the proofs. We would also like to thank many readers, especially Ted Courant,
for spotting errors in the first two printings.

Berkeley, 1981 K. VOGTMANN
A. WEINSTEIN
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Preface to the second edition

The main part of this book was written twenty years ago. The ideas and
methods of symplectic geometry, developed in this book, have now found
many applications in mathematical physics and in other domains of applied
mathematics, as well as in pure mathematics itself. Especially, the theory of
short wave asymptotic expansions has reached a very sophisticated level, with
many important applications to optics, wave theory, acoustics, spectroscopy,
and even chemistry; this development was parallel to the development of the
theories of Lagrange and Legendre singularities, that is, of singularities of
caustics and of wave fronts, of their topology and their perestroikas (in
Russian metamorphoses were always called “perestroikas,” as in “Morse
perestroika” for the English “Morse surgery”; now that the word perestroika
has become international, we may preserve the Russian term in translation
and are not obliged to substitute “metamorphoses” for “perestroikas” when
speaking of wave fronts, caustics, and so on).

Integrable hamiltonian systems have been discovered unexpectedly in many
classical problems of mathematical physics, and their study has led to new
results in both physics and mathematics, for instance, in algebraic geometry.

Symplectic topology has become one of the most promising and active
branches of “global analysis.” An important generalization of the Poincaré
“geometric theorem” (see Appendix 9) was proved by C. Conley and
E. Zehnder in 1983. A sequence of works (by M. Chaperon, A. Weinstein, J.-C.
Sikorav, M. Gromov, Ya. M. Eliashberg, Yu. Chekanov, A. Floer, C. Viterbo,
H. Hofer, and others) marks important progress in this very lively domain.
One may hope that this progress will lead to the proof of many known
conjectures in symplectic and contact topology, and to the discovery of new
results in this new domain of mathematics, emerging from the problems of
mechanics and optics.

vii



Preface to the second edition

The present edition includes three new appendices. They represent the
modern development of the theory of ray systems (the theory of singularity
and of perestroikas of caustics and of wave fronts, related to the theory of
Coxeter reflection groups), the theory of integrable systems (the geometric
theory of elliptic coordinates, adapted to the infinite-dimensional Hilbert
space generalization), and the theory of Poisson structures (which is a general-
ization of the theory of symplectic structures, including degenerate Poisson
brackets).

A more detailed account of the present state of perturbation theory may be
found in the book, Mathematical Aspects of Classical and Celestial Mechanics
by V. 1. Arnold, V. V. Kozlov, and A. I. Neistadt, Encyclopaedia of Math. Sci.,
Vol. 3 (Springer, 1986); Volume 4 of this series (1988) contains a survey
“Symplectic geometry” by V. I. Arnold and A. B. Givental’, an article by
A. A. Kirillov on geometric quantization, and a survey of the modern theory
of integrable systems by S. P. Novikov, I. M. Krichever, and B. A. Dubrovin.

For more details on the geometry of ray systems, see the book Singularities
of Differentiable Mappings by V. 1. Arnold, S. M. Gusein-Zade, and A. N.
Varchenko (Vol. 1, Birkhéuser, 1985; Vol. 2, Birkhéuser, 1988). Catastrophe
Theory by V. I. Arnold (Springer, 1986) (second edition) contains a long
annotated bibliography.

Surveys on symplectic and contact geometry and on their applications may
be found in the Bourbaki seminar (D. Bennequin, “Caustiques mystiques”,
February, 1986) and in a series of articles (V. I. Arnold, First steps in symplectic
topology, Russian Math. Surveys, 41 (1986); Singularities of ray systems,
Russian Math. Surveys, 38 (1983); Singularities in variational calculus,
Modern Problems of Math., VINITI, 22 (1983) (translated in J. Soviet Math.);
and O. P. Shcherbak, Wave fronts and reflection groups, Russian Math.
Surveys, 43 (1988)).

Volumes 22 (1983) and 33 (1988) of the VINITI series, “Sovremennye
problemy matematiki. Noveishie dostijenia,” contain a dozen articles on the
applications of symplectic and contact geometry and singularity theory to
mathematics and physics.

Bifurcation theory (both for hamiltonian and for more general systems)
is discussed in the textbook Geometrical Methods in the Theory of Ordinary
Differential Equations (Springer, 1988) (this new edition is more complete than
the preceding one). The survey “Bifurcation theory and its applications in
mathematics and mechanics” (XVIIth International Congress of Theoretical
and Applied Mechanics in Grenoble, August, 1988) also contains new infor-
mation, as does Volume 5 of the Encyclopaedia of Math. Sci. (Springer, 1989),
containing the survey “Bifurcation theory” by V. 1. Arnold, V. S. Afraimovich,
Yu. S. Ilyashenko, and L. P. Shilnikov. Volume 2 of this series, edited by
D. V. Anosov and Ya. G. Sinai, is devoted to the ergodic theory of dynamical
systems including those of mechanics.

The new discoveries in all these theories have potentially extremely wide
applications, but since these results were discovered rather recently, they are
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Preface to the second edition

discussed only in the specialized editions, and applications are impeded by
the difficulty of the mathematical exposition for nonmathematicians. I hope
that the present book will help to master these new theories not only to
mathematicians, but also to all those readers who use the theory of dynamical
systems, symplectic geometry, and the calculus of variations—in physics,
mechanics, control theory, and so on. The author would like to thank Dr.
T. Tokieda for his help in correcting errors in previous printings and for
reading the proofs.

December 1988 V.1 Arnold

ix



Translator’s preface to the second edition

This edition contains three new appendices, originally written for inclusion in
a German edition. They describe work by the author and his co-workers on
Poisson structures, elliptic coordinates with applications to integrable sys-
tems, and singularities of ray systems. In addition, numerous corrections to
errors found by the author, the translators, and readers have been incorpo-
rated into the text.
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PART 1
NEWTONIAN MECHANICS

Newtonian mechanics studies the motion of a system of point masses
in three-dimensional euclidean space. The basic ideas and theorems of
newtonian mechanics (even when formulated in terms of three-dimensional
cartesian coordinates) are invariant with respect to the six-dimensional’
group of euclidean motions of this space.

A newtonian potential mechanical system is specified by the masses
of the points and by the potential energy. The motions of space which leave
the potential energy invariant correspond to laws of conservation.

Newton’s equations allow one to solve completely a series of important
problems in mechanics, including the problem of motion in a central force

fieid.

! And also with respect to the larger group of galilean transformations of space-time.



Experimental facts

In this chapter we write down the basic experimental facts which lie at the
foundation of mechanics: Galileo’s principle of relativity and Newton’s
differential equation. We examine constraints on the equation of motion
imposed by the relativity principle, and we mention some simple examples.

1 The principles of relativity and determinacy

In this paragraph we introduce and discuss the notion of an inertial coordinate system. The
mathematical statements of this paragraph are formulated exactly in the next paragraph.

A series of experimental facts is at the basis of classical mechanics.? We
list some of them.
A Space and time

Our space is three-dimensional and euclidean, and time is one-dimensional.

B Galileo’s principle of relativity
There exist coordinate systems (called inertial) possessing the following
two properties:

1. All the laws of nature at all moments of time are the same in all inertial
coordinate systems.

2. All coordinate systems in uniform rectilinear motion with respect to an
inertial one are themselves inertial.

2 All these “experimental facts™ are only approximately true and can be refuted by more exact
experiments. In order to avoid cumbersome expressions, we will not specify this from now on
and we will speak of our mathematical models as if they exactly described physical phenomena.

3



1: Experimental facts

In other words, if a coordinate system attached to the earth is inertial,
then an experimenter on a train which is moving uniformly in a straight line
with respect to the earth cannot detect the motion of the train by experiments
conducted entirely inside his car.

In reality, the coordinate system associated with the earth is only approxi-
mately inertial. Coordinate systems associated with the sun, the stars, etc.
are more nearly inertial.

C Newton’s principle of determinacy

The initial state of a mechanical system (the totality of positions and
velocities of its points at some moment of time) uniquely determines all of
its motion.

It is hard to doubt this fact, since we learn it very early. One can imagine
a world in which to determine the future of a system one must also know the
acceleration at the initial moment, but experience shows us that our world
is not like this.

2 The galilean group and Newton’s equations

In this paragraph we define and investigate the galilean group of space-time transformations.
Then we consider Newton’s equation and the simplest constraints imposed on its right-hand side
by the property of invariance with respect to galilean transformations.?

A Notation

We denote the set of all real numbers by R. We denote by R" an n-dimen-
sional real vector space.

a a+b
D)
—_—

Figure 1 Parallel displacement

Affine n-dimensional space A" is distinguished from R” in that there is
“no fixed origin.” The group R" acts on A" as the group of parallel displace-
ments (Figure 1):

a-»a+b, ac A" beR" g+ be A"

[Thus the sum of two points of A" is not defined, but their difference is defined
and is a vector in R".]

3 The reader who has no need for the mathematical formulation of the assertions of Section 1
can omit this section.

4



2: The galiliean group and Newton’s equations

A euclidean structure on the vector space R" is a positive definite symmetric
bilinear form called a scalar product. The scalar product enables one to
define the distance

px, ) =lx —yl =/(x =y, x—y)

between points of the corresponding affine space A". An affine space with this
distance function is called a euclidean space and is denoted by E™.

B Galilean structure
The galilean space-time structure consists of the following three elements:

1. The universe—a four-dimensional affine* space A* The points of 4*
are called world points or events. The parallel displacements of the universe
A* constitute a vector space R*.

2. Time—a linear mapping t: R* - R from the vector space of parallel
displacements of the universe to the real “time axis.” The time interval
from event a € A* to event b € A* is the number t(b — a) (Figure 2). If
t(b — a) = 0, then the events a and b are called simultaneous.

A3

i 4 |
T T

Figure 2 Interval of time ¢

The set of events simultaneous with a given event forms a three-
dimensional affine subspace in A*. It is called a space of simultaneous
events A3.

The kernel of the mapping t consists of those parallel displacements of
A* which take some (and therefore every) event into an event simultaneous
with it. This kernel is a three-dimensional linear subspace R? of the vector
space R*.

The galilean structure includes one further element.
3. The distance between simultaneous events
pla,b) = lla— bl = /(a—ba—b) abe4’

is given by a scalar product on the space R>. This distance makes every
space of simultaneous events into a three-dimensional euclidean space E>.

4 Formerly, the universe was provided not with an affine, but with a linear structure (the geo-
centric system of the universe).



1: Experimental facts

A space A% equipped with a galilean space-time structure, is called a
galilean space.

One can speak of two events occurring simultaneously in different places,
but the expression “two non-simultaneous events a, be A* occurring at
one and the same place in three-dimensional space” has no meaning as long
as we have not chosen a coordinate system.

The galilean group is the group of all transformations of a galilean space
which preserve its structure. The elements of this group are called galilean
transformations. Thus, galilean transformations are affine transformations
of 4* which preserve intervals of time and the distance between simultaneous
events.

ExampLE. Consider the direct product® R x R* of the ¢t axis with a three-
dimensional vector space R3; suppose R* has a fixed euclidean structure.
Such a space has a natural galilean structure. We will call this space galilean
coordinate space.

We mention three examples of galilean transformations of this space.
First, uniform motion with velocity v:

g1t x)=@x+vt) VieR xeR3
Next, translation of the origin:
g6, x)=( + s,X +8) Vte R, xeR3.
Finally, rotation of the coordinate axes:
gs(t, X) = (¢, Gx), VieR, x e R3,

where G: R3 — R3 is an orthogonal transformation.

PrOBLEM. Show that every galilean transformation of the space R x R?
can be written in a unique way as the composition of a rotation, a translation,
and a uniform motion (g = g, ° ¢, ° g3) (thus the dimension of the galilean
group is equal to 3 + 4 + 3 = 10).

PROBLEM. Show that all galilean spaces are isomorphic to each other®
and, in particular, isomorphic to the coordinate space R x R>.

Let M be a set. A one-to-one correspondence ¢,: M — R x R3 is called
a galilean coordinate system on the set M. A coordinate system ¢, moves
uniformly with respect to ¢, if ;- 05" R x R* > R x R? is a galilean
transformation. The galilean coordinate systems ¢, and ¢, give M the same
galilean structure.

5 Recall that the direct product of two sets 4 and B is the set of ordered pairs (a, b), where
a € Aand b € B. The direct product of two spaces (vector, affine, euclidean) has the structure of a
space of the same type.

¢ That is, there is a one-to-one mapping of one to the other preserving the galilean structure.

6



2: The galilean group and Newton’s equations

C Motion, velocity, acceleration

A motion in R" is a differentiable mapping x: I — R", where I is an interval
on the real axis.
The derivative

dx

X(to) = -

— lim x(to + h) — x(to)
dt

e RY
t=to h—=0 h

is called the velocity vector at the point ¢, € I.
The second derivative
d*x

Xto) =G

t=to
is called the acceleration vector at the point t,.

We will assume that the functions we encounter are continuously differ-
entiable as many times as necessary. In the future, unless otherwise stated,
mappings, functions, etc. are understood to be differentiable mappings,
functions, etc. The image of a mapping x: I — R" is called a trajectory or
curve in RV,

PrOBLEM. Is it possible for the trajectory of a differentiable motion on the
plane to have the shape drawn in Figure 3? Is it possible for the acceleration
vector to have the value shown?

ANSWER. Yes. No.

Figure 3 Trajectory of motion of a point

We now define a mechanical system of n points moving in three-dimensional
euclidean space.

Let x: R > R? be a motion in R, The graph’ of this mapping is a curve
in R x R3,

A curve in galilean space which appears in some (and therefore every)
galilean coordinate system as the graph of a motion, is called a world line
(Figure 4).

7 The graph of a mapping f* 4 — B is the subset of the direct product A x B consisting of all
pairs (a, f(a)) with a € 4.



1: Experimental facts

\

Figure 4 World lines

A motion of a system of n points gives, in galilean space, n world lines.
In a galilean coordinate system they are described by n mappings x;: R - R3,
i=1,...,n

The direct product of n copies of R? is called the configuration space
of the system of n points. Our n mappings x;: R - R* define one mapping

x:R—- RN N =3n

of the time axis into the configuration space. Such a mapping is also called
a motion of a system of n points in the galilean coordinate system on R x R3.

D Newton’s equations

According to Newton’s principle of determinacy (Section 1C) all motions
of a system are uniquely determined by their initial positions (x(t,) € RY)
and initial velocities (X(t,) € RY).

In particular, the initial positions and velocities determine the acceleration.
In other words, there is a function F: RY x R¥ x R — R" such that

0 % =F(x, %, 1).

Newton used Equation (1) as the basis of mechanics. It is called Newton’s
equation.

By the theorem of existence and uniqueness of solutions to ordinary
differential equations, the function F and the initial conditions x(t,) and
X(to) uniquely determine a motion.®

For each specific mechanical system the form of the function F is deter-
mined experimentally. From the mathematical point of view the form of F
for each system constitutes the definition of that system.

E Constraints imposed by the principle of relativity

Galileo’s principle of relativity states that in physical space-time there is a
sclected galilean structure (“the class of inertial coordinate systems™)
having the following property.

8 Under certain smoothness conditions, which we assume to be fulfilled. In general, a motion
is determined by Equation (1) only on some interval of the time axis. For simplicity we will
assume that this interval is the whole time axis, as is the case in most problems in mechanics.
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2: The galilean group and Newton’s equations

o

i

3 —»

Figure 5 Galileo’s principle of relativity

If we subject the world lines of all the points of any mechanical system®
to one and the same galilean transformation, we obtain world lines of the
same system (with new initial conditions) (Figure 5).

This imposes a series of conditions on the form of the right-hand side of
Newton’s equation written in an inertial coordinate system: Equation (1)
must be invariant with respect to the group of galilean transformations.

ExaMPLE 1. Among the galilean transformations are the time translations.
Invariance with respect to time translations means that “the laws of nature
remain constant,” i.e., if X = @(t) is a solution to Equation (1), then for any
se R, x = @(t + s)is also a solution.

From this it follows that the right-hand side of Equation (1) in an inertial
coordinate system does not depend on the time:

X = O(x, X).

Remark. Differential equations in which the right-hand side does depend
on time arise in the following situation.

Suppose that we are studying part I of the mechanical system I + IIL
Then the influence of part II on part I can sometimes be replaced by a time
variation of parameters in the system of equations describing the motion of
part . For example, the influence of the moon on the earth can be ignored in
investigating the majority of phenomena on the earth. However, in the study of
the tides this influence must be taken into account; one can achieve this by
introducing, instead of the attraction of the moon, periodic changes in the
strength of gravity on earth.

9 In formulating the principle of relativity we must keep in mind that it is relevant only to
closed physical (in particular, mechanical) systems, i.e., that we must include in the system all
bodies whose interactions play a role in the study of the given phenomena. Strictly speaking, we
should include in the system all bodies in the universe. But we know from experience that one
can disregard the effect of many of them: for example, in studying the motion of planets around
the sun we can disregard the attractions among the stars, etc.

On the other hand, in the study of a body in the vicinity of earth, the system is not closed
if the earth is not included; in the study of the motion of an airplane the system is not closed if
it does not include the air surrounding the airplane, etc. In the future, the term “mechanical
system” will mean a closed system in most cases, and when there is a non-closed system in
question this will be explicitly stated (cf,, for example, Section 3).



1: Experimental facts

Equations with variable coefficients can appear also as the result of formal
operations in the solution of problems.

ExampLE 2. Translations in three-dimensional space are galilean trans-
formations. Invariance with respect to such translations means that space
is homogeneous, or “has the same properties at all of its points.” That is,

if x; =@t)i =1,...,n)is a motion of a system of n points satisfying (1),
then for any r € R3 the motion@ (t) + r (i = 1,. .., n)also satisfies Equation
(1.

From this it follows that the right-hand side of Equation (1) in the inertial
coordinate system can depend only on the “relative coordinates” x; — x;.

From invariance under passage to a uniformly moving coordinate system
(which does not change X; or x; — Xx,, but adds to each X; a fixed vector v) it
follows that the right-hand side of Equation (1) in an inertial system of
coordinates can depend only on the relative velocities

X, = f({x; — X4, X; — X)), Lik=1...,n

ExAMPLE 3. Among the galilean transformations are the rotations in three-
dimensional space. Invariance with respect to these rotations means that
space is isotropic; there are no preferred directions.

Thus, if @;: R —» R3( = 1,..., n) is a motion of a system of points satis-
fying (1), and G: R® —» R3 is an orthogonal transformation, then the motion
Go;: R — R3(j, ..., n) also satisfies (1). In other words.

F(Gx, G x) = GF(x, %),

where Gx denotes (Gx, ..., Gx,), x; € R3.

PROBLEM. Show that if a mechanical system consists of only one point, then
its acceleration in an inertial coordinate system is equal to zero (“Newton’s
first law ™).

Hint. By Examples 1 and 2 the acceleration vector does not depend on
X, X, or t, and by Example 3 the vector F is invariant with respect to rotation.

PrROBLEM. A mechanical system consists of two points. At the initial moment
their velocities (in some inertial coordinate system) are equal to zero. Show
that the points will stay on the line which connected them at the initial
moment.

PROBLEM. A mechanical system consists of three points. At the initial moment
their velocities (in some inertial coordinate system) are equal to zero.
Show that the points always remain in the plane which contained them at the
initial moment.

PrROBLEM. A mechanical system consists of two points. Show that for any
initial conditions there exists an inertial coordinate system in which the
two points remain in a fixed plane.

10



3: Examples of mechanical systems

PrROBLEM. Show that mechanics “through the looking glass” is identical
to ours.

Hint. In the galilean group there is a reflection transformation, changing
the orientation of R3,

PROBLEM. Is the class of inertial systems unique?

ANSWER. No. Other classes can be obtained if one changes the units of length
and time or the direction of time.

3 Examples of mechanical systems

We have already remarked that the form of the function F in Newton’s equation (1) is determined
experimentally for each mechanical system. Here are several examples.

In examining concrete systems it is reasonable not to include all the objects of the universe
in a system. For example, in studying the majority of phenomena taking place on the earth we
can ignore the influence of the moon. Furthermore, it is usually possible to disregard the effect
of the processes we are studying on the motion of the earth itself; we may even consider a coordi-
nate system attached to the earth as “fixed.” It is clear that the principle of relativity no longer
imposes the constraints found 1n Section 2 for equations of motion written in such a coordinate
system. For example, near the earth there is a distinguished direction, the vertical.

A Example 1: A stone falling to the earth

Experiments show that
() ¥ = —g, where g ~ 9.8 m/s? (Galileo)*

where x is the height of a stone above the surface of the earth.
If we introduce the “potential energy” U = gx, then Equation (2) can
be written in the form

dUu
T dx’

If U: E¥ > R is a differentiable function on euclidean space, then we will
denote by dU/ox the gradient of the function U. If EN = E™ x ... x E™
is a direct product of euclidean spaces, then we will denote a point x € EY
by (X;, . .., X;), and the vector 9U/0x by (0U/0x,, ..., dU/dx,). In particular,
if xy, ..., xy are cartesian coordinates in E", then the components of the
vector 0U/0x are the partial derivatives 0U/dx,, ..., 0U/0xy.

Experiments show that the radius vector of the stone with respect to
some point 0 on the earth satisfies the equation

. ou
3 X = i where U = —(g, x)

* In this and other sections, the mass of a particle is taken to be 1.
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1: Experimental facts

The vector in the right-hand side is directed towards the earth. It is called
the gravitational acceleration vector g. (Figure 6.)

4

Figure 6 A stone falling to the earth

B Example 2. Falling from great height

Like all experimental facts, the law of motion (2) has a restricted domain of
application. According to a more precise law of falling bodies, discovered
by Newton, acceleration is inversely proportional to the square of the distance
from the center of the earth:

where r = rq + x (Figure 7).

o

o~

Figure 7 The earth’s gravitational field

This equation can also be written in the form (3), if we introduce the
potential energy

k
U=--  k=gri,
r
inversely proportional to the distance to the center of the earth.

ProBLEM. Determine with what velocity a stone must be thrown in order that
it fly infinitely far from the surface of the earth.'°

ANSWER. > 11.2 km/sec.

!0 This is the so-called second cosmic velocity v,. Our equation does not take into account the
attraction of the sun. The attraction of the sun will not let the stone escape from the solar system
if the velocity of the stone with respect to the earth is less than 16.6 km/sec.

12



3: Examples of mechanical systems

C Example 3: Motion of a weight along a line
under the action of a spring

Experiments show that under small extensions of the spring the equation
of motion of the weight will be (Figure 8)

Figure 8 Weight on a spring

This equation can also be written in the form (3) if we introduce the
potential energy

If we replace our one weight by two weights, then it turns out that, under
the same extension of the spring, the acceleration is half as large.

It is experimentally established that for any two bodies the ratio of the
accelerations X,;/X, under the same extension of a spring is fixed (does not
depend on the extent of extension of the spring or on its characteristics, but
only on the bodies themselves). The value inverse to this ratio is by definition
the ratio of masses:

Xy _my

X, my

For a unit of mass we take the mass of some fixed body, e.g., one liter of
water. We know by experience that the masses of all bodies are positive. The
product of mass times acceleration mx does not depend on the body, and
is a characteristic of the extension of the spring. This value is called the
force of the spring acting on the body.

As a unit of force, we take the “newton.” If one liter of water is suspended
on a spring at the surface of the earth, the spring acts with a force of 9.8
newtons (=1 kg).

D Example 4: Conservative systems

Let E3" = E® x --- x E3 be the configuration space of a system of n points
in the euclidean space E3. Let U: E*" — R be a differentiable function and
let my, ..., m, be positive numbers.

13



1: Experimental facts

Definition. The motion of n points, of masses m;, ..., m,, in the potential
field with potential energy U is given by the system of differential equations
. ou .
4) mX; = — i=1,...,n
0x;

i

The equations of motion in Examples 1 to 3 have this form. The equations
of motion of many other mechanical systems can be written in the same form.
For example, the three-body problem of celestial mechanics is problem (4)
in which

mym, myms msm,
Ixy = Xall %2 = x5 lIxy — x4l

U =
Many different equations of entirely different origin can be reduced to

form (4), for example the equations of electrical oscillations. In the following
chapter we will study mainly systems of differential equations in the form (4).

14



Investigation of the equations
of motion

In most cases (for example, in the three-body problem) we can neither solve
the system of differential equations nor completely describe the behavior
of the solutions. In this chapter we consider a few simple but important
problems for which Newton’s equations can be solved.

4 Systems with one degree of freedom

In this paragraph we study the phase flow of the differential equation (1). A look at the graph of
the potential energy is enough for a qualitative analysis of such an equation. In addition, Equation
(1) is integrated by quadratures.

A Definitions
A system with one degree of freedom is a system described by one differential
equation

(1) X=f(x) xeR
The kinetic energy is the quadratic form™*
T = ix2.

The potential energy is the function
ve) = - [ s

The sign in this formula is taken so that the potential energy of a stone is
larger if the stone is higher off the ground.

Notice that the potential energy determines f. Therefore, to specify a
system of the form (1) it is enough to give the potential energy. Adding a
constant to the potential energy does not change the equation of motion (1).

* see footnote on p. 11.



2: Investigation of the equations of motion

The total energy is the sum
E=T+ U.
In general, the total energy is a function, E(x, X), of x and x.
Theorem (The law of conservation of energy). The total energy of points

moving according to the equation (1) is conserved: E(x(t), %(t)) is independent

of t.

PrOOF.
d dU
—(T+U)y=xX+—X=X(X — f(x))=0. O
dt dx

B Phase flow

Equation (1) is equivalent to the system of two equations:

() X=y y=f

We consider the plane with coordinates x and y, which we call the phase plane
of Equation (1). The points of the phase plane are called phase points. The
right-hand side of (2) determines a vector field on the phase plane, called the
phase velocity vector field.

A solution of (2) is a motion @: R — R? of a phase point in the phase
plane, such that the velocity of the moving point at each moment of time is
equal to the phase velocity vector at the location of the phase point at that
moment.'?

The image of @ is called the phase curve. Thus the phase curve is given by
the parametric equations

x = @(t) y = ¢@).
PrOBLEM. Show that through every phase point there is one and only one

phase curve.
Hint. Refer to a textbook on ordinary differential equations.

We notice that a phase curve could consist of only one point. Such a
point is called an equilibrium position. The vector of phase velocity at an
equilibrium position is zero.

The law of conservation of energy allows one to find the phase curves
easily. On each phase curve the value of the total energy is constant. Therefore,
each phase curve lies entirely in one energy level set E(x, y) = h.

C Examples

ExampLE 1. The basic equation of the theory of oscillations is
X = —x.

' Here we assume for simplicity that the solution ¢ is defined on the whole time axis R.

16



4: Systems with one degree of freedom

Figure 9 Phase plane of the equation ¥ = —x

In this case (Figure 9) we have:

XZ X2 x2 x2

T= 5 U= 5 E = 2 + R
The energy level sets are the concentric circles and the origin. The phase
velocity vector at the phase point (x, y) has components (y, —x). It is
perpendicular to the radius vector and equal to it in magnitude. Therefore,
the motion of the phase point in the phase plane is a uniform motion around
0:x = ry cos(py — t), y = ro sin(¢p, — t). Each energy level set is a phase
curve.

ExaMPLE 2. Suppose that a potential energy is given by the graph in Figure
10. We will draw the energy level sets 1y* + U(x) = E. For this, the following
facts are helpful.

1. Any equilibrium position of (2) must lie on the x axis of the phase plane.
The point x = £, y = 0 is an equilibrium position if ¢ is a critical point
of the potential energy, i.e., if (OU/0x)| - = 0.

2. Each level set is a smooth curve in a neighborhood of each of its points
which is not an equilibrium position (this follows from the implicit
function theorem). In particular, if the number E is not a critical value of
the potential energy (i.e., is not the value of the potential energy at one of
its critical points), then the level set on which the energy is equal to E
is a smooth curve.

It follows that in order to study the energy level curve, we should turn
our attention to the critical and near-critical values of E. It is convenient
here to imagine a little ball rolling in the potential well U.

For example, consider the following argument: “Kinetic energy is
nonnegative. This means that potential energy is less than or equal to the
total energy. The smaller the potential energy, the greater the velocity.”
This translates to: “The ball cannot jump out of the potential well, rising

17



2: Investigation of the equations of motion

o\ /
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X

Figure 10 Potential energy and phase curves

higher than the level determined by its initial energy. As it falls into the well,
the ball gains velocity.” We also notice that the local maximum points of the
potential energy are unstable, but the minimum points are stable equilibrium
positions.

PROBLEM. Prove this.

ProBLEM. How many phase curves make up the separatrix (figure eight)
curve, corresponding to the level E; ?

ANSWER. Three.
ProBLEM. Determine the duration of motion along the separatrix.
ANsWER. It follows from the uniqueness theorem that the time is infinite.

ProBLEM. Show that the time it takes to go from x; to x, (in one direction)
is equal to

x2 dx
Loh= f J2AE - Ux)

18



4: Systems with one degree of freedom

(a) (b)
Figure 11 Potential energy

PROBLEM. Draw the phase curves, given the potential energy graphs in
Figure 11.

ANSWER. Figure 12.

m
= =%
\ N

(a) (b)

Figure 12 Phase curves

PrROBLEM. Draw the phase curves for the “equation of an ideal planar
pendulum”: X = —sin x.

ProOBLEM. Draw the phase curves for the “equation of a pendulum on a
rotating axis”: ¥ = —sin x + M.

Remark. In these two problems x denotes the angle of displacement of the
pendulum. The phase points whose coordinates differ by 27 correspond to
the same position of the pendulum. Therefore, in addition to the phase plane,
it is natural to look at the phase cylinder {x(mod 2=), y}.

ProBLEM. Find the tangent lines to the branches of the critical level corre-
sponding to maximal potential energy E = U(¢) (Figure 13).

ANSWER. y = + / —U"(&)(x — &).
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2: Investigation of the equations of motion

Figure 13  Critical energy level lines

PrOBLEM. Let S(E) be the area enclosed by the closed phase curve cor-
responding to the energy level E. Show that the period of motion along

this curve is equal to
ds
T=

PROBLEM. Let E, be the value of the potential function at a minimum point
¢. Find the period T, = limg_ g, T(E) of small oscillations in a neighbor-
hood of the point £.

ANSWER. 27/, / U"(£).

ProOBLEM. Consider a periodic motion along the closed phase curve corre-
sponding to the energy level E. Is it stable in the sense of Liapunov?'?

ANsweR. No.!3

D Phase flow

Let M be a point in the phase plane. We look at the solution to system (2)
whose initial conditions at t = 0 are represented by the point M. We assume
that any solution of the system can be extended to the whole time axis. The
value of our solution at any value of t depends on M. We denote the resulting
phase point (Figure 14) by
M(@) = ¢'M.

In this way we have defined a mapping of the phase plane to itself,

g': R? > R2, By theorems in the theory of ordinary differential equations,

12 For a definition, see, e.g., p. 155 of Ordinary Differential Equations by V. 1. Arnold, MIT Press,
1973.

13 The only exception is the case when the period does not depend on the energy.
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4: Systems with one degree of freedom

M) Mt +5)

Figure 14 Phase flow

the mapping ¢' is a diffeomorphism (a one-to-one differentiable mapping
with a differentiable inverse). The diffeomorphisms ¢*, t € R, form a group:
g'*s = g' o g°. The mapping ¢° is the identity (g°M = M), and g’ is the
inverse of g'. The mapping g: R x R? —» R?, defined by g(t, M) = g'M is
differentiable. All these properties together are expressed by saying that the
transformations g* form a one-parameter group of diffeomorphisms of the phase
plane. This group is also called the phase flow, given by system (2) (or
Equation (1)).

ExaMmpLE. The phase flow given by the equation ¥ = —x is the group ¢
of rotations of the phase plane through angle ¢ around the origin.

PROBLEM. Show that the system with potential energy U = —x* does not
define a phase flow.

PrROBLEM. Show that if the potential energy is positive, then there is a phase
flow.

Hint. Use the law of conservation of energy to show that a solution can
be extended without bound.

PrOBLEM. Draw the image of the circle x> + (y — 1)*> < % under the action
of a transformation of the phase flow for the equations (a) of the “inverse
pendulum,” ¥ = x and (b) of the “nonlinear pendulum,” ¥ = —sin x.

ANsweR. Figure 15.

} }
>,
N~ < —
/\—/\
(a) (b)

Figure 15 Action of the phase flow on a circle
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2: Investigation of the equations of motion

5 Systems with two degrees of freedom

Analyzing a general potential system with two degrees of freedom is beyond the capability
of modern science. In this paragraph we look at the simplest examples.

A Definitions

By a system with two degrees of freedom we will mean a system defined by
the differential equations

(0 X = f(x), x e E?,

where f is a vector field on the plane.

A system is said to be conservative if there exists a function U: E2 —» R
such that f = —gdU/dx. The equation of motion of a conservative system
then has the form!* X = —0U/ox.

B The law of conservation of energy

Theorem. The total energy of a conservative system is conserved, i.e.,

% =0, where E = 3x* + U(x), X = (X, X).
Proor. dE/dt = (X, X) + (0U/ox, X) = (X + (0U/0x), X) = 0 by the equation
of motion. O

Corollary. If at the initial moment the total energy is equal to E, then all
trajectories lie in the region where U(X) < E, i.e., a point remains inside
the potential well U(xy, x,) < E for all time.

Remark. In a system with one degree of freedom it is always possible to
introduce the potential energy ‘

ue) = - [ reee
For a system with two degrees of freedom this is not so.

ProBLEM. Find an example of a system of the form % = f(x), x € E2, which is
not conservative.

C Phase space

The equation of motion (1) can be written as the system:

Xy =y X, =Y,
@) , ou . aU
Y= — 5;1‘ Ya= — 5;2‘
!4 1n cartesian coordinates on the plane E2 %, = —dU/dx, and ¥, = —dU/dx,.
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5: Systems with two degrees of freedom

The phase space of a system with two degrees of freedom is the four-
dimensional space with coordinates x,, x,, y;, and y,.

The system (2) defines the phase velocity vector field in four space as well
as'® the phase flow of the system (a one-parameter group of diffeomorphisms
of four-dimensional phase space). The phase curves of (2) are subsets of four-
dimensional phase space. All of phase space is partitioned into phase curves.
Projecting the phase curves from four space to the x,, x, plane gives the
trajectories of our moving point in the x,, x, plane. These trajectories are
also called orbits. Orbits can have points of intersection even when the phase
curves do not intersect one another. The equation of the law of conservation
of energy

o2

E=X 1 ux) =
—7+ X) =

yi+ v}

> + U(xy, x3)

defines a three-dimensional hypersurface in four space: E(x;, x;, ¥y, y2) =
E,; this surface, n; , remains invariant under the phase flow: g'n; = 7., .
One could say that the phase flow flows along the energy level hypersurfaces.
The phase velocity vector field is tangent at every point to ng,. Therefore,
g, is entirely composed of phase curves (Figure 16).

A
5

— Vi

X
X,

‘Figure 16 Energy level surface and phase curves

ExaMPLE 1 (“small oscillations of a spherical pendulum”). Let U = $(x? + x3).
The level sets of the potential energy in the x,, x, plane will be concentric
circles (Figure 17).

The equations of motion, X, = ~x,, ¥, = —x,, are equivalent to the
system
X =y X =)
yi=—x Vi = —X;.

This system decomposes into two independent ones; in other words,
each of the coordinates x, and x, changes with time in the same way as in
a system with one degree of freedom.

'S With the usual limitations.
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2: Investigation of the equations of motion

X2

G
N

Figure 17 Potential energy level curves for a spherical pendulum

A solution has the form
Xy = ¢y CO8t + cysint X, =C3CO8t + cy8int
y1 = —cysint + c,cost Y2 = —c3Sint + ¢, COS L.
It follows from the law of conservation of energy that
E =101+ y3) + 3(x1 + x3) = const,
i.e., the level surface g, is a sphere in four space.
PrOBLEM. Show that the phase curves are great circles of this sphere. (A

great circle is the intersection of a sphere with a two-dimensional plane
passing through its center.)

PROBLEM. Show that the set of phase curves on the surface ng, forms a two-
dimensional sphere. The formula w = (x; + iy,)/(x, + iy,) gives the “Hopf
map” from the three sphere mg, to the two sphere (the complex w-plane
completed by the point at infinity). Our phase curves are the pre-images
of points under the Hopf map.

ProBLEM. Find the projection of the phase curves on the x;, x, plane (ie.,
draw the orbits of the motion of a point).

ExXAMPLE 2 (““ Lissajous figures”). We look at one more example of a planar
motion (“small oscillations with two degrees of freedom™):

551 = —X; .22 = _CUZXZ.
The potential energy is
U = 3x} + t0*x3.

From the law of conservation of energy it follows that, if at the initial
moment of time the total energy is

%(xf + x%) + U(xy, x;) = E,

then all motions will take place inside the ellipse U(xy, x,) < E.

24



5: Systems with two degrees of freedom

Our system consists of two independent one-dimensional systems. There-
fore, the law of conservation of energy is satisfied for each of them separately,
i.e., the following quantities are preserved

E, = $%} + 3xi E,=3x3 + 30°x3 (E=E; + Ey).
Consequently, the variable x, is bounded by the region [x,| < 4, A, =

/2E,(0), and x, oscillates within the region |x,| < 4,. The intersection
of these two regions defines a rectangle which contains the orbits (Figure 18).

X2

AN
. U

Figure 18 Theregions U < E,U; < Eand U, < E
ProBLEM. Show that this rectangle is inscribed in the ellipse U < E.

The general solution of our equations is x; = A;sin(t + @), x, =
A, sin(wt + @,); a moving point independently performs an oscillation
with frequency 1 and amplitude 4, along the horizontal and an oscillation
with frequency w and amplitude 4, along the vertical.

Consider the following method of describing an orbit in the x;, x, plane.
We look at a cylinder with base 24, and a band of width 24,. We draw on
the band a sine wave with period 2nA4,/w and amplitude A, and wind the
band onto the cylinder (Figure 19). The orthogonal projection of the sinusoid

X2
24,

gﬁiﬁ) ~ % 2

24,
Ay

'

Figure 19 Construction of a Lissajous figure
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2: Investigation of the equations of motion

wound around the cylinder onto the x;, x, plane gives the desired orbit,
called a Lissajous figure.

Lissajous figures can conveniently be seen on an oscilloscope which dis-
plays independent harmonic oscillations on the horizontal and vertical axes.

The form of a Lissajous figure very strongly depends on the frequency w.
If w =1 (the spherical pendulum of Example 1), then the curve on the
cylinder is an ellipse. The projection of this ellipse onto the x,, x, plane
depends on the difference ¢, — ¢, between the phases. For ¢; = ¢, we get
a segment of the diagonal of the rectangle; for small ¢, — ¢; we get an
ellipse close to the diagonal and inscribed in the rectangle. For ¢, — ¢, = n/2
we get an ellipse with major axes x;, x,; as ¢, — @, increases from /2
to n the ellipse collapses onto the second diagonal; as ¢, — ¢, increases
further the whole process is repeated from the beginning (Figure 20).

X2

X7

Figure 20 Series of Lissajous figures with @ = 1

Now let the frequencies be only approximately equal: w = 1. The segment
of the curve corresponding to 0 < ¢t < 2m is very close to an ellipse. The next
loop also reminds one of an ellipse, but here the phase shift ¢, — ¢, is
greater than in the original by 2n(w — 1). Therefore, the Lissajous curve
with w ~ 1 is a distorted ellipse, slowly progressing through all phases
from collapsed onto one diagonal to collapsed onto the other (Figure 21).

If one of the frequencies is twice the other (w = 2), then for some particular
phase shift the Lissajous figure becomes a doubly traversed arc (Figure 22).

X2

X7

Figure 21 Lissajous figure with w =~ 1
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5: Systems with two degrees of freedom

ProBLEM. Show that this curve is a parabola. By increasing the phase shift
@, — ¢, we get in turn the curves in Fig. 23.

In general, if one of the frequencies is n times bigger than the other (w = n),
then among the graphs of the corresponding Lissajous figures there is the
graph of a polynomial of degree n (Figure 24); this polynomial is called a
Chebyshev polynomial.

NV

Figure 22 Lissajous figure with @ = 2

X2 X2
%& Xy Xy
X2 X2

2, A\ V4=
VARN

Figure 23  Series of Lissajous figures with & = 2

X2 X2 X2

xl Nivis
\VIRV

Figure 24 Chebyshev polynomials
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2: Investigation of the equations of motion

PrROBLEM. Show that if @ = m/n, then the Lissajous figure is a closed algebraic
curve; but if w is irrational, then the Lissajous figure fills the rectangle every-
where densely. What does the corresponding phase trajectory fill out?

6 Conservative force fields

In this section we study the connection between work and potential energy.

A Work of a force field along a path

Recall the definition of the work by a force F on a path S. The work of the
constant force F (for example, the force with which we lift up a load) on the

M,

Fle

M,
Figure 25 Work of the constant force F along the straight path S

path S = MM, is, by definition, the scalar product (Figure 25)
A = (F,S) = |F||S|- cos o.

Suppose we are given a vector field F and a curve ! of finite length. We
approximate the curve [ by a polygonal line with components AS; and denote
by F; the value of the force at some particular point of AS;; then the work of
the field F on the path [ is by definition (Figure 26)

A= lim Y (F, AS).

|AS;]—0

In analysis courses it is proved that if the field is continuous and the path
rectifiable, then the limit exists. It is denoted by , (F, dS).

Figure 26 Work of the force field F along the path [
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6: Conservative force fields

B Conditions for a field to be conservative

Theorem. A vector field F is conservative if and only if its work along any
path M M, depends only on the endpoints of the path, and not on the shape
of the path.

PROOF. Suppose that the work of a field F does not depend on the path. Then

M
UM) = — | (F,aS)
Mo
is well defined as a function of the point M. It is easy to verify that
_ v
T x’

i.e., the field is conservative and U is its potential energy. Of course, the
potential energy is defined only up to the additive constant U(M,), which
can be chosen arbitrarily.

Conversely, suppose that the field F is conservative and that U is its
potential energy. Then it is easily verified that

M
(F,dS) = —UM) + UM,),
Mo
i.e., the work does not depend on the shape of the path. O
PRrROBLEM. Show that the vector field F, = x,, F, = —X, is not conservative

(Figure 27).

N

N

Figure 27 A non-potential field

PROBLEM. Is the field in the plane minus the origin given by F, = x,/(x? + x3),
F, = —x,/(x} + x2) conservative? Show that a field is conservative if and
only if its work along any closed contour is equal to zero.

C Central fields

Definition. A vector field in the plane E? is called central with center at 0,
if it is invariant with respect to the group of motions'® of the plane
which fix 0.

16 Including reflections.
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2: Investigation of the equations of motion

ProBI.EM. Show that all vectors of a central field lie on rays through 0, and
that the magnitude of the vector field at a point depends only on the distance
from the point to the center of the field.

It is also useful to look at central fields which are not defined at the point 0.

ExaMPLE. The newtonian field F = —k(r/|r|3) is central, but the field in
the problem in Section 6B is not.

Theorem. Every central field is conservative, and its potential energy depends
only on the distance to the center of the field, U = U(r).

PROOF. According to the previous problem, we may set F(r) = ®(r)e,,
where r is the radius vector with respect to 0, r is its length and the unit
vector e, = r/|r| its direction. Then

M, r(M;)
J (F, dS) = j O(r)dr,
M, r(My)

and this integral is obviously independent of the path. O

ProBLEM. Compute the potential energy of the newtonian field.

Remark. The definitions and theorems of this paragraph can be directly
carried over to a euclidean space E" of any dimension.

7 Angular momentum

We will see later that the invariance of an equation of a mechanical problem with respect to some
group of transformations always implies a conservation law. A central field is invariant with
respect to the group of rotations. The corresponding first integral is called the angular momen-
tum.

Definition. The motion of a material point (with unit mass) in a central field
on a plane is defined by the equation

P = ®(r)e,,

where r is the radius vector beginning at the center of the field O, r is
its length, and e, its direction. We will think of our plane as lying in three-
dimensional oriented euclidean space.

Definition. The angular momentum of a material point of unit mass relative
to the point 0 is the vector product
M = [r,f]

The vector M is perpendicular to our plane and is given by one number:
M = Mn, where n = [e,, ¢,] is the normal vector, e; and e, being an
oriented frame in the plane (Figure 28).
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7: Angular momentum

?M
n A [}

04\/r ;

€]

Figure 28 Angular momentum

Remark. In general, the moment of a vector a “applied at the point r”
relative to the point O is [r, a]; for example, in a school statics course one
studies the moment of force. [ The literal translation of the Russian term for
angular momentum is “kinetic moment.” (Trans. note)]

A The law of conservation of angular momentum

Lemma. Let a and b be two vectors changing with time in the oriented euclidean
space R3. Then

d )
. [aa b] = [a.'a b] + [aa b]
dt
Proor. This follows from the definition of derivative. O

Theorem (The law of conservation of angular momentum). Under motions
in a central field, the angular momentum M relative to the center of the
field 0 does not change with time.

PrOOE. By definition M = [r, ¥]. By the lemma, M = [F, ¥] + [r, ]. Since
the field is central it is apparent from the equations of motion that the vectors
I and r are collinear. Therefore M = 0. d

B Kepler’'s law

The law of conservation of angular momentum was first discovered by
Kepler through observation of the motion of Mars. Kepler formulated this
law in a slightly different way.

We introduce polar coordinates r, ¢ on our plane with pole at the center
of the field 0. We consider, at the point r with coordinates (Jr| = r, @),
two unit vectors: e,, directed along the radius vector so that

r=re,
and e,, perpendicular to it in the direction of increasing ¢. We express the
velocity vector F in terms of the basis e,, e, (Figure 29).

Lemma. We have the relation
P = re, + rge,.
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2: Investigation of the equations of motion

0

Figure 29 Decomposition of the vector f in terms of the basis e, e,

PRrOOF. Clearly, the vectors e, and e, rotate with angular velocity ¢, i,
¢ = ¢e, €, = —@e,.
Differentiating the equality r = re, gives us

P = re, + ré, = fe, + roe,,. O

Consequently, the angular momentum is

M= [l', l'] = [r’ fe,] + [l', r(»be(p] = r(i)[r, ezp] = 7'2(/')[0,, e(p]' N T

Thus, the quantity M = r?¢ is preserved. This quantity has a simple
geometric meaning.

r(t + A1) r(r)
7

Figure 30 Sectorial velocity

Kepler called the rate of change of the area S(t) swept out by the radius
vector the sectorial velocity C (Figure 30):
ds
C=—.
dt
The law discovered by Kepler through observation of the motion of the
planets says: in equal times the radius vector sweeps out equal areas, so

that the sectorial velocity is constant, dS/dt = const. This is one formulation
of the law of conservation of angular momentum. Since

AS = S(t + At) — S(t) = 3r*¢At + o(At),
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8: Investigation of motion in a central field

this means that the sectorial velocity

c=2 =4 =1iM

is half the angular momentum of our point of mass 1, and therefore constant.
ExAMPLE. Some satellites have very elongated orbits. By Kepler’s law such

a satellite spends most of its time in the distant part of its orbit, where the
magnitude of ¢ is small.

8 Investigation of motion in a central field

The law of conservation of angular momentum lets us reduce problems about motion in a
central field to problems with one degree of freedom. Thanks to this, motion in a central field can
be completely determined.

A Reduction to a one-dimensional problem

We look at the motion of a point (of mass 1) in a central field on the plane:

. ou
r= — E, U= U(r)

It is natural to use polar coordinates r, @.
By the law of conservation of angular momentum the quantity M =
@(t)r’(t) is constant (independent of t).

Theorem. For the motion of a material point of unit mass in a central field
the distance from the center of the field varies in the same way as r varies
in the one-dimensional problem with potential energy

2
V(i) =U@) + 12\4_"2

Proor. Differentiating the relation shown in Section 7 (i = re, + r¢e,),
we find

i =(F - rg*e, + 2/ + rple,.
Since the field is central,

w_ov,
oo o "

Therefore the equation of motion in polar coordinates takes the form
. . oU .. .
r—r(pzz—a 2Fp +rpp = 0.
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2: Investigation of the equations of motion

But, by the law of conservation of angular momentum,

M

»=—5
r?’

where M is a constant independent of ¢, determined by the initial conditions.
Therefore,

. ou  M? " v M?
r=—5+r-r7 or F=-—-—- whereV=U+5r—2.
The quantity V(r) is called the effective potential energy. O

Remark. The total energy in the derived one-dimensional problem

7"2
El = 5 + V(r)

is the same as the total energy in the original problem

.2

E= % + UM,
since
l.2 ':2 rZ(PZ ':2 MZ
2 3t Tt

B Integration of the equation of motion

The total energy in the derived one-dimensional problem is conserved.
Consequently, the dependence of r on ¢ is defined by the quadrature

N _ (e
F=J2E - V() fdt_f 2E - V()

Since ¢ = M/r?, do/dr = (M/r*)/\/2(E — V(r)), and the equation of the
orbit in polar coordinates is found by quadrature,

M/r?d
‘P=f /r* dr

J2E - V()

C Investigation of the orbit

We fix the value of the angular momentum at M. The variation of r with time
is easy to visualize, if one draws the graph of the effective potential energy
V(r) (Figure 31).

Let E be the value of the total energy. All orbits corresponding to the given
E and M lie in the region V(r) < E. On the boundary of this region, V = E,
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8: Investigation of motion in a central field

r
’min "max

Figure 31 Graph of the effective potential energy

ie., F = 0. Therefore, the velocity of the moving point, in general, is not equal
to zero since ¢ # 0for M # 0.
The inequality V(r) < E gives one or several annular regions in the plane:

0 < rpin <7 < Py < 0.

in = max

If 0 < 745 < Fimax < 0, then the motion is bounded and takes place inside
the ring between the circles of radius ,,;, and r,,,.

