MAT137

- Problem set 3 due next Wednesday
- Test 2 is at $2: 00$ pm on June 20
- Today's Topic: Differentiation
- Watch 3.13-3.20, 4.1, 4.2 before Friday

True or False

Let $a \in \mathbb{R}$.
Let f be a function with domain \mathbb{R}.
Assume f is differentiable everywhere. What can we conclude?

1. $f(a)$ is defined.
2. $\lim _{x \rightarrow a} f(x)$ exists.
3. f is continuous at a.
4. $f^{\prime}(a)$ exists.
5. $\lim _{x \rightarrow a} f^{\prime}(x)$ exists.
6. f^{\prime} is continuous at a.

A continuity lemma

Write a formal proof for:

Lemma

Let $a \in R$.
Let g be a function continuous at a.
Assume that $g(a) \neq 0$. Then $g(x) \neq 0$ for x close to a.

Note: First, figure out what " $g(x) \neq 0$ for x close to $a "$ means formally.

Write a formal proof for the quotient rule for derivatives

Theorem

- Let $a \in \mathbb{R}$.
- Let f and g be functions defined at and near a.

Assume $g(a) \neq 0$.

- We define the function h by $h(x)=\frac{f(x)}{g(x)}$.

IF f and g are differentiable at a,
THEN h is differentiable at a, and

$$
h^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g(a)^{2}}
$$

Write a proof directly from the definition of derivative. Hint: Imitate the proof of the product rule in Video 3.6.

Check your proof

- Are there words or only equations?
- Does every step follow logically?
- Did you only assume things you could assume?
- At some point in your proof you must have used, for example, that g was continuous. (Otherwise your proof is most likely wrong.)
Did you notice you were using this? Did you justify it?

Critique this proof - \#2

$$
\begin{aligned}
& \qquad \begin{aligned}
& h^{\prime}(x)=\lim _{y \rightarrow x} \frac{h(y)-h(x)}{y-x}=\lim _{t \rightarrow x} \frac{\frac{f(y)}{g(y)}-\frac{f(x)}{g(x)}}{y-x} \\
&=\ldots \quad \text { (assume the rest of the algebra is here) } \\
&=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}} \\
& \text { When } x=a: \quad h^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g(a)^{2}}
\end{aligned}
\end{aligned}
$$

Critique this proof - \#1

Note: We did not do this question in class

$$
\begin{aligned}
h^{\prime}(a) & =\lim _{x \rightarrow a} \frac{h(x)-h(a)}{x-a}=\lim _{x \rightarrow a} \frac{\frac{f(x)}{g(x)}-\frac{f(a)}{g(a)}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{f(x) g(a)-f(a) g(x)}{g(x) g(a)(x-a)} \\
& =\lim _{x \rightarrow a} \frac{f(x) g(a)-f(a) g(a)+f(a) g(a)-f(a) g(x)}{g(x) g(a)(x-a)} \\
& =\lim _{x \rightarrow a}\left\{\left[\frac{f(x)-f(a)}{x-a} g(a)-f(a) \frac{g(x)-g(a)}{x-a}\right] \frac{1}{g(x) g(a)}\right\} \\
& =\left[f^{\prime}(a) g(a)-f(a) g^{\prime}(a)\right] \frac{1}{g(a) g(a)}
\end{aligned}
$$

A pesky function

Let $h(x)=x^{2} \sin \frac{1}{x}$, where we define $h(0)=0$.

1. Calculate $h^{\prime}(x)$ for any $x \neq 0$.
2. Using the definition of derivative, calculate $h^{\prime}(0)$.
3. Is h continuous at 0 ?
4. Is h differentiable at 0 ?
5. Is h^{\prime} continuous at 0 ?

Hint: The last two questions have different answers.

Computations!

Compute the derivatives of the following functions:

- $f(x)=\tan \left(3 x^{2}+1\right)$
- $f(x)=(\cos x)(\sin 2 x)(\tan 3 x)$
- $f(x)=\cos (\sin (\tan x))$
- $f(x)=\cos \left(3 x+\sqrt{1+\sin ^{2} x^{2}}\right)$

Implicit differentiation

The equation

$$
\sin (x+y)+x y^{2}=0
$$

defines a function $y=h(x)$ near $(0,0)$. Using implicit differentiation, compute

$$
\begin{array}{lll}
\text { 1. } h(0) & \text { 2. } h^{\prime}(0) & \text { 3. } h^{\prime \prime}(0) \\
\text { 4. } h^{\prime \prime \prime}(0)
\end{array}
$$

Derivatives of $(f \circ g)$

Note: We did not do this question in class, but it is a good exercise
Assume f and g are functions that have all their derivatives.
Find formulas for

1. $(f \circ g)^{\prime}(x)$
2. $(f \circ g)^{\prime \prime}(x)$
3. $(f \circ g)^{\prime \prime \prime}(x)$
in terms of the values of f, g and their derivatives.

Hint: The first one is simply the chain rule.

Computations

Note: We did not do this question in class, but it is a good exercise
Compute the derivative