Pericenter

Apocenter

Figure 32 Orbit of a point in a central field

The shape of an orbit is shown in Figure 32. The angle ¢ varies mono-
tonically while r oscillates periodically between r,;, and r.,,. The points
where r = r,;, are called pericentral, and where r = r,,,, apocentral (if the
center is the earth—perigee and apogee; if it is the sun—perihelion and
aphelion; if it is the moon—perilune and apolune).

Each of the rays leading from the center to the apocenter or to the peri-
center is an axis of symmetry of the orbit.

In general, the orbit is not closed: the angle between the successive
pericenters and apocenters is given by the integral

rmax M /r? dr
rmin ~/ 2(E — V(r))

The angle between two successive pericenters is twice as big.

o =
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2: Investigation of the equations of motion

Figure 33  Orbit dense in an annulus

The orbit is closed if the angle @ is commensurable with 2z, ie., if ® =
2n(m/n), where m and n are integers.

It can be shown that if the angle @ is not commensurable with 2z, then the
orbit is everywhere dense in the annulus (Figure 33).

7 in = Pmax» 1.€., E is the value of V at a minimum point, then the annulus
degenerates to a circle, which is also the orbit.

PrROBLEM. For which values of « is motion along a circular orbit in the field
with potential energy U = r*, —2 < o < o0, Liapunov stable?

ANSWER. Only for « = 2,

For values of E a little larger than the minimum of V the annulus
T'min < T < Fmax Will be very narrow, and the orbit will be close to a circle.
In the corresponding one-dimensional problem, r will perform small oscilla-
tions close to the minimum point of V.

ProBLEM. Find the angle @ for an orbit close to the circle of radius r.
Hint. Cf. Section D below.

We now look at the case r,,, = co. If lim,,, U(r) = lim,,, V(r) =
U, < oo, then it is possible for orbits to go off to infinity. If the initial energy
E is larger than U, then the point goes to infinity with finite velocity 7, =

2(E — U,). We notice that if U(r) approaches its limit slower than r~2,
then the effective potential V will be attracting at infinity (here we assume that
the potential U is attracting at infinity).

If, as r - 0, |U(r)| does not grow faster than M?/2r?, then r,;, > 0 and
the orbit never approaches the center. If, however, U(r) + (M?/2r*) » — 0
as r = 0, then it is possible to “fall into the center of the field.” Falling into
the center of the field is possible even in finite time (for example, in the field
Ur) = —1/r3.

PrOBLEM. Examine the shape of an orbit in the case when the total energy
is equal to the value of the effective energy V at a local maximum point.
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8: Investigation of motion in a central field

D Central fields in which all bounded orbits are
closed

It follows from the following sequence of problems that there are only two
cases in which all the bounded orbits in a central field are closed, namely,

U = ar?, a>0
and

, k>0.

PrOBLEM 1. Show that the angle @ between the pericenter and apocenter
is equal to the semiperiod of an oscillation in the one-dimensional system
with potential energy W(x) = UM/x) + (x2/2).

Hint. The substitution x = M/r gives

Q _ J‘xmax dx .
Xmin 4/ 2(E - W)
ProBLEM 2. Find the angle @ for an orbit close to the circle of radius r.

ANSWER. ® & @, = i(M/r2/V'(r) = n/UJBU + rU").

ProBLEM 3. For which values of U is the magnitude of @, independent of the
radius r?

ANSWER. U(r) = ar®(a > —2,a # 0)and U(r) = blogr.

It follows that @, = n/./a + 2 (the logarithmic case corresponds to
o = 0). For example, for « = 2 we have ®;, = n/2, and for « = — 1 we have
O, =7

cir

PrOBLEM 4. Let in the situation of problem 3 U(r) » oo as r — oo. Find
limg_, , ®(E, M).

ANSWER. 71/2.

Hint. The substitution x = yx,,, reduces @ to the form

1 dy
(D = 2
f min / 2(W*(1) — WX())

2 M
W*(y)=y7-+-x2 U( )

yxmax

As E — oo we have x,,,, — o0 and y,;, — 0, and the second term in W* can
be discarded.
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2: Investigation of the equations of motion

PROBLEM 5. Let U(r) = —kr™#,0 < B < 2. Find ®, = limg_, _, ®.

ANSWER. @, = {§ dx//x* — x* = n/(2 — B). Note that ®, does not depend
on M.

ProsLEM 6. Find all central fields in which bounded orbits exist and are all
closed.

ANSWER. U = ar? or U = —k/r.

Solution. If all bounded orbits are closed, then, in particular, @, =
2a(m/n) = const. According to Problem 3, U = ar®(a > —=2),or U =binr
(a2 = 0). In both cases @ ;, = n/./a + 2. Ifa > O, then according to Problem
4, limg,  ®(E, M) = n/2. Therefore, &, =n/2, a=2. If a <0, then
according to Problem 5, limg,__ ®(E, M) = n/(2 + a). Therefore,
/2 + o) = n/ﬁ + a, a = —1. In the case a = 0 we find O, = n/\/i
which is not commensurable with 2n. Therefore, all bounded orbits can be
closed only in fields where U = ar? or U = —k/r. In the field U = ar?,
a > 0, all the orbits are closed (these are ellipses with center at 0, cf. Example
1, Section 5). In the field U = —k/r all bounded orbits are also closed and

also elliptical, as we will now show.

E Kepler's problem

This problem concerns motion in a central field with potential U = —k/r
and therefore V(r) = —(k/r) + (M?/2r?) (Figure 34).
By the general formula

J‘ M/r? dr
(P ==

J2AE - V)

\/ r
Figure 34 Effective potential of the Kepler problem
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8: Investigation of motion in a central field

Integrating, we get

M k
r M
@ = arc cos =

To this expression we should have added an arbitrary constant. We
will assume it equal to zero; this is equivalent to the choice of an origin of
reference for the angle ¢ at the pericenter. We introduce the following

notation:
M? 2EM?
T =p 1+ 7 = e.

Now we get ¢ = arc cos ((p/r) — 1)/e, ie.,

14

P=—.
1+ecoso

This is the so-called focal equation of a conic section. The motion is bounded
(Figure 35) for E < 0. Then e < 1, i.e,, the conic section is an ellipse. The
number p is called the parameter of the ellipse, and e the eccentricity. Kepler’s
first law, which he discovered by observing the motion of Mars, consists
of the fact that the planets describe ellipses, with the sun at one focus.

b
/- cuo
_P
1—e 14
1 +e

Figure 35 Keplerian ellipse

If we assume that the planets move in a central field of gravity, then
Kepler’s first law implies Newton’s law of gravity: U = —(k/r) (cf. Section
2D above).

The parameter and eccentricity are related with the semi-axes by the
formulas

P p 2p
2a= + —4 ,
l—e 14+e 1-—-¢2
1e.,
a= 4
1 —e*

e = cla = /a*> — b*/a, where ¢ = ae is the distance from the center to
the focus (cf. Figure 35).
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2: Investigation of the equations of motion

Remark. An ellipse with small eccentricity is very close to a circle.'”
If the distance from the focus to the center is small of first order, then the

difference between the semi-axes is of second order: b = a /1 — e* »
a(1 — 1e?). For example, in the ellipse with major semi-axes of 10 cm and
eccentricity 0.1, the difference of the semi-axes is 0.5 mm, and the distance
between the focus and the center is 1 cm.

The eccentricities of planets’ orbits are very small. Therefore, Kepler
originally formulated his first law as follows: the planets move around the
sun in circles, but the sun is not at the center.

Kepler’s second law, that the sectorial velocity is constant, is true in any
central field.

Kepler’s third law says that the period of revolution around an elliptical
orbit depends only on the size of the major semi-axes.

The squares of the revolution periods of two planets on different elliptical
orbits have the same ratio as the cubes of their major semi-axes.®

Proor. We denote by T the period of revolution and by S the area swept
out by the radius vector in time T. 2§ = MT, since M/2 is the sectorial
velocity. But the area of the ellipse, S, is equal to wab, so T = 2mab/M. Since

ke
2|E|1\Z_22 2|E|
(from a = p/(1 — e?)), and
R R
NG HECINE
then T = 2n(k/(s/2| E|)*); but 2| E| = k/a,so T = 2ma®k™112. O

We note that the total energy E depends only on the major semi-axis a
of the orbit and is the same for the whole set of elliptical orbits, from a circle
of radius a to a line segment of length 2a.

PrOBLEM. At the entry of a satellite into a circular orbit at a distance 300 km
from the earth the direction of its velocity deviates from the intended direction
by 1° towards the earth. How is the perigee changed?

AnsweR. The height of the perigee is less by approximately 110 km.

17 Let a drop of tea fall into a glass of tea close to the center. The waves collect at the symmetric
point. The reason is that, by the focal definition of an ellipse, waves radiating from one focus of
the ellipse collect at the other.

18 By planets we mean here points in a central field.
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8: Investigation of motion in a central field

—

Figure 36 An orbit which is close to circular

Hint. The orbit differs from a circle only to second order, and we can dis-
regard this difference. The radius has the intended value since the initial
energy has the intended value. Therefore, we get the true orbit (Figure 36)
by twisting the intended orbit through 1°.

ProBLEM. How does the height of the perigee change if the actual velocity
is 1 m/sec less than intended ?

PROBLEM. The first cosmic velocity is the velocity of motion on a circular
orbit of radius close to the radius of the earth. Find the magnitude of the

first cosmic velocity v, and show that v, = ﬁ vy (cf. Section 3B).
ANSWER. 8.1 km/sec.

ProsLEM.!® During his walk in outer space, the cosmonaut A. Leonov threw
the lens cap of his movie camera towards the earth. Describe the motion of
the lens cap with respect to the spaceship, taking the velocity of the throw
as 10 m/sec.

ANSWER. The lens cap will move relative to the cosmonaut approximately
in an ellipse with major axis about 32 km and minor axis about 16 km. The
center of the ellipse will be situated 16 km in front of the cosmonaut in his
orbit, and the period of circulation around the ellipse will be equal to the
period of motion around the orbit.

Hint. We take as our unit of length the radius of the space ship’s circular
orbit, and we choose a unit of time so that the period of revolution around this
orbit is 2n. We must study solutions to Newton’s equation

close to the circular solution with ro = 1, ¢y = t. We seek those solutions
in the form

r=rog+nr ¢ =@+ ¢, r1<1’(p1<1'

9 This problem is taken from V. V. Beletskii’s delightful book, “Sketches on the Motion of
Celestial Bodies,” Nauka, 1972.
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2: Investigation of the equations of motion

By the theorem on the differentiability of a solution with respect to its
initial conditions, the functions r,(t) and ¢,() satisfy a system of linear
differential equations (equations of variation) up to small amounts which
are of higher than first order in the initial deviation.

By substituting the expressions for r and ¢ in Newton’s equation, we get,
after simple computation, the variational equations in the form

F1=3r1+2¢1 ¢1= _2’.'1.

After solving these equations for the given initial conditions (r,(0) =
©1(0) = ¢,(0) = 0, #,(0) = —(1/800)), we get the answer given above.

Disregarding the small quantities of second order gives an effect of under
1/800 of the one obtained (i.., on the order of 10 meters on one loop).
Thus the lens cap describes a 30 km ellipse in an hour-and-a-half, returns
to the space ship on the side opposite the earth, and goes past at the distance
of a few tens of meters.

Of course, in this calculation we have disregarded the deviation of the orbit
from a circle, the effect of forces other than gravity, etc.

9 The motion of a point in three-space

In this paragraph we define the angular momentum relative to an axis and we show that, for
motion in an axially symmetric field, it is conserved.
All the results obtained for motion in a plane can be easily carried over to motions in space.

A Conservative fields
We consider a motion in the conservative field

(o _2U
o’
where U = U(r), r e E°.

The law of conservation of energy holds:

‘fl_l: =0, where E = §% + U(r).

B Central fields

For motion in a central field the vector M = [r, £] does not change: dM/dt =

0.
Every central field is conservative (this is proved as in the two-dimensional

case), and

‘2—?: [f, ] + [r,£] = 0,
since f = —(6U/0r), and the vector dU/dr is collinear with r since the field is

central.
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9: The motion of a point in three-space

Corollary. For motion in a central field, every orbit is planar.

Proor. (M, r) = ([r, £], r) = 0; therefore r(t) L M, and since M = const.,
all orbits lie in the plane perpendicular to M.>° |

Thus the study of orbits in a central field in space reduces to the planar
problem examined in the previous paragraph.

ProBLEM. Investigate motion in a central field in n-dimensional euclidean
space.

C Axially symmetric fields

Definition. A vector field in E3 has axial symmetry if it is invariant with
respect to the group of rotations of space which fix every point of some
axis.

PrROBLEM. Show that if a field is axially symmetric and conservative, then its
potential energy has the form U = U(r, z), where r, ¢, and z are cylindrical
coordinates.

In particular, it follows from this that the vectors of the field lie in planes
through the z axis.

As an example of such a field we can take the gravitational field created
by a solid of revolution.

e 4

od——r—v/

Ol
Figure 37 Moment of the vector F with respect to an axis
Let z be the axis, oriented by the vector e, in three-dimensional euclidean

space E*; F a vector in the euclidean linear space R3; 0 a point on the z axis;
r = x — 0 € R? the radius vector of the point x € E3 relative to 0 (Figure 37).

Definition. The moment M, relative to the z axis of the vector F applied
at the point r is the projection onto the z axis of the moment of the vector
F relative to some point on this axis:

M, = (e, [r, F]).

20 The case M = 0 is left to the reader.
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2: Investigation of the equations of motion

The number M, does not depend on the choice of the point 0 on the
z axis. In fact, if we look at a point 0" on the axis, then by properties of the
triple product, M, = (e,, [r', F]) = ([e,, r'], F) = ([e,, r], F) = M,.

Remark. M, depends on the choice of the direction of the z axis: if we change
¢, to —e_, then M, changes sign.

Theorem. For a motion in a conservative field with axial symmetry around the
z axis, the moment of velocity relative to the z axis is conserved.

PrOOF. M, = (e, [r, £]). Since f = F, it follows that r and & lie in a plane

passing through the z axis, and therefore [r, ¥] is perpendicular to e,.
Therefore,

M, = (e, [, F]) + (e, [, F]) = 0. O

Remark. This proof works for any force field in which the force vector F
lies in the plane spanned by r and e,.

10 Motions of a system of n points

In this paragraph we prove the laws of conservation of energy, momentum, and angular momen-
tum for systems of material points in E3.

A Internal and external forces

Newton’s equations for the motion of a system of n material points, with
masses m; and radius vectors r; € E* are the equations

mi,=F, i=12..n

The vector F; is called the force acting on the i-th point.

The forces F; are determined experimentally. We often observe in a
system that for two points these forces are equal in magnitude and act
in opposite directions along the straight line joining the points (Figure 38).

Fy Fj;

| G i)

Figure 38 Forces of interaction

Such forces are called forces of interaction (example: the force of universal
gravitation).

If all forces acting on a point of the system are forces of interaction, then
the system is said to be closed. By definition, the force acting on the i-th
point of a closed system is

n
F,= Y F,;

i=1

Jj#Fi
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10: Motions of a system of n points

The vector F;; is the force with which the j-th point acts on the i-th.
Since the forces F;; and F; are opposite (F;; = —F ), we can write them
in the form F;; = f;;e;;, where f;; = f;; is the magnitude of the force and e;;
is the unit vector in the direction from the i-th point to the j-th point.
If the system is not closed, then it is often possible to represent the forces
acting on it in the form
F, = Z F; + F,

where F;; are forces of interaction and F(r;) is the so-called external force.

Figure 39 Internal and external forces

ExampLE. (Figure 39) We separate a closed system into two parts, I and IL
The force F; applied to the i-th point of system I is determined by forces of
interaction inside system I and forces acting on the i-th point from points
of system 11, i.e.,

jel

Jj#i
F; is the external force with respect to system I.
B The law of conservation of momentum

Definition. The momentum of a system is the vector

Theorem. The rate of change of momentum of a system is equal to the sum
of all external forces acting on points of the system.

PRrROOF. dP/dt = Z"_lmi' Z,_,F Z,IFU+ZF’ Z,.F};Z,-‘jF,.j=
0, since for forces of interaction F;; d

Corollary 1. The momentum of a closed system is conserved.

Corollary 2. If the sum of the exterior forces acting on a system is perpendicular
to the x axis, then the projection P, of the momentum onto the x axis is
conserved: P, = const.
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2: Investigation of the equations of motion

Definition. The center of mass of a system is the point

Z m;r;
Z m;

ProBLEM. Show that the center of mass is well defined, i.e., does not depend
on the choice of the origin of reference for radius vectors.

r =

The momentum of a system is equal to the momentum of a particle lying at
the center of mass of the system and having mass )  m;.

In fact, (3 m)r = Y. (m;r;), from which it follows that (3, m)i = 3 mi,.

We can now formulate the theorem about momentum as a theorem about
the motion of the center of mass.

Theorem. The center of mass of a system moves as if all masses were concen-
trated at it and all forces were applied to it.

ProOF. (). m))i = P. Therefore, (3. m))f = dP/dt = ) ; F;. O

Corollary. If a system is closed, then its center of mass moves uniformly
and linearly.

C The law of conservation of angular momentum

Definition. The angular momentum of a material point of mass m relative to the
point 0, is the moment of the momentum vector relative to 0:

M = [r, mf].

The angular momentum of a system relative to 0 is the sum of the angular
momenta of all the points in the system:

M = i [r;, m;¥;].

i=1

Theorem. The rate of change of the angular momentum of a system is equal
to the sum of the moments of the external forces*! acting on the points of
the system.

ProOF. dM/dt = Y- [§;, m#] + Y =y [r;, m;¥]. The first term is equal

to zero, and the second is equal to

[r.Fl= ¥ [r ( Y F,+ F;-)] — YInFa

i#j i=1

M=

i=1

by Newton’s equations.
! The moment of force is also called the torque [Trans. note].
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10: Motions of a system of n points

The sum of the moments of two forces of interaction is equal to zero since
Fijj= —Fjy,s0 [r, Fj]1 + [r;, F]l = [(r; — 1), F;] = 0.

Therefore, the sum of the moments of all forces of interaction is equal
to zero:

i#j
Therefore, dM/dt = Z?=1 [r;, Fi]. O

Corollary 1(The law of conservation of angular momentum). If the system
is closed, then M = const.

We denote the sum of the moments of the external forces by N =
Yi-y [, FL.
Then, by the theorem above, dM/dt = N, from which we have

Corollary 2. If the moment of the external forces relative to the z axis is
equal to zero, then M, is constant.

D The law of conservation of energy
Definition. The kinetic energy of a point of mass m is

.2
mr
T=—.
2

Definition. The kinetic energy of a system of mass points is the sum of the

kinetic energies of the points:
m; ¥t}
1 27

M=

T:

where the m; are the masses of the points and ¥, are their velocities.

Theorem. The increase in the kinetic energy of a system is equal to the sum of
the work of all forces acting on the points of the system.

PROOF.
ar & . . Lo .
- = Z my(¥;, ;) = Z (¥;, m;i;) = Z (¥;, F)).
a5 i=1 i=1
Therefore,
tdT nort n
Jitg dt i=1 Vg i=1
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2: Investigation of the equations of motion

The configuration space of a system of n mass points in E3 is the direct
product of n euclidean spaces: E*" = E* x -.. x E3. It hasitself the structure
of a euclidean space.

Let r = (ry, ..., r,) be the radius vector of a point in the configuration
space,and F = (F,, ..., F,) the force vector. We can write the theorem above
in the form

r(t1)

T(ty) - T(to) = f

¥(to)

(F, dr) = f "(r', Fd:.

In other words:
The increase in kinetic energy is equal to the work of the “force” F
on the “path” r(¢) in configuration space.

Definition. A system is called conservative if the forces depend only on the
location of a point in the system (F = F(r)), and if the work of F along
any path depends only on the initial and final points of the path:

M

(F, dr) = (M, M,).

M,
Theorem. For a system to be conservative it is necessary and sufficient that
there exist a potential energy, i.e., a function U(r) such that

B oU
or’
PRrOOE. Cf. Section 6B. O

F=

Theorem. The total energy of a conservative system (E = T + U)is preserved
under the motion: E(t;) = E(to).

ProoF. By what was shown earlier,
r(t1)
T() = T = | (F,d) = Uleto) — UGy O

r(to)

Let all the forces acting on the points of a system be divided into forces of
interaction and external forces:

F, = zFij+ F;,

i#tj

Proposition. If the forces of interaction depend only on distance, f;; =
filr; = x;]), then they are conservative.
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10: Motions of a system of n points

PrOOF. If a system consists entirely of two points i and j, then, as is easily
seen, the potential energy of the interaction is given by the formula

lhm=fﬁmwn

We then have

oU(Ir; — ry)) olr; — 1y
__—Jari—J = _ﬁjTL = fe-
Therefore, the potential energy of the interaction of all the points will be

U =Y Ul = ;). u

i>j

If the external forces are also conservative, ie., F; = —(0Uj/or;), then
the system is conservative, and its total potential energy is
um =3y U+ Ui
i>j i
For such a system the total mechanical energy
i

+ Y U+ 2 U;

2 i>j i

E=T+U=Z

is conserved.
If the system is not conservative, then the total mechanical energy is not
generally conserved.

Definition. A decrease in the mechanical energy E(t,) — E(t,) is called an
increase in the non-mechanical energy E':

E'(t) — E'(to) = E(t0) — E(ty).

Theorem (The law of conservation of energy). The total energy H = E + E'
is conserved.

This theorem is an obvious corollary of the definition above. Its value lies
in the fact that in concrete physical systems, expressions for the size of the
non-mechanical energy can be found in terms of other physical quantities
(temperature, etc.).

E Example: The two-body problem

Suppose that two points with masses m; and m, interact with potential U,
so that the equations of motion have the form

. ou . ou
mry = — == myr; = — .
2

or, U=U(r, — 1))
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2: Investigation of the equations of motion

Theorem. The time variation of ¥ =1, —r, in the two-body problem is the
same as that for the motion of a point of mass m = mym,/(m; + m,) in a
field with potential U(|r|).

We denote by r, the radius vector of the center of mass: r, =
(myry + myr,)/(my + m,). By the theorem on the conservation of momentum,
the point r, moves uniformly and linearly.

We now look at the vector r =r, — r,. Multiplying the first of the
equations of motion by m,, the second by m,, and computing, we find that
mym,f = —(my + m,)(0U/0r), where U = U(|r, — r,]) = U(|r]).

In particular, in the case of a Newtonian attraction, the points describe
conic sections with foci at their common center of mass (Figure 40).

AN
e

~

mj

Figure 40 The two body problem

PROBLEM. Determine the major semi-axis of the ellipse which the center of
the earth describes around the common center of mass of the earth and the
moon. Where is this center of mass, inside the earth or outside? (The mass
of the moon is 1/81 times the mass of the earth.)

11 The method of similarity

In some cases it is possible to obtain important information from the form of the equations of
motion without solving them, by using the methods of similarity and dimension. The main idea
in these methods is to choose a change of scale (of time, length, mass, etc.) under which the
equations of motion preserve their form.

A Example

Let r(r) satisfy the equation m(d’r/dt*) = —(0U/dr). We set t, = at and
m, = a*m. Then K(t,) satisfies the equation m, - (d°r/dt}) = —(8U/dr). In
other words:

If the mass of a point is decreased by a factor of 4, then the point can travel
the same orbit in the same force field twice as fast.??

22 Here we are assuming that U does not depend on m. In the field of gravity, the potential
energy U is proportional to m, and therefore the acceleration does not depend on the mass m
of the moving point.
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11: The method of similarity

B A problem

Suppose that the potential energy of a central field is a homogeneous function
of degree v:

U(ar) = «’U(r) for any a > 0.

Show that if a curve y is the orbit of a motion, then the homothetic
curve ay is also an orbit (under the appropriate initial conditions). Determine
the ratio of the circulation times along these orbits. Deduce from this the
isochronicity of the oscillation of a pendulum (v = 2) and Kepler’s third law
(v= -1

ProBLEM. If the radius of a planet is « times the radius of the earth and its
mass f times that of the earth, find the ratio of the acceleration of the force
of gravity and the first and second cosmic velocities to the corresponding
quantities for the earth.

ANSWER. y = o2, 6 = /B/a.

For the moon, for example, « = 1/3.7 and = 1/81. Therefore, the accel-
eration of gravity is about 1/6 that of the earth (y =~ 1/6), and the cosmic
velocities are about 1/5 those for the earth (6 =~ 1/4.7).

PROBLEM.?3 A desert animal has to cover great distances between sources of
water. How does the maximal time the animal can run depend on the size
L of the animal?

ANSWER. It is directly proportional to L.

Solution. The store of water is proportional to the volume of the body,
ie., L3;the evaporation is proportional to the surface area, i.e., L2. Therefore,
the maximal time of a run from one source to another is directly proportional
to L.

We notice that the maximal distance an animal can run also grows
proportionally to L (cf. the following problem).

ProBLEM.?* How does the running velocity of an animal on level ground
and uphill depend on the size L of the animal?

ANSWER. On level ground ~ L°, uphill ~ L™,

23 J. M. Smith, Mathematical ldeas in Biology, Cambridge University Press, 1968.
24 Ibid.
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2: Investigation of the equations of motion

Solution. The power developed by the animal is proportional to L?
(the percentage used by muscle is constant at about 25 %, the other 75 %, of
the chemical energy is converted to heat; the heat output is proportional
to the body surface, i.e., L2, which means that the effective power is pro-
portional to L?).

The force of air resistance is directly proportional to the square of the
velocity and the area of a cross-section; the power spent on overcoming
it is therefore proportional to v?L?v. Therefore, v3L2 ~ L2, s0 v ~ L°. In
fact, the running velocity on level ground, no smaller for a rabbit than for
a horse, in practice does not specifically depend on the size.

The power necessary to run uphillis mgv ~ L3v; since the generated power
is ~ L% we find that v ~ L™ !, In fact, a dog easily runs up a hill, while a
horse slows its pace.

PrOBLEM. 24* How does the height of an animal’s jump depend on its size?
ANSWER. ~ L°.

Solution. For a jump of height h one needs energy proportional to L3h,
and the work accomplished by muscular strength F is proportional to FL.
The force F is proportional to L? (since the strength of bones is proportional
to their section). Therefore, L3h ~ L’L, i.., the height of a jump does not
depend on the size of the animal. In fact, a jerboa and a kangaroo can jump
to approximately the same height.

244 Ibid.
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PART 1II
LAGRANGIAN MECHANICS

Lagrangian mechanics describes motion in a mechanical system by means of
the configuration space. The configuration space of a mechanical system has
the structure of a differentiable manifold, on which its group of diffeo-
morphisms acts. The basic ideas and theorems of lagrangian mechanics are
invariant under this group,?* even if formulated in terms of local coordinates.

A lagrangian mechanical system is given by a manifold (“configuration
space”) and a function on its tangent bundle (“the lagrangian function”™).

Every one-parameter group of difftomorphisms of configuration space
which fixes the lagrangian function defines a conservation law (i.e., a first
integral of the equations of motion).

A newtonian potential system is a particular case of a lagrangian system
(the configuration space in this case is euclidean, and the lagrangian function
is the difference between the kinetic and potential energies).

The lagrangian point of view allows us to solve completely a series of
important mechanical problems, including problems in the theory of small
oscillations and in the dynamics of a rigid body.

25 And even under larger groups of transformations, which also affect time.



Variational principles

In this chapter we show that the motions of a newtonian potential system
are extremals of a variational principle, “Hamilton’s principle of least
action.”

This fact has many important consequences, including a quick method
for writing equations of motion in curvilinear coordinate systems, and a
series of qualitative deductions—for example, a theorem on returning to a
neighborhood of the initial point.

In this chapter we will use an n-dimensional coordinate space. A vector
in such a space is a set of numbers X = (x4, ..., x,). Similarly, df/0x means
(0f/0xy, ..., 0f/0x,), and (a,b) = a;b; + --- + a,b,.

12 Calculus of variations

For what follows, we will need some facts from the calculus of variations. A more detailed
exposition can be found in “A Course in the Calculus of Variations™ by M. A. Lavrentiev and
L. A. Lusternik, M. L., 1938, or G. E. Shilov, “Elementary Functional Analysis,” MIT Press,
1974.

The calculus of variations is concerned with the extremals of functions
whose domain is an infinite-dimensional space: the space of curves. Such
functions are called functionals.

An example of a functional is the length of a curve in the euclidean plane:
ify = {(t,x): x(t) = x,t <t < t;}, then ®(y) = [;' /1 + %% dt.

In general, a functional is any mapping from the space of curves to the
real numbers.

We consider an “approximation” y’ to y, ¥ = {(t, x): x = x(t) + h(t)}.
We will call it y =y + h. Consider the increment of ®, ®(y + h) — O(y)
(Figure 41).
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3: Variational principles

X1

X0 v

to t !

Figure 41 Variation of a curve

A Variations

Definition. A functional ®@ is called differentiable*® if ®(y + h) — ®(y) =
F + R, where F depends linearly on h (ie., for a fixed y, F(h, + h,) =
F(hy) + F(h,) and F(ch) = cF(h)), and R(h, y) = O(h?) in the sense that,
for |h| < ¢ and |dh/dt| < e, we have |R| < Ce?. The linear part of the
increment, F(h), is called the differential.

It can be shown that if @ is differentiable, its differential is uniquely
defined. The differential of a functional is also called its variation, and h is
called a variation of the curve.

ExaMPLE. Let y = {(t, x): x = x(t),t, <t < t,} beacurvein the (t, x)-plane;

X = dx/dt; L = L(a, b, ¢) a differentiable function of three variables. We
define a functional @ by

t1
o) = | L, 30, 0de
to
In case L = /1 + b2, we get the length of y.

Theorem. The functional ®(y) = |i} L(x, X, t)dt is differentiable, and its
derivative is given by the formula

“|0L d oL oL
F(h) = J:o IZE - Eig;]hdt +<gh)

Oy + h) — O(y) = f tl[L(x + h, % + h, 1) — L(x, %, t)]dt

t1

to

PrOOF.

1
- [a—Lh +95.h]dt + O(h?) = F(h) + R,
w | 0x 0x

0
26 We should specify the class of curves on which @ is defined and the linear space which con-

tains h. One could assume, for example, that both spaces consist of the infinitely differentiable
functions.
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12: Calculus of variations

where

F(h) = Jﬂl

to

Ox 0x
Integrating by parts, we find that

h oL " d (0L oL
[0 (3480 (2

B Extremals

(a—[‘ h + 9[—‘ fz)dt and R = O(h?).

n

to

Definition. An extremal of a differentiable functional ®(y) is a curve y such that
F(h) = 0O for all h.
(In exactly the same way that y is a stationary point of a function if the
differential is equal to zero at that point.)

Theorem. The curve y:x = x(t) is an extremal of the functional ®(y) =
{4 L(x, X, t)dt on the space of curves passing through the points x(t,) = xo
and x(t,) = x,, if and only if

d (0L\ oL
n (5;) S 0 along the curve x(t).

Lemma. If a continuous function f(t), to <t < t, satisfies j:g, S@®h(t)dt =0
for any continuous®’ function h(t) with h(t,) = h(t,) = O, then f(t) = 0.

h

t* —d t* t*+d
L 1 J

to A t

Figure 42 Construction of the function h

PROOF OF THE LEMMA. Let f(¢t*) > 0 for some t*, ¢, < t* < ¢,. Since f is
continuous, f(t) > ¢ in some neighborhood A of the point t*: t, < t* —
d<t<t*+d<rt,. Let h(t) be such that h(t) = 0 outside A, h(t) > O in A,
and h(t) =1 in A/2 (ie, for t st. t* — 3d <t < t* + }d). Then, clearly,
j:; f(®h(t) = dc > O (Figure 42). This contradiction shows that f(¢t*) =0
forall t*, ty < t* < t,. O

PROOF OF THE THEOREM. By the preceding theorem,

4 Td (L) oL oL
F(h) = —L [d—t (EZ) —g]hdt + <§h)

27 Or even for any infinitely differentiable function h.

31

fo
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3: Variational principles

The term after the integral is equal to zero since h(ty) = h(t;) = 0. If y is an
extremal, then F(h) = O for all A with h(zy) = h(t,) = 0. Therefore,

f " fOh@dt = 0,

where
d (0L oL
f(t)—a(g) e
for all such h. By the lemma, f(t) = 0. Conversely, if f(¢) = O, then clearly
F(h) = 0. O

ExampLE. We verify that the extremals of length are straight lines. We have:

oL oL X d X
=1+ x? — =0 . — R m—"
L X Ox ox 1+ x2 dt( /1 + )22> 0

X ,
X = x=C1t+C2.

Jire ©

C The Euler—Lagrange equation

4oLy _oL_,
dt \ox ox

is called the Euler-Lagrange equation for the functional

Definition. The equation

o= [ L(x, x, t)dt.

“to

Now let x be a vector in the n-dimensional coordinate space R", y =
{(t, x): x =x(t), to <t <t;} a curve in the (n+ 1)-dimensional space
R x R* and L: R" x R" x R - R a function of 2n + 1 variables. As before,
we show:

Theorem. The curve y is an extremal of the functional ®(y) = |;} L(x, X, t)dt
on the space of curves joining (ty, Xo) and (ty, X,), if and only if the Euler—
Lagrange equation is satisfied along .

This is a system of n second-order equations, and the solution depends on
2n arbitrary constants. The 2n conditions x(ty) = X,, X(¢;) = X, are used
for finding them.

ProBLEM. Cite examples where there are many extremals connecting two
given points, and others where there are none at all.
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13: Lagrange’s equations

D An important remark

The condition for a curve y to be an extremal of a functional does not depend
on the choice of coordinate system.

For example, the same functional—length of a curve—is given in cartesian
and polar coordinates by the different formulas

t1 t
(I)cart = J. mdt (Dpol = J mdt
to 1o

The extremals are the same—straight lines in the plane. The equations of
lines in cartesian and polar coordinates are given by different functions:
X1 = xl(t)7 Xy = Xz(t), andr = f(t)s ¢ = (p(t)

However, both these vector functions satisfy the Euler—Lagrange
equation

doL oL
dtox  ox
only, in the first case, when x ., = X, X, and L., = /X + X3, and in
the second case when x,,; = r, ¢ and L., = \/F* + r’¢>.
In this way we can easily describe in any coordinates a differential equa-
tion for the family of all straight lines.

PrROBLEM. Find the differential equation for the family of all straight lines
in the plane in polar coordinates.

13 Lagrange’s equations

Here we indicate the variational principle whose extremals are solutions of Newton’s equations
of motion in a potential system.
We compare Newton’s equations of dynamics

) Lmiy+ 2L~ o
— (m; ¥, —_ =
at ! or;

with the Euler-Lagrange equation

doL oL
drox  ox

A Hamilton’s principle of least action

Theorem. Motions of the mechanical system (1) coincide with extremals of
the functional

151
O(y) = f Ldt, whereL=T - U
to

is the difference between the kinetic and potential energy.
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3: Variational principles

PROOF. Since U = U(r) and T = Y m; ?/2, we have OL/o¢; = 0T/0F; = m;¥;
and oL/or; = —oU/or,. O

Corollary. Let (q,, ..., g3,) be any coordinates in the configuration space of
a system of n mass points. Then the evolution of q with time is subject to the
Euler-Lagrange equations

d (0L oL
o < 6(]) T ,  where T—-U
ProOOF. By the theorem above, a motion is an extremal of the functional

{ L dt. Therefore, in any system of coordinates the Euler-Lagrange equation
written in that coordinate system is satisfied. O

Definition. In mechanics we use the following terminology: L(q,4,t)=T— U
is the Lagrange function or lagrangian, q; are the generalized coordinates,
q; are generalized velocities, 0L/0§4; = p; are generalized momenta,
0L/dq; are generalized forces, |} L(4, 4, t)dt is the action, (d(0L/d§;)/dt)
—(0L/8q;) = 0 are Lagrange’s equations.

The last theorem is called “Hamilton’s form of the principle of least

motion” because in many cases the action q(t) is not only an extremal but

is also a minimum value of the action functional f3! L dt.

B The simplest examples

ExampLE 1. For a free mass point in E3,

in cartesian coordinates ¢; = r; we find
L=30i+4+d)

Here the generalized velocities are the components of the velocity vector,
the generalized momenta p, = mq; are the components of the momentum
vector, and Lagrange’s equations coincide with Newton’s equations
dp/dt = 0. The extremals are straight lines. It follows from Hamilton’s
principle that straight lines are not only shortest (i.e., extremals of the length

/4 + 43 + 43 dt) but also extremals of the action % (¢ + 43 + ¢3)dt.

PrOBLEM. Show that this extremum is a minimum.

ExaMPLE 2. We consider planar motion in a central field in polar coordinates
4, =1, 4, = ¢. From the relation f = re, + ¢re, we find the kinetic energy
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14: Legendre transformations

T = imi? = im(7® + r?¢?) and the lagrangian L(q, ) = T(q, q) — U(q),
where U = U(q,).
The generalized momenta will be p = dL/0q, i.e.,

pr=mi  p,=mr’¢p.
The first Lagrange equation p, = 0L/0q, takes the form

.., 0U
mi = mr¢ 5
We already obtained this equation in Section 8.

Since q, = ¢ does not enter into L, we have dL/dq, = 0. Therefore, the
second Lagrange equation will be p, = 0, p, = const. This is the law of
conservation of angular momentum.

In general, when the field is not central (U = U(r, ¢)), we find p, =
— oU/oe.

This equation can be rewritten in the form d(M, e,)/dt = N, where
N = ([r,F],e,) and F = —aU/or. (The rate of change in angular momentum
relative to the z axis is equal to the moment of the force F relative to the
Z axis.)

In fact, we have dU = (0U/0r)dr + (0U/d@)de = —(F, dr) = —(F, e, )dr —
r(F, e,)do; therefore, —0U/dp = r(F, e,) = r([e,, F], e,) = ([r, F], ¢,).

This example suggests the following generalization of the law of con-
servation of angular momentum.

Definition. A coordinate q; is called cyclic if it does not enter into the
lagrangian: 0L/dq; = 0.

Theorem. The generalized momentum corresponding to a cyclic coordinate is
conserved: p; = const.

Proor. By Lagrange’s equation dp;/dt = 0L/dq; = 0. O

14 Legendre transformations

The Legendre transformation is a very useful mathematical tool: it transforms functions on a
vector space to functions on the dual space. Legendre transformations are related to projective
duality and tangential coordinates in algebraic geometry and the construction of dual Banach
spaces in analysis. They are often encountered in physics (for example, in the definition of
thermodynamic quantities).

A Definition

Let y = f(x) be a convex function, f"(x) > 0.

The Legendre transformation of the function f is a new function g of a
new variable p, which is constructed in the following way (Figure 43). We
draw the graph of f in the x, y plane. Let p be a given number. Consider the
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3: Variational principles

fx)

()

X

x(p)

Figure 43 Legendre transformation

straight line y = px. We take the point x = x(p) at which the curve is farthest
from the straight line in the vertical direction: for each p the function px —
f(x) = F(p, x) has a maximum with respect to x at the point x(p). Now we

define g(p) = F(p, x(p)).
The point x(p) is defined by the extremal condition dF/dx = 0, ie.,

f'(x) = p. Since f is convex, the point x(p) is unique.?®

PROBLEM . Show that the domain of g can be a point, a closed interval, or a ray if fis defined
on the whole x axis. Prove that if f'is defined on a closed interval, then g is defined on the whole p
axis.

B Examples
EXAMPLE 1. Let f(x) = x2. Then F(p, x) = px — x2, x(p) = 1p, g(p) = 1p>.
EXAMPLE 2. Let f(x) = mx2/2. Then g(p) = p*/2m.

ExaMpLE 3. Let f(x) = x*/a. Then g(p) = p?/B, where (1/x) + (1/B) =1
@>1,8>1).

P

PVZ pi
1

Figure 44 Legendre transformation taking an angle to a line segment

EXAMPLE 4. Let f(x) be a convex polygon. Then g(p) is also a convex polygon,
in which the vertices of f(x) correspond to the edges of g(p), and the edges of
f(x) to the vertices of g(p). For example, the corner depicted in Figure 44 is
transformed to a segment under the Legendre transformation.

28 If it exists.
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14: Legendre transformations

C Involutivity

Let us consider a function f which is differentiable as many times as necessary,
with f“(x) > 0. It is easy to verify that a Legendre transformation takes
convex functions to convex functions. Therefore, we can apply it twice.

Theorem. The Legendre transformation is involutive, i.e., its square is the
identity: if under the Legendre transformation f is taken to g, then the
Legendre transform of g will again be f.

PRrOOF. In order to apply the Legendre transform to g, with variable p, we
must by definition look at a new independent variable (which we will call x),
construct the function

G(x, p) = xp — g(p),

and find the point p(x) at which G attains its maximum: 0G/dp = 0, i.e.,
g'(p) = x. Then the Legendre transform of g(p) will be the function of x
equal to G(x, p(x)).

We will show that G(x, p(x)) = f(x). To this end we notice that G(x, p) =
xp — g(p) has a simple geometric interpretation: it is the ordinate of the
point with abscissa x on the line tangent to the graph of f(x) with slope p

fx)

// X0 x(p) o

Figure 45 Involutivity of the Legendre transformation

(Figure 45). For fixed p, the function G(x, p) is a linear function of x, with
0G/0x = p, and for x = x(p) we have G(x, p) = xp — g(p) = f(x) by the
definition of g(p).

Let us now fix x = x, and vary p. Then the values of G(x, p) will be the
ordinates of the points of intersection of the line x = x, with the line tangent
to the graph of f(x) with various slopes p. By the convexity of the graph it
follows that all these tangents lie below the curve, and therefore the maximum
of G(x, p) for a fixed x(p,) is equal to f(x) (and is achieved for p = p(x,) =

O

S (x0)).
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gWw)

S x)

X

Figure 46 Legendre transformation of a quadratic form

Corollary.?® Consider a given family of straight lines y = px — g(p). Then
its envelope has the equation y = f(x), where f is the Legendre transform

of g.
D Young’s inequality

Definition. Two functions, f and g, which are the Legendre transforms of
one another are called dual in the sense of Young.

By definition of the Legendre transform, F(x,p) = px — f(x) is less
than or equal to g(p) for any x and p. From this we have Young’s inequality:
px < f(x) + g(p).

ExaMpLE 1. If f(x) = $x2, then g(p) = 3p*> and we obtain the well-known

inequality px < $x? + 4p*for all x and p.

ExaMpPLE 2. If f(x) = x*/a, then g(p) = p?/B, where (1/a) + (1/B) = 1, and
we obtain Young’s inequality px < (x*/a) + (pf/p) for all x >0, p >0,
o> 1,8>1,and (/o) + (1/8) = 1.

E The case of many variables

Now let f(x) be a convex function of the vector variable X = (x;, ..., X,)
(ie., the quadratic form ((62f/0x*)dx, dx) is positive definite). Then the
Legendre transform is the function g(p) of the vector variable p = (py, . .., pn)

defined as above by the equalities g(p) = F(p, x(p)) = max, F(p, x), where
F(p,x) = (p, x) — f(x) and p = Jf/0x.

All of the above arguments, including Young’s inequality, can be carried
over without change to this case.

PROBLEM. Let f: R" - R be a convex function. Let R"™ denote the dual vector
space. Show that the formulas above completely define the mapping
g : R"™ - R (under the condition that the linear form df |, ranges over all of
R™* when x ranges over R").

29 One can easily see that this is the theory of “Clairaut’s equation.”

64



15: Hamilton’s equations

PROBLEM. Let f be the quadratic form f(x) = ) f.;x;x;. Show that its
Legendre transform is again a quadratic form g(p) = ), g;;p;p;, and that the
values of both forms at corresponding points coincide (Figure 46):

S(x(@) = g(p) and g(p(x)) = f(x).

15 Hamilton’s equations

By means of a Legendre transformation, a lagrangian system of second-order differential
equations is converted into a remarkably symmetrical system of 2n first-order equations called
a hamiltonian system of equations (or canonical equations).

A Equivalence of Lagrange’s and Hamilton’s
equations

We consider the system of Lagrange’s equations p = dL/0q, where p =
OL/0q, with a given lagrangian function L : R" x R" x R — R, which we will
assume to be convex®® with respect to the second argument §.

Theorem. The system of Lagrange’s equations is equivalent to the system of
2n first-order equations (Hamilton’s equations)

where H(p, q, t) = pq — L(q, §, t) is the Legendre transform of the lagrang-
ian function viewed as a function of q.

Proor. By definition, the Legendre transform of L(q, g, t) with respect to q
is the function H(p) = pq — L(q), in which § is expressed in terms of p
by the formula p = dL/0q, and which depends on the parameters q and t.
This function H is called the hamiltonian.
The total differential of the hamiltonian
0H 0H 0H
=— — —d

dH al,dp+ ™ dq + o t

is equal to the total differential of pg — L for p = dL/6q:

, oL oL
dH = qdp——a—idq —Edt.
Both expressions for ¢ H must be the same. Therefore,

OH O0H 0L OH L

% W a aa

30 In practice this convex function will often be a positive definite quadratic form.
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3: Variational principles

Applying Lagrange’s equations p = JL/dq, we obtain Hamilton’s equa-
tions.

We have seen that, if q(t) satisfies Lagrange’s equations, then (p(t), q(t))
satisfies Hamilton’s equations. The converse is proved in an analogous
manner. Therefore, the systems of Lagrange and Hamilton are equivalent.

O

Remark. The theorem just proved applies to all variational problems, not
just to the lagrangian equations of mechanics.

B Hamilton’s function and energy

ExAMPLE. Suppose now that the equations are mechanical, so that the
lagrangian has the usual form L = T — U, where the kinetic energy T is a
quadratic form with respect to :

T = %Z aij('],-(']j, Where ai_,' - a,-,-(q, t) and U = U(q).

Theorem. Under the given assumptions, the hamiltonian H is the total energy
H=T+U.

The proof is based on the following lemma on the Legendre transform of
a quadratic form.

Lemma. The values of a quadratic form f(x) and of its Legendre transform
g(p) coincide at corresponding points: f(x) = g(p).

EXAMPLE. For the form f(x) = x? this is a well-known property of a tangent
to a parabola. For the form f(x) = $mx? we have p = mx and g(p) =
p*2m = mx*2 = f(x).

PrROOF OF THE LEMMA By Euler’s theorem on homogeneous functions
(9f/ox)x = 2f. Therefore, g(p(x)) = px — f(x) = (Of/0x)x — f = 2f(x) —
f(x) = f(x). )

PROOF OF THE THEOREM. Reasoning as in the lemma, we find that H = pq —
L=2T-(T-U)=T+ U. |

ExAMPLE. For one-dimensional motion

In this case T = 34¢%, U = U(q), p = 4, H = $p®> + U(g) and Hamilton’s
equations take the form
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15: Hamilton’s equations

This example makes it easy to remember which of Hamilton’s equations
has a minus sign.

Several important corollaries follow from the theorem on the equivalence
of the equations of motion to a hamiltonian system. For example, the law of
conservation of energy takes the simple form:

Corollary 1. dH/dt = 0H/dt. In particular, for a system whose hamiltonian
Junction does not depend explicitly on time (0H/0t = 0), the law of conserva-
tion of the hamiltonian function holds: H(p(t), q(t)) = const.

Proor. We consider the variation in H along the trajectory H(p(t), q(t), t).
Then, by Hamilton’s equations,
dH 0H 0H +8H6_H+0H__6_H O
dt  dp aq oqg op ot or’

C Cyclic coordinates

When considering central fields, we noticed that a problem could be reduced
to a one-dimensional problem by the introduction of polar coordinates. It
turns out that, given any symmetry of a problem allowing us to choose a
system of coordinates q in such a way that the hamiltonian function is
independent of some of the coordinates, we can find some first integrals and
thereby reduce to a problem in a smaller number of coordinates.

Definition. If a coordinate ¢, does not enter into the hamiltonian function
H(py, p2y - s Pns 15 -+ -5 qus 1), 1€, OH/Oq, = 0, then it is called cyclic
(the term comes from the particular case of the angular coordinate in a
central field).

Clearly, the coordinate g, is cyclic if and only if it does not enter into the
lagrangian function (0L/0q, = 0). It follows from the hamiltonian form of
the equations of motion that:

Corollary 2. Let q; be a cyclic coordinate. Then p, is a first integral. In this
case the variation of the remaining coordinates with time is the same as in a
system with then — 1 independent coordinates q,, . . ., q, and with hamilton-
ian function

H(pz,---,p,,,qz,-.-,q,,,t,C),
depending on the parameter ¢ = p,.

Proor. We set p' = (p,,...,p,) and q =(q,,...,q,). Then Hamilton’s
equations take the form

d , OH d 0H
?d—tq—a—p’ E%:E
d JH d
g;l’:—“a? EPI_O
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3: Variational principles

The last equation shows that p; = const. Therefore, in the system of equations
for p’ and ¢, the value of p, enters only as a parameter in the hamiltonian
function. After this system of 2n — 2 equations is solved, the equation for g,
takes the form

d 0 ) ,
E 9 = f(t)’ where f(t) = a—pl H(pb P(t)’ q (t), t)

and is easily integrated. O

Almost all the solved problems in mechanics have been solved by means
of Corollary 2.

Corollary 3. Every closed system with two degrees of freedom (n = 2) which has
a cyclic coordinate is integrable.

Proor. In this case the system for p’ and ¢’ is one-dimensional and is im-
mediately integrated by means of the integral H(p', ¢') = c. Q

16 Liouville’s theorem

The phase flow of Hamilton’s equations preserves phase volume. It follows, for example, that a
hamiltonian system cannot be asymptotically stable.

For simplicity we look at the case in which the hamiltonian function does
not depend explicitly on the time: H = H(p, q).

A The phase flow
Definition. The 2n-dimensional space with coordinates py, ..., Pp; g1, -+ -5 qn
is called phase space.

ExAMPLE. In the case n = 1 this is the phase plane of the system X = —0U/0x,
which we considered in Section 4.

Just as in this simplest example, the right-hand sides of Hamilton’s
equations give a vector field: at each point (p, q) of phase space there is a
2n-dimensional vector (—dH/dq, 0H/0p). We assume that every solution of
Hamilton’s equations can be extended to the whole time axis.?’

Definition. The phase flow is the one-parameter group of transformations
of phase space

g': (#(0), 4(0)) — (P(®), 9(®)),

where p(t) and q(t) are solutions of Hamilton’s system of equations
(Figure 47).

PrOBLEM. Show that {g} is a group.

31 For this it is sufficient, for example, that the level sets of H be compact.
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16: Liouville’s theorem

(p(t), q(v)

(p(0), q(0))

Figure 47 Phase flow

B Liouville’s theorem

Theorem 1. The phase flow preserves volume: for any region D we have (Figure

48)
volume of g'D = volume of D.

We will prove the following slightly more general proposition also

due to Liouville.
)
4

Figure 48 Conservation of volume

Suppose we are given a system of ordinary differential equations
x = f(x), x = (x, ..., x,), whose solution may be extended to the whole
time axis. Let {g’} be the corresponding group of transformations:

(1) g'x) = x +f()r + O@*), (-0
Let D(0) be a region in x-space and v(0) its volume;

v(t) = volume of D(t) D(t) = ¢g'D(0).
Theorem 2. If div f = 0, then g' preserves volume: v(t) = v(0).

C Proof
Lemmal. (dv/dt)l,—o = [pio, dividx (dx = dx; --- dx,).
Proor. For any ¢, the formula for changing variables in a multiple integral
gives
12

dg'x
() = det
(£) ooy 3 o

Calculating dg'x/0x by formula (1), we find

dx.

og" of
gx=E+~t+O(t2) ast—0.
ox ox
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3: Variational principles

We will now use a well-known algebraic fact:

Lemma 2. For any matrix A = (a;;),

det(E + At) =1 + t tr A + O(t?), t—0,

where tr A = Y "_, a; is the trace of A (the sum of the diagonal elements).

(The proof of Lemma 2 is obtained by a direct expansion of the deter-
minant: we get 1 and n terms in ¢; the remaining terms involve ¢, £, etc.)
Using this, we have

t

of
dgx _ 1+ ttr — + O@t?).

det 0x 0x

But tr f/0x = Y I_, 9fi/0x; = divf. Therefore,

o(t) = [1 + tdivf + O(?)]dx,

D(0)

which proves Lemma 1. O

PROOF OF THEOREM 2. Since t = t, is no worse than ¢t = 0, Lemma 1 can be
written in the form
du(t)
dt

= f divf dx,
t=to Dito)

and if divf = 0, dv/dt = 0. O
In particular, for Hamilton’s equations we have
0 OH 0 (O0H
ivf=—| —— —l—1]=0.
aw op < 5q> * oq <‘5p>
This proves Liouville’s theorem (Theorem 1). O

PrROBLEM. Prove Liouville’s formula W = W,e'" 4% for the Wronskian
determinant of the linear system x = A(¢)x.

Liouville’s theorem has many applications.
ProBLEM. Show that in a hamiltonian system it is impossible to have
asymptotically stable equilibrium positions and asymptotically stable limit

cycles in the phase space.

Liouville’s theorem has particularly important applications in statistical
mechanics.
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16: Liouville’s theorem

Liouville’s theorem allows one to apply methods of ergodic theory3? to
the study of mechanics. We consider only the simplest example:

D Poincaré’s recurrence theorem

Let g be a volume-preserving continuous one-to-one mapping which maps
a bounded region D of euclidean space onto itself: gD = D.

Then in any neighborhood U of any point of D there is a point x€ U
which returns to U, i.e., g"x € U for some n > 0.

X1

Figure 49 The way a ball will move in an asymmetrical cup is unknown; however
Poincaré’s theorem predicts that it will return to a neighborhood of the original position.

This theorem applies, for example, to the phase flow g' of a two-dimen-
sional system whose potential U(x,, x,) goes to infinity as (x;, x,) = oo;in
this case the invariant bounded region in phase space is given by the condition
(Figure 49)

D={p,q:T+ U < E}.

Poincaré’s theorem can be strengthened, showing that almost every
moving point returns repeatedly to the vicinity of its initial position. This is
one of the few general conclusions which can be drawn about the character
of motion. The details of motion are not known at all, even in the case

. ou
X=— e where x = (xq, x,).

The following prediction is a paradoxical conclusion from the theorems
of Poincaré and Liouville: if you open a partition separating a chamber
containing gas and a chamber with a vacuum, then after a while the gas
molecules will again collect in the first chamber (Figure 50).

The resolution of the paradox lies in the fact that “a while” may be longer
than the duration of the solar system’s existence.

32 Cf, for example, the book : Halmos, Lectures on Ergodic Theory, 1956 (Mathematical Society
of Japan. Publications. No. 3).
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Figure 51 Theorem on returning

PRrOOF OF POINCARE’S THEOREM. We consider the images of the neighborhood
U (Figure 51):

U,gU,g%*U,...,g"U,...

All of these have the same volume. If they never intersected, D would have
infinite volume. Therefore, for some k > Oand [ > 0, with k > |,

gUng'U # 2.
Therefore, g*'UnU # . If y is in this intersection, then y = g"x, with
xeUmnm=k—1).ThenxeUand g"xe Un =k —1). dJ

E Applications of Poincaré’s theorem

ExaMPLE 1. Let D be a circle and g rotation through an angle a. If a« =
2n(m/n), then g"is the identity, and the theorem is obvious. If « is not commen-
surable with 27, then Poincaré’s theorem gives

V6> 0,3n:|g"x — x| <6 (Figure 52).

gX

Figure 52 Dense set on the circle
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16: Liouville’s theorem

It easily follows that

Theorem. If « # 2n(m/n), then the set of points g*x is dense®3 on the circle
k=1,2..).

PrOBLEM. Show that every orbit of motion in a central field with U = r* is
either closed or densely fills the ring between two circles.

ExaMPLE 2. Let D be the two-dimensional torus and ¢; and ¢, angular
coordinates on it (longitude and latitude) (Figure 53).

¥

Y1

Figure 53 Torus

Consider the system of ordinary differential equations on the torus
¢y =0y ¢y = 03.
Clearly, div f = 0 and the corresponding motion
g (@1, 02) > (@1 + oL, @3 + %30)
preserves the volume dg, do,. From Poincaré’s theorem it is easy to deduce

Theorem. If /o, is irrational, then the “winding line” on the torus, g(¢,, ¢,),
is dense in the torus.

ProBLEM. Show that if w is irrational, then the Lissajous figure (x = cos,
y = cos wt) is dense in the square |x| < 1,]y| < L.

ExaMPLE 3. Let D be the n-dimensional torus T, i.e., the direct product3*

of n circles:
D=S'x8"x---xSt=T"

n

A point on the n-dimensional torus is given by n angular coordinates
¢ =(@,...,0,) Let @ = (ay, ..., a,), and let g be the volume-preserving
transformation

g:T"->T" ¢ - @ + ot

33 Aset Aisdensein Bif there is a point of 4 in every neighborhood of every point of B.

34 The direct product of the sets A4, B, . . . is the set of points (a, b, .. ), withae A, be B, .. ..
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ProBLEM. Under which conditions on a are the following sets dense : (a) the
trajectory {g'e}; (b) the trajectory {g*@} (t belongs to the group of real
numbers R, k to the group of integers Z).

The transformations in Examples 1 to 3 are closely connected to
mechanics. But since Poincaré’s theorem is abstract, it also has applications

unconnected with mechanics.

ExampLE 4. Consider the first digits of the numbers 2":1,2,4,8,1,3,6, 1, 2,
51,2,4,....

ProBLEM. Does the digit 7 appear in this sequence? Which digit appears
more often, 7 or 82 How many times more often?
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Lagrangian mechanics on manifolds

In this chapter we introduce the concepts of a differentiable manifold and
its tangent bundle. A lagrangian function, given on the tangent bundle,
defines a lagrangian “holonomic system” on a manifold. Systems of point
masses with holonomic constraints (e.g., a pendulum or a rigid body) are
special cases.

17 Holonomic constraints

In this paragraph we define the notion of a system of point masses with holonomic constraints.

A Example

Let y be a smooth curve in the plane. If there is a very strong force field in a
neighborhood of y, directed towards the curve, then a moving point will
always be close to 7. In the limit case of an infinite force field, the point must
remain on the curve y. In this case we say that a constraint is put on the
system (Figure 54).

To formulate this precisely, we introduce curvilinear coordinates g, and
g, on a neighborhood of y; g, is in the direction of y and g, is distance from
the curve.

We consider the system with potential energy

UN = Nq% + UO(qh QZ),

depending on the parameter N (which we will let tend to infinity) (Figure 55).
We consider the initial conditions on y:

010 =4q7  §(0) =47 g,(00=0 ,(0)=0.
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4: Lagrangian mechanics on manifolds

Figure 54 Constraint as an infinitely strong field

U

Uy

Figure 55 Potential energy Uy

Denote by g, = ¢(t, N) the evolution of the coordinate g, under a motion
with these initial conditions in the field U,.

Theorem. The following limit exists, as N = o0:
lim o(t, N) = ¥(1).

N-

The limit q, = y(t) satisfies Lagrange’s equation

d (OL,\ OL,

dt\dq,)  dq,’
where L,(qy,d1) = Tlg=4,=0 — Uolg=0 (T is the kinetic energy of
motion along 7).

Thus, as N — oo, Lagrange’s equations for ¢, and g, induce Lagrange’s
equation for q; = ¥(¢).

We obtain exactly the same result if we replace the plane by the 3n-
dimensional configuration space of n points, consisting of a mechanical
system with metric ds? = Z;’z . m; dr? (the m; are masses), replace the curve y
by a submanifold of the 3n-dimensional space, replace g, by some coordinates
q, on ¥, and replace ¢, by some coordinates q, in the directions perpendicular
to y. If the potential energy has the form

U =Uy(q;,q;) + N¢Z,

then as N — co, a motion on y is defined by Lagrange’s equations with the
lagrangian function

L* = quz=4'12=0 - UOI!I2=0'
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18: Differentiable manifolds

B Definition of a system with constraints

We will not prove the theorem above,*® but neither will we use it. We need
it only to justify the following.

Definition. Let y be an m-dimensional surface in the 3n-dimensional con-
figuration space of the points ry,...,r, with masses m;,...,m,. Let
q=1(4-..,9») be some coordinates on y:r; =r{q). The system
described by the equations

d 0L oL

dt 04~ dq

is called a system of n points with 3n — m ideal holonomic constraints.
The surface y is called the configuration space of the system with constraints.
If the surface y is given by k = 3n — m functionally independent

equations fi(r) =0, ..., fi(r) = 0, then we say that the system is con-
strained by the relations f; = 0, ..., f, = 0.

L=1%Ymi} + U

Holonomic constraints also could have been defined as the limiting case
of a system with a large potential energy. The meaning of these constraints in
mechanics lies in the experimentally determined fact that many mechanical
systems belong to this class more or less exactly.

From now on, for convenience, we will call ideal holonomic constraints
simply constraints. Other constraints will not be considered in this book.

18 Differentiable manifolds

The configuration space of a system with constraints is a differentiable manifold. In this para-
graph we give the elementary facts about differentiable manifolds.

A Definition of a differentiable manifold

A set M is given the structure of a differentiable manifold if M is provided
with a finite or countable collection of charts, so that every point is represented
in at least one chart.

A chart is an open set U in the euclidean coordinate spaceq = (g4, - - - , 4,),
together with a one-to-one mapping ¢ of U onto some subset of M,
¢o:U - U c M.

We assume that if points p and p’ in two charts U and U’ have the same
image in M, then p and p’ have neighborhoods V = U and V' = U’ with the
same image in M (Figure 56). In this way we get a mapping @' '¢: V - V.

This is a mapping of the region V of the euclidean space q onto the region
V' of the euclidean space q', and it is given by n functions of n variables,

33 The proof is based on the fact that, due to the conservation of energy, a moving point cannot
move further from y than ¢N ~*/2, which approaches zero as N — 0.
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Figure 56 Compatible charts

q = q(q), (q = q(q")). The charts U and U’ are called compatible if these
functions are differentiable.®

An atlas is a union of compatible charts. Two atlases are equivalent if
their union is also an atlas.

A differentiable manifold is a class of equivalent atlases. We will consider
only connected manifolds.>” Then the number n will be the same for all
charts; it is called the dimension of the manifold.

A neighborhood of a point on a manifold is the image under a mapping
¢@: U — M of a neighborhood of the representation of this point in a chart U.
We will assume that every two different points have non-intersecting
neighborhoods.

B Examples

ExaMpLE 1. Euclidean space R” is a manifold, with an atlas consisting of one chart.

ExampLE 2. The sphere §2 = {(x, y, z): x2 + y? + z? = 1} has the structure of a manifold, with
atlas, for example, consisting of two charts (U;, ¢;,i = 1, 2) in stereographic projection (Figure
57). An analogous construction applies to the n-sphere

§" = {(x,,...,x,”.l)ZZX,-Z = 1}.

.2
U, AN /
N

Figure 57 Atlas of a sphere

ExaMPLE 3. Consider a planar pendulum. Its configuration space —the circle S'—is a manifold.
The usual atlas is furnished by the angular coordinates : R! = S, U, = (—n, n), U, = (0, 2r)
(Figure 58).

ExaMpLE 4. The configuration space of the “spherical” mathematical pendulum is the two-
dimensional sphere §? (Figure 58).

3¢ By differentiable here we mean r times continuously differentiable; the exact value of r
(1 <r < oc)is immaterial (we may take r = o, for example).

37 A manifold is connected if it cannot be divided into two disjoint open subsets.
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18: Differentiable manifolds

5. 2

Figure 58 Planar, spherical and double planar pendulums

ExaMpLE 5. The configuration space of a “planar double pendulum™ is the direct product of two
circles, i.e., the two-torus T? = S! x S! (Figure 58).

ExaMpPLE 6. The configuration space of a spherical double pendulum is the direct product of
two spheres, $? x S2,

EXAMPLE 7. A rigid line segment in the (q,, ¢,)-plane has for its configuration space the mani-
fold R? x S!, with coordinates q,. ¢,, 5 (Figure 59). It is covered by two charts.
4,

a3

q;

Figure 59 Configuration space of a segment in the plane

ExAMPLE 8. A rigid right triangle O AB moves around the vertex 0. The position of the triangle
is given by three numbers: the direction 04 € $? is given by two numbers, and if OA is given,
one can rotate OB € S! around the axis 04 (Figure 60).

Connected with the position of the triangle OAB is an orthogonal right-handed frame,
e, = 0A/|0A}.e, = OB/|OB|, e; = [e,, e,]. The correspondence is one-to-one: therefore the
position of the triangle is given by an orthogonal three-by-three matrix with determinant t.

)

Figure 60 Configuration space of a triangle
The set of all three-by-three matrices is the nine-dimensional space R°. Six orthogonality
conditions select out two three-dimensional connected manifolds of matrices with determinant

+1 and — 1. The rotations of three-space (determinant + 1) form a group, which we call SO(3).
Therefore, the configuration space of the triangle OAB is SO(3).

ProBLEM. Show that SO(3) is homeomorphic to three-dimensional real projective space.
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4: Lagrangian mechanics on manifolds

Definition. The dimension of the configuration space is called the number of
degrees of freedom.

ExaMPLE 9. Consider a system of k rods in a closed chain with hinged joints.

PrOBLEM. How many degrees of freedom does this system have?

ExaMPLE 10. Embedded manifolds. We say that M is an embedded k-dimensional sub-manifold of
euclidean space R” (Figure 61) if in a neighborhood U of every point x € M there are n — k func-
tionsfi: U - R, f,: U—-R,...,f,—,: U— Rsuch that the intersection of U with M is given by
the equations f; = 0, ..., f,_, = 0, and the vectors grad f}, ..., grad f,_, at x are linearly
independent.

Xp

X1
Figure 61 Embedded submanifold

Itis easy to give M the structure of a manifold, i.e., coordinates in a neighborhood of x (how?).
It can be shown that every manifold can be embedded in some euclidean space. In Example 8,

SO(3) is a subset of R,

PROBLEM. Show that SO(3) is embedded in R®, and at the same time, that SO(3) is a manifold.

C Tangent space

If M is a k-dimensional manifold embedded in E", then at every point x
we have a k-dimensional tangent space T M, . Namely, T M, is the orthogonal
complement to {grad fy,..., grad f,_,} (Figure 62). The vectors of the
tangent space TM, based at x are called tangent vectors to M at x. We can
also define these vectors directly as velocity vectors of curves in M:

‘= lim %0~ 90

t—0

where @(0) = x, ¢(t) € M.

™,

En

/

Figure 62 Tangent space
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18: Differentiable manifolds

The definition of tangent vectors can also be given in intrinsic terms,
independent of the embedding of M into E”.

We will call two curves x = @(t) and x = () equivalent if @(0) = P(0) = x
and lim,_,, (@(z) — Y(¢))/t = 0 in some chart. Then this tangent relationship
is true in any chart (prove this!).

Definition. A tangent vector to a manifold M at the point x is an equivalence
class of curves @(t), with ¢(0) = x.

It is easy to define the operations of multiplication of a tangent vector
by a number and addition of tangent vectors. The set of tangent vectors
to M at x forms a vector space T M. This space is also called the tangent
space to M at x.

For embedded manifolds the definition above agrees with the previous
definition. Its advantage lies in the fact that it also holds for abstract
manifolds, not embedded anywhere.

Definition. Let U be a chart of an atlas for M with coordinates gy, ..., g,.
Then the components of the tangent vector to the curve q = @(t) are the
numbers &4, ..., ¢, where &, = (doy/dt)|,-,.

D The tangent bundle

The union of the tangent spaces to M at the various points, UxeM TM,, has
a natural differentiable manifold structure, the dimension of which is twice
the dimension of M.

This manifold is called the tangent bundle of M and is denoted by TM. A
point of TM is a vector &, tangent to M at some point x. Local coordinates
on TM are constructed as follows. Let ¢4, ..., g, be local coordinates on
M,and &,, ..., &, components of a tangent vector in this coordinate system.
Then the 2n numbers (g4, .- ., gn» &1, - - ., £,) give a local coordinate system
on TM. One sometimes writes dg; for &;.

The mapping p: TM — M which takes a tangent vector § to the point
x € M at which the vector is tangent to M (§ € TM,), is called the natural
projection. The inverse image of a point x € M under the natural projection,
p~'(x), is the tangent space T M,. This space is called the fiber of the tangent
bundle over the point x.

E Riemannian manifolds

If M is a manifold embedded in euclidean space, then the metric on euclidean
space allows us to measure the lengths of curves, angles between vectors,
volumes, etc. All of these quantities are expressed by means of the lengths of
tangent vectors, that is, by the positive-definite quadratic form given on
every tangent space TM, (Figure 63):

™™, - R E—<E &,
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4: Lagrangian mechanics on manifolds

Figure 63 Riemannian metric

For example, the length of a curve on a manifold is expressed using this form as I(;) =
fu/<dx, dx), or, if the curve is given parametrically, 7: [1,,1,] = M, t > x(t) € M, then

1) = fir <k, %)de,

Definition. A differentiable manifold with a fixed positive-definite quadratic
form (&, &) on every tangent space TM, is called a Riemannian manifold.
The quadratic form is called the Riemannian metric.

Remark. Let U be a chart of an atlas for M with coordinates ¢, ..., g,.
Then a Riemannian metric is given by the formula

n
ds* = Z a;(q)dq; dq; a;j = Qaj,
i,j=1
where dq; are the coordinates of a tangent vector.
The functions a;/(q) are assumed to be differentiable as many times as
necessary.

F The derivative map

Let f: M — N be a mapping of a manifold M to a manifold N. f is called
differentiable if in local coordinates on M and N it is given by differentiable
functions.

Definition. The derivative of a differentiable mapping f: M'— N at a point
x € M is the linear map of the tangent spaces

Jex: TMy = TNy,

which is given in the following way (Figure 64):

Let ve TM,. Consider a curve @: R — M with ¢(0) = x, and velocity
vector (d@/dt)|,-o = v. Then f,,v is the velocity vector of the curve
fe@:R—> N,

d
fa¥ = | 1@0)

t
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19: Lagrangian dynamical systems

Figure 64 Derivative of a mapping
PrOBLEM. Show that the vector f,,v does not depend on the curve @, but only on the vector v.

PROBLEM. Show that the map f,: TM, — TN 4, is linear.

PROBLEM. Let x = (x,..., X,) be coordinates in a neighborhood of xe M, andy = (y,,...,y,)
be coordinates in a neighborhood of y € N. Let & be the set of components of the vector v, and
1 the set of components of the vector f,,v. Show that

. oy,
n=_—"8& ie, ni=Zl§j.

0x H 6xj

Taking the union of the mappings f,, for all x, we get a mapping of the whole tangent
bundle

fo:TM—>TN  fov=f,v forveTM,.
ProBLEM. Show that f, is a differentiable map.

PROBLEM. Let /' M — N,g:N - K,and h = g - f: M — K. Show that h, = g, - f,.

19 Lagrangian dynamical systems

In this paragraph we define lagrangian dynamical systems on manifolds. Systems with holonomic
constraints are a particular case.

A Definition of a lagrangian system

Let M be a differentiable manifold, TM its tangent bundle, and L: TM - R
a differentiable function. A map y: R —» M is called a motion in the lagrangian
system with configuration manifold M and lagrangian function L if ¥ 1s an
extremal of the functional

() = f Lept,

where ¥ is the velocity vector y(t) € TM,,,.

ExaMPLE. Let M be a region in a coordinate space with coordinates q = (g,,...,4,). The
lagrangian function L: TM — R may be written in the form of a function L(q, ) of the 2n
coordinates. As we showed in Section 12, the evolution of coordinates of a point moving with
time satisfies Lagrange’s equations.
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4: Lagrangian mechanics on manifolds

Theorem. The evolution of the local coordinates q = (qy, - . . , q,) of a point ¥(t)
under motion in a lagrangian system on a manifold satisfies the Lagrange
equations

d oL OL

droq oq’
where L(q, q) is the expression for the function L: TM — Rin the coordinates
qand qon TM.

We often encounter the following special case.

B Natural systems

Let M be a Riemannian manifold. The quadratic form on each tangent space,
T = Kv,v) veTM,,

is called the kinetic energy. A differentiable function U: M — R is called a
potential energy.

Definition. A lagrangian system on a Riemannian manifold is called natural
if the lagrangian function is equal to the difference between kinetic and
potential energies: L = T — U.

ExaMPLE. Consider two mass points m; and m, joined by a line segment of length ! in the
(x, y)-plane. Then a configuration space of threc dimensions
M=R?x S' =« R? x R?

is defined in the four-dimensional configuration space R? x R? of two free points (x,, y,) and
(x5, y,) by the condition \/(x, — x2)* + (y; — ¥2)? = [ (Figure 65).

m.I\:'lZ

Figure 65 Segment in the plane

> X

There is a quadratic form on the tangent space to the four-dimensional space (x;, x2, yy, ¥2):
my(x] + §1) + my(x3 + §3).

Our three-dimensional manifold, as it is embedded in the four-dimensional one, is provided with
a Riemannian metric. The holonomic system thus obtained is called in mechanics a line segment
of fixed length in the (x, y)-plane. The kinetic energy is given by the formula

X3 + ¥ X3+ 93
+m, =

T=m 3 3
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19: Lagrangian dynamical systems

C Systems with holonomic constraints

In Section 17 we defined the notion of a system of point masses with holo-
nomic constraints. We will now show that such a system is natural.

Consider the configuration manifold M of a system with constraints as
embedded in the 3n-dimensional configuration space of a system of free
points. The metric on the 3n-dimensional space is given by the quadratic
form Y?_,mr?. The embedded Riemannian manifold M with potential
energy U coincides with the system defined in Section 17 or with the limiting
case of the system with potential U + Nq3, N — oo, which grows rapidly
outside of M.

D Procedure for solving problems with constraints

1. Determine the configuration manifold and introduce coordinates
qy, .- -» g, (in a neighborhood of each of its points).

2. Express the kinetic energy T = ) 3m;i? as a quadratic form in the
generalized velocities

T = %Z aij(q)qiq.j'

3. Construct the lagrangian function L = T — U(q) and solve Lagrange’s
equations.

ExaMPLE. We consider the motion of a point mass of mass 1 on a surface of revolution in three-
dimensional space. It can be shown that the orbits are geodesics on the surface. In cylindrical
coordinates r, ¢, z the surface is given (locally) in the form r = r(z) or z = z(r). The kinetic
energy has the form (Figure 66)

T =4(2 + 92 + 2%) =3[0 + D% + ri(2)9]
in coordinates ¢ and z, and
T =402 + 92 + 25 = 31 + 220% + r?¢?]

in coordinates r and ¢. (We have used the identity X% + 2 = 72 + r?¢?2)
The lagrangian function L is equal to T. In both coordinate systems ¢ is a cyclic coordinate.
The corresponding momentum is preserved; p, = r?¢ is nothing other than the z-component of

Figure 66 Surface of revolution
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4: Lagrangian mechanics on manifolds

angular momentum. Since the system has two degrees of freedom, knowing the cyclic coordinate
¢ is sufficient for integrating the problem completely (cf. Corollary 3, Section 15).

We can obtain more easily a clear picture of the orbits by reasoning slightly differently.
Denote by « the angle of the orbit with a meridian. We have r¢ = jv|sin «, where |v] is the mag-
nitude of the velocity vector (Figure 66).

By the law of conservation of energy, H = L = T is preserved. Therefore, |¢| = const, so
the conservation law for p, takes the form

rsin a = const
(**Clairaut’s theorem™).

Thisrelationship shows that the motion takes place in the region |sin 2| < 1,ie,r > ry sin 4.
Furthermore, the inclination of the orbit from the meridian increases as the radius r decreases.
When the radius reaches the smallest possible value, r = rq sin %4, the orbit is reflected and
returns to the region with larger r (Figure 67).

r=rgsino

r=rgsin oy
Figure 67 Geodesics on a surface of revolution

PROBLEM. Show that the geodesics on a convex surtace of revolution are divided into three
classes: meridians, closed curves, and geodesics dense in a ring r > c.

ProBLEM. Study the behavior of geodesics on the surface of a torus ((r — R)? + 2 = p?).

E Non-autonomous systems

A lagrangian non-autonomous system differs from the autonomous systems,
which we have been studying until now, by the additional dependence of the
lagrangian function on time:

L:TM xR-R L =1L(q,q,1)

In particular, both the kinetic and potential energies can depend on time in a
non-autonomous natural system:

T"TMxR-R - UMxR-R T=T@4,941) U= U(q,1).

A system of n mass points, constrained by holonomic constraints depen-
dent on time, is defined with the help of a time-dependent submanifold of the
configuration space of a free system. Such a manifold is given by a mapping

i:Mx R— E* iq,1) = X,

which, for any fixed t € R, defines an embedding M — E*". The formula of
section D remains true for non-autonomous systems.
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19: Lagrangian dynamical systems

Figure 68 Bead on a rotating circle

ExampLE. Consider the motion of a bead along a vertical circle of radius r (Figure 68) which
rotates with angular velocity w around the vertical axis passing through the center O of the
circle. The manifold M is the circle. Let ¢ be the angular coordinate on the circle, measured from
the highest point.

Let x, y, and z be cartesian coordinates in E* with origin O and vertical axis z. Let ¢ be the
angle of the plane of the circle with the plane xOz. By hypothesis, ¢ = wt. The mapping
i:M x R — E3is given by the formula

i(q, t) = (r sin g cos wt, r sin g sin wt, r cos g).

.

From this formula (or, more simply, from an “infinitesimal right triangle”) we find that

m
T = E(aﬂrz sin g +r?¢*) U = mgrcos q.

In this case the lagrangian function L = T — U turns out to be independent of ¢, although the
constraint does depend on time. Furthermore, the lagrangian function turns out to be the same
as in the one-dimensional system with kinetic energy
M .
T, = 5 q? M = mr?,
and with potential energy

m
V=Acosq— Bsin’q, A=mgr,B= 3 w?rl.

The form of the phase portrait depends on the ratio between 4 and B. For 2B < 4 (ie., for a
rotation of the circle slow enough that w?r < g). the lowest position of the bead (¢ = 7) is

14

S
W\

Figure 69 Effective potential energy and phase plane of the bead
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4: Lagrangian mechanics on manifolds

stable and the characteristics of the motion are generally the same as in the case of a mathematical
pendulum (w = 0).

For 2B > A, i.e., for sufficiently fast rotation of the circle, the lowest position of the bead
becomes unstable; on the other hand, two stable positions of the bead appear on the circle,
where cos ¢ = — A/2B = —g/w?r. The behavior of the bead under all possible initial conditions
is clear from the shape of the phase curves in the (¢, ¢)-plane (Figure 69).

20 E. Noether’s theorem

Various laws of conservation (of momentum, angular momentum, etc.) are particular cases of
one general theorem: to every one-parameter group of diffeomorphisms of the configuration
manifold of a lagrangian system which preserves the lagrangian function, there corresponds a
first integral of the equations of motion.

A Formulation of the theorem

Let M be a smooth manifold, L: TM — R a smooth function on its tangent
bundle TM. Let h: M — M be a smooth map.

Definition. A lagrangian system (M, L) admits the mapping h if for any tangent
vectorve TM,

L(h,v) = L(v).

EXAMPLE. Let M = {(x,, x5, x3)}, L = (m/2)(x? + X3 + x3) — U(x,, x3). The system admits
the translation h: (x;, x5, X3) = (x, + S, X3, x3) along the x, axis and does not admit, generally
speaking, translations along the x, axis.

Noether’s theorem. If the system (M, L) admits the one-parameter group of
diffeomorphisms h*: M — M, s € R, then the lagrangian system of equations
corresponding to L has a first integral [: TM — R.

In local coordinates q on M the integral I is written in the form

_ L@

1(q, 4) = .
(q,9) 3 ds o

B Proof

First, let M = R" be coordinate space. Let ¢: R - M, @ = ¢(t) be a solution
to Lagrange’s equations. Since ks, preserves L, the translation of a solution,
ko @: R — M also satisfies Lagrange’s equations for any s.38

We consider the mapping ®: R x R — R", given by q = ®(s, t) = h*(¢(t))
(Figure 70).

We will denote derivatives with respect to ¢ by dots and with respect to s
by primes. By hypothesis
_ OL(®, D) =€E-d>’ +6_l‘4d),’

M 0 0s oq oq

38 The authors of several textbooks mistakenly assert that the converse is also true, i.e., that if
h* takes solutions to solutions, then hj, preserves L.
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20: E. Noether’s theorem

q(@)

qs, 1) =h*(q(r)

R Q)
Figure 70 Noether’s theorem

where the partial derivatives of L are taken at the point q = ®(s, t), 4 =
(s, 1).

As we stated above, the mapping ®|;_.on.: R = R" for any fixed s
satisfies Lagrange’s equation

0 |OL . oL .
3 [aq (®(s, 1), D(s, t))] 74 (®(s, t), D(s, 1)
We introduce the notation F(s, ) = (OL/0q)®(s, 1), ®(s, 1)) and substitute
0F /ot for dL/oq in (1).
Writing q’ as dq'/dt, we get
oo (40L\,  oL(d \_dfoL \ _dI -
@)t Ta\a) T a\ea) T a

Remark. The first integral I = (0L/dq)q" is defined above using local
coordinates q. It turns out that the value of I(v) does not depend on the choice
of coordinate system q.

In fact, 1 is the rate of change of L(v) when the vector v e T M, varies inside
TM, with velocity (d/ds) |- o h°x. Therefore, I(v) is well defined as a function
of the tangent vector ve TM,. Noether’s theorem is proved in the same way
when M is a manifold.

C Examples

ExaMpLE 1. Consider a system of point masses with masses m;:
%2
1
L=} mi5 U(x) X; = X;1€; + X;2€; + X;3€3,
constrained by the conditions f(x) = 0. We assume that the system admits
translations along the e, axis:
hx; - x; + se; foralli

In other words, the constraints admit motions of the system as a whole
along the e, axis, and the potential energy does not change under these.
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4: Lagrangian mechanics on manifolds

By Noether’s theorem we conclude: If a system admits translations along
the e, axis, then the projection of its center of mass on the e, axis moves
linearly and uniformly.

In fact, (d/ds)|,=oh°x; = e,. According to the remark at the end of B, the
quantity

oL .
I: Za-xel szixil

is preserved, i.e., the first component P, of the momentum vector is pre-
served. We showed this earlier for a system without constraints.

ExaMmpLE 2. If a system admits rotations around the e, axis, then the angular
momentum with respect to this axis,

M, = Z ([x;, mix], e;)

is conserved.
It is easy to verify that if #° is rotation around the e, axis by the angle s,
then (d/ds)|;- o h°x; = [ey, X;], from which it follows that

oL . .
I = ZOTX— [ela xi] = Z (mixia [ela xi]) = Z ([xi’ ml'xi]a el)'
i i i i
PrOBLEM 1. Suppose that a particle moves in the field of the uniform helical line x = cos ¢,
y = sin @, z = c¢. Find the law of conservation corresponding to this helical symmetry.

ANSWER. In any system which admits helical motions leaving our helical line fixed, the quantity
I = ¢P;y + M; is conserved.

ProBLEM 2. Suppose that a rigid body is moving under its own inertia. Show that its center of
mass moves linearly and uniformly. If the center of mass is at rest, then the angular momentum
with respect to it is conserved.

ProBLEM 3. What quantity is conserved under the motion of a heavy rigid body if it is fixed at
some point 0? What if, in addition, the body is symmetric with respect to an axis passing
through 0?7

ProBLEM 4. Extend Noether’s theorem to non-autonomous lagrangian systems.
Hint. Let M; = M x R be the extended configuration space (the direct product of the
configuration manifold M with the time axis R).
Define a function L;: TM, - R by
dt

L—:
dt

i.e., in local coordinates g, t on M, we define it by the formula

L( t@ dt)_L dg/dt \ dt
& Tdede) T q’dl/df[ dt’

We apply Noether’s theorem to the lagrangian system (M, L,).
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21: D’Alembert’s principle

If L, admits the transformations h*: M, — M, we obtain a first integral I,: TM, - R.
Since L dt = { L, dr. this reduces to a first integral I: TM x R — R of the original system.
If, in local coordinates (q, t) on M |, we have I, = I,(q,t,dq/dt, dt/d7), then I(q,4,t) = 1,(q,t,4,]).

In particular, if L does not depend on time, L, admits translations along time, h%(q, t) =
(q, t + s). The corresponding first integral I is the energy integral.

21 D’Alembert’s principle

We give here a new definition of a system of point masses with holonomic constraints and prove
its equivalence to the definition given in Section 17.

A Example

Consider the holonomic system (M, L), where M is a surface in three-
dimensional space {x}:

= imx? — U(x).

In mechanical terms, “the mass point x of mass m must remain on the smooth
surface M.”

Consider a motion of the point, x(¢). If Newton’s equations mX + (0U/0x)
= 0 were satisfied, then in the absence of external forces (U = 0) the tra-
jectory would be a straight line and could not lie on the surface M.

From the point of view of Newton, this indicates the presence of a new
force “forcing the point to stay on the surface.”

Definition. The quantity

R=mi+a—U
ox

is called the constraint force (Figure 71).

R

x(t)

£

Figure 71 Constraint force

If we take the constraint force R(¢) into account, Newton’s equations are
obviously satisfied:

ou

R.
ox +

mx =

The physical meaning of the constraint force becomes clear if we consider our system with
constraints as the limit of systems with potential energy U + NU, as N — w0, where U (x) =
p*(x, M). For large N the constraint potential NU, produces a rapidly changing force
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F = — N dU,/0x; when we pass to the limit (N — x) the average value of the force F under
oscillations of x near M is R. The force F is perpendicular to M. Therefore, the constraint
force R is perpendicular to M: (R, §) = 0 for every tangent vector &.

B Formulation of the D’ Alembert—Lagrange
principle

In mechanics, tangent vectors to the configuration manifold are called
virtual variations. The D’Alembert-Lagrange principle states:

. oU
<mx + x E’;) =0
for any virtual variation &, or stated differently, the work of the constraint force
on any virtual variation is zero.

For a system of points x; with masses m;, the constraint forces R; are defined
by R; = m;X; + (0U/dx;), and D’Alembert’s principle has the form ) (R;, &)
=0, or Z ((m;x; + (0U/ox,), &) = 0, i.e,, the sum of the works of the con-
straint forces on any virtual variation {§;} € TM, is zero.

Constraints with the property described above are called ideal.

If we define a system with holonomic constraints as a limit as N — o, then the D’Alembert -
Lagrange principle becomes a theorem: its proof is sketched above for the simplest case.

It is possible, however, to define an ideal holonomic constraint using the D’Alembert-
Lagrange principle. In this way we have three definitions of holonomic systems with constraints:

1. The limit of systems with potential energies U + NU, as N - x.

2. A holonomic system (M, L), where M is a smooth submanifold of the configuration space
of a system without constraints and L is the lagrangian.

3. A system which complies with the D’Alembert-Lagrange principle.

All three definitions are mathematically equivalent.
The proof of the implications (1) = (2) and (1) = (3) is sketched above and will not be given
in further detail. We will now show that (2) < (3).

C The equivalence of the D’ Alembert—Lagrange
principle and the variational principle

Let M be a submanifold of euclidean space, M < R" and x: R - M a curve,
Wlth x(to) = xO, x(tl) = Xl.

Definition. The curve x is called a conditional extremal of the action functional

1y > 2
® = f o {"7 - U(x)}dt,

if the differential 5@ is equal to zero under the condition that the variation
consists of nearby curves*? joining x, to X, in M.

39 Strictly speaking, in order to define a variation d®, one must define on the set of curves near x
on M the structure of a region in a vector space. This can be done using coordinates on M;
however, the property of being a conditional extremal does not depend on the choice of a co-
ordinate system.
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We will write

Clearly, Equation (1) is equivalent to the Lagrange equations
d 0L 0L %2
—_——— = — L = — — 3
53" % 5~ UM x=x@)

in some local coordinate system q on M.

Theorem. 4 curve x: R - M < R" is a conditional extremal of the action
(i.e., satisfies Equation (1)) if and only if it satisfies D’Alembert’s equation

. oU
Q) <x + o g) =0, VEeTM,.

Lemma. Let f: {t:ty <t < t,} - R" be a continuous vector field. If, for every
continuous tangent vector field &, tangent to M along X (i.e., &(t) € TM,,),
with §(t) = O for t = ty, t,), we have

f "Rogd = o,

then the field f(t) is perpendicular to M at every point X(t) (i.e., £(¢), h) = 0
for every vector he TM,,)) (Figure 72).

Figure 72 Lemma about the normal field

The proof of the lemma repeats the argument which we used to derive the
Euler-Lagrange equations in Section 12.

PROOF OF THE THEOREM. We compare the value of @ on the two curves x(z)
and x(¢) + &(t), where &(ty) = &(t;) = 0. Integrating by parts, we obtain

50 = f" (X&—%%é)dt= —f“ (i+2—g)§dt.
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It is obvious from this formula*® that Equation (1), 6,,® = 0, is equivalent
to the collection of equations

3) ftl (x + (Z—lx])é dt =0.

for all tangent vector fields §(t) e TM,,, with &(t,) = &(t;) = 0. By the
lemma (where we must set f = X + (0U/0x)) the collection of equations (3)

is equivalent to the D’Alembert-Lagrange equation (2). ]
D Remarks

Remark 1. We derive the D’Alembert—Lagrange principle for a system of n
points x;€ R, i =1, ..., n, with masses m;, with holonomic constraints,

from the above theorem.
In the coordinates X = {X; = \/m;Xx;}, the kinetic energy takes the form
By the theorem, the extremals of the principle of least action satisfy the

condition
<3‘k + ou E_.) =0

a—i’

(the D’Alembert-Lagrange principle for points in R*": the 3n-dimensional
reaction force is orthogonal to the manifold M in the metric T). Returning
to the coordinates x;, we get

. ou . oU
0= <\/Zixi + a\/r;ixi’ \/Zlgl) = 21: (mixi + a_xi’ gi)7

i.e,, the D’Alembert-Lagrange principle in the form indicated earlier: the
sum of the work of the reaction forces on virtual variations is zero.

Remark 2. The D’Alembert-Lagrange principle can be given in a slightly
different form if we turn to statics. An equilibrium position is a point X, which
is the orbit of a motion: x(r) = x,.

Suppose that a point mass moves along a smooth surface M under the
influence of the force f = —0U/0x.

Theorem. The point X, in M is an equilibrium position if and only if the force
is orthogonal to the surface at X,: (f(x,), &) = O for all& e TM,,.

This follows from the D’Alembert-Lagrange equations in view of the
fact that X = 0.

Definition. — mX is called the force of inertia.

40 The distance of the points x(t) + &(t) from M is small of second-order compared with &(t).

94



21: D’Alembert’s principle

Now the D’Alembert-Lagrange principle takes the form:

Theorem. If the forces of inertia are added to the acting forces, X becomes an
equilibrium position.

Proor. D’Alembert’s equation

expresses the fact, as in the preceding theorem, that x is an equilibrium
position of a system with forces —mx% + f. O

Entirely analogous statements are true for systems of points: If x = {x;}
are equilibrium positions, then the sum of the work of the forces acting on the
virtual variations is equal to zero. If the forces of inertia —m;X,(t) are added
to the acting forces, then the position x(t) becomes an equilibrium position.

Now a problem about motions can be reduced to a problem about
equilibrium under actions of other forces.

Remark 3. Up to now we have not considered cases when the constraints
depend on time. All that was said above carries over to such constraints
without any changes.

ExaMpLE. Consider a bead sliding along a rod which is tilted at an angle o
to the vertical axis and is rotating uniformly with angular velocity w around

z

00
Figure 73 Bead on a rotating rod

this axis (its weight is negligible). For our coordinate g we take the distance
from the point 0 (Figure 73). The kinetic energy and lagrangian are:

L =T = im? = img*> + Imw?r?,
r = ¢ sin a.
Lagrange’s equation: m§ = mw?q sin® a.

The constraint force at each moment is orthogonal to virtual variations
(i.e., to the direction of the rod), but is not at all orthogonal to the actual
trajectory.

Remark 4. It is easy to derive conservation laws from the D’Alembert-
Lagrange equations. For example, if translation along the x, axis §; = e, is
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4: Lagrangian mechanics on manifolds

among the virtual variations, then the sum of the work of the constraint forces
on this variation is equal to zero:

Z(Ri’ e) = (Z Ri,e)=0.

If we now consider constraint forces as extérnal forces, then we notice that the
sum of the first components of the external forces is equal to zero. This means
that the first component, P,, of the momentum vector is preserved.

We obtained this same result earlier from Noether’s theorem.

Remark 5. We emphasize once again that the holonomic character of some
particular physical constraint or another (to a given degree of exactness) is a
question of experiment. From the mathematical point of view, the holonomic
character of a constraint is a postulate of physical origin; it can be introduced
in various equivalent forms, for example, in the form of the principle of least
action (1) or the D’Alembert-Lagrange principle (2), but, when defining
the constraints, the term always refers to experimental facts which go beyond
Newton’s equations.

Remark 6. Our terminology differs somewhat from that used in mechanics
textbooks, where the D’Alembert-Lagrange principle is extended to a wider
class of systems (“non-holonomic systems with ideal constraints”). In this
book we will not consider non-holonomic systems. We remark only that one
example of a non-holonomic system is a sphere rolling on a plane without
slipping. In the tangent space at each point of the configuration manifold of a
non-holonomic system there is a fixed subspace to which the velocity vector
must belong.

Remark 7. If a system consists of mass points connected by rods, hinges,
etc., then the need may arise to talk about the constraint force of some partic-
ular constraint.

We defined the total “constraint force of all constraints” R; for every mass
point m;. The concept of a constraint force for an individual constraint is
impossible to define, as may be already seen from the simple example of a beam
resting on three columns. If we try to define constraint forces of the columns,
R,, R,, R; by passing to a limit (considering the columns as very rigid
springs), then we may become convinced that the result depends on the
distribution of rigidity.

Figure 74 Constraint force on a rod
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21: D’Alembert’s principle

Problems for students are selected so that this difficulty does not arise.

PROBLEM. A rod of weight P, tilted at an angle of 60° to the plane of a table, begins to fall
with initial velocity zero (Figure 74). Find the constraint force of the table at the initial moment,
considering the table as (a) absolutely smooth and (b) absolutely rough. (In the first case, the
holonomic constraint holds the end of the rod on the plane of the table, and in the second case,
at a given point.)
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Oscillations

Because linear equations are easy to solve and study, the theory of linear
oscillations is the most highly developed area of mechanics. In many non-
linear problems, linearization produces a satisfactory approximate solution.
Even when this is not the case, the study of the linear part of a problem is
often a first step, to be followed by the study of the relation between motions
in a nonlinear system and in its linear model.

22 Linearization

We give here the definition of small oscillations.

A Equilibrium positions

Definition. A point X, is called an equilibrium position of the system

dx
1 — = f(x), eR"
(1 0 x), x
if x(t) = x, is a solution of this system. In other words, f(x,) = 0, i,

the vector field f(x) is zero at x;.

ExaMpLE. Consider the natural dynamical system with lagrangian function
1(q,4) = T — U, where T =% a,(9)4;4; = 0O and U = U(q):

doL oL

(2) EE_E’ qz(ql”qn)

Lagrange’s equations can be written in the form of a system of 2n first-
order equations of form (1). We will try to find an equilibrium position:
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22: Linearization

Theorem. The point q = qq, q = q, will be an equilibrium position if and only
ifdy = Oand qq is a critical point of the potential energy, i.e.,
oU

3 | =0.
€) 2 |,

PrOOF. We write down Lagrange’s equations

40T _or _au

dt0q 0q oq°
From (2) it is clear that, for q = 0, we will have dT/0q = 0 and 0T/dq = O.
Therefore, q = q, is a solution in case (3) holds and only in that case. [

B Stability of equilibrium positions

We will now investigate motions with initial conditions close to an equi-
librium position.

Theorem. If the point q, is a strict local minimum of the potential energy U,
then the equilibrium q = qq is stable in the sense of Liapunov.

Proof. Let U(qy) = h. For sufficiently small ¢ > 0, the connected com-
ponent of the set {q: U(q) < h + &} containing q, will be an arbitrarily
small neighborhood of q, (Figure 75). Furthermore, the connected com-
ponent of the corresponding region in phase space p, q, {p,q: E(p,q) <
h + €}, (where p = dT/0q is the momentum and E = T + U is the total
energy) will be an arbitrarily small neighborhood of the pointp = 0, q = q,.

But the region {p,q: E < h + ¢} is invariant with respect to the phase
flow by the law of conservation of energy. Therefore, for initial conditions
p(0), q(0) close enough to (0, q,), every phase trajectory (p(t), q(t)) is close to

(Oa qO) D
U
h”)ksfh\T

hi-
q

P

E<h+e

q

Figure 75 Stable equilibrium position
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5: Oscillations

ProBLEM. Can an equilibrium position q = q,, p = 0 be asymptotically stable?

ProBLEM. Show that in an analytic system with one degree of freedom an equilibrium position
q, which is not a strict local minimum of the potential energy is not stable in the sense of
Liapunov. Produce an example of an infinitely differentiable system where this is not true.

Remark. It seems likely that in an analytic system with n degrees of
freedom, an equilibrium position which is not a minimum point is unstable;
but this has never been proved for n > 2.

C Linearization of a differential equation

We now turn to the general system (1). In studying solutions of (1) which are
close to an equilibrium position X,, we often use a linearization. Assume that
X, = 0 (the general case is reduced to this one by a translation of the co-
ordinate system). Then the first term of the Taylor series for f is linear:

of
f(x) = AX + R,(x), A = —| and R, = O(x?),
0x|o
where the linear operator A is given in coordinates x, ..., x, by the matrix
af;
A(X)i = Zaijxj'; a,-j = é’;C_J

Definition. The passage from system (1) to the system

d
4) % = Ay (xeR", ye TRY)

is called the linearization of (1).

PrOBLEM. Show that linearization is a well-defined operation: the operator
A does not depend on the coordinate system.

The advantage of the linearized system is that it is linear and therefore
easily solved:

2t2
y(t) = et'y(0), where e = E + At + TR

Knowing the solution of the linearized system (4), we can say something
about solutions of the original system (1). For small enough x, the difference
between the linearized and original systems, R,(x), is small in comparison
with x. Therefore, for a long time, the solutions y(¢), x(¢) of both systems
with initial conditions y(0) = x(0) = x, remain close. More explicitly, we
can easily prove the following:

Theorem. For any T > 0 and for any ¢ > O there is a 6 > 0 such that if
|x(0)| < O, then |x(t) — y(t)| < €d for all t in the interval 0 <t < T.
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22: Linearization

D Linearization of a lagrangian system

We return again to the lagrangian system (2) and try to linearize it in a
neighborhood of the equilibrium position q = q,. In order to simplify the
formulas, we choose a coordinate system so that q, = 0.

Theorem. In order to linearize the lagrangian system (2) in a neighborhood of
the equilibrium position q = 0, it is sufficient to replace the kinetic energy
T= %a,-j(q)q,-qj by its value at q= 0,

1, = %ZaijQiqj’ a;; = aij(o),
and replace the potential energy U(q) by its quadratic part
o*U

0q,0q j q=0.

PROOE. We reduce the lagrangian system to the form (1) by using the canonical

variables p and q:

U, = %zbijthj', b;; =

. 0H . OH

p= 34 q= o’ Hp,9)=T+ U.
Since p = q = 0 is an equilibrium position, the expansions of the right-hand
sides in Taylor series at zero begin with terms that are linear in p and q.
Since the right-hand sides are partial derivatives, these linear terms are
determined by the quadratic terms H, of the expansion for H(p, q). But
H, is precisely the hamiltonian function of the system with lagrangian
L, =T, — U,,since, clearly, H, = T,(p) + U,(q). Therefore, the linearized
equations of motion are the equations of motion for the system described
in the theorem with L, = T, — U,. O

ExaMPLE. We consider the system with one degree of freedom:

T = 7a(g)d>, U = U(g).

Let g = g, be a stable equilibrium position: (6U/dq)|
> 0 (Figure 76).

9=q0 — 0, (62U/0q2)|q=q0

U

q

D .,
\_/

Figure 76 Linearization
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5: Oscillations

As we know from the phase portrait, for initial conditions close to ¢ = ¢,
p = 0, the solution is periodic with period T depending, generally speaking,
on the initial conditions. The above two theorems imply

Corollary. The period © of oscillations close to the equilibrium position q,
approaches the limit t, = 2n/w,, (where wf = bja, b = (3*U/09?)|,=40»
and a = a(q,)) as the amplitudes of the oscillations decrease.

Prook. For the linearized system, T, = 3ag* and U, = $bq? (taking q, = 0).
The solutions to Lagrange’s equation § = —w$q have period 1, = 2r/w,:

g = ¢, COS Wyt + C, SIn Wyt

for any initial amplitude. (|

E Small oscillations

Definition. Motions in a linearized system (L, = T, — U,) are called small
oscillations*! near an equilibrium q = q,. In a one-dimensional problem
the numbers t, and w, are called the period and the frequency of small
oscillations.

ProBLEM. Find the period of small oscillations of a bead of mass 1 on a wire y = U(x) in a
gravitational field with g = 1, near an equilibrium position x = x, (Figure 77).

U vV

mg

X0

X

Figure 77 Bead on a wire

Solution. We have

U =mgy = U(x)

oU\?
T=1im? = %[1 + (7) ].(‘Z.
O0x

Let x, be a stable equilibrium position: (3U/dx)|,, = 0; (0*U/x?)|,, > 0. Then the frequency
of small oscillations, w, is defined by the formula

2
w? = <-a U)‘ :
0x* /s
since, for the linearized system, T, = $¢2 and U, = }w’q? (g = x — x,).

41 If the equilibrium position is unstable, we will talk about “unstable small oscillations™
even though these motions may not have an oscillatory character.
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23: Small oscillations

ProBLEM. Show that not only a small oscillation, but any motion of the bead is equivalent to a
motion in some one-dimensional system with lagrangian function L = 4% — V(g).
Hint. Take length along the wire for g.

23 Small oscillations

We show here that a lagrangian system undergoing small oscillations decomposes into a direct
product of systems with one degree of freedom.

A A problem about pairs of forms

We will consider in more detail the problem of small oscillations. In other
words, we consider a system whose kinetic and potential energies are
quadratic forms

(1) T=%A4q9 U=3Bgq qeR,4eR"
The kinetic energy is a positive-definite form.

In order to integrate Lagrange’s equations, we will make a special choice
of coordinates.

As we know from linear algebra, a pair of quadratic forms (A4q, q), (Bq, q),
the first of which is positive-definite, can be reduced to principal axes by a
linear change of coordinates:*?

Q=Cq Qz(Qla“-’Qn)'
In addition, the coordinates Q can be chosen so that the form (Aq, q) de-
composes into the sum of squares (Q, Q). Let Q be such coordinates; then,
since Q = Cq, we have

1 n . 1 n
@ =5 Y0} U=; Y0
i=1 i=1

The numbers A, are called the eigenvalues of the form B with respect to A.

ProBLEM. Show that the eigenvalues of B with respect to A4 satisfy the char-
acteristic equation

3) det|B — 24| = 0,

all the roots of which are, therefore, real (the matrices A and B are symmetric
and 4 > 0).

B Characteristic oscillations

In the coordinates Q the lagrangian system decomposes into n independent
equations

€ Q: = —40;.
*2 If one wants to, one can introduce a euclidean structure by taking the first form as the scalar

product, and then reducing the second form to the principal axes by a transformation which is
orthogonal with respect to this euclidean structure.
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5: Oscillations

Therefore we have proved:

Theorem. A system performing small oscillations is the direct product of n one-
dimensional systems performing small oscillations.

For the one-dimensional systems, there are three possible cases:
Case I: A = w? > 0; the solution is Q = C, cos wt + C, sin wt (oscillation)
Case 2: A = 0; the solution is @ = C, + C,t (neutral equilibrium)
Case 3: A = —k? < 0; the solution is Q = C, cosh kt + C, sinh kt
(instability)

Corollary. Suppose one of the eigenvalues of (3) is positive: A = w* > 0. Then
system (1) can perform a small oscillation of the form

®)] q(t) = (C, cos wt + C, sin wt)&,
where & is an eigenvector corresponding to A (Figure 78):
BE = 14§,
q
Q2 :
2

q;

Figure 78 Characteristic oscillation

This oscillation is the product of the one-dimensional motion Q; =
C, cos w;t + C, sin w;t and the trivial motion Q; = 0 (j # i).

Definition. The periodic motion (5) is called a characteristic oscillation of
system (1), and the number w is called the characteristic frequency.

Remark. Characteristic oscillations are also called principal oscillations
or normal modes. A nonpositive 4 also has eigenvectors; we will also call the
corresponding motions “characteristic oscillations,” although they are not
periodic; the corresponding “characteristic frequencies” are imaginary.

PrOBLEM. Show that the number of independent real characteristic oscil-
lations is equal to the dimension of the largest positive-definite subspace for
the potential energy 1(Bq, q).
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23: Small oscillations

Now the result may be formulated as follows:

Theorem. The system (1) has n characteristic oscillations, the directions of
which are pairwise orthogonal with respect to the scalar product given by
the kinetic energy A.

Proor. The coordinate system Q is orthogonal with respect to the scalar
product (Aq, q) by (2). O

C Decomposition into characteristic oscillations
It follows from the above theorem that:

Corollary. Every small oscillation is a sum of characteristic oscillations.

A sum of characteristic oscillations is generally not periodic (remember
the Lissajous figures!).

To decompose a motion into a sum of characteristic oscillations, it is
sufficient to project the initial conditions q, 4 onto the characteristic direc-
tions &§; and solve the corresponding one-dimensional problems (4).

Therefore, the Lagrange equations for system (1) can be solved in the
following way. We first look for characteristic oscillations of the form
q = ¢"'&. Substituting these into Lagrange’s equations

d
ZAG = —
1 Bg,
we find
(B — w?A)E = 0.

From the characteristic equation (3) we find n eigenvalues 4, = w?. To these
there correspond n pairwise orthogonal eigenvectors &,. A general solution
in the case A # 0 has the form

q(t) = Re Y C, €'“~E,.
k=1

Remark. This result is also true when some of the A are multiple eigen-
values.

Thus, in a lagrangian system, as opposed to a general system of linear
differential equations, resonance terms of the form ¢ sin wt, etc. do not arise,
even in the case of multiple eigenvalues.

D Examples

ExampLE 1. Consider the system of two identical mathematical pendulums of length [, = [, = 1
and mass m; = m, = | in a gravitational field with g = 1. Suppose that the pendulums are
connected by a weightless spring whose length is equal to the distance between the points of
suspension (Figure 79). Denote by g, and g, the angles of inclination of the pendulums. Then
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5: Oscillations

q; q;

Figure 79 Identical connected pendulums

for small oscillations, T = (4} + ¢3) and U = $(¢? + q3 + a(q, — ¢,)?), where La(q, — g,)?
is the potential energy of the elasticity of the spring. Set

+
0, =179 44 9,-=

NG

qy — 4>

N;

Then

+
N V2
and both forms are reduced to principal axes:
T=301+0) U=40i0}+ w03,
where w, = 1 and w, = m (Figure 80). So the two characteristic oscillations are as
follows (Figure 81):

1. @, = 0,ie, g; = q;; both pendulums move in phase with the original frequency 1, and the
spring has no effect;

2. Q; =0, ie, g, = —q;: the pendulums move in opposite phase with increased frequency
w, > 1 due to the action of the spring.

Vi+2a

Figure 80 Configuration space of the connected pendulums

g e

Figure 81 Characteristic oscillations of the connected pendulums
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23: Small oscillations

Now let the spring be very weak: « < 1. Then an interesting effect called exchange of energy
occurs.

ExaMPLE 2. Suppose that the pendulums are at rest at the initial moment, and one of them is
given velocity ¢; = v. We will show that after some time T the first pendulum will be almost
stationary, and all the energy will have gone to the second.

It follows from the initial conditions that Q,(0) = Q,(0) = 0. Therefore, Q, = ¢, sin ¢, and

0, =c;sinwt with w = /1 + 20 = 1 + « (x < 1). But Ql(O) = (0,(0) = v/ﬁ. Therefore,
¢ = v/\/i and ¢, = v/w\/i, and our solution has the form

v . 1 . v . 1 .
q, = = |sint + — sin wt q, = —[sint — — sin wt
2 w 2 W

or, disregarding the term v(1 — (1/w))sin wt, which is small since « is.

v . . T
q, zi(smt + sin wt) = v cos &t sin W',

v . "o
qzzz(smt—smwt)= —vCos w't sin &,
w—-1 «a , w+1
= - o= x1
2 2 2

The quantity & = /2 is small, since « is; therefore ¢, undergoes an oscillation of frequency
o’ x~ 1 with slowly changing amplitude v cos &t (Figure 82).

After time T = n/2¢ ~ n/a, essentially only the second pendulum will be oscillating; after
2T, again only the first, etc. (“beats”) (Figure 83).

4

q;

Figure 82  Beats: trajectories in the configuration space

q, 4

N\ ’

Figure 83 Beats
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5: Oscillations

Figure 84 Connected pendulums

q;

q;

Figure 85 Potential energy of strongly connected pendulums

ExaMpLE 3. We investigate the characteristic oscillations of two different pendulums (m, # m,,
I, # 1,,g = 1), connected by a spring with energy 3a(q, — ¢,)* (Figure 84). How do the charac-
teristic frequencies behave as « > Q or as ¢ - 0 ?

We have

T = $mi347 + my1343)

a

ai
U=mlll?+mzlz 3

+ o 5
2‘11 q2)"-

Therefore (Figure 85),

A= my 12 02 B ml +a —a
0 ml —a myl, + o
and the characteristic equation has the form

det(B—lA)=<mlll +a—m 2 —a )

—ua myl, + o — Am, 13
or
al? — (b + bya)d + (co + c;0) = 0,
where
a=mm,li3
by = mmy L, + 1) by =m2 + myl3
co = mumylil, ¢y =mly + myl,.
This is the equation of a hyperbola in the (x, 4)-plane (Figure 86). As a — 0 (weak spring) the

frequencies approach the frequencies of free pendulums (w} , = I7}); as o — 20, one of the
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23: Small oscillations

[43
! 52 A =w?
wf Wl o

Figure 86 Dependence of characteristic frequencies on the stiffness of the spring

/
my
my

Figure 87 Limiting case of pendulums connected by an infinitely stiff spring

frequencies tends to oo, while the other approaches the characteristic frequency o, of a pendu-
lum with two masses on one rod (Figure 87):

, il +mply
o mB o+ myl3

ProBLEM. Investigate the characteristic oscillations of a planar double pendulum (Figure 88).

ProBLEM. Find the shape of the trajectories of the small oscillations of a point mass on the plane,
sitting inside an equilateral triangle and connected by identical springs to the vertices (Figure 89).

/
1]
my
2
my

Figure 88 Double pendulum

A

Figure 89 System with an infinite set of characteristic oscillations
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5: Oscillations

Solution. Under rotation by 120° the system is mapped onto itself. Consequently, all direc-
tions are characteristic, and both characteristic frequencies are the same: U = $w?(x? + y?).
Therefore, the trajectories are ellipses (cf. Figure 20).

24 Behavior of characteristic frequencies

We prove here the Rayleigh-Courant-Fisher theorem on the behavior of characteristic fre-
quencies of a system under increases in rigidity and under imposed constraints.

A Behavior of characteristic frequencies under a

change in rigidity
Consider a system performing small oscillations, with kinetic and potential
energies

T =%4A44,4 >0 and U =i(Bq,q) >0 forallq,q #0.

Definition. A system with the same kinetic energy, and a new potential energy
U', is called more rigid if U' = ¥(B'q, q) > 4(Bq, q) = U for all q.

We wish to understand how the characteristic frequencies change under
an increase in the rigidity of a system.

ProBLEM. Discuss the one-dimensional case.

Theorem 1. Under an increase in rigidity, all the characteristic frequencies
are increased, i.e., if 0, < w, < --- < w, are the characteristic frequencies
of the less rigid system, and wy < w) < --- < w, are the characteristic
frequencies of the more rigid system, then ; < w}; W, < Wy;...; 0, < W,

This theorem has a simple geometric meaning. Without loss of generality
we may assume that 4 = E, i.e,, that we are considering the euclidean struc-
ture given by the kinetic energy T = (4, 4). To each system we associate the
ellipsoids E: (Bq,q) = 1 and E': (B'q,q) = 1.

It is clear that

Lemma 1. If the system U’ is more rigid than U, then the corresponding
ellipsoid E’ lies inside E.

It is also clear that

Lemma 2. The major semi-axes of the ellipsoid are the inverses of the char-
acteristic frequencies w;: w; = 1/a;.

Therefore, Theorem 1 is equivalent to the following geometric proposition
(Figure 90).
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24: Behavior of characteristic frequencies

az

aj

Figure 90 The semi-axes of the inside ellipse are smaller.

Theorem 2. If the ellipsoid E with semi-axes a, > a, > - -+ > a, contains the
ellipsoid E' with semi-axes a) > a3 > --- > a,,, both ellipses having the
same center, then the semi-axes of the inside ellipsoid are smaller :

a, = aj,a;, =ds,...,a, > a,.

ExampLE. Under an increase in the rigidity a of the spring connecting the pendulums of Example
3, Section 23, the potential energy grows, and by Theorem 1, the characteristic frequencies grow:
dw;/da > 0.

Now consider the case when the rigidity of the spring approaches infinity, « — co. Then in
the limit the pendulums are rigidly connected and we get a system with one degree of freedom;
the limiting characteristic frequency w,, satisfies w, < 0, < w,.

B Behavior of characteristic frequencies under the
imposition of a constraint

We return to a general system with n degrees of freedom, and let T = 14,9
and U = 4(Bq, q) (g € R") be the kinetic and potential energies of a system
performing small oscillations.

(Bq,q) =1

el

Figure 91 Linear constraint

Let R""' < R" be an (n — 1)-dimensional subspace in R" (Figure 91).
Consider the system with n — 1 degrees of freedom (g € R*~!) whose kinetic
and potential energies are the restrictions of T and U to R"~!. We say that
this system is obtained from the original by imposition of a linear constraint.

Letw, < w, < -+ < w, be the n characteristic frequencies of the original
system, and

’

Wy SO <L,

the (n — 1) characteristic frequencies of the system with a constraint.
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5: Oscillations

wj wy Wy

W] w3 wn—1
Figure 92 Separation of frequencies
Theorem 3. The characteristic frequencies of the system with a constraint
separate the characteristic frequencies of the original system (Figure 92):
0 <0< K< L0, S0 SO,

By Lemma 2 this theorem is equivalent to the following geometric propo-
sition.

Theorem 4. Consider the cross-section of the n-dimensional ellipsoid E =
{q: (Bq, q) = 1} with semi-axes a; > a, > --- > a, by a hyperplane R"~!
through its center. Then the semi-axes of this (n — 1)-dimensional ellip-
soid—the cross-section E'—separate the semi-axes of the ellipsoid FE
(Figure 93):

A, >01>0,20a,= 20y = Aoy = 4ay.

m
]

Figure 93 The semi-axes of the intersection separate the semi-axes of the ellipsoid

C Extremal properties of eigenvalues

Theorem 5. The smallest semi-axis of any cross-section of the ellipsoid E with
semi-axes a, > a, = --- > a, by a subspace R* is less than or equal to ay:

a, = max min [x||
{Rk} xeRkNE

(the upper bound is attained on the subspace spanned by the semi-axes
ay = a, > = ).

PrOOF.*3 Consider the subspace R"** ! spanned by the axes a; > a; ., > -+ -
> a,.Its dimension is n — k + 1. Therefore, it intersects R¥. Let x be a point
of the intersection lying on the ellipsoid. Then ||x| < g, since xe R"~**1,

43 Tt is useful to think of the case n = 3, k = 2.
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25: Parametric resonance

Since | < ||x]|, where [ is the length of the smallest semi-axis of the ellipsoid
E n R* I must be no larger than a,. (]

ProOF OF THEOREM 2. The smallest semi-axis of every k-dimensional
section of the inner ellipsoid R* n E’ is less than or equal to the smallest
semi-axis of R* n E. By Theorem 5,
a, = max min [X| < max min [[X]| = aq;. Ol
{Rk} xeRkNE’ {R<} xeRkNE
ProoF OF THEOREM 4. The inequality a; < g, follows from Theorem 5,
since in the calculation of g, the maximum is taken over a larger set. To prove
the inequality aj > a,,,, we intersect R"~! with any k + 1-dimensional
subspace R**!. The intersection has dimension greater than or equal to k.
The smallest semi-axis of the ellipsoid E' n R¥*! is greater than or equal to
the smallest semi-axis of E n R¥* 1. By Theorem 5,

a, = max min ||X|| > max min  |[x||
{Rkc R~ 1} xe Rk N E’ {Rk+1 c R} xeRk+1 A E’
> max min ||X|| = a4 ;- U

{Rk+1 c R} xeRk*1 N E
Theorems 1 and 3 follow directly from those just proven.

PrOBLEM. Show that if we increase the kinetic energy of a system without
decreasing the potential energy (for example, we increase the mass on a given
spring), then every characteristic frequency decreases.

PrROBLEM. Show that under the orthogonal projection of an ellipsoid lying in one subspace of
euclidean space onto another subspace, all the semi-axes are decreased.

PROBLEM. Suppose that a quadratic form A(g) on euclidean space R" is a continuously differen-
tiable function of the parameter &. Show that every characteristic frequency depends differen-
tiably on &, and find the derivatives.

ANSWER. Let 4, ..., 4, be the eigenvalues of 4(0). To every eigenvalue 4, of multiplicity v; there
corresponds a subspace R". The derivatives of the eigenvalues of A(c) at 0 are equal to the
eigenvalues of the restricted form B = (dA/d¢)|, -, on R*.

In particular, if all the eigenvalues of 4(0) are simple, then their derivatives are equal to the
diagonal elements of the matrix B in the characteristic basis for A(0).

It follows from this problem that when a form is increased, its eigenvalues grow. In this way
we obtain new proofs of Theorems 1 and 2.

ProBLEM. How does the pitch of a bell change when a crack appears in the bell?

25 Parametric resonance

If the parameters of a system vary periodically with time, then an equilibrium position can be
unstable, even if it is stable for each fixed value of the parameter. This instability is what makes it
possible to swing on a swing.
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5: Oscillations

A Dynamical systems whose parameters vary
periodically with time

ExaMPLE 1. A swing: the length of the equivalent mathematical pendulum
I(t) varies periodically with time: I(t + T) = I(t) (Figure 94).

7

/

Figure 94 Swing

ExaMmpPLE 2. A pendulum in a periodically varying gravitational field (for
example, the moon) is described by Hill’s equation:

) §=-0*t)g o+ T)=o)

ExaMPLE 3. A pendulum suspended from a point which periodically oscillates
vertically is also described by an equation of the form (1).

For systems with periodically varying parameters the right-hand side of
the equations of motion are periodic functions of ¢. The equations of motion
can be written in the form of a system of first-order ordinary differential
equations

) x = f(x, 1) f(x,t + T) = f(x, 1), x € R"

with periodic right-hand sides. For example, Equation (1) can be written as
the system

)

Xp =X,
t = .
%, = —wle}w( + T) = o)

B The mapping at a period

Recall the general properties of the system (2). We denote by g': R" — R" the
mapping taking x € R" to the value at time ¢, g'x = @(¢), of the solution ¢ of
system (2) with initial conditions @(0) = x (Figure 95).
The mappings g‘ do not form a group: in general,
gH-s # gtgs ;é gsgt.

PROBLEM. Show that {g'} is a group if and only if the right-hand sides f do not
depend on t.

PrOBLEM. Show that, if T is the period of f, then g"** = g*- g7 and, in
particular, g"T = (g7)", so that the mappings ¢g"” (n an integer) form a group.

114



25: Parametric resonance

t

0 T
Figure 95 Mapping at a period

The mapping g”: R" — R" plays an important role in what is to come; we
will call it the mapping at a period and will denote it by

AR R Ax(0) = x(T).
ExaMpLE. For the systems
{xl =x, {xl =x,
X; = =X X, = — X,

which can be considered periodic with any period T, the mapping 4 is a rotation or a hyper-
bolic rotation (Figure 96).

X2 X2

1
x

x ™ Ax
Ax
\
Xy - XJ
Figure 96 Rotation and hyperbolic rotation
Theorem.

1. The point X, is a fixed point of the mapping A (AX, = X,) if and only if the
solution with initial conditions x(0) = X, is periodic with period T.

2. The periodic solution x(t) is Liapunov stable (asymptotically stable) if and
only if the fixed point X, of the mapping A is Liapunov stable (asymptoti-
cally stable).**

3. If the system (2) is linear, i.e., f(x, t) = f(¢)X is a linear function of X,
then A is linear.

4. If the system (2) is hamiltonian, then A preserves volume: det A4, = 1.

44 A fixed point x, of the mapping A is Liapunov stable (respectively, asymptotically stable) if
Ve > 0, 36 > 0 such that if |x — xo| < 6, then |A"x — A"x,| < ¢ for all 0 < n < x (respec-

tively, A"x — A"Xy = O as n — ).
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5: Oscillations

PrOOF. Assertions (1) and (2) follow from the relationship g7** = g°A4.
Assertion (3) follows from the fact that a sum of solutions of a linear system
is again a solution. Assertion (4) follows from Liouville’s theorem. d

We apply the theorem above to the mapping 4 of the phase plane {(x,, x,)}
onto itself, corresponding to the equation (1) and the system (3). Since (3) is
linear and hamiltonian (H = 1w?x? + 1x2), we get:

Corollary. The mapping A is linear, and preserves area (det A = 1). The trivial
solution of Equation (1) is stable if and only if the mapping A is stable.

PrOBLEM. Show that a rotation of the plane is a stable mapping, and a
hyperbolic rotation is unstable.

C Linear mappings of the plane to itself which
preserve area

Theorem. Let A be the matrix of a linear mapping of the plane to itself which
preserves area (det A = 1). Then the mapping A is stable if |tr A| < 2, and
unstable if |tr A| > 2 (tr A = ay; + a,,).

PrOOF. Let A; and 4, be the eigenvalues of A. They satisfy the characteristic
equation A% — (tr A)A + 1 = 0 with real coefficients A, + 4, = tr 4 and
Ay -A, = det A = 1. The roots 4, and 4, of this real quadratic equation are
real for |tr A] > 2 and complex conjugate for [tr A| < 2.

In the first case one of the eigenvalues has absolute value greater than 1,
and one has absolute value less than 1; the mapping A4 is a hyperbolic
rotation and is unstable (Figure 97).

Figure 97 Eigenvalues of the mapping 4

In the second case the eigenvalues lie on the unit circle (Figure 97):
l=4-4, =4 '11 = I'l1|2~

The mapping A is equivalent to a rotation through angle o (where 4, , =
e*),i.e., it may be reduced to a rotation by means of an appropriate choice of
coordinates on the plane. Therefore, it is stable. 0

In this way, every question about the stability of the trivial solution of an
equation of the form (1) is reduced to computation of the trace of the matrix
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25: Parametric resonance

A. Unfortunately, the calculation of this trace can be done explicitly only in
special cases. It is always possible to find the trace approximately by numeri-
cally integrating the equation on the interval 0 <t < T. In the important
case when w(¢) is close to a constant, some simple general arguments can help.

D Strong stability

Definition. The trivial solution of a hamiltonian linear system is strongly
stable if it is stable, and if the trivial solution of every sufficiently close
linear hamiltonian system is also stable.**

The two theorems above imply:

Corollary. If |tr A| < 2, then the trivial solution is strongly stable.

PROOE. If [tr A| < 2, then a mapping 4’ corresponding to a sufficiently close
system will also have [tr A'| < 2. (]

Let us apply this to a system with almost constant (only slightly varying)
coeflicients. Consider, for example, the equation
6] X = —o*(1 + ea(t))x, e<1

where a(t + 2n) = a(1), e.g., a(t) = cost (Figure 98) (a pendulum whose
frequency oscillates near o with small amplitude and period 2m).46

O\ N
w V \

t

Figure 98 Instantaneous frequency as a function of time

We will represent each system of the form (4) by a point in the plane of
parameters & @ > 0. Clearly, the stable systems with [tr A| < 2 form an
open set in the (w, ¢)-plane; so do the unstable systems with |tr 4| > 2
(Figure 99).

The boundary of stability is given by the equation |tr 4| = 2.

Theorem. All points on the w-axis except the integers and half-integers
w=k/2,k=0,1,2,...correspond to strongly stable systems (4).

45 The distance between two linear systems with periodic coefficients, X = B,(t)x, X = B,(t)x,
is defined as the maximum over ¢ of the distance between the operators B, (t) and B, ().

46 [n the case a(t) = cos t, Equation (4) is called Mathieu’s equation.
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5: Oscillations

Figure 99 Zones of parametric resonance

Thus, the set of unstable systems can approach the w-axis only at the
points w = k/2. In other words, swinging a swing by small periodic changes
of the length is possible only in the case when one period of the change in
length is close to a whole number of half-periods of characteristic oscillations
—a result well known experimentally.

The proof of the theorem above is based on the fact that for ¢ = 0, Equation
(4) has constant coefficients and is clearly solvable.

ProBLEM. Calculate the matrix of the transformation A after period T = 2z
in the basis x, x for system (4) with ¢ = 0.

Solution. The general solution is:
X = ¢, COS Wt + ¢, sin wt.
The solution with initial conditions x = 1, x = 0 is:
X = cos wt X = —o sin wt.

The solution with initial conditions x = 0, X = 1 is:

X = — sin wt X = COS wt.
w
ANSWER.
1 .
cos 2nw —sin 2nw
A= w
—wsin 2nw  cos 2nw
Therefore, |tr A| = |2cos2wn| <2 if w #k/2, k=0, 1, ..., and the

theorem follows from the preceding corollary.

A more careful analysis*’ shows that in general (and for a(t) = cos t)
the region of instability (shaded in Figure 99) in fact approaches the w-axis
near the points w = k/2, k =1,2,....

47 Cf., for example, the problem analyzed below.
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25: Parametric resonance

Thus, for o = k/2, k = 1, 2, ..., the lowest equilibrium position of the
idealized swing (4) is unstable and it swings under an arbitrarily small
periodic change of length. This phenomenon is called parametric resonance.
A characteristic property of parametric resonance is that it is strongest when
the frequency of the variation of the parameter v (in Equation (4), v = 1)
is twice the characteristic frequency w.

Remark. Theoretically, parametric resonance can be observed for the
infinite collection of cases w/r ~ k/2, k = 1, 2, ... In practice, it is usually
observed only when k is small (k = 1, 2, and more rarely, 3). The reason is
that:

1. For large k the region of instability approaches the w-axis in a very narrow
“tongue” and the resonance frequencies v must satisfy very rigid bounds
(~¢0*, where 6 € (0, 1) depends on the width of the analyticity band for the
function af(t) in (4)).

2. The instability itself is weak for large k, since |tr A| — 2 is small and the
eigenvalues are close to 1 for large k.

3. If there is an arbitrarily small amount of friction, then there is a minimal
value ¢, of the amplitude in order for parametric resonance to begin (for &
less than this the oscillation dies out). As k grows, g, grows quickly (Figure
100).

\ A
M A

Figure 100 Influence of friction on parametric resonance

We also notice that for Equation (4) the size of x grows without bound in
the unstable case. In real systems, oscillations attain only finite amplitudes,
since for large x the linear equation (4) itself loses influence, and we must
consider the nonlinear effects.

ProBLEM. Find the shape of the region of stability in the ¢.w-plane for the system described by
the equations
. 2 W+ O<i<nm
= fl)= e <1
w =& n<t<2n
S+ 2m) = [().
Solution. It follows from the solution of the preceding problem that 4 = 4, 4,, where

1

Cp —s,
A = "
WS, G

Cx = COS Wy, S = SIN Wy, W, , = w + &
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5: Oscillations

Therefore, the boundary of the zone of stability has the equation

w; W,
2¢ci¢y — | — + —=)sy5,
w

Wy 1

) Itr 4] = =2

Since ¢ < 1, we have o, /w, = (v + &)/(w ~ €) = 1. We introduce the notation
w; W,

— 4+ —==2(1 + A).

Wy Wy

Then, as is easily computed, A = (2¢2/w?) + O(¢*) < 1. Using the relations 2c¢;c, =
cos 2me + cos 2nw and 2s;s, = cos 2ne — cos 2nw, we rewrite Equation (5) in the form

—Acos2ne + (2 + A)cos 2nw = +2

or
(6a) ) 2 + Acos2ne
cos 21w = —————
4 2+ A
—2 + Acos 2ne
(6b) cos2mwy = ——————
2+ A

In the first case cos 2nw ~ 1. Therefore, we set
w=k+alal <1 cos 2nw = cos 2na = 1 — 2n2a? + O(a*).

We rewrite Equation (6a) in the form

A
2no=1——-—(1~— 2
cos 2w 2+A( cos 2me)

or 2n2a? 4+ O(a*) = An?e? + O(e*).
Substituting in the value A = (2¢%/w?) + O(&*), we find

2 2
a=+—5+o0(?), ie, w=k+ et o(e).
)

Equation (6b) is solved analogously; for the result we get
kot 4 o)
w = - Ere—— OL(E).
“ak+ 3D

Therefore the answer has the form depicted in Figure 101.

N

YN
AN

Figure 101 Zones of parametric resonance for f = w + &.
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25: Parametric resonance

E Stability of an inverted pendulum with vertically
oscillating point of suspension

PrOBLEM. Can the topmost, usually unstable, equilibrium position of a
pendulum become stable if the point of suspension oscillates in the vertical
direction (Figure 102)?

mg

ZHI

a Parabola

T

Figure 102 Inverted pendulum with oscillating point of suspension

Let the length of the pendulum be /, the amplitude of the oscillation of the
point of suspension be a < I, the period of oscillation of the point of suspen-
sion 27, and, moreover, in the course of every half-period let the acceleration
of the point of suspension be constant and equal to +c (then ¢ = 8a/7?). It
turns out that for fast enough oscillations of the point of suspension (t < 1)
the topmost equilibrium becomes stable.

Solution. The equation of motion can be written in the form X = (w? + d?)x (the sign changes
after time t), where w? = g/l and d* = ¢/I. If the oscillation of the suspension is fast enough,
then d? > w? (d* = 8a/it?).

As in the previous problem, 4 = A, A;, where

1 1
chkt —shkr cos Q1 — sin Q1
A= k A, = Q
kshkr chkr —-QsinQr  cos Qr
k= d* + w? Q% = 3% — w2

The stability condition [tr A| < 2 therefore has the form

<2

M

k Q .
2chkrcos Qr + | = — — |sh kr sin Qr
Q k

We will show that this condition is fulfilled for sufficiently fast oscillations of the point of
suspension, i.e., when ¢ > g. We introduce the dimensionless variables ¢, y:

9_ 2

z_[1=82<1 =p* <1

¢
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5: Oscillations

Then

kt=2/2e/1+12  Qu=2/2e/1-42

kK Q 1+ p? 1 —u?
— = - =2u? + O@u*).
Q k N1 —p? 1+ p? w+ 06D

Therefore, for small ¢ and 1 we have the following expansion with error o(e* + u*):

chkr=1+4e21+p2)+%c*+--+  cosQr=1—4e?(l —p?) +§e* + -

kK Q
<5 - Z)Sh ktsin Qt = 16e2u? + - -

so the stability condition (7) takes the form

2(1 — 16e* + L8e* + 8e2u® + ) + 16e%u? < 2,

ie., disregarding the small higher-order terms, $16¢* > 32u%? or u < e,/2/3, or g/c < 2a/3l.

This condition can be rewritten as

N> 2 olx0220!
R I

where N = 1/27 is the number of oscillations of the point in one unit of time. For example, if the
length of the pendulum !/ is 20 cm, and the amplitude of the oscillation of the point of suspension

ais 1 cm, then

/980
N >022 ~2—0—~ 20 =~ 31 (oscillations per second).

For example, the topmost position is stable if the frequency of oscillation of the point of

suspension is greater than 40 per second.

122



Rigid bodies

In this chapter we study in detail some very special mechanical problems.
These problems are traditionally included in a course on classical mechanics,
first because they were solved by Euler and Lagrange, and also because we
live in three-dimensional euclidean space, so that most of the mechanical
systems with a finite number of degrees of freedom which we are likely to
encounter consist of rigid bodies.

26 Motion in a moving coordinate system
In this paragraph we define angular velocity.

A Moving coordinate systems

We look at a lagrangian system described in coordinates q, ¢ by the lagrangian
function L(q, 4, ). It will often be useful to shift to a moving coordinate
system Q = Q(q, t).

To write the equations of motion in a moving system, it is sufficient to
express the lagrangian function in the new coordinates.

Theorem. If the trajectory v: q = @(t) of Lagrange’s equations d(0L/0q)/dt =
CL/0q is written as y: Q = ®(t) in the local coordinates Q, t (where Q =
Q(q, 1)), then the function ®(t) satisfies Lagrange’s equations d(6L /0Q)/dt =
0L'/0Q, where L'(Q, Q, t) = L(q,4, t).

PROOF. Thp trajectory y is an extremal: 6jy L(q, q, t)dt = 0. Therefore,
[, L(Q, Q, t)dt = 0 and ®(¢) satisfies Lagrange’s equations. d
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6: Rigid bodies

B Motions, rotations, and translational motions

We consider, in particular, the important case where q is the cartesian radius
vector of a point relative to an inertial coordinate system k (which we will
call stationary), and Q is the cartesian radius vector of the same point relative
to a moving coordinate system K.

Definition. Let k and K be oriented euclidean spaces. A motion of K relative
to k is a mapping smoothly depending on ¢:

D, K —k,

which preserves the metric and the orientation (Figure 103).
v &
k /4
G
B,
- ——

Figure 103 The motion D, decomposed as the product of a rotation B, and transla-
tion C,

K

Definition. A motion D, is called a rotation if it takes the origin of K to the
origin of k, i.e., if D, is a linear operator.

Theorem. Every motion D, can be uniquely written as the composition of a
rotation B,: K — k and a translation C,: k — k:
D, = C,B,,
where C,q = q + 1(t), (g, re k).
ProoF. We set 1(t) = D,0, B, = C;'D,. Then B,0 = 0. ]

Definition. A motion D, is called translational if the mapping B,: K - k
corresponding toitdoesnotdependont: B, = B, = B,D,Q = BQ + r(t).

We will call k a stationary coordinate system, K a moving one, and
q(1) € k the radius-vector of a point moving relative to the stationary system;
if
0y q() = D,Q(1) = B,Q(1) + r(r)

(Figure 104), Q(r) is called the radius vector of the point relative to the moving
system.

Warning. The vector B,Q(t) € k should not be confused with Q(t)e K—
they lie in different spaces!
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26: Motion in a moving coordinate system

B,.Q(®)

Figure 104 Radius vector of a point with respect to stationary (¢) and moving (Q)
coordinate systems

C Addition of velocities

We will now express the “absolute velocity” q in terms of the relative motion
Q(r) and the motion of the coordinate system, D,. By differentiating with
respect to ¢ in formula (1) we find a formula for the addition of velocities
Q) q=BQ + BQ +

In order to clarify the meaning of the three terms in (2), we consider the
following special cases.

The case of translational motion (B = 0)
In this case Equation (2) gives § = BQ + . In other words, we have shown

Theorem. If the moving system K has a translational motion relative to k, then
the absolute velocity is equal to the sum of the relative velocity and the
velocity of the motion of the system K :

3) V=V +v,,
where
v = q ek is the absolute velocity,
v = BQ €k is the relative velocity (distinct from Q € K)

v, = €k is the velocity of motion of the moving coordinate system.

D Angular velocity

In the case of a rotation of K the relationship between the relative and ab-
solute velocities is not so simple. We first consider the case when our point is
at rest in K (ie, Q = 0) and the coordinate system K rotates (i.e., r = 0).
In this case the motion of the point q(¢) is called a transferred rotation.

EXAMPLE. Rotation with fixed angular velocity @ € k. Let U(t): k — k be the
rotation of the space k around the w-axis through the angle |@|t. Then
B(t) = U(t)B(0) is called a uniform rotation of K with angular velocity o.
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€

(0]
Figure 105 Angular velocity

Clearly, the velocity of the transferred motion of the point q in this case is
given by the formula (Figure 105)

q=[o,q]

We now turn to the general case of a rotation of K (r = 0, Q = 0).

Theorem. At every moment of time t, there is a vector o(t) € k such that the
transferred velocity is expressed by the formula

€ q=[o,4q], Vqek.

The vector @ is called the instantaneous angular velocity; clearly, it is
defined uniquely by Equation (4).

Corollary. Suppose that a rigid body K rotates around a stationary point 0 of
the space k. Then at every moment of time there exists an instantaneous axis
of rotation—the straight line in the body passing through O such that the
velocity of its points at the given moment of time is equal to zero. The
velocity of the remaining points is perpendicular to this straight line and is
proportional to the distance from it.

The instantaneous axis of rotation in k is given by its vector ; in K the
corresponding vector is denoted by Q = B~ '@ € K ; Q is called the vector of
angular velocity in the body.

ExaMpLE. The angular velocity of the earth is directed from the center to the North Pole; its
length is equal to 27/3600 - 24 sec™! ~ 7.3-107° sec™ 1.

PROOF OF THE THEOREM. By (2) we have

q = BQ.
Therefore, if we express Q in terms of q, we get § = BB~ 'q = Aq, where
A = BB~ ':k — k is a linear operator on k.
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26: Motion in @ moving coordinate system

Lemma 1. The operator A is skew-symmetric: A + A = 0.

PROOF. Since B: K — k is an orthogonal operator from one euclidean space
to another, its transpose is its inverse: B' = B~ ': k — K. By differentiating
the relationship BB* = E with respect to ¢, we get

BB '+ BB'=0 BB '+ (BB !)=0. O

Lemma 2. Every skew-symmetric operator A on a three-dimensional oriented
euclidean space is the operator of vector multiplication by a fixed vector:

Aq = [0, q] for all qe R3,

PROOF. The skew-symmetric operators from R* to R* form a linear space.
Its dimension is 3, since a skew-symmetric 3 x 3 matrix is determined by its
three elements below the diagonal.

The operator of vector multiplication by  is linear and skew-symmetric.
The operators of vector multiplication by all possible vectors @ in three-
space form a linear subspace of the space of all skew-symmetric operators.

The dimension of this subspace is equal to 3. Therefore, the subspace of
vector multiplications is the space of all skew-symmetric operators. Ul

CONCLUSION OF THE PROOF OF THE THEOREM. By Lemmas 1 and 2,

4= A4q = [0, q]. a

In cartesian coordinates the operator 4 is given by an antisymmetric
matrix; we denote its elements by +w, , 3:

0 —m; Wy
A = CU3 0 - wl
—w, 0

In this notation the vector ® = w,e; + w,e, + w;e; will be an eigenvector
with eigenvalue 0. By applying A to the vector q = g.e; + g,€, + g;€;,
we obtain by a direct calculation

Aq = [0, q].

E Transferred velocity

The case of purely rotational motion

Suppose now that the system K rotates (r = 0), and that a point in K
is moving (Q # 0). From (2) we find (Figure 106)

§=BQ+BO=[oq]+V.

In other words, we have shown
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C
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Figure 106 Addition of velocities

Theorem. If a moving system K rotates relative to O €k, then the absolute
velocity is equal to the sum of the relative velocity and the transferred
velocity:

v=vV +v,,
where
v = G €k is the absolute velocity
5) v = BQ €k is the relative velocity
v, = BQ = [0, q] €k is the transferred velocity of rotation.
Finally, the general case can be reduced to the two cases above, if we
consider an auxiliary system K, which moves by translation with respect to

k and with respect to which K moves by rotating around 0€ K. From
formula (2) one can see that

V=V 4+ v, + v,
where
v = { € k is the absolute velocity,
v = BQ ek is the relative velocity,
v, = BQ = [, q — r] ek is the transferred velocity of rotation,
and

Vo = rek is the velocity of motion of the moving coordinate system.

PrROBLEM. Show that the angular velocity of a rigid body does not depend on
the choice of origin of the moving system K in the body.

ProBLEM. Show that the most general movement of a rigid body is a helical
movement, i.e., the composition of a rotation through angle ¢ around some
axis and a translation by & along it.

PROBLEM. A watch lies on a table. Find the angular velocity of the hands of the watch: (a) relative
to the earth, (b) relative to an inertial coordinate system.
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27 Inertial forces and the Coriolis force

Hint. If we are given three coordinate systems k, K|, and K ,, then the angular velocity of K,
relative to k is equal to the sum of the angular velocities of K, relative to k and of K, relative
to K, since

(E+ A+ - XE+ Ayt +--)=E+ (A + At +---.

27 Inertial forces and the Coriolis force

The equations of motion in a non-inertial coordinate system differ from the equations of motion
in an inertial system by additional terms called inertial forces. This allows us to detect experi-
mentally the non-inertial nature of a system (for example, the rotation of the earth around its
axis).

A Coordinate systems moving by translation

Theorem. In a coordinate system K which moves by translation relative to an
inertial system k, the motion of a mechanical system takes place as if the
coordinate system were inertial, but on every point of mass m an additional
“inertial force” acted: F = —mf¥, where ¥ is the acceleration of the system K.

PrOOF. If Q = q — 1(t), then mQ) = m§ — mi. The effect of the translation of
the coordinate system is reduced in this way to the appearance of an addi-
tional homogeneous force field—mW, where W is the acceleration of the
origin. O

1

m(g —r)

/11NN

7777777777777
Figure 107 Overload

EXAMPLE 1. At the moment of takeoff, a rocket has acceleration t directed upward (Figure 107).
Thus, the coordinate system K connected to the rocket is not inertial, and an observer inside can
detect the existence of a force field mW and measure the inertial force, for example, by means of
weighted springs. In this case the inertial force is called overload *

ExaMPLE 2. When jumping from a loft, a person has acceleration g, directed downwards. Thus,
the sum of the inertial force and the force of gravity is equal to zero; weighted springs show that
the weight of any object is equal to zero, so such a state is called weightlessness. In exactly the
same way, weightlessness is observed in the free ballistic flight of a satellite since the force of
inertia is opposite to the gravitational force of the earth.

ExampLE 3. If the point of suspension of a pendulum moves with acceleration W(t), then the
pendulum moves as if the force of gravity g were variable and equal to g — W(t).

* Translator’s note. The word overload is the literal translation of the Russian term peregruzka.
There does not seem to be an English term for this particular kind of inertial force.
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6: Rigid bodies

B Rotating coordinate systems

Let B,: K — k be a rotation of the coordinate system K relative to the sta-
tionary coordinate system k. We will denote by Q(t) € K the radius vector of
a moving point in the moving coordinate system, and by q(t) = B,Q(t) e k
the radius vector in the stationary system. The vector of angular velocity in
the moving coordinate system is denoted, as in Section 26, by £. We assume
that the motion of the point q in k is subject to Newton’s equation m{ =

f(q, §).
Theorem. Motion in a rotating coordinate system takes place as if three addi-

tional inertial forces acted on every moving point Q of mass m:

L. the inertial force of rotation: m[€, Q1,
2. the Coriolis force: 2m[, Q], and
3. the centrifugal force: m[, [€2, Q]].

Thus
where

BF(Q, Q) = f(BQ, (BQ) ).

The first of the inertial forces is observed only in nonuniform rotation.
The second and third are present even in uniform rotation.

Figure 108 Centrifugal force of inertia

The centrifugal force (Figure 108) is always directed outward from the
instantaneous axis of rotation Q; it has magnitude |€2|?r, where r is the
distance to this axis. This force does not depend on the velocity of the relative
motion, and acts even on a body at rest in the coordinate system K.

The Coriolis force depends on the velocity Q. In the northern hemisphere
of the earth it deflects every body moving along the earth to the right, and
every falling body eastward.
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27: Inertial forces and the Coriolis force

PROOF OF THE THEOREM. We notice that for any vector Xe€ K we have
BX = B[, X]. In fact, by Section 26, BX = [, x] = [BQ, BX]. This is
equal to B[, X] since the operator B preserves the metric and orientation,
and therefore the vector product.

Since ¢ = BQ we see that 4 == BQ + BQ = B(Q + [, Q]). Differenti-
ating once more, we obtain

i = BQ + [2,Q) + BQ + [2,Q] + [, Q]
= B[R, (Q + [2, QD] + @ + [, Q] + [2, QD)
= B@ + 2[2, Q] + [2, [, Q1] + [, QD). O

(We again used the relationship BX = B[Q, X]; this time X = Q +
(€2, Q1)

We will consider in more detail the effect of the earth’s rotation on laboratory experiments.
Since the earth rotates practically uniformly, we can take £ = 0. The centrifugal force has its
largest value at the equator, where it attains Q%p/g ~ (7.3 x 107%)%-6.4 x 10%/9.8 ~ 3/1000
the weight. Within the limits of a laboratory it changes little, so to observe it one must travel
some distance. Thus, within the limits of a laboratory the rotation of the earth appears only in
the form of the Coriolis force: in the coordinate system Q associated to the earth, we have, with
good accuracy,

d . ,
m mQ = mg + 2m[Q, Q]
(the centrifugal force is taken into account in g).
ExAMPLE 1. A stone is thrown (without initial velocity) into a 250 m deep mine shaft at the

latitude of Leningrad. How far does it deviate from the vertical?
We solve the equation

Q=g+2[Qq]
by the following approach, taking < 1. We set (Figure 109)
Q=Q; +Q,,
where QZ(O) = Q,(0) = O and Q, = Q,(0) + gr%/2. For Q,, we then get
, I 2t g’
Q= 2Ae Q1+ 0@)  QxjleQl~hal bh==-
0, (0) Q
{ AN
E
14
0,

Figure 109 Displacement of a falling stone by Coriolis force
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From this it is apparent that the stone lands about
2t 2.7
glhllﬂlcosl B3 ?'250~7-]O"5~%m x 4cm
to the east.

PrOBLEM. By how much would the Coriolis force displace a missile fired vertically upwards at
Leningrad from falling back onto its launching pad, if the missile rose 1 kilometer?

EXAMPLE 2 (The Foucault pendulum). Consider small oscillations of an ideal pendulum, taking
into account the Coriolis force. Let e,, e,, and e, be the axes of a coordinate system associated
to the earth, with e, directed upwards, and e, and e, in the horizontal plane (Figure 110). In

Q

X

Figure 110 Coordinate system for studying the motion of a Foucault pendulum

the approximation of small oscillations, z = 0 (in comparison with % and y); therefore, the
horizontal component of the Coriolis force will be 2myQ, e, — 2mx€Q e . From this we get the
equations of motion
{)’c’ = —wlx + 2yQ,,  (Q, = |9Q|sin Ay, where 1, is the latitude)
j = —w?y - 2xQ,,
If we set x + iy = w, then w = X + iy, w = X + i, and the two equations reduce to one
complex equation

W+ 2Q,W + 0w = 0.

Wesolve it: w = ", A2 + 2iQA + 0? = 0,4 = —iQ, + i,/Q? + »?. But Q? < v’ Therefore,
V& + w? = w + 0(Q2), from which it follows, by disregarding Q2, that

Ax —iQ, +iw
or, to the same accuracy,
W= €7in"(L’1€iv" + ('ze”'“”).

For Q. = 0 we get the usual harmonic oscillations of a spherical pendulum. We see that the
effect of the Coriolis force reduces to a rotation of the whole picture with angular velocity —Q,,
where |Q,| = |€2] sin 4.

In particular, if the initial conditions correspond to a planar motion (y(0) = y(0) = 0), then
the plane of oscillation will be rotating with angular velocity — €, with respect to the earth’s
coordinate system (Figure 111).

At a pole, the plane of oscillation makes one turn in a twenty-four-hour day (and is fixed
with respect to a coordinate system not rotating with the earth). At the latitude of Moscow (56°)
the plane of oscillation turns 0.83 of a rotation in a twenty-four-hour day, i.e., 12.5° in an hour.
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Figure 111 Trajectory of a Foucault pendulum

PrOBLEM. A river flows with velocity 3 km/hr. For what radius of curvature of a river bend is the
Coriolis force from the earth’s rotation greater than the centrifugal force determined by the flow
of the river?

Answer. The radius of curvature must be least on the order of 10 km for a river of medium
width.

The solution of this problem explains why a large river in the northern hemisphere (for
example, the Volga in the middle of its course), undermines the base of its right bank, while a
river like the Moscow River, with its abrupt bends of small radius, undermines either the left or
right (whichever is outward from the bend) bank.

28 Rigid bodies

In this paragraph we define a rigid body and its inertia tensor, inertia ellipsoid, moments of
inertia, and axes of inertia.

A The configuration manifold of a rigid body

Definition. A rigid body is a system of point masses, constrained by holonomic
relations expressed by the fact that the distance between points is constant:

) |x; — x;| = r;; = const.

Theorem. The configuration manifold of a rigid body is a six-dimensional
manifold, namely, R®> x SO(3) (the direct product of a three-dimensional
space R> and the group SO(3) of its rotations), as long as there are three
points in the body not in a straight line.

PROOF. Let x,, X,, and X, be three points of the body which do not lie in a
straight line. Consider the right-handed orthonormal frame whose first
vector is in the direction of X, — X, and whose second is on the x; side in the
X,X, X;3-plane (Figure 112). It follows from the conditions |x; — X;| = r;;
(i = 1, 2, 3), that the positions of all the points of the body are uniquely
determined by the positions of x,, X, , and x5, which are given by the position
of the frame. Finally, the space of frames in R? is R®* x SO(3), since every
frame is obtained from a fixed one by a rotation and a translation.*® ]

8 Strictly speaking, the configuration space of a rigid body is R* x O(3), and R* x SO(3) is
only one of the two connected components of this manifold, corresponding to the orientation of

the body.
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€2

e
X1 X2 !
€3

Figure 112 Configuration manifold of a rigid body

ProBLEM. Find the configuration space of a rigid body, all of whose points lie on a line.

ANSWER. R® x §2.

Definition. A rigid body with a fixed point O is a system of point masses con-
strained by the condition x, = O in addition to conditions (1).

Clearly, its configuration manifold is the three-dimensional rotation
group SO(3).

B Conservation laws

Consider the problem of the motion of a free rigid body under its own inertia,
outside of any force field. For an (approximate) example we can use the
rolling of a spaceship.

The system admits all translational displacements: they do not change
the lagrangian function. By Noether’s theorem there exist three first integrals:
the three components of the vector of momentum. Therefore, we have shown

Theorem. Under the free motion of a rigid body, its center of mass moves
uniformly and linearly.

Now we can look at an inertial coordinate system in which the center of
inertia is stationary. Then we have

Corollary. A free rigid body rotates about its center of mass as if the center of
mass were fixed at a stationary point O.

In this way, the problem is reduced to the problem, with three degrees of
freedom, of the motion of a rigid body around a fixed point 0. We will study
this problem in more detail (not necessarily assuming that O is the center of
mass of the body).

The lagrangian function admits all rotations around O. By Noether’s
theorem there exist three corresponding first integrals: the three components
of the vector of angular momentum. The total energy of the system, E = T,
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is also conserved (here it is equal to the kinetic energy). Therefore, we have
shown

Theorem. In the problem of the motion of a rigid body around a stationary point
0, in the absence of outside forces, there are four first integrals: M, M,
M,, and E.

From this theorem we can get qualitative conclusions about the motion
without any calculation.

The position and velocity of the body are determined by a point in the
six-dimensional manifold TSO(3)—the tangent bundle of the configuration
manifold SO(3). The first integrals M,, M, M,, and E are four functions on
TSO(3). One can verify that in the general case (if the body does not have any
particular symmetry) these four functions are independent. Therefore, the
four equations

M,=C, M,=C, M,=C; E=C,>0

define a two-dimensional submanifold V, in the six-dimensional manifold
TSO(3).

This manifold is invariant: if the initial conditions of motion give a point
on V,, then for all time of the motion, the point in TSO(3) corresponding to
the position and velocity of the body remains in V.

Therefore, ¥, admits a tangent vector field (namely, the field of velocities
of the motion on TSO(3)); for C, > 0 this field cannot have singular points.
Furthermore, it is easy to verify that V. is compact (using E) and orientable
(since TSO(3) is orientable).*®

In topology it is proved that the only connected orientable compact two-
dimensional manifolds are the spheres with n handles, n > 0 (Figure 113).
Of these, only the torus (n = 1) admits a tangent vector field without singular
points. Therefore, the invariant manifold V, is a two-dimensional torus (or
several tori).

We will see later that one can choose angular coordinates ¢4, @, , (mod 2n)
on this torus such that a motion represented by a point of V, is given by the
equations ¢, = w(c), ¢, = w,(c).

4% The following assertions are easy to prove:

1. Let fy, ..., fi: M > R be functions on an oriented manifold M. Consider the set V given by
the equations f; = ¢y, ..., fy = ¢,. Assume that the gradients of fj,...,f, are linearly
independent at each point. Then V is orientable.

2. The direct product of orientable manifolds is orientable.

3. The tangent bundle TSO(3) is the direct product R® x SO(3). A manifold whose tangent
bundle is a direct product is called parallelizable. The group SO(3) (like every Lie group) is
parallelizable.

4. A parallelizable manifold is orientable.

It follows from assertions 1-4 that SO(3), TSO(3), and V. are orientable.
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Slole 1@

Figure 113 Two-dimensional compact connected orientable manifolds

In other words, a rotation of a rigid body is represented by the super-
position of two periodic motions with (usually) different periods: if the
frequencies w; and w, are non-commensurable, then the body never returns
to its original state of motion. The magnitudes of the frequencies w, and w,
depend on the initial conditions C.

C The inertia operator®®

We now go on to the quantitative theory and introduce the following
notation. Let k be a stationary coordinate system and K a coordinate system
rotating together with the body around the point O: in K the body is at rest.

w
4 m

0

Figure 114 Radius vector and vectors of velocity, angular velocity and angular
momentum of a point of the body in space

Every vector in K is carried over to k by an operator B. Corresponding
vectors in K and k will be denoted by the same letter; capital for K and lower
case for k. So, for example (Figure 114),

q € k is the radius vector of a point in space;

Q € K is its radius vector in the body, ¢ = BQ;

v = { € k is the velocity vector of a point in space;

V € K is the same vector in the body, v = BV;

€ k is the angular velocity in space;

Q< K is the angular velocity in the body, ® = BQ;

m € k is the angular momentum in space;

M € K is the angular momentum in the body, m = BM.

Since the operator B: K — k preserves the metric and orientation, it
preserves the scalar and vector products.

50 Often called the inertia tensor (translator’s note).
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By definition of angular velocity (Section 26),
v=[oq]

By definition of the angular momentum of a point of mass m with respect
to O,
m = [q, mv] = m[gq, [0, q]].

Therefore,
M = m[Q, [, Q]].
Hence, there is a linear operator transforming € to M:
A:K - K AQ =M.
This operator still depends on a point of the body (Q) and its mass (m).

Lemma. The operator A is symmetric.

ProoOF. In view of the relation ([a, b], ¢) = ([c, a], b) we have, for any X and
Y in X,

(4X,Y) = m([Q, [X, Q11 Y) = m([Y, QJ, [X, QD)

and the last expression is symmetric in X and Y. O

By substituting the vector of angular velocity £ for X and Y and noticing
that [, Q]2 = V2 = v?, we obtain

Corollary. The kinetic energy of a point of a body is a quadratic form with
respect to the vector of angular velocity €, namely:

T = 449, Q) = M, Q).

The symmetric operator A is called the inertia operator (or tensor) of the
point Q.

If a body consists of many points Q; with masses m;, then by summing we
obtain

Theorem. The angular momentum M of a rigid body with respect to a stationary
point O depends linearly on the angular velocity €, i.e., there exists a linear
operator A:K — K, AQ = M. The operator A is symmetric.

The kinetic energy of a body is a quadratic form with respect to the angular
velocity €2,
T = {(4Q, Q) = M, Q).

ProoF. By definition, the angular momentum of a body is equal to the sum
of the angular momenta of its points:

M=YM=YA4Q=A4Q  whered=) A,
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Since by the lemma the inertia operator A; of every point is symmetric,
the operator 4 is also symmetric. For kinetic energy we obtain, by definition,

T=YT=Y4M, 0 =iMQ) = 542, Q) O

D Principal axes

Like every symmetric operator, A has three mutually orthogonal char-
acteristic directions. Let e,, ,, and e; € K be their unit vectors and I, I,,
and I their eigenvalues. In the basis e;, the inertia operator and the kinetic
energy have a particularly simple form:

Mi = IiQi

The axes e; are called the principal axes of the body at the point O.

Finally, if the numbers I,, I,, and I are not all different, then the axes e;
are not uniquely defined. We will further clarify the meaning of the eigen-
values I, I, and I5.

Theorem. For a rotation of a rigid body fixed at a point O, with angular velocity
Q = Qe (Q = |Q|) around the e axis, the kinetic energy is equal to

T = 11,92 wherel, =Y mr?
and r; is the distance of the i-th point to the e axis (Figure 115).

Q= Qe

Figure 115 Kinetic energy of a body rotating around an axis

PROOF. By definition T = 1 Y m;vZ; but |v;| = Qr;, s0 T = 3, mir})Q2

L3

The number I, depends on the direction e of the axis of rotation £ in the
body.

Definition. I, is called the moment of inertia of the body with respect to the
€ axis:

I, =) mri.
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By comparing the two expressions for T we obtain:

Corollary. The eigenvalues I; of the inertia operator A are the moments of
inertia of the body with respect to the principal axes e;.

E The inertia ellipsoid

In order to study the dependence of the moment of inertia I, upon the direc-
tion of the axis e in a body, we consider the vectors e/\/}j, where the unit
vector e runs over the unit sphere.

Theorem. The vectors e/\/l;e form an ellipsoid in K.

ProoF. If Q = e/\/z, then the quadratic form T = {(4Q, Q) is equal to 4.
Therefore, {2} is the level set of a positive-definite quadratic form, i.e., an
ellipsoid. d

One could say that this ellipsoid consists of those angular velocity vectors
Q whose kinetic energy is equal to 3.

Definition. The ellipsoid {Q: (4L, ) = 1} is called the inertia ellipsoid of the
body at the point 0 (Figure 116).

Body

Ellipsoid of inertia

Figure 116 Ellipsoid of inertia

In terms of the principal axes e;, the equation of the inertia ellipsoid has
the form

Therefore the principal axes of the inertia ellipsoid are directed along the
principal axes of the inertia tensor, and their lengths are inversely proportional

to \/1;.

Remark. If a body is stretched out along some axis, then the moment of
inertia with respect to this axis is small, and consequently, the inertia el-
lipsoid is also stretched out along this axis; thus, the inertia ellipsoid may
resemble the shape of the body.

If a body has an axis of symmetry of order k passing through O (so that it
coincides with itself after rotation by 2rn/k around the axis), then the inertia
ellipsoid also has the same symmetry with respect to this axis. But a triaxial
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ellipsoid does not have axes of symmetry of order k > 2. Therefore, every axis
of symmetry of a body of order k > 2 is an axis of rotation of the inertia
ellipsoid and, therefore, a principal axis.

ExaMPLE. The inertia ellipsoid of three points of mass m at the vertices of an equilateral triangle
with center O is an ellipsoid of revolution around an axis normal to the plane of the triangle
(Figure 117).

Figure 117 Ellipsoid of inertia of an equilateral triangle

If there are several such axes, then the inertia ellipsoid is a sphere, and any
axis is principal.

ProBLEM. Draw the line through the center of a cube such that the sum of the squares of its
distances from the vertices of the cube is: (a) largest, (b) smallest.

We now remark that the inertia ellipsoid (or the inertia operator or the
moments of inertia I,, I,, and I;) completely determines the rotational
characteristics of our body: if we consider two bodies with identical inertia
ellipsoids, then for identical initial conditions they will move identically (since
they have the same lagrangian function L = T)).

Therefore, from the point of view of the dynamics of rotation around 0,
the space of all rigid bodies is three-dimensional, however many points com-
pose the body.

We can even consider the “solid rigid body of density p(Q),” having in
mind the limit as AQ — 0 of the sequence of bodies with a finite number of
points Q; with masses p(Q;)AQ; (Figure 118) or, what amounts to the same
thing, any body with moments of inertia

o= [[[r@r@ue,
where r is the distance from Q to the e axis.

//T‘\

( -
4
Figure 118 Continuous solid rigid body
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ExaMPLE. Find the principal axes and moments of inertia of the uniform planar plate [x| < a,
|yl < b, z = 0 with respect to O.

Solution. Since the plate has three planes of symmetry, the inertia ellipsoid has the same planes
of symmetry and, therefore, principal axes x, y, and z. Furthermore,

a b maZ
‘=j f x2pdx dy = —.
N 3

I~

In the same way
mb?
X 3 M
Clearly, I, = I, + I,.
PRrROBLEM. Show that the moments of inertia of any body satisfy the triangle inequalities
L<L+1 I<l;j+1, and I;<I, +1,.

and that equality holds only for a planar body.

ProBLEM. Find the axes and moments of inertia of a homogeneous ellipsoid of mass m with
semiaxes a, b, and c relative to the center O.
Hint. First look at the sphere.

PrROBLEM. Prove Steiner’s theorem: The moments of inertia of any rigid body
relative to two parallel axes, one of which passes through the center of mass,
are related by the equation

I=1,+ mr?

where m is the mass of the body, r is the distance between the axes, and I
is the moment of inertia relative to the axis passing through the center of
mass.

Thus the moment of inertia relative to an axis passing through the center
of mass is less than the moment of inertia relative to any parallel axis.

ProBLEM. Find the principal axes and moments of inertia of a uniform tetrahedron relative to
its vertices.

PrROBLEM. Draw the angular momentum vector M for a body with a given inertia ellipsoid
rotating with a given angular velocity €.

ANSWER. M is in the direction normal to the inertia ellipsoid at a point on the Q axis (Figure 119).

Q

Figure 119 Angular velocity, ellipsoid of inertia and angular momentum

141



6: Rigid bodies

Figure 120 Behavior of moments of inertia as the body becomes smaller

PROBLEM. A piece is cut off a rigid body fixed at the stationary point O. How are the principal
moments of inertia changed ? (Figure 120).

ANswER. All three principal moments are decreased.
Hint. Cf. Section 24.

PROBLEM. A small mass ¢ is added to a rigid body with moments of inertia I, > I, > I at the
point Q = x,e; + x,€, + x3&;. Find the change in I, and e, with error O(e?).

Solution. The center of mass is displaced by a distance of order ¢. Therefore, the moments of
inertia of the old body with respect to the parallel axes passing through the old and new centers
of mass differ in magnitude of order 2. At the same time, the addition of mass changes the
moment of inertia relative to any fixed axis by order ¢. Therefore, we can disregard the displace-
ment of the center of mass for calculations with error O(g?).

Thus, after addition of a small mass the kinetic energy takes the form

T =T, + 3[R, Q) + O(?),

where T, = 3(1,Q3 + 1,03 + 1,Q3) is the kinetic energy of the original body. We look for the
eigenvalue I,(¢) and eigenvector e, (¢) of the inertia operator in the form of a Taylor series in &.
By equating coefficients of ¢ in the relation A(e)e,(e) = I,(c)e, (), we find that, within error
O(£?):

Iie) ~ I; + e(x} + x3) and e ()~ e, + e( 12 e, + X1 e3>.

I, - I I3 -1,
From the formula for I,(¢) it is clear that the change in the principal moments of inertia (to the
first approximation in &) is as if neither the center of mass nor the principal axes changed. The
formula for e,() demonstrates how the directions of the principal axes change: the largest
principal axis of the inertia ellipsoid approaches the added point, and the smallest recedes from
it. Furthermore, the addition of a small mass on one of the principal planes of the inertia
ellipsoid rotates the two axes lying in this plane and does not change the direction of the third
axis. The appearance of the differences of moments of inertia in the denominator is connected
with the fact that the major axes of an ellipsoid of revolution are not defined. If the inertia
ellipsoid is nearly an ellipsoid of revolution (i.e., I, = I,) then the addition of a small mass could
strongly turn the axes e, and e, in the plane spanned by them.

29 Euler’s equations. Poinsot’s description of the motion

Here we study the motion of a rigid body around a stationary point in the absence of outside
forces and the similar motion of a free rigid body. The motion turns out to have two frequencies.

A Euler's equations

Consider the motion of a rigid body around a stationary point O. Let M be
the angular momentum vector of the body relative to O in the body, Q the
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angular velocity vector in the body, and A the inertia operator (4Q = M);
the vectors 2 and M belong to the moving coordinate system K (Section 26).
The angular momentum vector of the body relative to O in space, m = BM,
is preserved under the motion (Section 28B).

Therefore, the vector M in the body (M € K) must move so thatm = B,M(t)
does not change when t changes.

Theorem
dM

(1) =~ M. Q].

Proor. We apply formula (5), Section 26 for the velocity of the motion of
the “point” M(t) € K with respect to the stationary space k. We get
m = BM + [w, m] = B(M + [, M]).

. But since the angular momentum m with respect to the space is preserved
(m=0,M+[Q,M]=0. a

Relation (1) is called the Euler equations. Since M = A, (1) can be
viewed as a differential equation for M (or for Q). If
Q=Qlel +Qzez‘£‘Q3e3 and M=M1e1 +M262+M3e3
are the decompositions of Q and M with respect to the principal axes at O,
then M; = I;Q; and (1) becomes the system of three equations

aM dM aM
Q) dt1=01M2M3 2= a, MM, 73=a3M1M2,

wherea; = (I, — I3)/1,15,a;, = (I3 — Iy)/I31,and az = (I, — I,)/1,1,, 01,
in the form of a system of three equations for the three components of the
angular velocity,

dQ

I =2 = (2 = 1520,
dQ

I, —2 = (I3 = 1) Q,,
aQ

137: = (I, = 1)4Q,.

Remark. Suppose that outside forces act on the body, the sum of whose-
moments with respect to O is equal to n in the stationary coordinate system
and N in the moving system (n = BN). Then

m=n
and the Euler equations take the form

am .
—=[M, Q] +N.
o - M+
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B Solutions of the Euler equations

Lemma. The Euler equations (2) have two quadratic first integrals

M? M3 M3
2E=—Il+723+1—: and M? = M} + M} + M3,
1

PROOF. E is preserved by the law of conservation of energy, and M? by the
law of conservation of angular momentum m, since m?> = M? = M2, [

Thus, M lies in the intersection of an ellipsoid and a sphere. In order to
study the structure of the curves of intersection we will fix the ellipsoid
E > 0 and change the radius M of the sphere (Figure 121).

SR
Haed

€3

Figure 121 Trajectories of Euler’s equation on an energy level surface

We assume that I, > I, > I;. The semiaxes of the ellipsoid will be

V2EI, > \/2EI, > \/2EI;. If the radius M of the sphere is less than the
smallest semiaxes or larger than the largest (M < /2EI;or M > \/2EI,),
then the intersection is empty, and no actual motion corresponds to such
values of E and M. If the radius of the sphere is equal to the smallest semi-
axes, then the intersection consists of two points. Increasing the radius, so

that \/fEI 3 < M < /2EI,, we get two curves around the ends of the small-
est semiaxes. In exactly the same way, if the radius of the sphere is equal
to the largest semiaxes we get their ends, and if it is a little smaller we get
two closed curves close to the ends of the largest semiaxes. Finally, if
M = /2EI,, the intersection consists of two circles.

Each of the six ends of the semiaxes of the ellipsoid is a separate trajectory
of the Euler equations (2)—a stationary position of the vector M. It corre-
sponds to a fixed value of the vector of angular velocity directed along one
of the principal axes e;; during such a motion, £ remains collinear with M.
Therefore, the vector of angular velocity retains its position @ in space
collinear with m: the body simply rotates with fixed angular velocity around
the principal axis of inertia e;, which is stationary in space.
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29: Euler’s equations. Poinsot’s description of the motion

Definition. A motion of a body, under which its angular velocity remains
constant (@ = const, = const) is called a stationary rotation.

We have proved:

Theorem. A rigid body fixed at a point O admits a stationary rotation around
any of the three principal axes e, e,, and e;.

If, as we assumed, I, > I, > I, then the right-hand side of the Euler
equations does not become 0 anywhere else, i.e., there are no other stationary
rotations.

We will now investigate the stability (in the sense of Liapunov) of solu-
tions to the Euler equations.

Theorem. The stationary solutions M = M,e; and M = Mse; of the Euler
equations corresponding to the largest and smallest principal axes are
stable, while the solution corresponding to the middle axis (M = M,e,)
is unstable.

PROOF. For a small deviation of the initial condition from M,e; or M,e,,
the trajectory will be a small closed curve, while for a small deviation from
M e, it will be a large one. O

PROBLEM. Are stationary rotations of the body around the largest and smallest principal axes
Liapunov stable?

ANSWER. No.

C Poinsot’s description of the motion

It is easy to visualize the motion of the angular momentum and angular

velocity vectors in a body (M and Q)—they are periodic if M # /2EI,.
In order to see how a body rotates in space, we look at its inertia ellipsoid.

E={Q:(49Q,Q) =1} c K,

where A:€ — M is the symmetric operator of inertia of the body fixed
at 0.

At every moment of time the ellipsoid E occupies a position B,E in the
stationary space k.

Theorem (Poinsot). The inertia ellipsoid rolls without slipping along a station-
ary plane perpendicular to the angular momentum vector m (Figure 122).

ProoF. Consider a plane 7 perpendicular to the momentum vector m and
tangent to the inertia ellipsoid B, E. There are two such planes, and at the
point of tangency the normal to the ellipsoid is parallel to m.
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6: Rigid bodies

Figure 122 Rolling of the ellipsoid of inertia on the invariable plane

But the inertia ellipsoid E has normal grad(A4€, ) = 24Q = 2M at the
point Q. Therefore, at the points +¢& = @/,/2T of the o axis, the normal to
B,E is collinear with m.

So the plane = is tangent to B,E at the points +¢& on the instantaneous
axis of rotation. But the scalar product of € with the stationary vector m is
equal to +(1 /\/Z_T )(m, ) = +./2T, and is therefore constant. So the
distance of the plane n from O does not change, i.c., @ is stationary.

Since the point of tangency lies on the instantaneous axis of rotation, its
velocity is equal to zero. This implies that the ellipsoid B,E rolls without
slipping along 7. O

Translator’s remark: The plane n is sometimes called the invariable plane.

Corollary. Under initial conditions close to a stationary rotation around the
large (or small) axis of inertia, the angular velocity always remains close
to its initial position, not only in the body () but also in space (®).

We now consider the trajectory of the point of tangency in the stationary
plane 7. When the point of tangency makes an entire revolution on the ellip-
soid, the initial conditions are repeated except that the body has turned
through some angle a around the m axis. The second revolution will be
exactly like the first; if o = 2n(p/q), the motion is completely periodic; if
the angle is not commensurable with 27, the body will never return to its
initial state.

In this case the trajectory of the point of tangency is dense in an annulus
with center O’ in the plane (Figure 123).

ProBLEM. Show that the connected components of the invariant two-
dimensional manifold V, (Section 28B) in the six-dimensional space TSO(3)
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29: Euler’s equations. Poinsot’s description of the motion

Figure 123 Trajectory of the point of contact on the invariable plane

are tori, and that one can choose coordinates ¢, and ¢, mod 27 on them so
that @, = w,(¢) and ¢, = w,(c).
Hint. Take the phase of the periodic variation of M as ¢,.

We now look at the important special case when the inertia ellipsoid is
an ellipsoid of revolution:

12=I3¢Il.

In this case the axis of the ellipsoid B, e,, the instantaneous axis of rotation
o, and the vector m always lie in one plane. The angles between them and the
length of the vector @ are preserved; the axes of rotation (®) and symmetry
(B,e,) sweep out cones around the angular momentum vector m with the
same angular velocity (Figure 124). This motion around m is called pre-
cession.

ProBLEM. Find the angular velocity of precession.
ANswER. Decompose the angular velocity vector @ into components in the directions of the

angular momentum vector m and the axis of the body B,e,. The first component gives the angular
velocity of precession, w,, = M/I,.

Figure 124 Rolling of an ellipsoid of revolution on the invariable plane
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6: Rigid bodies

Hint. Represent the motion of the body as the product of a rotation around the axis of
momentum and a subsequent rotation around the axis of the body. The sum of the angular
velocity vectors of these rotations is equal to the angular velocity vector of the product.

Remark. In the absence of outside forces, a rigid body fixed at a point O is represented by a
lagrangian system whose configuration space is a group, namely SO(3), and the lagrangian
function is invariant under left translations. One can show that a significant part of Euler’s theory
of rigid body motion uses only this property and therefore holds for an arbitrary left-invariant
lagrangian system on an arbitrary Lie group. In particular, by applying this theory to the group
of volume-preserving diffeomorphisms of a domain D in a riemannian manifold, one can obtain
the basic theorems of the hydrodynamics of an ideal fluid. (See Appendix 2.)

30 Lagrange’s top

We consider here the motion of an axially symmetric rigid body fixed at a stationary point in a
uniform force field. This motion is composed of three periodic processes: rotation, precession,
and nutation.

A Euler angles

Consider a rigid body fixed at a stationary point O and subject to the action
of the gravitational force mg. The problem of the motion of such a “heavy
rigid body” has not yet been solved in the general case and in some sense is
unsolvable.

In this problem with three degrees of freedom, only two first integrals
are known: the total energy E = T + U, and the projection M, of the
angular momentum on the vertical. There is an important special case in
which the problem can be completely solved—the case of a symmetric top. A
symmetric or lagrangian top is a rigid body fixed at a stationary point O
whose inertia ellipsoid at O is an ellipsoid of revolution and whose center of
gravity lies on the axis of symmetry e; (Figure 125). In this case, a rotation

N

€3

\( i zg =1lcos @

n,
s 0

/

Figure 125 Lagrangian top

around the e, axis does not change the lagrangian function, and by Noether’s
theorem there must exist a first integral in addition to E and M, (as we will
see, it turns out to be the projection M ; of the angular momentum vector on
the e axis).

If we can introduce three coordinates so that the angles of rotation around
the z axis and around the axis of the top are among them, then these co-
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30: Lagrange’s top

ordinates will be cyclic, and the problem with three degrees of freedom will
reduce to a problem with one degree of freedom (for the third coordinate).

Such a choice of coordinates on the configuration space SO(3) is possible;
these coordinates @, ¥, 6 are called the Euler angles and form a local co-
ordinate system in SO(3) similar to geographical coordinates on the sphere:
they exclude the poles and are multiple-valued on one meridian.

€y

Vertical

Projection of
the top’s axis

Nodal line

Figure 126 Euler angles

We introduce the following notation (Figure 126):

e, €,, and e, are the unit vectors of a right-handed cartesian stationary
coordinate system at the stationary point O;

e,, e,, and e; are the unit vectors of a right moving coordinate system
connected to the body, directed along the principal axes at O,

I, = I, # I; are the moments of inertia of the body at O;

ey is the unit vector of the axis [e, , e;], called the “line of nodes”
(all vectors are in the “stationary space” k).

In order to carry the stationary frame (e,, ,, €,) into the moving frame
(e,, e,, e;3), we must perform three rotations:

1. Through an angle ¢ around the e, axis. Under this rotation, e, remains
fixed, and e, goes to ey.

2. Through an angle § around the ey axis. Under this rotation, e, goes to
€3, and ey remains fixed.

3. Through an angle ¥ around the e; axis. Under this rotation, ey goes to
e, and e, stays fixed.

After all three rotations, e, has gone to €;, and e, to e;; therefore, e,
goestoe,.
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6: Rigid bodies

The angles ¢, ¥, and 6 are called the Euler angles. It is easy to prove:

Theorem. To every triple of numbers @, 0, the construction above associates
a rotation of three-dimensional space, B(p, 0, ) e SO(3), taking the
frame (e, e, e) into the frame (e,,e,,e;). In addition, the-mapping
(p, 6, V) — B(p, 0, ) gives local coordinates

O<p<2n O0<y <2z 0<fB<m

on SO(3), the configuration space of the top. Like geographical longitude,
@ and Y can be considered as angles mod 2r; for 0 = 0 or 8 = 7 the map
(@, 6, Y¥) — B has a pole-type singularity.

B Calculation of the lagrangian function

We will express the lagrangian function in terms of the coordinates ¢, 6, Y
and their derivatives.
The potential energy, clearly, is equal to

U= fszgdm = mgz, = mgl cos 0,

where z, is the height of the center of gravity above 0 (Figure 125).
We now calculate the kinetic energy. A small trick is useful here: we
consider the particular case when ¢ =y = 0.

Lemma. The angular velocity of a top is expressed in terms of the derivatives
of the Euler angles by the formula

o = e, + (¢ sin 0)e, + (Y + ¢ cos O)es,
if o=y =0

PrOOF. We look at the velocity of a point of the top occupying the position
r at time ¢. After time dt this point takes the position (within (dt)*)

B(p + de, 0 + db,y + dy)B™ (o, 6, Y)r,

where dop = ¢ dt, d0 = 6 dr and dy = lﬁdt.
Consequently, to the same accuracy the displacement vector is the sum
of the three terms

B(@ + do,0,¥)B™ (o, 0, Y)r — 1 = [0, r]dt,
B(p, 6 + d0, ¥)B™ (o, 0, Y)r — r = [m,, r]dt,
B(o, 0,y + dy)B™ (¢, 0,y)r — r = [@,, r]dt

(the angular velocities @,,, @y, and o, are defined by these formulas).
Therefore, the velocity of the point r is v = [®, + @y + ®,, r], so the
angular velocity of the body is

0 =0, + 0 + 0y,

where the terms are defined by the formulas above.
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30: Lagrange’s top

It remains to decompose the vectors ®,, @y, and @, with respect to
e,, €, and e;. We have not yet used the fact that ¢ = ¢ = 0. Ifp = ¢y = 0,
then

B(¢ + de,0,y)B™ (¢, 0,¢)

is simply a rotation around the axis e, through an angle d¢, so
o, = @e,.
Furthermore, B(p, 8 + dO, ¥)B™ (¢, 6, ) is simply a rotation around the
axis ey = e, = e, through an angle df in the case ¢ = ¥ = 0, so
Wy = éel.
Finally, B(p,6,¥ + dy)B~'(¢,0,¥) is a rotation through an angle dy
around the axis e;, so )
W, = l//e3.
In short, for ¢ = ¥ = 0 we have
W = (bez + éel + lj/e3.
But, clearly, for o =y = 0
e, =e;cos 0 + e,sinb.

So the components of the angular velocity along the principal axes e, e,,
and e, are
w; =60 w,=¢sinl w3=y + ¢cosb. U

Since T = 3(I,0? + 1,03 + I;w3), the kinetic energy for ¢ = ¢ = 0 is
given by the formula

1 .2 I3
T =71(92 + ¢?sin?6) + 730# + ¢ cos 0)2.
But the kinetic energy cannot depend on ¢ and y: these are cyclic co-
ordinates, and by a choice of origin of reference for ¢ and ¥ which does not
change T we can always make ¢ = 0 and ¥ = 0. Thus the formula we got

for the kinetic energy is true for all ¢ and .
In this way we obtain the lagrangian function

L= 1_21(92 + ¢%sin?20) + %(lﬁ + ¢ cos 6)* — mgl cos 6.

C Investigation of the motion

To the cyclic coordinates ¢ and ¥ there correspond the first integrals

= =M, =¢U,sin?0 + I,cos?8) + I, cos 0

" M, = ¢l cos 0 + yls.
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6: Rigid bodies
Theorem. The inclination 6 of the axis of the top to the vertical changes with
time in the same way as in the one-dimensional system with energy
’ Il 12
E = 5_0 + Ueﬂ‘(g)a

where the effective potential energy is given by the formula

(M, — M, cos 0)?
Ueff = 2
21, sin* 6

+ mgl cos 6.

PrOOF. Following the general theory, we express ¢ and ¥ in terms of M,
and M,. We get the total energy of the system as

I, ., M3 (M, — M, cos 6)?
E=26*+-2 I cos 0 d 3
2 Ot gp, Tmeles Bt T Nt g

and
o= M, — Mycos
~ I,;sin?0

The number M3/2I, = E — E', independent of 0, does not affect the
equation for 6. U

In order to study the one-dimensional system above it is convenient to
make the substitutioncos § = u(—1 <u < 1).
We also write
M, M 2F 2
I I I I

p>0.

Then we can rewrite the law of conservation of energy E’ as

it = f(u),

where f(u) = (x — Pu)(1 — u?) — (a — bu)?, and the law of variation of
the azimuth ¢ as

,_a—bu
=1

We notice that f(u) is a polynomial of degree 3, f(+ o) = +00, and
f(x)=—-(@¥F b)? <0 if a # +b. On the other hand, actual motions
correspond to constants a, b, o, and B for which f(u) > 0 for some
—1 < u < 1. Thus f(u) has exactly two real roots u; and u, on the interval
—1 < u <1 (and one for u > 1, Figure 127). Therefore, the inclination ¢
of the axis of the top changes periodically between two limit values 6, and 6,
(Figure 128). This periodic change in inclination is called nutation.
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30: Lagrange’s top

:’ /\ ' /.

Figure 127 Graph of the function f(u)

We now consider the motion of the azimuth of the axis of the top. The
point of intersection of the axis with the unit sphere moves in the ring between
the parallels 8, and 6,. The variation of the azimuth of the axis is determined
by the equation

. _a—bu
*ET T

If the root u’ of the equation a = bu lies outside of (1, u,), then the angle ¢
varies monotonically and the axis traces a curve like a sinusoid on the unit
sphere (Figure 128(a)). If the root u' of the equation a = bu lies inside
(uy, uy), then the rate of change of ¢ is in opposite directions on the parallels
0, and 6,, and the axis traces a looping curve in the sphere (Figure 128(b)).

If the root u’ of a = bu lies on the boundary (e.g., u’" = u,), then the axis
traces a curve with cusps (Figure 128(c)).

The last case, although exceptional, is observed every time we release
the axis of a top launched at inclination 6, without initial velocity; the top
first falls, but then rises again.

The azimuthal motion of the top is called precession. The complete
motion of the top consists of rotation around its own axis, nutation, and
precession. Each of the three motions has its own frequency. If the frequencies
are incommensurable, the top never returns to its initial position, although
it approaches it arbitrarily closely.

6,

(@) (b) (c)
Figure 128 Path of the top’s axis on the unit sphere
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31 Sleeping tops and fast tops

The formulas obtained in Section 30 reduce the solution of the equations of motion of a top to
elliptic integrals. However, qualitative information about the motion is usually easy to obtain
without turning to quadrature.

In this paragraph we investigate the stability of a vertical top and give approximate formulas
for the motion of a rapidly spinning top.

A Sleeping tops

We consider first the particular solution of the equations of motion in
which the axis of the top is always vertical (§ = 0) and the angular velocity
is constant (a “sleeping” top). In this case, clearly, M, = M, = I,
(Figure 129).

.

Figure 129 Sleeping top

PROBLEM. Show that a stationary rotation around the vertical axis is always Liapunov unstable.

We will look at the motion of the axis of the top, and not of the top itself.
Will the axis of the top stably remain close to the vertical, i.e., will # remain
small? Expressing the effective potential energy of the system

_ (M, — Mj; cos 6)?

Ues 3T, sin? 0 + mgl cos 6
as a power series in 6, we find
Boj(*/4) 0
Ug=—22>"'"71 ... —_— = A0 + .-,
off 20 mgl 3 + C+ +
212
A= w313 T_g_l
81, 2

If 4 > 0, the equilibrium position 6 = 0 of the one-dimensional system
is stable, and if 4 < 0 it is unstable. Thus, the condition for stability has the
form

dmgll
w3 > mg2 L
I3
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31: Sleeping tops and fast tops

When friction reduces the velocity of a sleeping top to below this limit, the
top wakes up.

PrROBLEM. Show that, for w3 > 4mgl1,/1}, the axis of a sleeping top is stable with respect to
perturbations which change the values of M, and M3, as well as 6.

B Fast tops

A top is called fast if the kinetic energy of its rotation is large in comparison
with its potential energy:

103 > mgl.

It is clear from a similarity argument that multiplying the angular velocity
by N is exactly equivalent to dividing the weight by N2,

Theorem. If, while the initial position of a top is preserved, the angular velocity
is multiplied by N, then the trajectory of the top will be exactly the same as
if the angular velocity remained as it was and the acceleration of gravity
g were divided by N2. In the case of large angular velocity the trajectory
clearly goes N times faster.>!

In this way we can study the case g — 0 and apply the results to study
the case w — 0.

To begin, we consider the case g = 0, i.e,, the motion of a symmetric
top in the absence of gravity. We compare two descriptions of this motion:
Lagrange’s (Section 30C) and Poinsot’s (Section 29C).

We first consider Lagrange’s equation for the variation of the angle of
inclination 0 of the top’s axis.

Lemma. In the absence of gravity, the angle 0, satisfying M, = M, cos 0,
is a stable equilibrium position of the equation of motion of the top’s axis.
The frequency of small oscillations of 0 near this equilibrium position is
equal to

Iym,
Wpyy = Il .

PRrOOF. In the absence of gravity the effective potential energy reduces to

(M, — M, cos 0)?

U =
ff 21, sin? 0

This nonnegative function has the minimum value of zero for the angle § = 6, determined by
the condition M, = M, cos 6, (Figure 130). Thus, the angle of inclination 8, of the top’s axis

> Denote by ¢,(t, £) the position of the top at time ¢ with initial condition & e TSO(3) and
gravitational acceleration g. Then the theorem says that

O t, NE) = @n—2,(N1, E).
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Ueyy

% o

Figure 130 Effective potential energy of a top

to the vertical is stably stationary: for small deviations of the initial angle 8 from 8, there will
be periodic oscillations of 6 near 8, (nutation). The frequency of these oscillations is easily
determined by the following general formula: the frequency w of small oscillations in a one-
dimensional system with energy

ax? .
E= 5 + U(x), U(xo) = min U(x)

is given (Section 22D) by the formula

U
w? = (x,,)v
a

The energy of the one-dimensional system describing oscillations of the inclination of the top’s
axis is

I

5 62 + Uy

For § = 0, + x we find M, — M, cos 6 = M;{cos 8, — cos{f, + x)) = M3x sin 0, + 0(x?)

M3 x?-sin? 0,

IRw?
: ()= 220 4,
2I, sin? 6, 2

Uit =

from which we obtain the expression for the frequency of nutation

Lo
Dot = 373 O
I

From the formula ¢ = (M, — M, cos )/, sin? 8 it is clear that, for
0 = 0,, the azimuth of the axis does not change with time: the axis is
stationary. The azimuthal motion of the axis under small deviations of 8
from 6, could also be studied with the help of this formula, but we will deal
with it differently.

The motion of a top in the absence of gravity can be considered in
Poinsot’s description. Then the axis of the top rotates uniformly around the
angular momentum vector, preserving its position in space. Thus, the axis
of the top describes a circle on the sphere whose center corresponds to the
angular momentum vector (Figure 131).

Remark. Now the motion of the top’s axis, which according to Lagrange was called nutation,
is called precession in Poinsot’s description of motion.
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—
—~

Figure 131 Comparison of the descriptions of the motion of a top according to
Lagrange and Poinsot

This means that the formula obtained above for the frequency of a small
nutation, w,, = Iyw;/I;, agrees with the formula for the frequency of
precession @ = M/I, in Poinsot’s description: when the amplitude of
nutation approaches zero, Iyw; - M.

C A top in a weak field

We go now to the case when the force of gravity is not absent, but is very
small (the values of M, and M, are fixed). In this case a term mgl cos 0,
small together with its derivatives, is added to the effective potential energy.
We will show that this term slightly changes the frequency of nutation.

Lemma. Suppose that the function f(x) has a minimum at x = 0 and Taylor expansion f(x) =
Ax%2 + ..., A > 0. Suppose that the function h(x) has Taylor expansion h(x) = B+ Cx + ---.
Then, for sufficiently small ¢, the function f(x) = f(x) + ¢h(x) has a minimum at the point
(Figure 132)
Ce + 0
Xg = — — &%),
A

which is close to zero. In addition, f;(x,) = A + O(e).

Proor. We have f;(x) = Ax + Ce + O(x2) + O(ex), and the result is obtained by applying the
implicit function theorem to f;'(x). O

f(x)
fe(x)

eh (x)

X
Xe

Figure 132 Displacement of the minimum under a small change of the function
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By the lemma, the effective potential energy for small g has a minimum
6, close to 0, and at this point U” differs slightly from U"(,). Therefore, the
frequency of a small nutation near 6, is close to that obtained for g = 0:
. I
Iim o, = — w;.
g—0 Il

D A rapidly thrown top

We now consider the special initial conditions when we release the axis of
the top without an initial push from a position with inclination 6, to the
vertical.

Theorem. If the axis of the top is stationary at the initial moment (¢ = 6 = 0)
and the top is rotating rapidly around its axis (w3 — <o), which is inclined
from the vertical with angle 0,(M, = M; cos 0,), then asymptotically, as
Wz — 0,

1. the nutation frequency is proportional to the angular velocity;
2. the amplitude of nutation is inversely proportional to the square of the
angular velocity;
3. the frequency of precession is inversely proportional to the angular
velocity;
4. the following asymptotic formulas hold (as w3 — 0):
I I mgl .

3
Wy ~ I_w3 Anue ™~ 12 602 sm 90 wprec ~
1 33

(here f(w3) ~ g(ws) if lim,,, ., (f/g) = 1).

mgl

T304

For the proof, we look at the case when the initial angular velocity is
fixed, but g — 0. Then by interpreting the formulas with the aid of a similarity
argument (cf. Section B), we obtain the theorem.

We already know from Section 30C that under our initial conditions the axis of the top traces
a curve with cusps on the sphere.

Uest

1

')
Figure 133 Definition of the amplitude of nutation
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We apply the lemma to locate the minimum point 8, of the effective potential energy. We
set (Figure 133)

0=20,+ x cos @ =cos By — xsinfy + ---.
Then we obtain, as above, the Taylor expansion in x at 6,

I§w§ 2
x4,
2,

Uily=0 = mgl cos 0 = mgl cos 0, — xmgl sin 0y + - - .

Applying the lemma to f = Ul,=¢, g = & h = ml cos(8, + x), we find that the minimum of the
effective potential energy U, is attained at angle of inclination

0, =100+ x, x,=—75——4g+ 0@

Figure 134 Motion of a top’s axis

6 = 6, and 6 = 0. This means that 8, corresponds to the highest position of the axis of the top.
Thus, for small g, the amplitude of nutation is asymptotically equal to

Iymi sin 0
yml sin 0, (G - 0).

~ X, ~

Anut g

1303
We now find the precessional motion of the axis. From the general formula
. M, - Mjcosf
=T Isine
for M, = M5 cos 0, and 6 = 6, + x, we find that M, — M3 cos @ = M;xsinfy + ---;so

. M, N
=—X
¢ I, sin @,

But x oscillates harmonically between 0 and 2x, (up to O(g?)). Therefore, the average value of
the velocity of precession over the period of nutation is asymptotically equal to

— M, mgl
gD~11 sin00x9~l3w3 (g~ 0)
PROBLEM. Show that
. o) —e0)
limlim ————~ =1

g=01~0 [MGl/130,
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PART III
HAMILTONIAN MECHANICS

Hamiltonian mechanics is geometry in phase space. Phase space has the
structure of a symplectic manifold. The group of symplectic diffecomorphisms
acts on phase space. The basic concepts and theorems of hamiltonian
mechanics (even when formulated in terms of local symplectic coordinates)
are invariant under this group (and under the larger group of transformations
which also transform time).

A hamiltonian mechanical system is given by an even-dimensional mani-
fold (the “phase space™), a symplectic structure on it (the “Poincaré integral
invariant”) and a function on it (the “hamiltonian function™). Every one-
parameter group of symplectic diffeomorphisms of the phase space pre-
serving the hamiltonian function is associated to a first integral of the
equations of motion.

Lagrangian mechanics is contained in hamiltonian mechanics as a special
case (the phase space in this case is the cotangent bundle of the configuration
space, and the hamiltonian function is the Legendre transform of the lagrang-
ian function).

The hamiltonian point of view allows us to solve completely a series of
mechanical problems which do not yield solutions by other means (for
example, the problem of attraction by two stationary centers and the problem
of geodesics on the triaxial ellipsoid). The hamiltonian point of view has
even greater value for the approximate methods of perturbation theory
(celestial mechanics), for understanding the general character of motion
in complicated mechanical systems (ergodic theory, statistical mechanics)
and in connection with other areas of mathematical physics (optics, quantum
mechanics, etc.).



Differential forms

Exterior differential forms arise when concepts such as the work of a field
along a path and the flux of a fluid through a surface are generalized to higher
dimensions.

Hamiltonian mechanics cannot be understood without differential forms.
The information we need about differential forms involves exterior multi-
plication, exterior differentiation, integration, and Stokes’ formula.

32 Exterior forms

Here we define exterior algebraic forms

A 1-forms

Let R" be an n-dimensional real vector space.5? We will denote vectors in this
space by &, 1, ...

Definition. A form of degree 1 (or a 1-form) is a linear function w: R" — R, i.e,,

o4& + 1,8;) = 4,0(,) + L,0(&,), A, 4,€Rand &, &, eR".

We recall the basic facts about 1-forms from linear algebra. The set of all
1-forms becomes a real vector space if we define the sum of two forms by

(@1 + @3)(€) = ©1(8) + w,(8),

and scalar multiplication by
(Aw)(E) = Aw(§).

52 1t is essential to note that we do not fix any special euclidean structure on R". In some examples
we use such a structure; in these cases this will be specifically stated (“euclidean R"”).

163



7: Differential forms

The space of 1-forms on R" is itself n-dimensional, and is also called the dual
space (R")*.

Suppose that we have chosen a linear coordinate system x,, ..., x, on R".
Each coordinate x; is itself a 1-form. These n 1-forms are linearly independent.
Therefore, every 1-form w has the form

w=a1x1+'-'+a,,x,,, aiER.
The value of w on a vector § is equal to
o) = a;x,8) + -+ + a,x,&),
where x,(§), ..., x,(§) are the components of & in the chosen coordinate

system.

ExaMmpLE. If a uniform force field F is given on euclidean R?, its work A on the displacement §
is a 1-form acting on & (Figure 135).

F (force)

w@ =Fp

¢ (displacement)

Figure 135 The work of a force is a 1-form acting on the displacement.

B 2-forms

Definition. An exterior form of degree 2 (or a 2-form) is a function on pairs of
vectors w?: R" x R" —» R, which is bilinear and skew symmetric:

0¥ (AEy + 585, 83) = 4,0%(E,, &) + A, 0%, &)

wz(gl, éZ) = —w2(§2’ gl),
Vi, 4, eR E,,E,,E,€eR".

ExampLE 1. Let S(&,, &,) be the oriented area of the parallelogram constructed on the vectors
&, and &, of the oriented euclidean plane R?, i.e.,

éll 512
621 622

with e,, e, a basis giving the orientation on R2.
It is easy to see that S(§,, &,) is a 2-form (Figure 136).

, where&; = ¢;.e; +&1.€,,8; = &rye + &5,

S(gla Faz) =

ExaMpLE 2. Let v be a uniform velocity vector field for a fluid in three-dimensional oriented
euclidean space (Figure 137). Then the flux of the fluid over the area of the parallelogram
E,, &, is a bilinear skew symmetric function of §, and &,, i.e., a 2-form defined by the triple scalar
product

wz(gl gl) = (V, gla gz)
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Figure 136 Oriented area is a 2-form.

Figure 137  Flux of a fluid through a surface is a 2-form.

ExaMPLE 3. The oriented area of the projection of the parallelogram with sides &, and &, on
the x,, x,-plane in euclidean R? is a 2-form.

PROBLEM 1. Show that for every 2-form w? on R" we have

w3, &) =0, VE e R".
Solution. By skew symmetry, w?(€, &) = —w?*(, &).
The set of all 2-forms on R” becomes a real vector space if we define the
addition of forms by the formula

(w1 + 0,)E&1,8;) = 0,84, &) + w,(&1, E,)

and multiplication by scalars by the formula

(/160)(&1, &:z) = /1(1)(&1, gZ)

PROBLEM 2. Show that this space is finite-dimensional, and find its dimension.
ANSWER. n(n — 1)/2: a basis is shown below.

C k-forms

Definition. An exterior form of degree k, or a k-form, is a function of k vectors
which is k-linear and antisymmetric:

(81 + 2,81, 82, .., &) = Lo, &y, .., &) + A, 0(E]LEy, ..., B
OEiys -5 85) = (=)0 (&, ..., &),
where
o {0 if the permutation i,, ..., i, is even;

1 if the permutation iy, ..., i, is odd.
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3
&

Figure 138 Oriented volume is a 3-form.

ExaMPLE 1. The oriented volume of the parallelepiped with edges &, . . ., &, in oriented euclidean
space R" is an n-form (Figure 138).

117 Sin
V(gl ~~~~~ E.m) =
Cnr 0 S
where &, = &, e, +--- + ,e,and ey, ..., e, are a basis of R".

EXAMPLE 2. Let R* be an oriented k-plane in n-dimensional euclidean space R". Then the
k-dimensional oriented volume of the projection of the parallelepiped with edges &;,&,, ...,
&, € R" onto R* is a k-form on R",

The set of all k-forms in R" form a real vector space if we introduce
operations of addition

(0, + ©;)(€) = ©,(8) + »,(8), E=1{&,....&} §eR,

and multiplication by scalars

(Aw)(E) = Aw(8).

PRrOBLEM 3. Show that this vector space is finite-dimensional and find its dimension.
ANSWER. (}): a basis is shown below.

D The exterior product of two 1-forms

We now introduce one more operation: exterior multiplication of forms.
If w* is a k-form and o' is an I-form on R”, then their exterior product w* A @'
will be a k + I-form. We first define the exterior product of 1-forms, which
associates to every pair of 1-forms w,, w, on R" a 2-form w; A w, on R

Let & be a vector in R™. Given two 1-forms w, and w,, we can define a
mapping of R" to the plane R x R by associating to § € R" the vector (&)
with components (&) and ®,(§) in the plane with coordinates m,, w,
(Figure 139).

Definition. The value of the exterior product w; A @, on the pair of vectors
€., &, € R"is the oriented area of the image of the parallelogram with sides
w(&,) and w(&,) on the w,, w,-plane:

1) (&)
0,(&;) o,(&,)

(01 A w2)E;,82) = ‘
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@21 w(E,)

w(§;)

WD g

Figure 139 Definition of the exterior product of two 1-forms

PROBLEM 4. Show that w, A w, really is a 2-form.
ProBLEM 5. Show that the mapping
(W, W) > @ AW,
is bilinear and skew symmetric:
Wy AN Wy = —Wy AN Wy,
(A, + Vo)) Ao, = Vo) Ao, + Vo] A o,.

Hint. The determinant is bilinear and skew-symmetric not only with respect to rows, but
also with respect to columns.

Now suppose we have chosen a system of linear coordinates on R”, i.e., we

are given n independent 1-forms x4, ..., x,. We will call these forms basic.
The exterior products of the basic forms are the 2-forms x; A x;. By skew-
symmetry, x; A x; = 0 and x; A x; = —x; A x;. The geometric meaning of

the form x; A x;is very simple: its value on the pair of vectors §,, &, is equal
to the oriented area of the image of the parallelogram §,, &, on the coordinate
plane x;, x; under the projection parallel to the remaining coordinate
directions.

PROBLEM 6. Show that the (3) = n(n — 1)/2 forms x; A x; (i <j) are linearly independent.

In particular, in three-dimensional euclidean space (x,, x,, x3), the area
of the projection on the (x;, x,)-plane is x; A x,, on the (x,, x;)-plane it is
X, A X3, and on the (x5, x,)-plane it is x5 A x;.

PROBLEM 7. Show that every 2-form in the three-dimensional space (x,, x,, x3) is of the form

Px; A xs + Qx3 A x; + Rx; A X,
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ProBLEM 8. Show that every 2-form on the n-dimensional space with coordinates x,,..., x,
can be uniquely represented in the form

2 _
w® = 5 a;;x; N X;.
: i<j

Hint. Let e; be the i-th basis vector, i.e., x{e;)) = 1, x,(e;) = 0 for i # j. Look at the value of
the form w? on the pair e;, ;. Then

a;; = w’(e;, €).

E Exterior monomials

Suppose that we are given k 1-forms w;, ..., @,. We define their exterior
product w; A -+ A .

Definition. Set
01§y - &)
(@ A Ao)Eys . 80 = P
018D - o8
In other words, the value of a product of 1-forms on the parallelepiped

E,,...,E is equal to the oriented volume of the image of the parallelepiped
in the oriented euclidean coordinate space R* under the mapping & —

(@,E), ..., 0 8)).

PROBLEM 9. Show that w; A --- A @, is a k-form.

ProBLEM 10. Show that the operation of exterior product of 1-forms gives a multi-linear skew-
symmetric mapping

(W) DO A Lo AWy
In other words,
Q)+ VD) A @y A Awg=A0] Awy Ao Ao + A0 A @y Aes Ay

and

Wy, A Ay = (=)o A Aoy,
where

B {0 if the permutation iy, ..., i, is even,

~ 11 if the permutation iy, .. ., iy is odd.

Now consider a coordinate system on R" given by the basic forms x,, ...,
x,. The exterior product of k basic forms

Xig A A Xy,

is the oriented volume of the image of a k-parallelepiped on the k-plane
(Xi,» .-+, x;) under the projection parallel to the remaining coordinate
directions.
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PrOBLEM 11. Show that, if two of the indices iy, . . ., i, are the same, then the form Xip A A Xy,
is zero.
PROBLEM 12. Show that the forms

Xy At A X where | <i; <i, <--- < i <n,

iy i

are linearly independent.
The number of such forms is clearly (}). We will call them basic k-forms.

PROBLEM 13. Show that every k-form on R" can be uniquely represented as a linear combination
of basic forms:

1<iy < <ig<n

i = wk(ei,, ce )

It follows as a result of this problem that the dimension of the vector space
of k-forms on R" is equal to (3). In particular, for k = n, () = 1, from which
follows

Corollary. Every n-form on R" is either the oriented volume of a parallelepiped
with some choice of unit volume, or zero:

O"=a-x; A A X,
PROBLEM 14. Show that every k-form on R" with k > n is zero.

We now consider the product of a k-form «* and an I-form «'. First,
suppose that we are given two monomials

k

o*=w; A A and @' =w g A A 0y,

where wy, ..., w4, are 1-forms. We define their product o* A @' to be the
monomial

(@1 Ao A D) A (@hsq Ao A Dpyy)

=Wy A AW A Dppq At A W

PROBLEM 15. Show that the product of monomials is associative:
(0 A ) A ™=k A (0 A 0™
and skew-commutative:
o* A @' = (= DHot A o,
Hint. In order to move each of the [ factors of w' forward, we need k inversions with the

k factors of w*.

Remark. 1t is useful to remember that skew-commutativity means commutativity only if
one of the degrees k and [ is even, and anti-commutativity if both degrees k and I are odd.
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33 Exterior multiplication

We define here the operation of exterior multiplication of forms and show that it is skew-
commutative, distributive, and associative.

A Definition of exterior multiplication

We now define the exterior multiplication of an arbitrary k-form «* by an
arbitrary I-form w'. The result o* A o' will be a k + I-form. The operation of
multiplication turns out to be:

1. skew-commutative: @* A @' = (—1)0' A oF;

2. distributive: (3, 0% + 2,05 A 0" = 4,04 A ' + 4,04 A @
3. associative: (0* A @) A @™ = & A (0 A ©™).

Definition. The exterior product w* A @' of a k-form »* on R" with an
I-form ' on R" is the k + I-form on R" whose value on the k + [ vectors

Eiy ooy Bis Brnts - > Busr € R is equal to
(1) (0" A o)y, = Z (— 1)vwk(€i19---aéik)wl(éjlv'"éj,)a

wherei, < --- <igandj; < --- <j;;(ip.- .,k Jj1s- - -»ji) i @ permutation
of the numbers (1, 2, ...,k + I); and

1 if this permutation is odd;
V= o o
0 if this permutation is even.

In other words, every partition of the k + I vectors &, ..., &, into two
groups (of k and of [ vectors) gives one term in our sum (1). This term is equal
to the product of the value of the k-form w* on the k vectors of the first group
with the value of the I-form o' on the I vectors of the second group, with sign
+ or — depending on how the vectors are ordered in the groups. If they are
ordered in such a way that the k vectors of the first group and the [ vectors of
the second group written in succession form an even permutation of the
vectors &,, &,, ..., &1, then we take the sign to be +, and if they form an
odd permutation we take the sign to be —.

ExaMpLE. If k = | = 1, then there are just two partitions: §,, §, and §,, §,.
Therefore,

(03 A @)E4, &) = 08 wy(8,) — (&), (8,),

which agrees with the definition of multiplication of 1-forms in Section 32.

PROBLEM 1. Show that the definitjon above actually defines a k + I-form (i.e., that the value of
(w* A @)y, ...,E ;) depends linearly and skew-symmetrically on the vectors &).
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B Properties of the exterior product

Theorem. The exterior multiplication of forms defined above is skew-com-
mutative, distributive, and associative. For monomials it coincides with the
multiplication defined in Section 32.

The proof of skew-commutativity is based on the simplest properties of
even and odd permutations (cf. the problem at the end of Section 32) and will
be left to the reader.

Distributivity follows from the fact that every term in (1) is linear with
respect to o* and o',

The proof of associativity requires a little more combinatorics. Since the
corresponding arguments are customarily carried out in algebra courses for
the proof of Laplace’s theorem on the expansion of a determinant by column
minors, we may use this theorem.>3

We begin with the following observation: if associativity is proved for the
terms of a sum, then it is also true for the sum, i.e.,

(0] A 0y) A w3 = w:,/ A (W, A w3) implies
(0] A @) A 03 = 0] A (0 A ©3)
(0] + @]) A ©3) A 03 = (W) + OF) A (W A ©3).
For, by distributivity, which has already been proved, we have
(0} + @) A 0;) A 03 = (W) A W) A 3) + (0] A @) A @),
(0] + 07 A (@3 A @3) = (0] A (03 A ©3)) + (0] A (0; A ©3)).
We already know from Section 32 (Problem 13) that every form on R” is a
sum of monomials; therefore, it is enough to show associativity for multi-
plication of monomials.
Since we have not yet proved the equivalence of the definition in Section
32 of multiplication of k 1-forms with the general definition (1), we will

temporarily denote the multiplication of k 1-forms by the symbol A, so that
our monomials have the form

o*=w, A Aw, and O' =W A A Oy,

where w,, ..., w, ., are 1-forms.

53 A direct proof of associativity (also containing a proof of Laplace’s theorem) consists of
checking the signs in the identity

(@ A ) A OG- Brrim) = Lt O G, 8)OCs - 8O C B,

where iy <--- <y, j; <. <ji, by <o < hy(iy,. .., h,) is a permutation of the numbers
(,....,k+1+ m).
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Lemma. The exterior product of two monomials is a monomial:

(@) Ao AW A(@ey Ao A Wy y)

=Wy A AW AWy AN A Wiy

PrROOF. We calculate the values of the left and right sides on k + I vectors
s, ..., Exs+:. The value of the left side, by formula (1), is equal to the sum of
the products
Z t+ det |wyE;.)l- det |wgE;.)l
1<i<k k<igk+l

of the minors of the first k columns of the determinant of order k + / and the
remaining minors. Laplace’s theorem on the expansion by minors of the
first k columns asserts exactly that this sum, with the same rule of sign choice
as in Definition (1), is equal to the determinant det|w,(§;)|. O

It follows from the lemma that the operations A and A coincide: we get,
in turn,
Wy AWy =Wy AWy,
W AW, A= (@ Awy) Awy = (0 A Wy) A 03,
Oy A0, A A= (0 A @) Aw3) A AWy

The associativity of A -multiplication of monomials therefore follows from
the obvious associativity of A -multiplication of 1-forms. Thus, in view of the
observation made above, associativity is proved in the general case.

PROBLEM 2. Show that the exterior square of a 1-form, or, in general, of a form of odd order, is
equal to zero: w* A w* = 0if k is odd.

ExaMPLE 1. Consider a coordinate system p,,..., Puv Gpsee s g, on R?" and the 2-form

W =Y pi A Qe
[ Geometrically, this form signifies the sum of the oriented areas of the projection of a paral-

lelogram on the n two-dimensional coordinate planes (p, q,),.... (p.. 4n). Later, we will see
that the 2-form w? has a special meaning for hamiltonian mechanics. It can be shown that every
nondegenerate®* 2-form on R?" has the form w? in some coordinate system (p,, . . ., g,).]

ProBLEM 3. Find the exterior square of the 2-form w?.
ANSWER.
@ A @r= =2Ypi APiAGA g

i>j

ProBLEM 4. Find the exterior k-th power of .

ANSWER.
W AP A A =2kt Y p A AP AG A A g,
e e B i
k

54 A bilinear form w? is nondegenerate if V& # 0, 3n: ®?(§, n) # 0. See Section 41B.
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In particular,
WA A® = knlpi A AP AG A A G,

_\,___4
n
is, up to a factor, the volume of a 2n-dimensional parallelepiped in R?",
ExaMpPLE 2. Consider the oriented euclidean space R3, Every vector A € R determines a 1-form
wi, by wA(€) = (A, &) (scalar product) and a 2-form w3 by
wi;, 82) = (A, &,&;)  (triple scalar product).
PROBLEM 5. Show that the maps A — w} and A — w3 establish isomorphisms of the linear space

R* of vectors A with the linear spaces of I-forms on R* and 2-forms on R*. If we choose an
orthonormal oriented coordinate system (x,, x,, X3) on R3, then

wh = A,x; + A, x5 + A3x;5
and
W3 = A;X3 A X3+ AzXy A Xy + AsX; A X5,
Remark. Thus the isomorphisms do not depend on the choice of the orthonormal oriented
coordinate system (x,, X,, x3). But they do depend on the choice of the euclidean structure

on R?, and the isomorphism A — w3 also depends on the orientation (coming implicitly in the
definition of triple scalar product).

PROBLEM 6. Show that, under the isomorphisms established above, the exterior product of
1-forms becomes the vector product in R3, i.e., that
wi A wh = oy g forany A, Be R3.

In this way the exterior product of 1-forms can be considered as an extension of the vector
product in R? to higher dimensions. However, in the n-dimensional case, the product is not a
vector in the same space: the space of 2-forms on R” is isomorphic to R" only for n = 3.

PrOBLEM 7. Show that, under the isomorphisms established above, the exterior product of a
1-form and a 2-form becomes the scalar product of vectors in R3:

wi A 0F=(A,B)x; A X; A X5,

C Behavior under mappings

Let f: R™ — R" be a linear map, and o* an exterior k-form on R". Then
there is a k-form f*w* on R™, whose value on the k vectors §,, ..., &, € R™
is equal to the value of @* on their images:

(f*wk)(gl’ e gk) = wk(fgl’ e 9f§k)-

PROBLEM 8. Verify that f*w* is an exterior form.

PROBLEM 9. Verify that /* is a linear operator from the space of k-forms on R” to the space of
k-forms on R™ (the star superscript means that /* acts in the opposite direction from /).

PrOBLEM 10. Let f: R™ — R" and g: R" — RP. Verify that (go f)* = f*o g*.

PROBLEM 11. Verify that f* preserves exterior multiplication: f*(w* A ') = (f*w*) A (f*o).
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34 Differential forms

We give here the definition of differential forms on differentiable manifolds.

A Differential 1-forms

The simplest example of a differential form is the differential of a function.

ExampLE. Consider the function y = f(x) = x2. Its differential df = 2x dx depends on the
point x and on the “increment of the argument,” i.e,, on the tangent vector § to the x axis. We
fix the point x. Then the differential of the function at x, df |,, depends linearly on &. So, if x = 1
and the coordinate of the tangent vector & is equal to 1, then df = 2, and if the coordinate of
& is equal to 10, then df = 20 (Figure 140).

df

3

X

Figure 140 Differential of a function

Let f: M — R be a differentiable function on the manifold M (we can
imagine a “function of many variables” f: R" — R). The differential df |,
of fat x is a linear map

dfy: TM, - R

of the tangent space to M at x into the real line. We recall from Section 18F the
definition of this map:

Let & e TM, be the velocity vector of the curve x(1): R - M; x(0) = x
and x(0) = & Then, by definition,

#® =21 rx).

dt =0

ProsLEM 1. Let & be the velocity vector of the plane curve x(t) = cost, y(t) = sint at t = 0.
Calculate the values of the differentials dx and dy of the functions x and y on the vector §
(Figure 141).

ANSWER. dxl,0) (&) = 0,dyl.0)8) = 1

Note that the differential of a function fat a point x € M is a 1-form df, on
the tangent space TM,.
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X
Figure 141 Problem 1

The differential df of f on the manifold M is a smooth map of the tangent
bundle TM to the line

df:TM - R (TM = TMX).
This map is differentiable and is linear on each tangent space TM, = TM.

Definition. A differential form of degree 1 (or a 1-form) on a manifold M is a
smooth map
w:TM - R

of the tangent bundle of M to the line, linear on each tangent space TMy.

One could say that a differential 1-form on M is an algebraic 1-form on
TM,, which is “differentiable with respect to X.”

ProBLEM 2. Show that every differential 1-form on the line is the differential of some function.

ProsLem 3. Find differential 1-forms on the circle and the plane which are not the differential
of any function.

B The general form of a differential 1-form on R"

We take as our manifold M a vector space with coordinates x;, ..., X,.
Recall that the components &4, ..., &, of a tangent vector § e TRy, are the
values of the differentials dx;, ..., dx, on the vector & These n 1-forms on
TR" are linearly independent. Thus the 1-forms dx;, . . ., dx, form a basis for
the n-dimensional space of 1-forms on TR}, and every 1-form on TR can
be uniquely written in the form a, dx; + -+ - + a, dx,, where the a; are real
coefficients. Now let  be an arbitrary differential 1-form on R". At every
point x it can be expanded uniquely in the basis dx;, . . ., dx,.From this we get:

Theorem. Every differential 1-form on the space R" with a given coordinate
system X, . .., X, can be written uniquely in the form
o = a;(X)dx; + -+ + a,(x)dx,,

where the coefficients a{x) are smooth functions.
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EZ 23

&
0 1 2 3
Figure 142 Problem 4

X

PROBLEM 4. Calculate the value of the forms w, = dx;, w, = x,dx,,andw; = dr?(r* = xI + x2)
on the vectors §,, &,, and &; (Figure 142).

ANSWER.

PROBLEM 5. Let x4, . . ., x, be functions on a manifold M forming a local coordinate system in
some region. Show that every l-form on this region can be uniquely written in the form
w=a((x)dx; + - + a,x)dx,.

C Differential k-forms

Definition. A differential k-form w* |, at a point x of a manifold M is an exterior
k-form on the tangent space TM, to M at X, i.e., a k-linear skew-symmetric
Sfunction of k vectors &, .. ., &, tangent to M at x.

If such a form w*|, is given at every point x of the manifold M and if it is
differentiable, then we say that we are given a k-form w* on the manifold M.

PROBLEM 6. Put a natural differentiable manifold structure on the set whose elements are k-tuples
of vectors tangent to M at some point x.

A differential k-form is a smooth map from the manifold of Problem 6 to
the line.

PRrOBLEM 7. Show that the k-forms on M form a vector space (infinite-dimensional if k does not
exceed the dimension of M).

Differential forms can be multiplied by functions as well as by numbers.
Therefore, the set of C* differential k-forms has a natural structure as a
module over the ring of infinitely differentiable real functions on M.
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D The general form of a differential k-form on R"

Take as the manifold M the vector space R" with fixed coordinate functions

X1, ..., Xt R" > R. Fix a point x. We saw above that the n 1-forms dx, ...,

dx, form a basis of the space of 1-forms on the tangent space TR".
Consider exterior products of the basic forms:

dxi, A -+ Adxy, i <o <

In Section 32 we saw that these (};) k-forms form a basis of the space of exterior
k-forms on TRy. Therefore, every exterior k-form on TR” can be written
uniquely in the form

Z ail,---,ik dxil A A dx,-k.

iy < <ip

Now let o be an arbitrary differential k-form on R". At every point x it
can be uniquely expressed in terms of the basis above. From this follows:

Theorem. Every differential k-form on the space R" with a given coordinate
system Xy, ..., X, can be written uniquely in the form

ot = Z a;,, ... (Xdx;, A oo A dxg,

i< <ig
where the a;, .., (X) are smooth functions on R".
ProsLEM 8. Calculate the value of the forms w, = dx, A dx,, w, = x, dx, A dx, — x,dx, A

dx,, and w; = rdr A do (where x, = rcos ¢ and x, = rsin @) on the pairs of vectors (§,,n,),
(§;.m2). and (&5, n;) (Figure 143).

ANSWER.

Ernm) Gm) Esoms)

w | 1 1 —1

W, 2 1 -3
w,| 1 1 -1
X2
3
n
£; 3
2 n1
L
1 ¢
3
0 ] 2

Figure 143 Problem 8
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7: Differential forms

ProeLEM 9. Calculate the value of the forms w, = dx, A dx;, w, = x; dx5 A dx;, and
wy = dxy A dr? (rF = x? + x + x2), on the pair of vectors & = (1, 1, 1), n = (1, 2, 3) at the
point x = (2,0, 0).

ANSWER. 0, = 1, 0w, = —2, w3 = —8.

PROBLEM 10. Let x4, ..., x,: M — R be functions on a manifold which form a local coordinate
system on some region. Show that every differential form on this region can be written uniquely in
the form

"= Z a;,. Xy dxi, A oA dx,,

i< <y

ExampLE. Change of variables in a form. Suppose that we are given two
coordinate systems on R3: x,, x,, x3 and y;, y,, 3. Let @ be a 2-form on R3.
Then, by the theorem above, w can be written in the system of x-coordinates
as @ = X,dx, A dx; + X,dx; Adxy + X3dx, A dx,, where X, X,,
and X are functions of x,, x,, and x5, and in the system of y-coordinates as
w =Y dy, Andy; + Yydys Ady, + Yady, A dy,, where Y;, Y,, and Y
are functions of y,, y,, and y;.

ProBLEM 11. Given the form written in the x-coordinates (i.e., the X;) and the change of variables
formulas x = x(y), write the form in y-coordinates, i.e., find Y.
Solution. We have dx; = (0x;/0y,) dy, + (0x;/0y,) dy, + (0x;/0y3) dy,. Therefore,

0x, 0x, 0x, ) <0x3 0x3 0x4
dx, A dx =(—d +—~dy, + —d Al—dy, + —dy, + —dy; |,
2 3 o Y1 3y Y2 3y, Y3 oy, Y1 37, Y2 E V3
from which we get
D(x;, x3) D(x3, x,) D(x,, x3)
=X, 2 3 .
D(yy, y2) D(y1, y2) D(y1, y2)

E Appendix. Differential forms in three-dimensional spaces

Let M be a three-dimensional oriented riemannian manifold (in all future
examples M will be euclidean three-space R*). Let x,, x,, and x5 be local
coordinates, and let the square of the length element have the form

ds* = E; dx? + E, dx3 + E; dx}

(i.e., the coordinate system is triply orthogonal).

ProBLEM 12. Find E|, E,, and E, for cartesian coordinates x, y, z, for cylindrical coordinates
r, @, z and for spherical coordinates R, ¢, 8 in the euclidean space R? (Figure 144).

ANSWER.

ds? = dx? + dy?* + dz? = dr* + r* de? + dz* = dR* + R?cos? 0 dp? + R* dO%.

We let ¢4, €,, and e, denote the unit vectors in the coordinate directions.
These three vectors form a basis of the tangent space.
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.‘ y
x P
Figure 144 Problem 12

ProBLEM 13. Find the values of the forms dx,, dx,, and dx; on the vectors e,, e,, and e;.

ANSWER. dxe;) = 1/\/5-, the rest are zero. In particular, for cartesian coordinates dx(e,) =
dy(e,) = dz(e,) = 1; for cylindrical coordinates dr(e,) = dz(e,) = 1 and do(e,) = 1/r (Figure
145), for spherical coordinates dR(ez) = 1, dp(e,) = 1/R cos 6 and d6(e,) = 1/R.

The metric and orientation on the manifold M furnish the tangent space
to M at every point with the structure of an oriented euclidean three-dimen-
sional space. In terms of this structure, we can talk about scalar, vector, and
triple scalar products.

ProOBLEM 14. Calculate [e,, e,], (ex, €,), and (e,, e,, e).

ANSWER. €5, 0, 1.

In an oriented euclidean three-space every vector A corresponds to a
1-form w} and a 2-form w2, defined by the conditions

0@ =A% wiGw=AZ%gn, §neR’

The correspondence between vector fields and forms does not depend on
the system of coordinates, but only on the euclidean structure and orienta-
tion. Therefore, every vector field A on our manifold M corresponds to a
differential 1-form @} on M and a differential 2-form w2 on M.

Figure 145 Problem 13
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7: Differential forms

The formulas for changing from fields to forms and back have a different
form in each coordinate system. Suppose that in the coordinates x,, x,, and
x3 described above, the vector field has the form

A = Alel + A2e2 + A3e3

(the components A4; are smooth functions on M). The corresponding 1-form
w4 decomposes over the basis dx;, and the corresponding 2-form over the
basis dx; A dx;.

PROBLEM 15. Given the components of the vector field A, find the decompositions of the 1-form
w} and the 2-form w3.

Solution. We have wj(e;) = (A,e)) = A,. Also, (a,dx, + a,dx, + as dx;)(e,) =
a, dx,(e;) = al/JEl. From this we get that a, = 4,\/E,, so that

Wi = Al\/E;l dx, + Az\/E_2 dx, + A3\/I.T3 dx;.

In the same way, we have wi(e,, e;) = (A, e,, e5) = A,. Also,

(o dxy A dxsy + aydxs Adxy + o3 dx; A dxy)e,, e3) = o,

1

Hence, a; = 4,./E,E;,ie.,
w3 = Al\/lﬁdx2 A dxy + AZ\/E dx; A dx, + A;,\/Imdx1 A dx,.
In particular, in cartesian, cylindrical, and spherical coordinates on R? the vector field
A= A,e, + Aje, + A,e, = A,e, + A,e, + A6, = Ageg + A,e, + Ase,

corresponds to the 1-form
wk = Acdx + Aydy + A, dz = A, dr + rA,d@ + A.dz = Az dR + R cos 0A4,d¢ + RA,df
and the 2-form

wi=A,dy Andz + Aydz A dx + A, dx A dy
=rA,dp Andz+ Adz Adr+rA,dr A do
= R?cos 0Ag dp A d) + RA,d6 A dR + Rcos8A4,dR A de.

An example of a vector field on a manifold M is the gradient of a function
f+M — R. Recall that the gradient of a function is the vector field grad f
corresponding to the differential:

Wgraay = df. ie, df(E)=(grad f,E) V&

PrOBLEM 16. Find the components of the gradient of a function in the basis e,, e,, 5.
Solution. We have df = (3f/0x,) dx, + (3f/0x;)dx, + (0f/0x3)dxs. By the problem above

I S A B
e — T e —_— e,
JE, 0x, ' JE,0x, 0 JE, 0% °

grad f =
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35: Integration of differential forms

In particular, in cartesian, cylindrical, and spherical coordinates

¥ a F of 1o o
df=_— = ~ e, = -2 2
grad f 6xeX+6yey+6zez 6re'+rt3(pe"’+6zez

of 1 of + 1¢f
~e ——e,.
Cr RcosfBdp ° R 0O Y

oR

35 Integration of differential forms

We define here the concepts of a chain, the boundary of a chain, and the integration of a form
over a chain.

The integral of a differential form is a higher-dimensional generalization of such ideas as the
flux of a fluid across a surface or the work of a force along a path.

A The integral of a 1-form along a path

We begin by integrating a 1-form ®! on a manifold M. Let
y[0<t<1]-M

be a smooth map (the “path of integration™). The integral of the form

' on the path y is defined as a limit of Riemann sums. Every Riemann sum
consists of the values of the form ! on some tangent vectors &, (Figure 146):

fw‘ =lim ) w'E).

y A-0i=1

The tangent vectors &; are constructed in the following way. The interval
0 <t < lisdivided into parts A;: t; < t < t;,, by the points ¢;. The interval
A; can be looked at as a tangent vector A; to the t axis at the point ¢;. Its
image in the tangent space to M at the point y(z,) is

& = d')"lt,-(Ai) €TM,,.

The sum has a limit as the largest of the intervals A; tends to zero. It is
called the integral of the 1-form w' along the path y.

The definition of the integral of a k-form along a k-dimensional surface
follows an analogous pattern. The surface of integration is partitioned into

(e

Pt
t

Figure 146 Integrating a 1-form along a path
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Figure 147 Integrating a 2-form over a surface

small curvilinear k-dimensional parallelepipeds (Figure 147); these paral-
lelepipeds are replaced by parallelepipeds in the tangent space. The sum of the
values of the form on the parallelepipeds in the tangent space approaches
the integral as the partition is refined. We will first consider a particular case.

B The integral of a k-form on oriented euclidean space R*

Let x4, ..., x, be an oriented coordinate system on R¥ Then every k-form
on R¥ is proportional to the form dx,; A --- A dx,, ie., it has the form
o* = @(x)dx,; A -+ A dx,, where ¢(x) is a smooth function.

Let D be a bounded convex polyhedron in R* (Figure 148). By definition,
the integral of the form w* on D is the integral of the function ¢:

fco" = f¢(x)dx1, ey dxy,
D D

where the integral on the right is understood to be the usual limit of Riemann
sums.

Such a definition follows the pattern outlined above, since in this case the
tangent space to the manifold is identified with the manifold.

PrOBLEM |. Show that f, w* depends linearly on *.

PROBLEM 2. Show that if we divide D into two distinct polyhedra D, and D,, then

Jw":f w"+J~ w*,
D D, D,

In the general case (a k-form on an n-dimensional space) it is not so easy
to identify the elements of the partition with tangent parallelepipeds; we will
consider this case below.

>

Figure 148 Integrating a k-form in k-dimensional space
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35: Integration of differential forms

C The behavior of differential forms under maps

Let f: M — N be a differentiable map of a smooth manifold M to a smooth
manifold N, and let w be a differential k-form on N (Figure 149). Then, a
well-defined k-form arises also on M: it is denoted by f*w and is defined by
the relation

(f*w)(gl’ s ék) = w(f*gb e ’f*gk)

for any tangent vectors &,, ..., &, € TM,. Here f, is the differential of the
map f. In other words, the value of the form f*w on the vectors §,, ..., &, is
equal to the value of w on the images of these vectors.

N
| w
—_—
f*

*w

R

Figure 149 A form on N induces a form on M.

ExampLE. If y = f(x,, x;) = x1 + x3 and o = dy, then

S*o = 2xy dx, + 2x,dx,.

PrOBLEM 3. Show that f *w is a k-form on M.

PROBLEM 4. Show that the map f * preserves operations on forms:

o) + wy) = 4, f*(w) + 4, fHw,),

SHop A o) = (f*o) A (f*o,).
PROBLEM 5. Let g: L — M be a differentiable map. Show that (fg)* = g*/*.

PROBLEM 6. Let D; and D, be two compact, convex polyhedra in the oriented k-dimensional
space R* and f: D, - D, a differentiable map which is an orientation-preserving diffeomor-
phism*® of the interior of D, onto the interior of D,. Then, for any differential k-form «* on D,,

J‘D‘f"‘w" = szwk.

Hint. This is the change of variables theorem for a multiple integral:

f Mw(y(x))dn coedxy, =f ey, -+ dy,.

D, a(xls-"vxn) D>

55 ie., one-to-one with a differentiable inverse.
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D Integration of a k-form on an n-dimensional manifold

Let w be a differential k-form on an n-dimensional manifold M. Let D be a
bounded convex k-dimensional polyhedron in k-dimensional euclidean
space R* (Figure 150). The role of “path of integration” will be played by a

M

<2

Figure 150 Singular k-dimensional polyhedron

k-dimensional cell®®

of

o of M represented by a triple ¢ = (D, £, Or) consisting

1. a convex polyhedron D < R,
2. a differentiable map f: D — M, and
3. an orientation on R¥, denoted by Or.

Definition. The integral of the k-form w over the k-dimensional cell ¢ is the
integral of the corresponding form over the polyhedron D

[w = J [*o.
vo D
PROBLEM 7. Show that the integral depends linearly on the form:
f Aoy + Ao, =4 fwl + 4, fwz.

The k-dimensional cell which differs from ¢ only by the choice of orienta-
tion is called the negative of o and is denoted by —o or —1 - g (Figure 151).

OO

Figure 151 Problem 8

PRrOBLEM 8. Show that, under a change of orientation, the integral changes sign:
f 0= - f .
-0 a

56 The cell ¢ is usually called a singular k-dimensional polyhedron.
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35: Integration of differential forms

E Chains

The set f(D) is not necessarily a smooth submanifold of M. It could have
“self-intersections” or “folds” and could even be reduced to a point. How-
ever, even in the one-dimensional case, it is clear that it is inconvenient to
restrict ourselves to contours of integration consisting of one piece: it is
useful to be able to consider contours consisting of several pieces which can
be traversed in either direction, perhaps more than once. The analogous
concept in higher dimensions is called a chain.

Definition. A chain of dimension k on a manifold M consists of a finite collection
of k-dimensional oriented cells 64, ..., g, in M and integers m, ..., m,,
called multiplicities (the multiplicities can be positive, negative, or zero).
A chain is denoted by

G =moy + -+ mo,.

We introduce the natural identifications
myo + myo = (my + m,)o
MGy + M0, = M0, + M0, 0o =0 g +0=c¢.

ProBLEM 9. Show that the set of all k-chains on M forms a commutative group if we define the
addition of chains by the formula

(myo, + -+ + m,0,) + (myoy + - + m,0,)=moao, + - +mo, +moy +---+m,0,

o

F Example: the boundary of a polyhedron

Let D be a convex oriented k-dimensional polyhedron in k-dimensional
euclidean space R*. The boundary of D is the (k — 1)-chain 6D on R* defined
in the following way (Figure 152).

The cells ag; of the chain dD are the (k — 1)-dimensional faces D; of the
polyhedron D, together with maps f;: D; > R* embedding the faces in R* and
orientations Or; defined below; the multiplicities are equal to 1:

oD =) o; 6; = (D, f;, Ory).

Rule of orientation of the boundary. Let ey, . .., e, be an oriented frame in
R*. Let D, be one of the faces of D. We choose an interior point of D; and there

Figure 152 Oriented boundary
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7: Differential forms

construct a vector n outwardly normal to the polyhedron D. An orienting
frame for the face D; will be a frame f,, ..., f,_; on D, such that the frame
(m, f,, ..., f,_)isoriented correctly (i.c., the same way as theframee,, . .. , €,).

The boundary of a chain is defined in an analogous way. Let ¢ = (D, f, Or)
be a k-dimensional cell in the manifold M. Its boundary 0o is the (k — 1)
chain: 0o = Z a; consisting of the cells o; = (D, f;, Or;), where the D; are
the (k — 1)-dimensional faces of D, Or; are orientations chosen by the rule
above, and f; are the restrictions of the mapping f: D — M to the face D;.

The boundary dc, of the k-dimensional chain ¢, in M is the sum of the
boundaries of the cells of ¢, with multiplicities (Figure 153):

oc, = d(mya; + -+ + m,6,) = my 06, + --- + m, Oo,.

Obviously, dc, is a (k — 1)-chain on M.>7

aCZ

c2

Figure 153 Boundary of a chain

ProBLEM 10. Show that the boundary of the boundary of any chain is zero: ddc, = 0.

Hint. By the linearity of 2 it is enough to show that 0D = 0 for a convex polyhedron D. It
remains to verify that every (k — 2)-dimensional face of D appears in 40D twice, with opposite
signs. It is enough to prove this for k = 2 (planar cross-sections).

G The integral of a form over a chain

Let * be a k-form on M, and ¢, a k-chain on M, ¢, = Y, m;0;. The integral
of the form w* over the chain c, is the sum of the integrals on the cells, counting
multiplicities:

[ ok,

Jai

ka=2mi
Ck

PROBLEM 11. Show that the integral depends linearly on the form:

fw'{+w’§=fw'{+fw’§.

Ck ck Ck

PrOBLEM 12. Show that integration of a fixed form w* on chains ¢, defines a homomorphism from
the group of chains to the line.

57 We are taking k > 1 here. One-dimensional chains are included in the general scheme if we
make the following definitions: a zero-dimensional c_l_gain consists of a collection of points with
multiplicities; the boundary of an oriented interval ABis B — A (the point B with multiplicity 1
and A with multiplicity — 1); the boundary of a point is empty.
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35: Integration of differential forms

ExAaMPLE 1.Let M be the plane {(p, )}, ' the form pdq, and ¢, the chain consisting of one cell ¢
with multiplicity 1:

[0$ts2n]i>(p=cost,q=sint).

Then §,, pdg = . In general, if a chain ¢, represents the boundary of a region G (Figure 154), then
f., pdq is equal to the area of G with sign + or — depending on whether the pair of vectors
(outward normal, oriented boundary vector) has the same or opposite orientation as the pair
(p axis, g axis).

72 pdy

</ ’
Figure 154 The integral of the form p dq over the boundary of a region is equal to the
area of the region.

ExaMPLE 2. Let M be the oriented three-dimensional euclidean space R*. Then every 1-form on
M corresponds to some vector field A (0! = w}), where

wA(8) = (A, &).

The integral of w} on a chain ¢, representing a curve [ is called the circulation of the field A

over the curve
f wi = f(A, dl).
€1 {

Every 2-form on M also corresponds to some field A (w? = w3, where w}(€, 1) = (A, &, n)).
The integral of the form w3 on a chain ¢, representing an oriented surface S is called the
Slux of the field A through the surface S:

£ zwg = L (A, dn).

PrOBLEM 13. Find the flux of the field A = (1/R?)eg over the surface of the sphere x? + y? + 22 =
1, oriented by the vectors e, e, at the point z = 1. Find the flux of the same field over the surface
of the ellipsoid (x?/a®) + (y*/b?) + z? = 1 oriented the same way.

Hint. Cf. Section 36H.

PROBLEM 14. Suppose that, in the 2n-dimensional space R" = {(py,..., Pu; 41> - - - » 4n)}, We are
given a 2-chain ¢, representing a two-dimensional oriented surface S with boundary I. Find

fdpl Adg, +---+dp, A dg, and Jpldql + -+ p,dq,.
c2 1

ANSWER. The sum of the oriented areas of the projection of S on the two-dimensional coordinate
planes p;, g;.
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7: Differential forms

36 Exterior differentiation

We define here exterior differentiation of k-forms and prove Stokes’ theorem: the integral of the
derivative of a form over a chain is equal to the integral of the form itself over the boundary of
the chain.

A Example: the divergence of a vector field

The exterior derivative of a k-form  on a manifold M is a (k + 1)-form dw
on the same manifold. Going from a form to its exterior derivative is analo-
gous to forming the differential of a function or the divergence of a vector
field. We recall the definition of divergence.

Yol £

Figure 155 Definition of divergence of a vector field

Let A be a vector field on the oriented euclidean three-space R?, and let S
be the boundary of a parallelepiped IT with edges &,, §,, and &, at the vertex x
(Figure 155). Consider the (“outward”) flux of the field A through the
surface S:

FAT) = L(A, dn).

If the parallelepiped I is very small, the flux F is approximately propor-
tional to the product of the volume of the parallelepiped, V = (&,, &,, &),
and the “source density” at the point x. This is the limit

I F(eIl)
el_r,r; %
where &Il is the parallelepiped with edges &,, €§,, €€;. This limit does not
depend on the choice of the parallelepiped IT but only on the point x, and is
called the divergence, div A, of the field A at x.
To go to higher-dimensional cases, we note that the “flux of A through a

surface element” is the 2-form which we called w?. The divergence, then,
is the density in the expression for the 3-form

®? =divAdx Ady A dz,
w3(élv gZ, 53) =divA- V(gl’ 52’ &3)9

characterizing the “sources in an elementary parallelepiped.”
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The exterior derivative dw* of a k-form @* on an n-dimensional manifold
M may be defined as the principal multilinear part of the integral of w* over
the boundaries of (k + 1)-dimensional parallelepipeds.

B Definition of the exterior derivative

We define the value of theformdwon k + 1vectors&,, ..., &, tangentto M
at x. To do this, we choose some coordinate system in a neighborhood of x
on M, i.e., a differentiable map f of a neighborhood of the point 0 in euclidean
space R" to a neighborhood of x in M (Figure 156).

*
Ek+[

Figure 156 The curvilinear parallelepiped IT.

The pre-images of the vectors &, ..., &, € TM, under the differential
of f lie in the tangent space to R" at 0. This tangent space can be naturally
identified with R", so we may consider the pre-images to be vectors

EY, ... EF  eR"

We take the parallelepiped IT* in R" spanned by these vectors (strictly
speaking, we must look at the standard oriented cube in R**! and its linear
map onto IT*, taking the edges e;, ..., e, to E¥, ..., &F ;, as a (k + 1)-
dimensional cell in R"). The map f takes the parallelepiped IT* to a (k + 1)-
dimensional cell on M (a “curvilinear parallelepiped ). The boundary of the
cell IT is a k-chain, I1. Consider the integral of the form w* on the boundary
oIl of IT:

FE, .. Eer) = fnw

ExampLE. We will call a smooth function ¢: M — R a O-form on M. The integral of the O-form ¢
on the O-chain ¢, = Y. m; A; (where the m; are integers and the A4; points of M) is

f @ =Y mo(4).

o

Then the definition above gives the “increment” F(§,) = ¢(x,) — @(x) (Figure 157) of the
function ¢, and the principal linear part of F(&,) at 0 is simply the differential of ¢.

PROBLEM 1. Show that the function F(§,, ..., &, ) is skew-symmetric with respect to &.

It turns out that the principal (k + 1)-linear part of the “increment”
F&,, ..., &) is an exterior (k + 1)-form on the tangent space TM, to M
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Figure 157 The integral over the boundary of a one-dimensional parallelepiped is the
change in the function.

at x. This form does not depend on the coordinate system that was used to
define the curvilinear parallelepiped I1. It is called the exterior derivative, or
differential, of the form w* (at the point x) and is denoted by dw*.

C A theorem on exterior derivatives

Theorem. There is a unique (k + 1)-form Q on TM, which is the principal
(k + 1)-linear part at O of the integral over the boundary of a curvilinear
parallelepiped, F(§,, ..., &4+ ,), i.e.,

(1 F(e&y, ..., e84 q) = &M 1IQE,, ..., &i) + 06T 1) (e > 0).

The form Q does not depend on the choice of coordinates involved in the
definition of F. If, in the local coordinate system x., . .., x,, on M, the form
w* is written as

k
w* = Zaihm,ik dx;, ~ o A dxg,
then Q is written as

(2) Q=do* =) da, ;. Adx, A Adx,.
We will carry out the proof of this theorem for the case of a form w! =
a(x,, x,)dx,; on the x,, x, plane. The proof in the general case is entirely
analogous, but the calculations are somewhat longer.
We calculate F(&, ), i.e., the integral of w! on the boundary of the paral-

lelogram I with sides & and i and vertex at 0 (Figure 158). The chain 011 is

X2
A

n+§&

&t

Xp

Figure 158 Theorem on exterior derivatives
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given by the mappings of the interval 0 < ¢ < 1 to the plane t — &t, t —
€+ nt,t > nt,and r > + & with multiplicities 1,1, — 1, and — 1. Therefore,

f o' = f [a(&t) — a(&t + W1E; ~ [ate) — atne + E)Jn, de
or 0

where &, = dx,(§), n, = dx,(m), &, = dx,(&), and n, = dx,(n) are the
components of the vectors & and . But

da da
N+ 53—
1

a&t +m) — a@) = n, + O ?)

0x, 0x,

(the derivatives are taken at x, = x, = 0). In the same way

0 0
at +8) — a) = 5= &y + 356 + OE% W)

1

By using these expressions in the integral, we find that

0
FEw = [ o' =22 En, — &ma) + o@nd)
8 X2

I
The principal bilinear part of F, as promised in (1), turns out to be the value
of the exterior 2-form

Q = ﬁde A dxl
0x,

on the pair of vectors &, n. Thus the form obtained is given by formula (2),
since

da Ga

0x,

da

da A dx, = dx, A dx, + dx, A dx; = pm dx, A dx,.
2

Ox,

Finally, if the coordinate system x,, x, is changed to another (Figure 159),
the parallelogram IT is changed to a nearby curvilinear parallelogram IT’, so
that the difference in the values of the integrals, [,; @' — [,n @' will be
small of more than second order (prove it!). ]

Ay

Figure 159 Independence of the exterior derivative from the coordinate system
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PrOBLEM 2. Carry out the proof of the theorem in the general case.

PrOBLEM 3. Prove the formulas for differentiating a sum and a product:
dlw, + w,) =dw, + dw,.
and

d(0* A 0') = dw* A & + (=1 Fe* A do,
PROBLEM 4. Show that the differential of a differential is equal to zero: dd = 0.

PROBLEM 5. Let /: M — N be a smooth map and w a k-form on N. Show that f *(dw) = d(f*w).

D Stokes’ formula

One of the most important corollaries of the theorem on exterior derivatives
is the Newton-Leibniz-Gauss-Green-Ostrogradskii-Stokes-Poincaré for-
mula:

3) J;cw = J;dcu,

where ¢ is any (k + 1)-chain on a manifold M and w is any k-form on M.

To prove this formula it is sufficient to prove it for the case when the chain
consists of one cell 0. We assume first that this cell o is given by an oriented
parallelepiped IT < R**! (Figure 160).

Figure 160 Proof of Stokes’ formula for a parallelepiped

We partition IT into N**! small equal parallelepipeds I1; similar to II.
Then, clearly,

i=1

Nk+1
f w= ) F, whereFi=J w.
0Tl orl;
By formula (1) we have
Fi = dw(glb sy éi-fl) + O(N_(k+l))a

where &\, ...,Ei,, are the edges of TI,. But Y™ ' dw(&}, ..., &, ) is a
Riemann sum for |; dw. It is easy to verify that o( N ~** ") is uniform, so

Nk+1 Nk+1

lim ) F,=lim Y dow@,...,8.,)= f do.
n

N-ow i=1 N—ow i=1
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36: Exterior differentiation

Finally, we obtain

f w=)F,= lim ZF,.=fdw.
(¢! I1

N-ow

Formula (3) follows automatically from this for any chain whose polyhedra
are parallelepipeds.

To prove formula (3) for any convex polyhedron D, it is enough to prove
it for a simplex,®® since D can always be partitioned into simplices (Figure
161):

Figure 161 Division of a convex polyhedron into simplices

Figure 162 Proof of Stokes’ formula for a simplex

We will prove formula (3) for a simplex. Notice that a k-dimensional
oriented cube can be mapped onto a k-dimensional simplex so that:

1. The interior of the cube goes diffeomorphically, with its orientation
preserved, onto the interior of the simplex;

2. The interiors of some (k — 1)-dimensional faces of the cube go diffeo-
morphically, with their orientations preserved, onto the interiors of the
faces of the simplex; the images of the remaining (k — 1)-dimensional
faces of the cube lie in the (k — 2)-dimensional faces of the simplex.

For example, for k = 2 such a map of the cube 0 < x,, x, < 1 onto the

triangle is given by the formula y, = x;, y, = x;x, (Figure 162). Then,

% A two-dimensional simplex is a triangle, a three-dimensional simplex is a tetrahedron, a
k-dimensional simplex is the convex hull of k + 1 points in R” which do not lie in any k — 1-
dimensional plane.

ExampLE: {x e R*: x; > Oand Y%, x; < 1}.
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7: Differential forms

formula (3) for the simplex follows from formula (3) for the cube and the
change of variables theorem (cf. Section 35C).

ExampLE 1. Consider the 1-form
o' =p,dg; + -+ p,dq, = pdq

on R?" with coordinates pi, ..., pp> q1, - - -, qn- Thendw' = dp, A dq; + -+
+ dp, A dq, = dp A dq,so

ff dp A dq = f p dq.
c2 dc2

In particular, if ¢, is a closed surface (dc, = 0), then ([, dp A dq = 0.

E Example 2— Vector analysis

In a three-dimensional oriented riemannian space M, every vector field A
corresponds to a 1-form w} and a 2-form w3 . Therefore, exterior differentia-
tion can be considered as an operation on vectors.

Exterior differentiation of O-forms (functions), 1-forms, and 2-forms cor-
respond to the operations of gradient, curl, and divergence defined by the
relations

df = wglradf dwfl\ = CUgm-lA dCOi = (le A)CO3

(the form w? is the volume element on M). Thus, it follows from (3) that

FO) ~ f&x) = fgradfdl ifol=y—x

fAdl = churlA-dn ifoS =1
! s

JJ;A dn = ﬂ D(div A)w? ifoD = S.

div[A, B] = (curl A, B) — (curl B, A),

PROBLEM 6. Show that

curl gA = [grad a, A] + acurl A,
div aA = (grad g, A) + adiv A.

Hint. By the formula for differentiating the product of forms,
d(wi g) = dlwi A k) = dwj A 0f — 0} A dog.

PrOBLEM 7. Show that curl grad = div curl = 0.
Hint. dd = 0.
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36: Exterior differentiation

F Appendix 1: Vector operations in triply orthogonal systems

Let x;, x,, x3 be a triply orthogonal coordinate system on M, ds? =
E, dx} + E, dx3 + E; dx3 and e; the coordinate unit vectors (cf. Section
34E).

ProBLEM 8. Given the components of a vector field A = A,e, + A,e, + A;e,, find the compo-
nents of its curl.
Solution. According to Section 34E

ok = A\E; dx, + Apn/E, dx; + A3 /E; dx,.

Therefore,

— 2
© = Wearla-

04, /E, 94, /E,
dwiz( IV 2/ 2>dx2/\dx3+-

0x, - 0x3

According to Section 34E, we have

VE e VEe; JEsze;
1 <6A3, /Ey  0Aj. /EZ) N 1 0 0 0
_ e+ | S e
VE;E; VEE,E; | 0 0x; 0x3
AJE: ANE, AJE;
In particular, in cartesian, cylindrical, and spherical coordinates on R?,

04, 04, 04, 04, 0A, 0A,
curl A = - —Je, + -— e, + | —— e,
dy 0z 0z 0x 0x dy

1 [0A. 0rA¢) 0A, 6Az) 1 {ord, 0A,
= - - e+ |— — e, + -~ - — e,
r \ g oz 0z or r\ or oo

1 0A, 0A,cos 0) 1 ((MR 6RA9> 1 (6RA,, 1 aAk)
= _— - e + = | -~ e T — - ~——Je,.
Rcos 0\ dp a0 R R\ OR cos 6 do

curl A =
0x, 0x3

— e
00 OR

ProBLEM 9. Find the divergence of the field A = 4,e, + A4,e, + A;e;.
Solution. w = A\\/E;E5dx, A dx; + ---. Therefore,

0
dwi = (3~(A1~/E2E3)dx1 Adxy Adxy + -,
X1
By the definition of divergence,

dow} = div AE E, Ey dx, A dx, A dx;.

This means

. 1 0 a a
divA=———A,VE,E; + — A, JEJE, + — A3 JE|E, .
0x, 0x3

VEE,Ey \0%;
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7: Differential forms

In particular, in cartesian, cylindrical, and spherical coordinates on R3:
04, 084, ¢4, 1 (6rA, aAw) 0A,
— + _ + J—
or do 0z
1 <6R2 cos 0Ag ORA, N OR cos 0A6>

divA=—+—+
v 0x Jy dz  r

" R%cos

+
AR o a0

ProBLEM 10. The Laplace operator on M is the operator A = div grad. Find its expression in the
coordinates x;.

ANSWER.

Af =_71_[i( /E2E3if,> +]
VEE,E, L0x E; 0x, ’

¥ o 3f o 19 1 8% &2
EN N RN N
ox*  dy* 0z* or* rdr r*dp* oz

= | =]+ —|——===]+ - {cos8=]]|
R?cos 8 | 6R S UoR dp \cos 8 0p) 00 Y

G Appendix 2: Closed forms and cycles

In particular, on R?

&f

The flux of an incompressible fluid (without sources) across the boundary
of a region D is equal to zero. We will formulate a higher-dimensional
analogue to this obvious assertion. The higher-dimensional analogue of an
incompressible fluid is called a closed form. The field A has no sources if
divA =0.

Definition. A differential form @ on a manifold M is closed if its exterior
derivative is zero: dw = 0.

In particular, the 2-form w} corresponding to a field A without sources
is closed. Also, we have, by Stokes’ formula (3):

Theorem. The integral of a closed form w* over the boundary of any (k + 1)-
dimensional chain ¢, , is equal to zero:

J o* =0 ifdo*=0.
Ocpe + 1

PrOBLEM 11. Show that the differential of a form is always closed.

On the other hand, there are closed forms which are not differentials. For
example, take for M the three-dimensional euclidean space R* without O:
M = R3 — 0, with the 2-form being the flux of the field A = (1/R?)eg
(Figure 163). It is easy to convince oneself that div A = 0, so that our 2-form
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36: Exterior differentiation

Figure 163 The field A

w? is closed. At the same time, the flux over any sphere with center O is equal
to 4n. We will show that the integral of the differential of a form over the
sphere must be zero.

Definition. A cycle on a manifold M is a chain whose boundary is equal to
Z€ero.

The oriented surface of our sphere can be considered to be a cycle. It
immediately follows from Stokes’ formula (3) that

Theorem. The integral of a differential over any cycle is equal to zero:

f do* =0 ifdcy,, = 0.

Thus, our 2-form w? is not the differential of any 1-form.

The existence of closed forms on M which are not differentials is related
to the topological properties of M. One can show that every closed k-form
on a vector space is the differential of some (k — 1)-form (Poincaré’s lemma).

PrOBLEM 12. Prove Poincaré’s lemma for 1-forms.
Hint. Consider [} @' = o(x,).

PRrOBLEM 13. Show that in a vector space the integral of a closed form over any cycle is zero.
Hint. Construct a (k + 1)-chain whose boundary is the given cycle (Figure 164).

Figure 164 Cone over a cycle
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7: Differential forms

Namely, for any chain ¢ consider the “cone over ¢ with vertex 0.” If we denote the operation
of constructing a cone by p, then

dep+ped=1 (the identity map).
Therefore, if the chain ¢ is closed, d(pc) = c.
PRrOBLEM. Show that every closed form on a vector space is an exterior derivative.

Hint. Use the cone construction. Let o be a differential k-form on R". We define a (k — 1)-
form (the “co-cone over w”) pw* in the following way: for any chain ¢, _,

j pw* =J wt.
k-1 Pl -1

It is easy to see that the (k — 1)-form pw* exists and is unique; its value on the vectors
€., ..., E_1, tangent to R" at x, is equal to

(Pw)x(éla cees ‘r;kAl) = j.tl) wt,(", €, ..., &y )dt.
It is easy to see that
dop+ped=1 (the identity map).

Therefore, if the form w* is closed, d(pw*) = w*.

PROBLEM. Let X be a vector field on M and w a differential k-form. We define a differential
(k — 1)-form ixw (the interior derivative of @ by X) by the relation

(ix@) &y, -5 G g) = (X, &y, o, Bim ).
Prove the homotopy formula
ixd + dix = Ly,
where Ly is the differentiation operator in the direction of the field X.

{The action of Ly on a form is defined, using the phase flow {g‘} of the field X, by the relation

d

(Lxw)(8) = 0 (g, 8).
=0

t

Ly is called the Lie derivative or fisherman’s derivative: the flow carries all possible differential-
geometric objects past the fisherman, and the fisherman sits there and differentiates them.]

Hint. We denote by H the “homotopy operator” associating to a k-chain y:¢ — M the
(k + 1)-chain Hy: (I x ¢) = M according to the formula (Hy)(t, x) = g'y(x) (where I = [0, 1]).
Then

g'y — v = 0(Hy) + H().
PROBLEM. Prove the formula for differentiating a vector product on three-dimensional euclidean
space (or on a riemannian manifold):
curl[a,b] = {a,b} + adivb — bdiva

(where {a, b} = L,b is the Poisson bracket of the vector fields, cf. Section 39).
Hint. If 7 is the volume element, then

icartap)T = digiyt  diva =di,t and {a,b} = L,b;

by using these relations and the fact thatdz = 0, it is easy to derive the formula for curl[a, b] from
the homotopy formula.
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36: Exterior differentiation

H Appendix 3. Cohomology and homology

The set of all k-forms on M is a vector space, the closed k-forms a sub-
space and the differentials of (k — 1)-forms a subspace of the subspace of
closed forms. The quotient space

{closed forms}

B T2 HYML R
{differentials} ( )

is called the k-th cohomology group of the manifold M. An element of this
group is a class of closed forms differing from one another only by a differ-
ential.

PROBLEM 14, Show that for the circle S! we have H!(S', R) = R.

The dimension of the space H*(M, R) is called the k-th Betti number of M.

ProBLEM 15. Find the first Betti number of the torus T2 = §' x §!.

The flux of an incompressible fluid (without sources) over the surfaces of
two concentric spheres is the same. In general, when integrating a closed form

a

Figure 165 Homologous cycles

over a k-dimensional cycle, we can replace the cycle with another one pro-
vided that their difference is the boundary of a (k + 1)-chain (Figure 165):

fw“ = fw"
a b
ifa — b = dc,,, and do* = 0.

Poincaré called two such cycles a and b homologous.
With a suitable definition®? of the group of chains on a manifold M and its

%% For this our group {c,} must be made smaller by identifying pieces which differ only by the
choice of parametrization f or the choice of polyhedron D. In particular, we may assume that
D is always one and the same simplex or cube. Furthermore, we must take every degenerate
k-cell(D, f, Or)to be zero,i.c.,(D, f. Or) = Qif f = f, - f;,where f,: D — D’ and D’ has dimension
smaller than k.
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7: Differential forms

subgroups of cycles and boundaries (i.e., cycles homologous to zero), the
quotient group

{cycles}
{boundaries} H/(M)

is called the k-th homology group of M.
An element of this group is a class of cycles homologous to one another.
The rank of this group is also equal to the k-th Betti number of M (“De
Rham’s Theorem ™).
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Symplectic manifolds

A symplectic structure on a manifold is a closed nondegenerate differential
2-form. The phase space of a mechanical system has a natural symplectic
structure.

On a symplectic manifold, as on a riemannian manifold, there is a natural
isomorphism between vector fields and 1-forms. A vector field on a sym-
plectic manifold corresponding to the differential of a function is called a
hamiltonian vector field. A vector field on a manifold determines a phase
flow, i.c., a one-parameter group of difftcomorphisms. The phase flow of a
hamiltonian vector field on a symplectic manifold preserves the symplectic
structure of phase space.

The vector fields on a manifold form a Lie algebra. The hamiltonian
vector fields on a symplectic manifold also form a Lie algebra. The operation
in this algebra is called the Poisson bracket.

37 Symplectic structures on manifolds

We define here symplectic manifolds, hamiltonian vector fields, and the standard symplectic
structure on the cotangent bundle.

A Definition

Let M?" be an even-dimensional differentiable manifold. A symplectic
structure on M?" is a closed nondegenerate differential 2-form w? on M?";

dw* =0 and VE#O0M:*En)#0 (E,neTM,).
The pair (M?", »?) is called a symplectic manifold.
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8: Symplectic manifolds

ExaMpLE. Consider the vector space R?" with coordinates p;, g; and let w? = Y. dp; A dg;.

ProBLEM. Verify that (R?", »?) is a symplectic manifold. For n = 1 the pair (R?, »?) is the pair
(the plane, area).

The following example explains the appearance of symplectic manifolds
in dynamics. Along with the tangent bundle of a differentiable manifold, it is
often useful to look at its dual—the cotangent bundle.

B The cotangent bundle and its symplectic structure

Let V be an n-dimensional differentiable manifold. A 1-form on the tangent
space to V at a point x is called a cotangent vector to V at x. The set of all
cotangent vectors to ¥ at x forms an n-dimensional vector space, dual to
the tangent space TV,. We will denote this vector space of cotangent vectors
by T*V, and call it the cotangent space to V at x.

The union of the cotangent spaces to the manifold at all of its points is
called the cotangent bundle of V and is denoted by T*V. The set T*V has a
natural structure of a differentiable manifold of dimension 2an. A point of
T*V is a 1-form on the tangent space to V at some point of V. If q is a choice
of n local coordinates for points in V, then such a form is given by its n com-
ponents p. Together, the 2n numbers p, q form a collection of local coordinates
for points in T*V.

There is a natural projection f: T*V — V (sending every 1-formon TV, to
the point x). The projection f is differentiable and surjective. The pre-image
of a point x € V under f is the cotangent space T*V,.

Theorem. The cotangent bundle T*V has a natural symplectic structure. In the
local coordinates described above, this symplectic structure is given by the
Sformula

w?=dp A dq=dp, Adg, + -+ dp, A dg,.

Proor. First, we define a distinguished 1-form on T*V. Let § e T(T*V), be
a vector tangent to the cotangent bundle at the point p € T*V, (Figure 166).
The derivative f,.: T(T*V) — TV of the natural projection f: T*V — V takes
g to a vector f,& tangent to V at x. We define a 1-form w' on T*V by the
relation w!(§) = p(f,&). In the local coordinates described above, this form
is o' = pdq. By the example in A, the closed 2-form w? = dw' is non-
degenerate. l

Remark. Consider a lagrangian mechanical system with configuration manifold ¥ and
lagrangian function L. It is easy to see that the lagrangian “generalized velocity” { is a tan-
gent vector to the configuration manifold V, and the “generalized momentum™ p = dL/0q
is a cotangent vector. Therefore, the “p, q” phase space of the lagrangian system is the cotangent
bundle of the configuration manifold. The theorem above shows that the phase space of a
mechanical problem has a natural symplectic manifold structure.
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37: Symplectic structures on manifolds

T*V,

x
AT Y
Figure 166 The 1-form p dq on the cotangent bundie
ProOBLEM. Show that the Legendre transform does not depend on the coordinate system: it

takes a function L: TV — R on the tangent bundle to a function H: T*¥ — R on the cotangent
bundle.

C Hamiltonian vector fields

A riemannian structure on a manifold establishes an isomorphism between
the spaces of tangent vectors and 1-forms. A symplectic structure establishes
a similar isomorphism.

Definition. To each vector &, tangent to a symplectic manifold (M?", w?) at
the point X, we associate a 1-form w{ on TM, by the formula

olm) = 0*m, & e TM,.

PROBLEM. Show that the correspondence § — wj is an isomorphism between the 2n-dimensional
vector spaces of vectors and of 1-forms.

ExaMpLE. In R?" = {(p, q)} we will identify vectors and 1-forms by using the euclidean structure
(x, x) = p?> + q2. Then the correspondence & — o} determines a transformation R*" — R2",

PrOBLEM. Calculate the matrix of this transformation in the basis p, q.

ANSWER.( 0 E
—E 0

We will denote by I the isomorphism I: T*M, — TM, constructed above.
Now let H be a function on a symplectic manifold M?". Then dH is a differ-
ential 1-form on M, and at every point there is a tangent vector to M as-
sociated to it. In this way we obtain a vector field I dH on M.

Definition. The vector field I dH is called a hamiltonian vector field; H is
called the hamiltonian function.
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8: Symplectic manifolds

ExampLE. If M2" = R?" = {(p, q)}, then we obtain the phase velocity vector field of Hamilton’s
canonical equations:

. ] 0H )
x=J]dHX)<p=—-— and G=—.
aq ap

38 Hamiltonian phase flows and their integral
invariants

Liouville’s theorem asserts that the phase flow preserves volume. Poincaré found a whole
series of differential forms which are preserved by the hamiltonian phase flow.

A Hamiltonian phase flows preserve the symplectic structure

Let (M?", ®?) be a symplectic manifold and H: M2" — R a function. Assume
that the vector field I dH corresponding to H gives a 1-parameter group of
diffeomorphisms g': M2" —» M?":

d t
— = [ dH(x).
7 t=ogx (x)

The group ¢' is called the hamiltonian phase flow with hamiltonian function H.

Theorem. A hamiltonian phase flow preserves the symplectic structure:

@)*o? = o2,

In the case n = 1, M?" = R?, this theorem says that the phase flow g
preserves area (Liouville’s theorem).

For the proof of this theorem, it is useful to introduce the following nota-
tion (Figure 167).

Let M be an arbitrary manifold, ¢ a k-chain on M and ¢*: M — M a one-
parameter family of differentiable mappings. We will construct a (k + 1)-
chain Jc on M, which we will call the track of the chain ¢ under the homotopy
go<t<rt

Let (D, f, Or) be one of the cells in the chain c¢. To this cell will be associated
acell (D', f', Or’) in the chain Jc, where D' = I x D is the direct product of
the interval 0 <t <t and D; the mapping f': D'—> M is obtained from
f: D — M by the formula f'(t, x) = g'f(x); and the orientation Or’ of the

g’c ~E
0)» Jac 9 Jac
ac ]/
N——

c
k=2 k=1
Figure 167 Track of a cycle under homotopy
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38: Hamiltonian phase flows and their integral invariants

space R**! containing D' is given by the frame e,, e, ..., €., where e, is the
unit vector of the ¢ axis, and e, . .., e, is an oriented frame for D.

We could say that Jc is the chain swept out by ¢ under the homotopy ¢',
0 <t < 1. The boundary of the chain Jc consists of “end-walls” made up
of the initial and final positions of ¢, and “side surfaces” filled in by the
boundary of c.

It is easy to verify that under the choice of orientation made above,

N 0Jey) = g'cy — ¢ —, J Ocy.

Lemma. Let y be a 1-chain in the symplectic manifold (M*", »?). Let g' be a
phase flow on M with hamiltonian function H. Then

4 w? = f dH.

dt Jy 97y

Proor. It is sufficient to consider a chain y with one cell f: [0, 1] - M. We
introduce the notation

° a ’ 6 ’
Fe0=¢/0  5=2 ad n=Terrmy,,

By the definition of the integral

Ly o = Ll L (& )dt ds.

But by the definition of the phase flow,  is a vector (at the point f'(s, t)) of
the hamiltonian field with hamiltonian function H. By definition of a hamil-
tonian field, w2(§, n) = dH(E). Thus

J, = [ (], ) .

Corollary. If the chain y is closed (3y = 0), then [;, w* = 0.
PROOF. |, dH = [, H = 0, 0

PROOF OF THE THEOREM. We consider any 2-chain c. We have

1
0= dwzé[wzé(J. —[—f wzéfwz—fwz
Je JaJe gte ve Joe g'c ¢

(1 since w? is closed, 2 by Stokes’ formula, 3 by formula (1), 4 by the corollary
above with y = dc). Thus the integrals of the form w? on any chain ¢ and on
its image g°c are the same. a

PROBLEM. Is every one-parameter group of diffeomorphisms of M?" which preserves the sym-
plectic structure a hamiltonian phase flow?
Hint. Cf. Section 40.
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B Integral invariants
Let g: M - M be a differentiable map.

Definition. A differential k-form w is called an integral invariant of the map g
if the integrals of «o on any k-chain ¢ and on its image under g are the same:

fon

ExaMPLE. If M = R? and w? = dp A dq is the area element, then w? is an integral invariant of
any map g with jacobian 1.

PROBLEM. Show that a form w* is an integral invariant of a map g if and only if g*w* = w*.

ProBLEM. Show that if the forms w* and o' are integral invariants of the map g, then the form
w* A @'is also an integral invariant of g.

The theorem in subsection 4 can be formulated as follows:

Theorem. The form w? giving the symplectic structure is an integral invariant
of a hamiltonian phase flow.

We now consider the exterior powers of w?,

(w?)? = w? A »? (0?3 =w? A w?Aw?. ...

Corollary. Each of the forms (w?)?, (w?)3, (w?)*, . . . is an integral invariant of a
hamiltonian phase flow.

PROBLEM. Suppose that the dimension of the symplectic manifold (M?", w?) is 2n. Show that
(w?)* = 0 for k > n, and that (w?)" is a nondegenerate 2n-form on M?",

We define a volume element on M2" using (w?)". Then, a hamiltonian
phase flow preserves volume, and we obtain Liouville’s theorem from the
corollary above.

ExampLE. Consider the symplectic coordinate space M*" = R*" = {(p, q)},
w? =dp A dq = ) dp; A dg;. In this case the form (w?)* is proportional to
the form

w*= Y dp, A Adp, Adg, A A dg,,.
ig < <ip

The integral of w?* is equal to the sum of the oriented volumes of projections
onto the coordinate planes (p;,, ..., Py, Gip» - - - > Gir)-

A map g: R?" —» R?"is called canonical if it has w? as an integral invariant.
A canonical map is generally called a canonical transformation. Each of the
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38: Hamiltonian phase flows and their integral invariants

forms w*, %, ..., w*" is an integral invariant of every canonical transforma-
tion. Therefore, under a canonical transformation, the sum of the oriented areas
of projections onto the coordinate planes (p;,, ..., Pi» @ip> -+ > 4y 1 < k <,
is preserved. In particular, canonical transformations preserve volume.

The hamiltonian phase flow given by the equations p = —0H/dq, q =
J0H /0p consists of canonical transformations g'.

The integral invariants considered above are also called absolute integral
invariants.

Definition. A differential k-form w is called a relative integral invariant of the
map g: M > M if |, o = |, w for every closed k-chain c.

Theorem. Let w be a relative integral invariant of a map g. Then dw is an ab-
solute integral invariant of g.

PROOF. Let ¢ be a k + 1-chain. Then

fdwéfwéf wifwéf dow.
c dc goc dgc gc

(1 and 4 are by Stokes’ formula, 2 by the definition of relative invariant, and
3 by the definition of boundary). O

ExAMPLE. A canonical map g: R*>" — R?" has the 1-form

w'=pdq = Z p; dq; as a relative integral invariant.
i=1
In fact, every closed chain ¢ on R?" is the boundary of some chain ¢, and we find

2
fwléfwléfwléfdwléfdwléfwléfwl;
g a a0 c

gc g 90

(1 and 6 are by definition of 5, 2 by definition of 9, 3 and 5 by Stokes’ formula, and 4 since g
is canonical and dw' = d(p dq) = dq A dq = ©?).

PROBLEM. Let do* be an absolute integral invariant of the map g: M — M. Does it follow that
o* is a relative integral invariant?

ANSWER. No, if there is a closed k-chain on M which is not a boundary.

C The law of conservation of energy

Theorem. The function H is a first integral of the hamiltonian phase flow with
hamiltonian function H.

PRrOOF. The derivative of H in the direction of a vector 0 is equal to the value
of dH on n. By definition of the hamiltonian field § = I dH we find

dH(m) = 0*(m, I dH) = o*(n, ) = 0. O

PROBLEM. Show that the 1-form dH is an integral invariant of the phase flow with hamiltonian
function H.
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39 The Lie algebra of vector fields

Every pair of vector fields on a manifold determines a new vector field, called their Poisson
bracket.®® The Poisson bracket operation makes the vector space of infinitely differentiable
vector fields on a manifold into a Lie algebra.

A Lie algebras

One example of a Lie algebra is a three-dimensional oriented euclidean
vector space equipped with the operation of vector multiplication. The
vector product is bilinear, skew-symmetric, and satisfies the Jacobi identity

[[4, B], C] + [[B, C], 4] + [[C, A], B] = 0.

Definition. A Lie algebra is a vector space L, together with a bilinear skew-
symmetric operation L x L — L which satisfies the Jacobi identity.

The operation is usually denoted by square brackets and called the
commutator.

PROBLEM. Show that the set of n x n matrices becomes a Lie algebra if we define the commutator
by [4, B] = AB — BA.

B Vector fields and differential operators

Let M be a smooth manifold and A a smooth vector field on M: at every
point xe M we are given a tangent vector A(x)e TM,. With every such
vector field we associate the following two objects:

1. The one-parameter group of diffeomorphisms or flow A': M — M for which
A is the velocity vector field (Figure 168):5!

d

7 A'x = A(x).

t=0

2. The first-order differential operator L, . We refer here to the differentiation
of functions in the direction of the field A: for any function ¢: M - R
the derivative in the direction of A is a new function L, ¢, whose value
at a point X is

@(A'x).

t=0

d
(Lap)(x) = a

60 Or Lie bracket [Trans. note].

6! By theorems of existence, uniqueness, and differentiability in the theory of ordinary dif-
ferential equations, the group A° is defined if the manifold M is compact. In the general case
the maps A’ are defined only in a neighborhood of x and only for small ¢; this is enough for the
following constructions.
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39: The Lie algebra of vector fields

Figure 168 The group of diffeomorphisms given by a vector field

PrROBLEM. Show that the operator L, is linear:
La(A10, + A;0,) = L, Lao, + A, L@, (A, 4, €R).
Also, prove Leibniz’s formula Ly(¢,¢02) = @,La@; + @, Lo 0,.
ExaMPLE. Let (x,, .* ., x,) be local coordinates on M. In this coordinate system the vector A(x)

is given by its components (4,(x), ..., 4,(x)); the flow A’ is given by the system of differential
equations

% =A%), ..., X, = A,(x)

and, therefore, the derivative of ¢ = ¢(x,, ..., x,) in the direction A is
o d
Ly=4,—+ -+ A,—.
0x, X,
We could say that in the coordinates (x,, .. ., : x,) the operator L, has the form

L A d + A ¢
= —— + -
A ox, ox,

this is the general form of a first-order linear differential operator on coordinate space.

PrROBLEM. Show that the correspondences between vector fields A, flows A*, and differentiations
L, are one-to-one.

C The Poisson bracket of vector fields

Suppose that we are given two vector fields A and B on a manifold M. The
corresponding flows A" and B° do not, in general, commute: A'B° # B°A’
(Figure 169).

ProBLEM. Find an example.
Solution. The fields A = e;, B = x,e, on the (x,, x,) plane.

B'x

A'BSx
B*A'x
B
A
X
A'x

Figure 169 Non-commutative flows
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To measure the degree of noncommutativity of the two flows 4’ and B* we
consider the points A'Bx and B°A'x. In order to estimate the difference
between these points, we compare the value at them of some smooth function
¢ on the manifold M. The difference

A(t; s; x) = p(A'Bx) — p(B°A'x)

is clearly a differentiable function which is zero for s = 0 and for ¢t = 0.
Therefore, the first term different from 0 in the Taylor series in s and ¢ of A
at 0 contains st, and the other terms of second order vanish. We will calculate
this principal bilinear term of A at 0.

Lemma 1. The mixed partial derivative 8*A/0s 0t at O is equal to the com-
mutator of differentiation in the directions A and B:

62
Os Ot
ProoF. By the definition of L,,

_ _0{(P(AIBSX) — @(B°A'x)} = (LgLa® — La Lg®)(x).

A @(A'B°x) = (L, 0)(B*x).

t=0

If we denote the function L, ¢ by i, then by the definition of Ly

= v = Ladx.

s=0

Thus,
62

I tps.) —
5590 @(A'B’x) = (Lg L, @)x. O

s=t=0

We now consider the commutator of differentiation operators LgL, —
L Lg. At first glance this is a second-order differential operator.

Lemma 2. The operator LgL,x — LaLg is a first-order linear differential
operator.

PROOF. Let (4,,...,4,) and (B, ..., B,) be the components of the fields
A and B in the local coordinate system (x4, ..., x,) on M. Then

. ¢
L onam,

If we subtract L,Lgo, the term with the second derivatives of ¢ vanishes,
and we obtain

n 0B; a@
_ J_4 )7
(LgLa — LaLg)o = Zl( ax l5xi> 0x; -

iJ

n

Z,afo

l] 1 i,

0%
o+ Z BA,a ox

j i,j=1

0
LgLyo = ZB'(?
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39: The Lie algebra of vector fields

Since every first-order linear differential operator is given by a vector
field, our operator Lg L, — L, Lg also corresponds to some vector field C.

Definition. The Poisson bracket or commutator of two vector fields A and
B on a manifold M®2 is the vector field C for which

Lc = LBLA - LALB~
The Poisson bracket of two vector fields is denoted by
C =[A,B]

ProOBLEM. Suppose that the vector fields A and B are given by their components 4;, B; in coor-
dinates x;. Find the components of the Poisson bracket.
Solution. In the proof of Lemma 2 we proved the formula

2B,

0A;
I 4,

0x;

0x;

[A.B] =3 B

PrROBLEM. Let A, be the linear vector field of velocities of a rigid body rotating with angular
velocity @, around 0, and A, the same thing with angular velocity @, . Find the Poisson bracket
[A A5

D The Jacobi identity

Theorem. The Poisson bracket makes the vector space of vector fields on a
manifold M into a Lie algebra.

PROOF. Linearity and skew-symmetry of the Poisson bracket are clear. We
will prove the Jacobi identity. By definition of Poisson bracket, we have

L[[A,B],C] = LCL[A,B] - L[A,B]LC
= LCLBLA - LCLALB + LALBLC - LBLALC'
There will be 12 terms in all in the sum L4 ) ¢) + Ly, c; o1 + Lyc, o) )
O

Each term appears in the sum twice, with opposite signs.

E A condition for the commutativity of flows

Let A and B be vector fields on a manifold M.

Theorem. The two flows A" and B® commute if and only if the Poisson bracket
of the corresponding vector fields [A, B] is equal to zero.

Proor. If A'B* = B°A’, then [A, B] = 0 by Lemma 1. If [A, B] = 0, then,
by Lemma 1,

o(A'B*x) — o(B*A'x) = o(s®> + t?), s—0andt—0

52 In many books the bracket is given the opposite sign. Qur sign agrees with the sign of the
commutator in the theory of Lie groups (cf. subsection F).
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for any function ¢ at any point x. We will show that this implies p(4'B*x) =
@(B°A'x) for sufficiently small s and ¢. If we apply this to the local coordinates
(¢ = x4, ..., 0 = x,), we obtain A'B* = B4’

Consider the rectangle 0 <t < t,, 0 < s < 54 (Figure 170) in the ¢, s-plane. To every path
going from (0, 0) to (¢, s0) and consisting of a finite number of intervals in the coordinate direc-
tions, we associate a product of transformations of the flows A* and B®. Namely, to each interval
t; <t < t,weassociate A7 ", and to each interval s; < s < s, we associate B2~ *'; the trans-
formations are applied in the order in which the intervals occur in the path, beginning at (0, 0).
For example, the sides (0 <t < ¢y, s = 0)and (t = t,, 0 < s < s4) corresponds to the product
B* A%, and the sides (t = 0,0 < s < sg) and (s = 59,0 <t < t4) to the product A"B*.

I/ B

0 )

Figure 170  Proof of the commutativity of flows

B%A toy

Figure 171 Curvilinear quadrilateral yden

In addition, we associate to each such path in the (¢, s)-plane a path on the manifold M
starting at the point x and composed of trajectories of the flows 4 and B* (Figure 171). If a
path in the (¢, s)-plane corresponds to the product A"'B* --- A"B™, then on the manifold M
the corresponding path ends at the point 4"'B*' --- A"B*x. Our goal will be to show that all
these paths actually terminate at the one point A*°B*x = B*°A"x.

We partition the intervals 0 < ¢ <ty and 0 < s < 54 into N equal parts, so that the whole
rectangle is divided into N2 small rectangles. The passage from the sides (0, 0) — (t,, 0) — (to, So)
to the sides (0, 0) — (0, 5,) — (to, So) can be accomplished in N? steps, in each of which a pair
of neighboring sides of a small rectangle is exchanged for the other pair (Figure 172). In general,
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39 The Lie algebra of vector fields

Figure 172 Going from one pair of sides to the other.

this small rectangle corresponds to a non-closed curvilinear quadrilateral fydex on the manifold
M (Figure 171). Consider the distance®’ between its vertices x and f corresponding to the largest
values of s and . As we saw earlier, p(x, ) < C,N~3 (where the constant C, > 0 does not
depend on N). Using the theorem of the differentiability of solutions of differential equations
with respect to the initial data, it is not difficult to derive from this a bound on the distance
between the ends o’ and f of the paths x3ypf and xdeaxa’ on M: p(a’, f') < C, N3, where the
constant C, > 0 again does not depend on N. But we broke up the whole journey from B*A4'"x
to A"B®x into N? such pieces. Thus, p(4"B%*x, B*A"x) < N2C,N *VYN. Therefore,
A"B®*x = B®A'"x. )}

F Appendix: Lie algebras and Lie groups

A Lie group is a group G which is a differentiable manifold, and for which the
operations (product and inverse) are differentiable maps G x G — G and
G-G.

The tangent space, TG,, to a Lie group G at the identity has a natural
Lie algebra structure; it is defined as follows:

For each tangent vector A € TG, there is a one-parameter subgroup 4' < G
with velocity vector A = (d/dt)|,~ A"

The degree of non-commutativity of two subgroups A‘ and B' is measured
by the product A'B*A~'B~* It turns out that there is one and only one
subgroup C’ for which

p(A'B°A™'B™%,C*) = o(s? + t?) assandt— 0.

The corresponding vector C = (d/dr)|,.,C" is called the Lie bracket
C = [A, B] of the vectors A and B. It can be verified that the operation of
Lie bracket introduced in this way makes the space TG, into a Lie algebra
(i.e., the operation is bilinear, skew-symmetric, and satisfies the Jacobi
identity). This algebra is called the Lie algebra of the Lie group G.

ProBLEM. Compute the bracket operation in the Lie algebra of the group SO(3) of rotations in
three-dimensional euclidean space.

Lemma 1 shows that the Poisson bracket of vector fields can be defined
as the Lie bracket for the “infinite-dimensional Lie group” of all diffeo-
morphisms®* of the manifold M.

%3 In some riemannian metric on M.

¢4 Our choice of sign in the definition of Poisson bracket was determined by this correspondence.
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8: Symplectic manifolds

On the other hand, the Lie bracket can be defined using the Poisson
bracket of vector fields on a Lie group G. Let g € G. Right translation R, is
the map R,: G — G, R;h = hg. The differential of R, at the point e maps
TG, into TG,. In this way, every vector A € TG, corresponds to a vector
field on the group: it consists of the right translations (R,), A and is called a
right-invariant vector field. Clearly, a right-invariant vector field on a group
is uniquely determined by its value at the identity.

ProBLEM. Show that the Poisson bracket of right-invariant vector fields on a
Lie group G is a right-invariant vector field, and its value at the identity of
the group is equal to the Lie bracket of the values of the original vector fields
at the identity.

40 The Lie algebra of hamiltonian functions

The hamiltonian vector fields on a symplectic manifold form a subalgebra of the Lie algebra of
all fields. The hamiltonian functions also form a Lie algebra: the operation in this algebra is
called the Poisson bracket of functions. The first integrals of a hamiltonian phase flow form a
subalgebra of the Lie algebra of hamiltonian functions.

A The Poisson bracket of two functions

Let (M?", w?) be a symplectic manifold. To a given function H: M?" - R
on the symplectic manifold there corresponds a one-parameter group
gl : M*" - M?" of canonical transformations of M?"—the phase flow of the
hamiltonian function equal to H. Let F: M?>" —» R be another function on M?".

Definition. The Poisson bracket (F, H) of functions F and ‘-H given on a
symplectic manifold (M?2", »?) is the derivative of the function F in the
direction of the phase flow with hamiltonian function H:

(F ) =5 Flgh().

t=

Thus, the Poisson bracket of two functions on M is again a function on M.

Corollary 1. A4 function F is a first integral of the phase flow with hamiltonian
function H if and only if its Poisson bracket with H is identically zero:
(F, H) = 0.

We can give the definition of Poisson bracket in a slightly different form
if we use the isomorphism I between 1-forms and vector fields on a symplectic
manifold (M?", w?). This isomorphism is defined by the relation (cf. Section
37

w?*(m, Io') = o'(W).
The velocity vector of the phase flow g% is I dH. This implies
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40: The Lie algebra of hamiltonian functions

Corollary 2. The Poisson bracket of the functions F and H is equal to the
value of the 1-form dF on the velocity vector 1 dH of the phase flow with
hamiltonian function H:

(F, H) = dF(I dH).

Using the preceding formula again, we obtain

Corollary 3. The Poisson bracket of the functions F and H is equal to the
*“skew scalar product” of the velocity vectors of the phase flows with hamil-
tonian functions H and F:

(F,H) = w*(IdH, I dF).

It is now clear that

Corollary 4. The Poisson bracket of the functions F and H is a skew-symmetric
bilinear function of F and H:

and
(H, A F, + A,F,)=A(H, F|) + A,(H, F;) (4; € R).

Although the arguments above are obvious, they lead to nontrivial
deductions, including the following generalization of a theorem of E. Noether.

Theorem. If a hamiltonian function H on a symplectic manifold (M*", »?)
admits the one-parameter group of canonical transformations given by a
hamiltonian F, then F is a first integral of the system with hamiltonian
function H.

Proor. Since H is a first integral of the flow g, (H, F) = 0 (Corollary 1).
Therefore, (F, H) = 0 (Corollary 4) and F is a first integral (Corollary 1). [J

ProBLEM 1. Compute the Poisson bracket of two functions F and H in the canonical coordinate
space R*" = {(p, @)}, 0*(&, ) = (I& n).
Solution. By Corollary 3 we have

" 0HeF O6H ¢F
(=3 -
i=10pidq;  éq; Op,

(we use the fact that [ is symplectic and has the form
J = (0 —E)
E 0

ProBreM 2. Compute the Poisson brackets of the basic functions p; and q;.
Solution. The gradients of the basic functions form a “symplectic basis”: their skew-scalar
products are

in the basis (p, ¢)).

Pip) =(pia)=1(qiq) =0 Gfi#j))  (g.p)= —(p.qg) =1
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PrROBLEM 3. Show that the map A: R*" —» R2" sending (p, q) — (P(p, q), Q(p, q)) is canonical if
and only if the Poisson brackets of any two functions in the variables (p, q) and (P, Q) coincide:

_— _OHOF GHOF _0H OF 6H0F_(FH)
RYT opaq dqop oPOQ aQop 0 PY

Solution. Let A be canonical. Then the symplectic structures dp A dq and dP A dQ coincide.
But the definition of the Poisson bracket (F, H) was given invariantly in terms of the symplectic
structure; it did not involve the coordinates. Therefore,

(F,H)pq=(F,H)=(F, H)p o.
Conversely, suppose that the Poisson brackets (P;, Q;), 4 have the standard form of Problem 2.
Then, clearly, dP A dQ = dp A dq, i, the map A is canonical.
PrOBLEM 4. Show that the Poisson bracket of a product can be calculated by Leibniz’s rule:
(FFy, H) = F((F3, H) + Fy(Fy, H).
Hint. The Poisson bracket (F,F,, H) is the derivative of the product F,F, in the direction
of the field I dH.

B The Jacobi identity

Theorem. The Poisson bracket of three functions A, B, and C satisfies the
Jacobi identity:

((4, B), C) + (B, C), 4) + ((C, 4), B) = 0.

Corollary (Poisson’s theorem). The Poisson bracket of two first integrals

Fy, F; of a system with hamiltonian function H is again a first integral.
PROOF OF THE COROLLARY. By the Jacobi identity,

((FI’FZ)’H) = (Fla(FZaH)) + (FZ’(HaFl)) =0+ Oa

as was to be shown. O

In this way, by knowing two first integrals we can find a third, fourth, etc.
by a simple computation. Of course, not all the integrals we get will be
essentially new, since there cannot be more than 2n independent functions

on M?". Sometimes we may get functions of old integrals or constants,
which may be zero. But sometimes we do obtain new integrals.

ProBLEM. Calculate the Poisson brackets of the components py, p,, ps, My, M,, M5 of the
linear and angular momentum vectors of a mechanical system.

ANSWER. (M, M,) = M5, (M, p,) = 0,(My, p;) = p3s, (M4, p3) = —p,. This implies

Theorem. If two components, M| and M, of the angular momentum of some mechanical problem
are conserved, then the third component is also conserved.

PROOF OF THE JACOBI IDENTITY. Consider the sum

((4,B), C) + ((B, (), 4) + ((C, A), B).
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40: The Lie algebra of hamiltonian functions

This sum is a “linear combination of second partial derivatives” of the
functions A, B, and C. We will compute the terms in the second derivatives
of A:

((4,B),C) + ((C,A),B) = (LcLg — LgLo)A,

where L is differentiation in the direction of & and F is the hamiltonian
field with hamiltonian function F.

But, by Lemma 2, Section 39, the commutator of the differentiations
Le¢Lg — LgLe is a first-order differential operator. This means that none
of the second derivatives of 4 are contained in our sum. The same thing is
true for the second derivatives of B and C. Therefore, the sum is zero. [

Corollary 5. Let B and C be hamiltonian fields with hamiltonian functions
B and C. Consider the Poisson bracket [B,C] of the vector fields. This
vector field is hamiltonian, and its hamiltonian function is equal to the
Poisson bracket of the hamiltonian functions (B, C).

PrOOF. Set (B, C) = D. The Jacobi identity can be rewritten in the form
(4,D) = ((4,B),C) — ((4, C), B),
Lp = Lan — LgL¢ Ln = L[B,C],
as was to be shown. O

C The Lie algebras of hamiltonian fields,
hamiltonian functions, and first integrals

A linear subspace of a Lie algebra is called a subalgebra if the commutator
of any two elements of the subspace belongs to it. A subalgebra of a Lie
algebra is itself a Lie algebra. The preceding corollary implies, in particular,

Corollary 6. The hamiltonian vector fields on a symplectic manifold form a
subalgebra of the Lie algebra of all vector fields.

Poisson’s theorem on first integrals can be re-formulated as

Corollary 7. The first integrals of a hamiltonian phase flow form a subalgebra
of the Lie algebra of all functions.

The Lie algebra of hamiltonian functions can be mapped naturally onto
the Lie algebra of hamiltonian vector fields. To do this, to every function H
we associate the hamiltonian vector field H with hamiltonian function H.

Corollary 8. The map of the Lie algebra of functions onto the Lie algebra of
hamiltonian fields is an algebra homomorphism. Its kernel consists of the
locally constant functions. If M?" is connected, the kernel is one-dimensional
and consists of constants.
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PrOOF. Our map is linear. Corollary 5 says that our map carries the Poisson
bracket of functions into the Poisson bracket of vector fields. The kernel
consists of functions H for which I dH = 0. Since I is an isomorphism,
dH = 0 and H = const. a

Corollary 9. The phase flows with hamiltonian functions H, and H, commute
if and only if the Poisson bracket of the functions H, and H, is (locally)
constant.

PrOOF. By the theorem in Section 39, E, it is necessary and sufficient that
[Hy, H,] = 0, and by Corollary 8 this condition is equivalent to d(H,, H;)
=0, O

We obtain yet another generalization of E. Noether’s theorem: given a
flow which commutes with the one under consideration, one can construct
a first integral.

D Locally hamiltonian vector fields

Let (M?", w?) be a symplectic manifold and g': M>" - M?" a one-parameter group of diffeo-
morphisms preserving the symplectic structure. Will g' be a hamiltonian flow?

EXAMPLE. Let M 2" be a two-dimensional torus T2, a point of which is given by a pair of co-
ordinates (p, gmod 1. Let w? be the usual area element dp A dg. Consider the family of trans-
lations g'(p, q) = (p + t, q) (Figure 173). The maps g' preserve the symplectic structure (i.e.,
area). Can we find a hamiltonian function corresponding to the vector field (p = 1, 4 = 0)?
Ifp = —3H/0q and ¢ = 0H/dp, we would have 0H/0p = Oand 0H/dq = —1,ie,H = —q + C.
But g is only a local coordinate on T?; there is no map H: T? — R for which 6H/dp = 0 and
0H/0q = 1. Thus ¢' is not a hamiltonian phase flow.

P

q
Figure 173 A locally hamiltonial field on the torus

Definition. A locally hamiltonian vector field on a symplectic manifold (M2", »?) is the vector
field Iw!, where w! is a closed 1-form on M2".

Locally, a closed 1-form is the differential of a function, w' = dH. However, in attempting
to extend the function H to the whole manifold M>" we may obtain a “ many-valued hamiltonian
function,” since a closed 1-form on a non-simply-connected manifold may not be a differential
(for example, the form dq on T?). A phase flow given by a locally hamiltonian vector field is called
a locally hamiltonian flow.

PrOBLEM. Show that a one-parameter group of diffeomorphisms of a symplectic manifold pre-
serves the symplectic structure if and only if it is a locally hamiltonian phase flow.
Hint. Cf. Section 38A.
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PrOBLEM. Show that in the symplectic space R?", every one-parameter group of canonical
diffeomorphisms (preserving dp A dq) is a hamiltonian flow.
Hint. Every closed 1-form on R?" is the differential of a function.

PrOBLEM. Show that the locally hamiltonian vector fields form a sub-algebra of the Lie algebra
of all vector fields. In addition, the Poisson bracket of two locally hamiltonian fields is actually
a hamiltonian field, with a hamiltonian function uniquely®® determined by the given fields &
and n by the formula H = w?(&, n). Thus, the hamiltonian fields form an ideal in the Lie algebra
of locally hamiltonian fields.

41 Symplectic geometry

A euclidean structure on a vector space is given by, a symmetric bilinear form, and a symplectic
structure by a skew-symmetric one. The geometry of a symplectic space is different from that of
a euclidean space, although there are many similarities.

A Symplectic vector spaces

Let R?" be an even-dimensional vector space.

Definition. A symplectic linear structure on R>" is a nondegenerate®® bi-
linear skew-symmetric 2-form given in R2". This form is called the
skew-scalar product and is denoted by [&,m] = —[n,&]. The space R?",
together with the symplectic structure [ , ], is called a symplectic vector
space.

EXAMPLE. Let (py, .-, Pu»41» - - - » n) be coordinate functions on R?", and
w? the form

@ =Py Aqy+ -+ Pa A g,

Since this form is nondegenerate and skew-symmetric, it can be taken for a
skew-scalar product: [&,n] = w?(&,n). In this way the coordinate space
R2" = {(p, q)} receives a symplectic structure. This structure is called the
standard symplectic structure. In the standard symplectic structure the
skew-scalar product of two vectors  and 1 is equal to the sum of the oriented
areas of the parallelogram (§,1) on the n coordinate planes (p;, g;).

Two vectors € and n in a symplectic space are called skew-orthogonal
(€ < n) if their skew-scalar product is equal to zero.

PROBLEM. Show that § < &: every vector is skew-orthogonal to itself.

The set of all vectors skew-orthogonal to a given vector 1 is called the
skew-orthogonal complement to 3.

65 Not just up to a constant.
56 A 2-form [ , ] on R?" is nondegenerate if ([&, n] = 0, ¥n) = (€ = 0).
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ProBLEM. Show that the skew-orthogonal complement to nis a 2n — l-dimensional hyperplane
containing 1.
Hint. If all vectors were skew-orthogonal to W, then the form [ , ] would be degenerate.

B The symplectic basis

A euclidean structure under a suitable choice of basis (it must be ortho-
normal) is given by a scalar product in a particular standard form. In exactly
the same way, a symplectic structure takes the standard form indicated
above in a suitable basis.

ProBLEM. Find the skew-scalar product of the basis vectorse, ande, (i = 1..., n)inthe example
presented above.
Solution. The relations

(1) [ep.-’ er] = [ep." e‘lj] = [elh’ eqj] =0 [ePi’ e‘l-’] =1

follow from the definition of p; A g, + -+ + p, A q,.

We now return to the general symplectic space.

Definition. A symplectic basis is a set of 2n vectors, e,, e, (i=1,...,n)
whose scalar products have the form (1).

In other words, every basis vector is skew-orthogonal to all the basis
vectors except one, associated to it; its product with the associated vector
is equal to +1.

Theorem. Every symplectic space has a symplectic basis. Furthermore, we can
take any nonzero vector e for the first basis vector.

Proor. This theorem is entirely analogous to the corresponding theorem in
euclidean geometry and is proved in almost the same way.

Since the vector e is not zero, there is a vector f not skew-orthogonal to it
(the form [ , ] is nondegenerate). By choosing the length of this vector, we
can insure that its skew-scalar product with e is equal to 1. In the case n = 1,
the theorem is proved.

If n > 1, consider the skew-orthogonal complement D (Figure 174) to
the pair of vectors e, f. D is the intersection of the skew-orthogonal comple-
ments to e and f. These two 2n — 1-dimensional spaces do not coincide,

Figure 174 Skew-orthogonal complement
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since e is not in the skew-orthogonal complement to f. Therefore, their inter-
section has even dimension 2n — 2.

We will show that D is a symplectic subspace of R?", i.e., that the skew-
scalar product [ , ] restricted to D is nondegenerate. If a vector §e D
were skew-orthogonal to the whole subspace D, then since it would also be
skew-orthogonal to e and to f, & would be skew-orthogonal to R2", which
contradicts the nondegeneracy of [ , ] on R?". Thus D"~ 2 is symplectic.

Now if we adjoin the vectors e and f to a symplectic basis for D?"~2? we
get a sympletic basis for R*", and the theorem is proved by induction on n.

g

Corollary. All symplectic spaces of the same dimension are isomorphic.

If we take the vectors of a symplectic basis as coordinate unit vectors,
we obtain a coordinate system p;, g; in which [ , ] takes the standard
form p; A g, + -+ + p, A q,. Such a coordinate system is called sym-
plectic.

C The symplectic group

To a euclidean structure we associated the orthogonal group of linear map-
pings which preserved the euclidean structure. In a symplectic space the
symplectic group plays an analogous role.

Definition. A linear transformation S: R?" — R2?" of the symplectic space
R2" to itself is called symplectic if it preserves the skew-scalar product:

[SE Sn] = [En], VEmeR™

The set of all symplectic transformations of R?" is called the symplectic
group and is denoted by Sp(2n).

It is clear that the composition of two symplectic transformations is
symplectic. To justify the term symplectic group, we must only show that a
symplectic transformation is nonsingular; it is then clear that the inverse is
also symplectic.

PrOBLEM. Show that the group Sp(2) is isomorphic to the group of real two-by-two matrices
with determinant 1 and is homeomorphic to the interior of a solid three-dimensional torus.

Theorem. A transformation S:R*" — R?" of the standard symplectic space
(p, Q) is symplectic if and only if it is linear and canonical, i.e., preserves the
differential 2-form

w?=dp, Adq, + -+ dp, A dg,.

PrOOF. Under the natural identification of the tangent space to R*" with
R2", the 2-form w? goesto [ , ]. a
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Corollary. The determinant of any symplectic transformation is equal to 1.

ProOF. We already know (Section 38B) that canonical maps preserve the
exterior powers of the form w?. But its n-th exterior power is (up to a constant
multiple) the volume element on R?". This means that symplectic trans-
formations S of the standard R?" = {(p, q)} preserve the volume element,
sodet S = 1. But since every symplectic linear structure can be written down
in standard form in a symplectic coordinate system, the determinant of a
symplectic transformation of any symplectic space is equal to 1. a

Theorem. A linear transformation S: R?" — R?" is symplectic if and only if it
takes some (and therefore any) symplectic basis into a symplectic basis.

Proor. The skew-scalar product of any two linear combinations of basis vec-
tors can be expressed in terms of skew-scalar products of basis vectors. If the
transformation does not change the skew-scalar products of basis vectors,
then it does not change the skew-scalar products of any vectors. O

D Planes in symplectic space

In a euclidean space all planes are equivalent: each of them can be carried into
any other one by a motion. We will now look at a symplectic vector space
from this point of view.

ProBLEM. Show that a nonzero vector in a symplectic space can be carried into any other non-
zero vector by a symplectic transformation.

PrOBLEM. Show that not every two-dimensional plane of the symplectic space R2" can be
obtained from a given 2-plane by a symplectic transformation.
Hint. Consider the planes (p,, p,) and (py, q,).

Definition. A k-dimensional plane (i.e., subspace) of a symplectic space is
called null®” if it is skew-orthogonal to itself, i.e., if the skew-scalar product
of any two vectors of the plane is equal to zero.

ExaMpLE. The coordinate plane (py, ..., p,) in the symplectic coordinate system p, q is null.
(Prove it!)

ProBLEM. Show that any non-null two-dimensional plane can be carried into any other non-
null two-plane by a symplectic transformation.

For calculations in symplectic geometry it may be useful to impose some
euclidean structure on the symplectic space. We fix a symplectic coordinate
system p, q and introduce a euclidean structure using the coordinate scalar
product

(x,x) = Z p? + qf, wherex = Z pi€, + gi€,,.

7 Null planes are also called isotropic, and for k = n, lagrangian.
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41: Symplectic geometry

The symplectic basis e,, €, is orthonormal in this euclidean structure. The
skew-scalar product, like every bilinear form, can be expressed in terms of
the scalar product by

) (& 0] = (&)

where I: R*" — R?" is some operator. It follows from the skew-symmetry of
the skew-scalar product that the operator / is skew-symmetric.

PROBLEM. Compute the matrix of the operator / in the symplectic basis e, . e,,.

o)

ANSWER.

where E is the n x nidentity matrix.

Thus, for n = 1 (in the p, g-plane), I is simply rotation by 90°, and in the
general case I is rotation by 90° in each of the n planes p;, g;.

PROBLEM. Show that the operator I is symplectic and that I’ = —E,,.

Although the euclidean structures and the operator I are not invariantly
associated to a symplectic space, they are often convenient.
The following theorem follows directly from (2).

Theorem. A plane n of a symplectic space is null if and only if the plane Ir is
orthogonal to .

Notice that the dimensions of the planes = and In are the same, since [ is
nonsingular. Hence

Corollary. The dimension of a null plane in R*" is less than or equal to n.

This follows since the two k-dimensional planes = and In cannot be
orthogonal if k > n.

We consider more carefully the n-dimensional null planes in the symplectic
coordinate space R?". An example of such a plane is the coordinate p-plane.
There are in all (%) n-dimensional coordinate planes in R*" = {(p, q)}.

ProBLEM. Show that there are 2" null planes among the (2*) n-dimensional coordinate planes:
to each of the 2" partitions of the set (1, . ... n) into two parts (iy. ..., i) (i, ..., Jn_x) WeE asso-
ciate the null coordinate plane p;.. . . ., Piedjrs s G o

In order to study the generating functions of canonical transformations
we need
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8: Symplectic manifolds

Figure 175 Construction of a coordinate plane ¢ transversal to a given plane .

Theorem. Every n-dimensional null plane 7 in the symplectic coordinate space
R2" is transverse®® to at least one of the 2" coordinate null planes.

PROOF. Let P be the null plane p,, ..., p, (Figure 175). Consider the inter-
section T = m N P. Suppose that the dimension of 7 is equal to k,0 < k < n.
Like every k-dimensional subspace of the n-dimensional space, the plane t is
transverse to at least one (n — k)-dimensional coordinate plane in P, let us
say the plane

n=_(pi,. - DPi, ) T+np=Ptnn=0.
We now consider the null n-dimensional coordinate plane
0= (Diys o5 Diyss Divs v s Dih n=aonP,
and show that our plane = is transverse to o:
nno=0.
We have

< =
femr=n=t n}=(1+n)4(nma)=P4(nma).
NCco,6<6=>n<c0

But P is an n-dimensional null plane. Therefore, every vector skew-orthogonal
to P belongs to P (cf. the corollary above). Thus (r n ¢) = P. Finally,

nno=@NP)n(cnPy=1nn=0,

as was to be shown. O

PROBLEM. Let 7, and 7, be two k-dimensional planes in symplectic R?", Is it always possible to
carry m, to m, by a symplectic transformation? How many classes of planes are there which
cannot be carried one into another?

ANSWER. [k/2] + 1,ifk < n;[(2n — k)21 + Lifk > n.

E Symplectic structure and complex structure

Since I? = —E we can introduce into our space R*" not only a symplectic
structure [ , ] and euclidean structure ( , ), but also a complex structure,

by defining multiplication by i = ./ —1 to be the action of I. The space R*"

8 Two subspaces L; and L, of a vector space L are transverse if L; + L, = L. Two n-dimen-
sional planes in R?" are transverse if and only if they intersect only in 0.
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42: Parametric resonance in systems with many degrees of freedom

is identified in this way with a complex space C" (the coordinate space with
coordinates z, = p, + iq,). The linear transformations of R2" which preserve
the euclidean structure form the orthogonal group O(2n); those preserving
the complex structure form the complex linear group GL(n, C).

PROBLEM. Show that transformations which are both orthogonal and symplectic are complex,
that those which are both complex and orthogonal are symplectic, and that those which are
both symplectic and complex are orthogonal; thus that the intersection of two of the three
groups is equal to the intersection of all three:

O(2n)  Sp(2n) = Sp(2n) A GL(n, C) = GL(n, C) » O(2n).

This intersection is called the unitary group U(n).

Unitary transformations preserve the hermitian scalar product (§, n) +
i[€,n]; the scalar and skew-scalar products on R?" are its real and imaginary
parts.

42 Parametric resonance in systems with many degrees
of freedom

During our investigation of oscillating systems with periodically varying parameters (cf. Section
25), we explained that parametric resonance depends on the behavior of the eigenvalues of a
certain linear transformation (" the mapping at a period”). The dependence consists of the fact
that an equilibrium position of a system with periodically varying parameters is stable if the
eigenvalues of the mapping at a period have modulus less than 1, and unstable if at least one of
the eigenvalues has modulus greater than 1.

The mapping at a period obtained from a system of Hamilton’s equations with periodic
coefficients is symplectic. The investigation in Section 25 of parametric resonance in a system
with one degree of freedom relied on our analysis of the behavior of the eigenvalues of symplectic
transformations of the plane. In this paragraph we will analyze. in an analogous way, the behavior
of the eigenvalues of symplectic transformations in a phase space of any dimension. The results
of this analysis (due to M. G. Krein) can be applied to the study of conditions for the appearance
of parametric resonance in mechanical systems with many degrees of freedom.

A Symplectic matrices

Consider a linear transformation of a symplectic space, $: R?" — R?", Let
Pi>---5 Pni q1s - - - » 4, be @ symplectic coordinate system. In this coordinate
system, the transformation is given by a matrix S.

Theorem. A transformation is symplectic if and only if its matrix S in the sym-
plectic coordinate system (p, Q) satisfies the relation

SIS =1,

=(z )

where

and S’ is the transpose of S.

225



8: Symplectic manifolds

ProoF. The condition for being symplectic ([SE, Sn] = [&, n] for all § and )
can be written in terms of the scalar product by using the operator I, as
follows:

(ISE, Sm) = (I& ),  VEm
or
(S'ISE, W) = (IEm), V&,
as was to be shown. O
B Symmetry of the spectrum of a symplectic
transformation
Theorem. The characteristic polynomial of a symplectic transformation
p(%) = det(S — AE)
is reflexive,®® i.e., p(1) = A*"p(1/A).

PrOOF. We will use the facts thatdet S = det I = 1,1 = —E,and det A" =
det A. By the theorem above, S = —IS'~'I. Therefore,
p(A) = det(S — AE) = det(—IS'~'I — AE) = det(—S'~* + AE)
— det(—E + AS)

1 1
— }2n P — A28 _
=4 det(S i E) A p(l)' a

Corollary. If 1 is an eigenvalue of a symplectic transformation, then 1/ is also
an eigenvalue.

On the other hand, the characteristic polynomial is real; therefore, if A
is a complex eigenvalue, then 1 is an eigenvalue different from A. It follows
that the roots A of the characteristic polynomial lie symmetrically with
respect to the real axis and to the unit circle (Figure 176). They come in
4-tuples,

A A (1A # 1,Im 4 # 0),

ol =

1
t A’
and pairs lying on the real axis,

A=1

ki

opf =

1
p

59 A reflexive polynomial is a polynomial aox™ + a,x™ ' + --- + a,, which has symmetric
coefficients agp = a,,, a4y = A1, - - -
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A

1

>~

>
I
> |~

Figure 176 Distribution of the eigenvalues of a symplectic transformation

or on the unit circle,

1 1
A=z I1=-.
i y)
It is not hard to verify that the multiplicities of all four points of a 4-tuple (or
both points of a pair) are the same.

C Stability

Definition. A transformation S is called stable if
Ve> 0,36 > 0:]x] < 6=18Vx| < ¢, VN > 0.

ProBLEM. Show that if at least one of the eigenvalues of a symplectic transformation S does not
lie on the unit circle, then § is unstable.

Hint. In view of the demonstrated symmetry, if one of the eigenvalues does not lie on the
unit circle, then there exists an eigenvalue outside the unit circle |A| > 1; in the corresponding
invariant subspace, S is an “expansion with a rotation.”

PROBLEM. Show that if all the eigenvalues of a linear transformation are distinct and lie on the
unit circle, then the transformation is stable.
Hint. Change to a basis of eigenvectors.

Definition. A symplectic transformation S is called strongly stable if every
symplectic transformation sufficiently close’® to S is stable.

In Section 25 we established that S: R* — R? is strongly stable if 4, , =
ef®and A, # 4,.

Theorem. If all 2n eigenvalues of a symplectic transformation S are distinct
and lie on the unit circle, then S is strongly stable.

PROOF. We enclose the 2n eigenvalues A in 2n non-intersecting neighborhoods,
symmetric with respect to the unit circle and the real axis (Figure 177). The
2n roots of the characteristic polynomial depend continuously on the ele-
ments of the matrix of S. Therefore, if the matrix §, is sufficiently close to §,

70 5, is “sufficiently clgse” to § if the elements of the matrix of S; in a fixed basis differ from the
elements of the matrix of § in the same basis by less than a sufficiently small number ¢.
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=X J
'~

Figure 177 Behavior of simple eigenvalues under a small change of the symplectic
transformation

exactly one eigenvalue 4, of the matrix of S, will lie in each of the 2n neigh-
borhoods of the 2n points of A. But if one of the points A, did not lie on the
unit circle, for example, if it lay outside the unit circle, then by the theorem in
subsection B, there would be another point 4,,|4,| < 1in the same neighbor-
hood, and the total number of roots would be greater than 2n, which is not

possible.
Thus all the roots of S, lie on the unit circle and are distinct, so S; is
stable. O

We might say that an eigenvalue A of a symplectic transformation can
leave the unit circle only by colliding with another eigenvalue (Figure 178);
at the same time, the complex-conjugate eigenvalues will collide, and from
the two pairs of roots on the unit circle we obtain one 4-tuple (or pair of
real A).

Figure 178 Behavior of multiple eigenvalues under a small change of the symplectic
transformation

It follows from the results of Section 25 that the condition for parametric
resonance to arise in a linear canonical system with a periodically changing
hamilton function is precisely that the corresponding symplectic transforma-
tion of phase space should cease to be stable. It is clear from the theorem
above that this can happen only after a collision of eigenvalues on the unit
circle. In fact, as M. G. Krein noticed, not every such collision is dangerous.

It turns out that the eigenvalues A with || = 1 aredivided into two classes:
positive and negative. When two roots with the same sign collide, the roots
“go through one another,” and cannot leave the unit circle. On the other
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43: A symplectic atlas

hand, when two roots with different signs collide, they generally leave the
unit circle.

M.G. Krein’s theory goes beyond the limits of this book ; we will formulate
the basic results here in the form of problems.

PROBLEM. Let A and 1 be simple (multiplicity 1) eigenvalues of a symplectic transformation §
with |4] = 1. Show that the two-dimensional invariant plane =, corresponding to 4, 4, is non-

null.
Hint. Let &, and &, be complex eigenvectors of S with eigenvalues 4, and A,. Thenif A, 4, # 1,
the vectors &, and &, are skew-orthogonal: [§,,&,] = 0.

Let & be a real vector of the plane n;, where Im 4 > 0 and |A| = 1. The eigenvalue A is called
positive if [SE, £] > 0.

ProBLEM. Show that this definition is correct, i.e., it does not depend on the choice of § # 0 in

the plane =;.
Hint. If the plane n; contained two non-collinear skew-orthogonal vectors, it would be null.

In the same way, an eigenvalue 4 of multiplicity k with |A| = 1 is of definite sign if the quad-
ratic form [SE, €] is (positive or negative) definite on the invariant 2k-dimensional subspace
corresponding to 4, /.

ProBLEM. Show that S is strongly stable if and only if all the eigenvalues 4 lie on the unit circle
and are of definite sign.
Hint. The quadratic form [S&, &] is invariant with respect to S.

43 A symplectic atlas

In this paragraph we prove Darboux’s theorem, according to which every symplectic manifold
has local coordinates p, q 1n which the symplectic structure can be written in the simplest way:
®* = dp A dq.

A Symplectic coordinates

Recall that the definition of manifold includes a compatibility condition for
the charts of an atlas. This is a condition on the maps ¢; ¢, going from one
chart to another. The maps ¢; '¢; are maps of a region of coordinate space.

Definition. An atlas of a manifold M?" is called symplectic if the standard
symplectic structure w? = dp A dq is introduced into the coordinate
space R?" = {(p, q)}, and the transfer from one chart to another is realized
by a canonical (i.e., w-preserving) transformation’* ¢; '¢;.

PROBLEM. Show that a symplectic atlas defines a symplectic structure on M2".

The converse is also true: every symplectic manifold has a symplectic
atlas. This follows from the following theorem.

! Complex-analytic manifolds, for example, are defined analogously; there must be a complex-
analytic structure on coordinate space, and the transfer from one chart to another must be
complex analytic.
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8: Symplectic manifolds

B Darboux’s theorem

Theorem. Let w® be a closed nondegenerate differential 2-form in a neighbor-
hood of a point x in the space R*". Then in some neighborhood of x one can
choose a coordinate system (py, . .., Pu;q1, - - - » 44) Such that the form has the
standard form:

w® =) dp; A dg;.

i=1

This theorem allows us to extend to all symplectic manifolds any assertion
of a local character which is invariant with respect to canonical transforma-
tions and is proven for the standard phase space (R*", w? = dp A dq).

C Construction of the coordinates p, and q,

For the first coordinate p, we take a non-constant linear function (we could
have taken any differentiable function whose differential is not zero at the
point x). For simplicity we will assume that p,(x) = 0.

Let P, = I dp, denote the hamiltonian field corresponding to the function
p: (Figure 179). Note that P,(x) # 0; therefore, we can draw a hyperplane
N#"~1 through the point x which does not contain the vector P,(x) (we
could have taken any surface transverse to P,(x) as N2" 1),

Figure 179 Construction of symplectic coordinates

Consider the hamiltonian flow P} with hamiltonian function p,. We
consider the time ¢ necessary to go from N to the point z = Pi(¥) (Ye N)
under the action of P as a function of the point z. By the usual theorems in
the theory of ordinary differential equations, this function is defined and
differentiable in a neighborhood of the point x € R?". Denote it by q,. Note
that g, = O on N and that the derivative of g, in the direction of the field P,
is equal to 1. Thus the Poisson bracket of the functions ¢, and p, we con-
structed is equal to 1:

. py) =L
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D Construction of symplectic coordinates by
induction on n

If n = 1, the construction is finished. Let n > 1. We will assume that Dar-
boux’s theorem is already proved for R?"~ 2. Consider the set M given by the
equations p, = ¢q, = 0. The differentials dp, and dq, are linearly independent
at x since w?*(I dp,, 1dq,) = (q,, p,) = 1. Thus, by the implicit function
theorem, the set M is a manifold of dimension 2n — 2 in a neighborhood of
x; we will denote it by M2"~2,

Lemma. The symplectic structure w* on R*" induces a symplectic structure on
some neighborhood of the point x on M*"~ 2,

Proor. For the proof we need only the nondegeneracy of w? on TM,.
Consider the symplectic vector space TRZ2". The vectors P,(x) and Q,(x)
of the hamiltonian vector fields with hamiltonian functions p, and g, belong
to TR2". Let £ e TM,. The derivatives of p, and ¢, in the direction & are
equal to zero. This means that dp, (&) = w*(&, P,) = 0 and dq, (§) = ©*(&, Q,)
= 0. Thus TM, is the skew-orthogonal complement to P,(x), Q,(x). By
Section 41B, the form w? on TM, is nondegenerate. O

By the induction hypothesis there are symplectic coordinates in a neigh-
borhood of the point x on the symplectic manifold (M3"~ 2, w?|,,). Denote
themby p;,q; (i = 2,...,n). Weextend the functions p,, . .., g, to a neighbor-
hood of x in R*" in the following way. Every point z in a neighborhood of
x in R?*" can be uniquely represented in the form z = P,Q%w, where
we M2" 2 and s and  are small numbers. We set the values of the coor-
dinates p,, ..., g, at z equal to their values at the point w (Figure 179). The
2n functions p,,..., p,, 4,, - - -, g, thus constructed form a local coordinate
system in a neighborhood of x in R2".

E Proof that the coordinates constructed are
symplectic

Denote by P{ and Q! (i = 1, ..., n) the hamiltonian flows with hamiltonian
functions p; and g;, and by P; and Q; the corresponding vector fields. We will
compute the Poisson brackets of the functions p, ..., q,. We already saw in
C that(q,, p,) = 1. Therefore, the flows P! and Q| commute: P{ Q5 = Q3 P'.

Recalling the definitions of p,, . . ., g, we see that each of these functions is
invariant with respect to the flows P} and Q. Thus the Poisson brackets of
py and g, with all 2n — 2 functions p;, ¢; (i > 1) are equal to zero.

The map P Q] therefore commutes with all 2n — 2 flows P, Q5 (i > 1).
Consequently, it leaves each of the 2n — 2 vector fields P;, Q; (i > 1) fixed.
P Q5 preserves the symplectic structure w? since the flows P and Q% are
hamiltonian; therefore, the values of the form w? on the vectors of any two
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of the 2n — 2 fields P;, Q, (i > 1) are the same at the points z = P{Qjwe R*"
and w e M>"~ 2, But these values are equal to the values of the Poisson brack-
ets of the corresponding hamiltonian functions. Thus, the values of the
Poisson bracket of any two of the 2n — 2 coordinates p;, g; (i > 1) at the
points z and w are the same if z = P{Q{w.

The functions p, and ¢, are first integrals of each of the 2n — 2 flows
P, Q3 (i > 1). Therefore, each of the 2n — 2 fields P;, Q; is tangent to the
level manifold p, = g, = 0. But this manifold is M?"~ 2. Therefore, each of
the 2n — 2 fields P;, Q, (i > 1) is tangent to M?"~ 2. Consequently, these
fields are hamiltonian fields on the symplectic manifold (M?"~ %, w?{,,), and
the corresponding hamiltonian functions are p; |y, iy (i > 1). Thus, in the
whole space (R?", w?), the Poisson bracket of any two of the 2n — 2 co-
ordinates p;, q; (i > 1) considered on M?"~2 is the same as the Poisson
bracket of these coordinates in the symplectic space (M2" 2, w?|y).

But, by our induction hypothesis, the coordinates on M*"~2 (p;|r, 4ilus
i > 1) are symplectic. Therefore, in the whole space R?", the Poisson brackets
of the constructed coordinates have the standard values

(p:» Pj) = (p; ‘Ij) =(q;, ‘b) =0 and (g, p)=1

The Poisson brackets of the coordinates p, g on R*" have the same form if
w? = Y dp; A dg;. But a bilinear form w? is determined by its values on
pairs of basis vectors. Therefore, the Poisson brackets of the coordinate
functions determine the shape of w? uniquely. Thus

w? =dp, Andq, + -+ dp, A dq,,

and Darboux’s theorem is proved. O
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Canonical formalism

The coordinate point of view will predominate in this chapter. The technique
of generating functions for canonical transformations, developed by
Hamilton and Jacobi, is the most powerful method available for integrating
the differential equations of dynamics. In addition to this technique, the
chapter contains an *odd-dimensional” approach to hamiltonian phase
flows.

This chapter is independent of the previous one. It contains new proofs
of several of the results in Chapter 8, as well as an explanation of the origin
of the theory of symplectic manifolds.

44 The integral invariant of Poincaré-Cartan

In this section we look at the geometry of 1-forms in an odd-dimensional space.

A A hydrodynamical lemma

Let v be a vector field in three-dimensional oriented euclidean space R3,
and r = curl v its curl. The integral curves of r are called vortex lines. If y,
is any closed curve in R*® (Figure 180), the vortex lines passing through the
points of y, form a tube called a vortex tube.

Let y, be another curve encircling the same vortex tube, so thaty, — y, =
do, where ¢ is a 2-cycle representing a part of the vortex tube. Then:

Stokes’ lemma. The field v has equal circulation along the curves y, and y,:

fﬁ vdl = ff; vdl
71 V2
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Figure 180 Vortex tube

PRrROOF. By Stokes’ formula, {, vdl — [, vdl = [f,curl vdn =0, since curl v
is tangent to the vortex tube. ]

B The multi-dimensional Stokes’ lemma

It turns out that Stokes’ lemma generalizes to the case of any odd-dimensional
manifold M2"*! (in place of R?). To formulate this generalization we replace
our vector field by a differential form.

The circulation of a vector field v is the integral of the l-form w!
(@'(&) = (v, &)). To the curl of v there corresponds the 2-form w? = dw!
(dw'(E, n) = (r, &, W)). It is clear from these formulas that there is a direction

A
7

A

n

Figure 181 Axis invariantly connected with a 2-form in an odd-dimensional space

at every point (namely, the direction of r, Figure 181), having the property
that the circulation of v along the boundary of every “infinitesimal square”
containing r is equal to zero:

do'(r,n) =0, .

In fact, do'(r,n) = (r,r,n) = 0.

Remark. Passing from the 2-form w? = dw' to the vector field r = curl v
is not an invariant operation: it depends on the euclidean structure of R3.
Only the direction’? of r is invariantly associated with w? (and, therefore,
with the 1-form w?). It is easy to verify that, if r # 0, then the direction of r
is uniquely determined by the condition that w?(r,n) = O for all n.

72 Le., the unoriented line in TR? with direction vectorr.
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The algebraic basis for the multi-dimensional Stokes’ lemma is the
existence of an axis for every rotation of an odd-dimensional space.

Lemma. Let ? be an exterior algebraic 2-form on the odd-dimensional vector
space R*"* !, Then there is a vector & # 0 such that

w*En) =0, VYneR¥*"*1
PROOF. A skew-symmetric form w? is given by a skew-symmetric matrix A

(& ) = (4§ n)
of odd order 2n + 1. The determinant of such a matrix is equal to zero, since
A=-4 det 4 = det A’ = det(—A4) = (—1)*"*' det 4 = —det A.

Thus the determinant of A is zero. This means 4 has an eigenvector § # 0
with eigenvalue 0, as was to be shown. O

A vector § for which w?(§, n) = 0, Vqyis called a null vector for the form w?.
The null vectors of w? clearly form a linear subspace. The form ? is called
nonsingular if the dimension of this space is the minimal possible (i.e., 1
for an odd-dimensional space R?"*! or 0 for an even-dimensional space).

ProBLEM. Consider the 2-form w? =dp, A dg, + -+ + dp, A dg, on an even-dimensional
space R?" with coordinates p;, ..., p,: 4, ..., g,. Show that ®? is nonsingular.

ProBLEM. On an odd-dimensional space R?"*! with coordinates p,. ..., Pui Qs - s qn: t, con-
sider the 2-form w? = Y. dp; A dg, — w' A dt, where @' is any 1-form on R2"* !, Show that w? is
nonsingular.

If w? is a nonsingular form on an odd-dimensional space R2"*1 then
the null vectors & of w? all lie on a line. This line is invariantly associated to
the form w?.

Now let M?"*! be an odd-dimensional differentiable manifold and '
a 1-form on M. By the lemma above, at every point x € M there is a direction
(e, a straight line {c§} in the tangent space TM,) having the property
that the integral of w' along the boundary of an “infinitesimal square
containing this direction” is equal to zero:

do'€,n) =0, VneTM,.

Suppose further that the 2-form dw' is nonsingular. Then the direction &
is uniquely determined. We call it the “vortex direction” of the form w!.
The integral curves of the field of vortex directions are called the vortex
lines (or characteristic lines) of the form w?.
Let y, be a closed curve on M. The vortex lines going out from points
of y, form a “vortex tube.” We have
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The multi-dimensional Stokes’ lemma. The integrals of a 1-form a) Lalong any
two curves encircling the same vortex tube are the same: §., o' = §, @',
if y1 — v, = 0o, where o is a piece of the vortex tube.

ProOOF. By Stokes’ formula

fﬁ wl—fﬁwl=fwl=fdwl.
71 y2 oo ]

But the value of dw! on any pair of vectors tangent to the vortex tube is equal
to zero. (These two vectors lie in a 2-plane containing the vortex direction,
and dw! vanishes on this plane.) Thus, |, do' = 0. a

C Hamilton’s equations

All the basic propositions of hamiltonian mechanics follow directly from
Stokes’ lemma.

For M?"*! we will take the “extended phase space R*"*!” with co-
ordinates py, ..., Pn; q1»---» qu; t. Suppose we are given a function H =
H(p, q, t). Then we can construct’? the 1-form

'=pdq—Hdt (pdq=p;dg, + -+ p.dq,).
We apply Stokes’ lemma to o' (Figure 182).

q

Figure 182 Hamiltonian field and vortex lines of the form p dq — H dt.

Theorem. The vortex lines of the form ' = pdq — Hdt on the 2n + 1-
dimensional extended phase space P, q, t have a one-to-one projection onto
the t axis, i.e., they are given by functions p = p(t), q = q(t). These functions
satisfy the system of canonical differential equations with hamiltonian
function H:

o d_ _OH dy_oH
dt Q>  dt  op’

In other words, the vortex lines of the form p dq — H dt are the trajectories

of the phase flow in the extended phase space, i.e., the integral curves of the

canonical equations (1).

73 The form ! seems here to appear out of thin air. In the following paragraph we will see how
the idea of using this form arose from optics.
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44: The integral invariant of Poincaré-Cartan

Proor. The differential of the form p dq — H dt is equal to

n

O0H oH
dwlz (d,/\dl_—d,/\d[__d,/\d[)
i=Zl P 1 op; P 9q; 1

It is clear from this expression that the matrix of the 2-form dw! in the
coordinates p, q, t has the form

0 —E H,
A= E 0 Hg |,
-H, —-H, 0
where
1
E— _8H H _OH
- 1 > p“"?p; q 6q
;'\ﬁ—}

(verify this!).

The rank of this matrix is 2n (the upper left 2n-corner is non-degenerate);
therefore, dw! is nonsingular. It can be verified directly that the vector
(—H,, H,, 1) is an eigenvector of A with eigenvalue 0 (do it!). This means
that it gives the direction of the vortex lines of the form pdq — H dt. But the
vector (—H,, H,, 1) is also the velocity vector of the phase flow of (1). Thus
the integral curves of (1) are the vortex lines of the form p dq — H dt, as was
to be shown. O

D A theorem on the integral invariant of
Poincaré—Cartan

We now apply Stokes’ lemma. We obtain the fundamental

Theorem. Suppose that the two curves y, and y, encircle the same tube of
phase trajectories of (1). Then the integrals of the form pdq — H dt along
them are the same:

fﬁpdq—Hdt= ff; pdq — H dt.
Y1 Y2

The form p dq — H dt is called the integral invariant of Poincaré-Cartan.”*

ProoF. The phase trajectories are the vortex lines of the form p dq — H dt,
and the integrals along closed curves contained in the same vortex tube are
the same by Stokes’ lemma. O

7% In the calculus of variations | p dq — H dt is called Hilbert’s invariant integral.
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9: Canonical formalism

—Q

1] 19

Figure 183 Poincaré’s integral invariant

We will consider, in particular, curves consisting of simultaneous states,
i.., lying in the planes ¢t = const (Figure 183). Along such curves, dt = 0
and § pdq — Hdt = § P dq. From the preceding theorem we obtain the
important:

Corollary 1. The phase flow preserves the integral of the form pdq =
py dq, + -+ + p, dq, on closed curves.

PROOF. Let gi!: R*" —» R?" be the transformation of the phase space (p, q)
realized by the phase flow from time ¢, to t; (i.€., g;.(Po, o) is the solution
to the canonical equations (1) with initial conditions p(ty) = po, 4(to) = 4o)-
Let y be any closed curve in the space R*" = R*"*! (¢t = t,). Then gi'y
is a closed curve in the space R?" (¢t = t,), contained in the same tube of
phase trajectories in R*"*'. Since dt = 0 on y and on ¢!y we find by the
preceding theorem that §, p dq = L,,ly p dq, as was to be shown. |

The form p dq is called Poincaré’s relative integral invariant. It has a
simple geometric meaning. Let ¢ be a two-dimensional oriented chain and
y = da. Then, by Stokes’ formula, we find

f}; pdquf dp A dq.
b3 a

Thus we have proved the important:

Corollary 2. The phase flow preserves the sum of the oriented areas of the
projections of a surface onto the n coordinate planes (p;, q;):

fjdpAdq=ff dp A dq.
a 90

In other words, the 2-form w* = dp A dq is an absolute integral invariant
of the phase flow.

ExaMPLE. For n = 1, w? is area, and we obtain Liouville’s theorem: the
phase flow preserves area.
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44: The integral invariant of Poincaré-Cartan

E Canonical transformations
Let g be a differentiable mapping of the phase space R?" = {(p, q)} to R?".

Definition. The mapping g is called canonical, or a canonical transformation,
if g preserves the 2-form w? = Y dp; A dg;.

It is clear from the argument above that this definition can be written
in any of three equivalent forms:

1. g*w? = w? (g preserves the 2-form Y dp; A dgq,);

2. {f, w* = |{,, * VYo (g preserves the sum of the areas of the projections
of any surface);

3. §,pdq = §gy P dq (the form p dq is a relative integral invariant of g).

PrOBLEM. Show that definitions (1) and (2) are equivalent to (3) if the domain of the map in
question is a simply connected region in the phase space R?"; in the general case 3 = 2 <> 1.

The corollaries above can now be formulated as:

Theorem. The transformation of phase space induced by the phase flow is
canonical.”®

Let g: R*" > R2" be a canonical transformation: g preserves the form w?.
Then g also preserves the exterior square of w?:

2Awr and g*?d)* = (0~

gHw? A v =w
The exterior powers of the form Y dp; A dg; are proportional to the forms

w* =Y dp;, A dp; A dg; A dg;,

i<j

w? = Z dpi, A+ Adpy Adg A A dg;,

Thus we have proved

Theorem. Canonical transformations preserve the integral invariants

w*, ..., 0"

Geometrically, the integral of the form w?* is the sum of the oriented
volumes of the projections onto the coordinate planes (p;,,. .., Pi., Gi,» - - - » 4i,)-
In particular, *" is proportional to the volume element, and we obtain:

Corollary. Canonical transformations preserve the volume element in phase
space:
the volume of gD is equal to the volume of D, for any region D.

75 The proof of this theorem which is presented in the excellent book by Landau and Lifshitz
(Mechanics, Pergamon, Oxford, 1960) is incorrect.
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9: Canonical formalism

In particular, applying this to the phase flow we obtain

Corollary. The phase flow (1) has as integral invariants the forms
w?, w*, ..., 0"

The last of these invariants is the phase volume, so we have again proved
Liouville’s theorem.

45 Applications of the integral invariant of
Poincaré-Cartan

In this paragraph we prove that canonical transformations preserve the form of Hamilton’s
equations, that a first integral of Hamilton’s equations allows us to reduce immediately the order
of the system by two and that motion in a natural lagrangian system proceeds along geodesics
of the configuration space provided with a certain riemannian metric.

A Changes of variables in the canonical equations

The invariant nature of the connection between the form p dq — H dt and
its curl lines gives rise to a way of writing the equations of motion in any
system of 2n + 1 coordinates in extended phase space {(p, q, 1)}.

p.q,t X1y X2n+1

AR D

-~ ™~

Figure 184 Change of variables in Hamilton’s equations

Let (x,...,X2,+1) be coordinate functions in some chart of extended
phase space (considered as a manifold M2"*!, Figure 184). The coordinates
(p, 4, t) can be considered as giving another chart on M. The form o! =
pdq — H dt can be considered as a differential 1-form on M. Invariantly
associated (not depending on the chart) to this form is a family of lines on M—
the vortex lines. In the chart (p, q, t), these lines are represented as the tra-
jectories of the phase flow

dp  OH dq O0H

(1 dd  oq dt op

with hamiltonian function H(p, q, t).
Suppose that in the coordinates (x, ..., X,,+1) the form w! is written as

pdq—Hdt=X1dx1 +"‘+X2"+1den+1.
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45: Applications of the integral invariant of Poincaré-Cartan

Theorem. In the chart (x;), the trajectories of (1) are represented by the vortex
lines of the form ) X, dx;.

ProOF. The curl lines of the forms ) X, dx; and p dq — H dt are the images
in two different charts of the vortex lines of the same form on M. But the
integral curves of (1) are the vortex lines of p dq — H dt. Thus, their images
in the chart (x;) are the vortex lines of the form ) X dx;. O

Corollary. Let (Py,...,P,;Qy,...,0,; T) be a coordinate system on the
extended phase space (p,q,t) and K(P,QT) and S(P,Q,T) functions
such that ‘

pdq— Hdt =PdQ — K dT + dS

(the left- and right-hand sides are forms on extended phase space).
Then the trajectories of the phase flow (1) are represented in the chart
(P, Q, T) by the integral curves of the canonical equations

) P JK dQ 0K
@ dT =~ dQ dT 0P

PROOE. By the theorem above, the trajectories of (1) are represented by the
vortex lines of the form PdQ — K dT + dS. But dS has no influence on
the vortex lines (since ddS = 0). Therefore, the images of the trajectories of (1)
are the vortex lines of the form P dQ — K dT. According to Section 44C,
the vortex lines of such a form are integral curves of the canonical equations

). (]

In particular, let g: R*" —» R?" be a canonical transformation of phase
space taking a point with coordinates (p, q) to a point with coordinates
(P, Q). The functions P(p, q) and Q(p, q) can be considered as new co-
ordinates on phase space.

Theorem. In the new coordinates (P, Q) the canonical equations (1) have
the canonical form™®

AP 9K dQ K

3) &= " op

with the same hamiltonian function: K(P, Q, t) = H(p, q, t).

7 In some textbooks the property of preserving the canonical form of Hamilton's equations is
taken as the definition of a canonical transformation. This definition is not equivalent to the
generally accepted one mentioned above. For example, the transformation P = 2p, Q = gq,
which is not canonical by our definition, preserves the hamiltonian form of the equations of
motion. This confusion appears even in the excellent textbook by Landau and Lifshitz (Mechanics,
Oxford, Pergamon, 1960); in Section 45 of this book they show that every transformation which
preserves the canonical equations is canonical in our sense.
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9: Canonical formalism

Pi.9q;

Po> 40

P
Figure 185 Closedness of the form p dg — P dQ

Proor. Consider the 1-form pdq — P dQ on R?". For any closed curve y
we have (Figure 185)

ffypdq—PdQ: ﬁpdq— fﬁPdQ:O

since g is canonical. Therefore, [z, g, P dq — P dQ = S does not depend on
the path of integration but only on the endpoint (p,, q,) (for a fixed initial
point (py, qo)). Thus dS = pdq — P dQ. Consequently, in the extended
phase space, we have

pdq— Hdt =PdQ — Hdt + dS.
Thus, the theorem above is applicable, and (2) is transformed to (3). O

PROBLEM. Let g(1): R?" — R?" be a canonical transformation of phase space depending on the
parameter ¢, g(t)(p, @) = (P(p, q, ), Q(p, q, t)). Show that in the variables P, Q, ¢ the canonical
equations (1) have the canonical form with new hamiltonian function

oS
K(P,Q,1)=H(p, g, 1) +to

s

where

P1,. 91
SOnan0 = [ Bda~PdQ (dQorfixed

Po. Qo

B Reduction of order using the energy integral

Suppose now that the hamiltonian function H(p, q) does not depend on time.
Then the canonical equations (1) have a first integral: H(p(t), q(¢)) = const.
It turns out that by using this integral we can reduce the dimension (2n + 1)
of the extended phase space by two, thereby reducing the problem to in-
tegration of a system of canonical equations in a (2n — 1)-dimensional space.

We assume that (in some region) the equation h = H(py,...,Pniq1s- -5 qn)
can be solved for p,:

P = K(P’ Q9 T, h)’
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45: Applications of the integral invariant of Poincaré-Cartan

where P = (p,,....p,); Q =(q2,-..,4,); T = —q,. Then we find
pdq— Hdt =PdQ — KdT — d(Ht) + t dH.

Now let y be an integral curve of the canonical equations (1) lying on the
2n-dimensional surface H(p, q) = h in R?"*!. Then 7 is a vortex line of the
formp dq — H dt (Figure 186). We project the extended phase space R2**! =
{(p. q. )} onto the phase space R*" = {(p, q)}. The surface H = h is pro-
jected onto a (2n — 1)-dimensional manifold M*~!: H(p, q) = h in R*"
and y is projected to a curve  lying on this submanifold. The variables
P, Q, T form local coordinates on M?"~ 1,

Figure 186 Lowering the order of a hamiltonian system

PROBLEM. Show that the curve 7 is a vortex line of the form pdq = P dQ — K dT on M?"~ 1,
Hint. d(Ht) does not affect the vortex lines, and dH is zero on M.

But the vortex lines of PdQ — K dT satisfy Hamilton’s equations (2).
Thus we have proved

Theorem. The phase trajectories of the equations (1) on the surface M,
H = h, satisfy the canonical equations
dp; 0K dg; 0K
dg, dq; da;  Op;
where the function K(p,, ..., Pp; 42, - - -, qu; T, h) is defined by the equation
H(K,py, .-, P =T, 95, ..., q,) = h.

(i=2,...,n),

C The principle of least action in phase space

In the extended phase space {(p, q, t)}, we consider an integral curve of the
canonical equations (1) connecting the points (p,, q,, t,) and (p;, q, t,)-

Theorem. The integral [ pdq — H dt has y as an extremal under variations
of v for which the ends of the curve remain in the n-dimensional subspaces
(t=t.4=qo)and (t =1t,,q = q).

ProoF. The curve y is a vortex line of the form p dq — H dt (Figure 187).
Therefore, the integral of p dq — H dt over an “infinitely small parallelogram
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9: Canonical formalism

to.qo

t

Figure 187 Principle of least action in phase space

passing through the vortex direction” is equal to zero. In other words, the
increment |, — |, pdq — H dt is small to a higher order in comparison with
the difference of the curves y and 7', as was to be shown.

If this argument does not seem rigorous enough, it can be replaced by the
computation

oH 0H
jop + 6'——5p——5q>dt
J;(‘IP poq ap aq

! oH (, aH) ]
+ j — — |op — { P + —=—)oq [dt.
0 ﬁ[(q al’)p P oq

We see that the integral curves of Hamilton’s equations are the only
extremals of the integral | pdq — H dr in the class of curves y whose ends
lie in the n-dimensional subspaces (t =t,,9 =qg) and (t =t,,q = q,)
of extended phase space.

5ﬂm—Hm

poq

f

Remark. The principle of least action in Hamilton's form is a particular case of the principle
considered above. Along extremals, we have

LW B f ty
f pdqe — Hdt = f (pg— H)dt = f L dt
10,90 lo 10
(since the lagrangian L and the hamiltonian H are Legendre transforms of one another). Now
let 7 (Figure 188) be the projection of the extremal y onto the q, ¢ plane. To any nearby curve 7’
connecting the same points (to, q,) and (¢, q,) in the q, r plane we associate a curve ;" in the

a tr.q

S
Lo, qo0

t
Figure 188 Comparison curves for the principles of least action in the configuration
and phase spaces
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45: Applications of the integral invariant of Poincaré-Cartan

phase space (p, q, t) by setting p = dL/dq. Then, along y', too, f pdq — Hdt = f) L dt. But
by the theorem above, & j p dq — H dt = Ofor any variation curve y (with boundary conditions
(t =ty,q=qp)and (t = t,, q = q,). In particular, this is true for variations of the special form
taking y to 7. Thus y is an extremal of { L dt, as was to be shown.

In the theorem above we are allowed to compare y with a significantly
wider class of curves y’ than in Hamilton’s principle: there are no restrictions
placed on the relation of p with §. Surprisingly, one can show that the two
principles are nevertheless equivalent: an extremal in the narrower class of
variations (p = 0L/dq) is an extremal under all variations. The explana-
tion is that, for fixed q, the value p = dL/dq is an extremal of pq — H (cf. the
definition of the Legendre transform, Section 14).

D The principle of least action in the
Maupertuis—Euler—Lagrange—Jacobi form

Suppose now that the hamiltonian function H(p, q) does not depend on time.
Then H(p, q) is a first integral of Hamilton’s equations (1). We project the
surface H(p, q) = h from the extended phase space {(p, q, t)} to the space
{(p, q)}. We obtain a (2n — 1)-dimensional surface H(p,q) = h in R2",
which we already studied in subsection B and which we denoted by M2"~ !,

The phase trajectories of the canonical equations (1) beginning on the
surface M2~ ! lie entirely in M>?"~!. They are the vortex lines of the form
pdq =P dQ — K dT (in the notation of B) on M?"~!, By the theorem in
subsection C, the curves (1) on M?"~! are extremals for the variational
principle corresponding to this form. Therefore, we have proved

Theorem. If the hamiltonian function H = H(p, q) does not depend on time,
then the phase trajectories of the canonical equations (1) lying on the surface
M?*~1:H(p,q) = h are extremals of the integral | pdq in the class of
curves lying on M?"~ ! and connecting the subspaces q = q, and q = q;.

We now consider the projection onto the g-space of an extremal lying
on the surface M>"~!: H(p, q) = h. This curve connects the points q, and
q;- Let y be another curve connecting the points q, and q, (Figure 189).
The curve y is the projection of some curve § on M2"~ 1. Specifically, we

M2rl~l

=)

Hp,q)=h

Y q
q, /

Figure 189 Maupertuis’ principle
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9: Canonical formalism

parametrize y by 7, a < 1 < b, y(a) = q,, y(b) = q,. Then at every point q
of y there is a velocity vector § = dy(t)/dr, and the corresponding momentum
p = 0L/0q. If the parameter 7 is chosen so that H(p, q) = h, then we obtain
a curve §:q = y(r), p = dL/dq on the surface M*"~!. Applying the theorem
above to the curve 9 on M?"~ 1, we obtain

Corollary. Among all curves q = y(t) connecting the two points q, and q, on
the plane q and parametrized so that the hamiltonian function has a fixed
value H(OL/0Q, Q) = h, the trajectory of the equations of dynamics (1) is
an extremal of the integral of “reduced action”

pda= [pidr = [ £ @i
fy f f o4

This is also the principle of least action of Maupertuis (Euler-Lagrange-
Jacobi).”” It is important to note that the interval ¢ < © < b parametrizing
the curve y is not fixed and can be different for different curves being com-
pared. On the other hand, the energy (the hamiltonian function) must be
the same. We note also that the principle determines the shape of a trajectory
but not the time: in order to determine the time we must use the energy
constant. ‘

The principle above takes a particularly simple form in the case when the
system represents inertial motion on a smooth manifold.

Theorem. A point mass confined to a smooth riemannian manifold moves along
geodesic lines (i.e., along extremals of the length | ds).

ProoF. In this case,
1 [ds\? oL ds\?
= L=T==-(2=X —q=2T=(—].
H=L=T=3 (m) and  qd <dr)

Therefore, in order to guarantee a fixed value of H = h, the parameter must

be chosen proportional to the length dt = ds/./2h. The reduced action
integral is then equal to

oL

— qdt = f,/2hds = ,/2hf ds;

Y aq Y Y

therefore, extremals are geodesics of our manifold. O

In the case when there is a potential energy, the trajectories of the equa-
tions of dynamics are also geodesics in a certain riemannian metric.

7 “In almost all textbooks, even the best, this principle is presented so that it is impossible to
understand.” (C. Jacobi, Lectures on Dynamics, 1842-1843). I do not choose to break with
tradition. A very interesting “proof ” of Maupertuis’ principle is in Section 44 of the mechanics
textbook of Landau and Lifshitz (Mechanics, Oxford, Pergamon, 1960).
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45: Applications of the integral invariant of Poincaré-Cartan

Let ds? be a riemannian metric on configuration space which gives the
kinetic energy (so that T = 1(ds/dt)?). Let h be a constant.

Theorem. In the region of configuration space where U(qQ) < h we define
a riemannian metric by the formula

dp = J/h — UQ) ds.

Then the trajectories of the system with kinetic energy T = i(ds/dt)?,
potential energy U(q), and total energy h will be geodesic lines of the metric
dp.

PrOOF. In this case L=T—U, H=T+ U, and (0L/0q)q=2T=
(ds/dt)* = 2(h — U). Therefore, in order to guarantee a fixed value of
H = h, the parameter T must be chosen proportional to length: dr =
ds/\/2(h — U). The reduced action integral will then be equal to

QI;thzf 2(h — U)ds=\/§fdp,
y 0d y ,

By Maupertuis’ principle, the trajectories are geodesics in the metric dp,
as was to be shown. ]

Remark 1. The metric dp is obtained from ds by a “stretching” depending
on the point q but not depending on the direction. Therefore, angles in the
metric dp are the same as angles in the metric ds. On the boundary of the
region U < h the metric dp has a singularity: the closer we come to the
boundary, the smaller the p-length becomes. In particular, the length of any
curve lying in the boundary (U = h) is equal to zero.

Remark 2. If the initial and endpoints of a geodesic y are sufficiently close,
then the extremum of length is a minimum. This justifies the name “principle
of least action.” In general, an extremum of the action is not necessarily a
minimum, as we see by considering geodesics on the unit sphere (Figure 190).
Every arc of a great circle is a geodesic, but only those with length less than =
are minimal: the arc NS'M is shorter than the great circle arc NSM.

" O

S
Figure 190 Non-minimal geodesic
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Remark 3.1f h is larger than the maximum value of U on the configuration
space, then the metric dp has no singularities; therefore, we can apply
topological theorems about geodesics on riemannian manifolds to the study
of mechanical systems. For example, we consider the torus T2 with some
riemannian metric. Among all closed curves on T2 making m rotations

Figure 191 Periodic motion of a double pendulum

around the parallel and n around the meridian, there exists a curve of shortest
length (Figure 191). This curve is a closed geodesic (for a proof see books
on the calculus of variations or “Morse theory”). On the other hand, the
torus T2 is the configuration space of a planar double pendulum. Therefore,

Theorem. For any integers m and n there is a periodic motion of the double
pendulum under which one segment makes m rotations while the other
segment makes n rotations.

Furthermore, such periodic motions exist for any sufficiently large values
of the constant h (h must be larger than the potential energy at the highest
position).

As a last example we consider a rigid body fastened at a stationary point
and located in an arbitrary potential field. The configuration space (SO(3))
is not simply connected: there exist non-contractible curves in it. The above
arguments imply

Theorem. In any potential force field, there exists at least one periodic motion
of the body. Furthermore, there exist periodic motions for which the total
energy h is arbitrarily large.

46 Huygens’ principle

The fundamental notions of hamiltonian mechanics (momenta, the hamiltonian function H,
the form pdq — H dr and the Hamilton-Jacobi equations, all of which we will be concerned
with below) arose by the transforming of several very simple and natural notions of geometric
optics, guided by a particular variational principle—that of Fermat, into general variational
principles (and in particular into Hamilton’s principle of stationary action, é {Ldt=0).
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46: Huygens’ principle

A Wave fronts

We consider briefly’® the fundamental notions of geometric optics. According
to the extremal principle of Fermat, light travels from a point q, to a point
q, in the shortest possible time. The speed of the light can depend both on the
point q (an “inhomogeneous medium”) and on the direction of the ray
(in an “anisotropic medium,” such as a crystal). The characteristics of a
medium can be described by giving a surface (the “indicatrix ) in the tangent
space at each point q. To do this, we take in every direction the velocity vector
of the propagation of light at the given point in the given direction (Figure

192).
e

LY

Figure 192 An anisotropic, inhomogeneous medium

Now lett > 0. We look at the set of all points q to which light from a given
point q, can travel in time less than or equal to t. The boundary of this set,
@, (1), is called the wave front of the point q, after time t and consists of points
to which light can travel in time ¢ and not faster.

There is a remarkable relation, discovered by Huygens, between the wave
fronts corresponding to different values of ¢. (Figure 193)

Huygens’ theorem. Let @, (t) be the wave front of the point q, after time t.
For every point q of this front, consider the wave front after time s, ®(s).
Then the wave front of the point qq after time s + t, @, (s + t), will be the
envelope of the fronts @(s), q € O, ().

PRroOF. Let q,, ;€ @ (¢t + s). Then there exists a path from q, to g, along
which the time of travel of light equals ¢ + s, and there is none shorter. We
look at the point q, on this path, to which light travels in time t. No shorter
path from qq to q, can exist; otherwise, the path q,q,., would not be the
shortest. Therefore, the point g, lies on the front ®, (¢). In exactly the same
way light travels the path q,q, . ; in time s, and there is no shorter path from
q, to q,, . Therefore, the point q,,  lies on the front of the point q, at time s,
®_(s). We will show that the fronts @ (s) and @, (t + s5) are tangent. In

78 We will not pursue rigor here, and will assume that all determinants are different from zero,
etc. The proofs of the subsequent theorems do not depend on the semi-heuristic arguments of
this paragraph. It should be noted that the appropriate lagrangian for geometric optics is
homogeneous of order 1 in the velocities. To apply the Legendre transform, and to make the
analogy with mechanics in the following section, we should square this lagrangian, which does
not affect the indicatrix surface where the valueis 1. In fact, the real meaning of Huygens’ principle
is best expressed in contact geometry (see Appendix 4 or the author’s Singularities of Caustics
and Wave Fronts, Kluwer 1990).
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Figure 193 Envelope of wave fronts

fact, if they crossed each other (Figure 194), then it would be possible to
reach some points of @, (t + s) from g, in time less than s, and therefore
from q, in time less than s + t. This contradicts the definition of ®g (¢ + s);
and so the fronts @ (s) and @g (¢ + s) are tangent at the point q, ., as was
to be proved. O

o— L ql+s

(bq ) CIDq”(s + 1)
1

Figure 194 Proof of Huygens' theorem

The theorem which has been proved is called Huygens’ principle. It is
clear that the point q, could be replaced by a curve, surface, or, in general,
by a closed set, the three-dimensional space {q} by any smooth manifold,
and propagation of light by the propagation of any disturbance transmitting
itself “locally.”

Huygens’ principle reduces to two descriptions of the process of prop-
agation. First, we can trace the rays, i.e., the shortest paths of the propagation
of light. In this case the local character of the propagation is given by a
velocity vector q. If the direction of the ray is known, then the magnitude
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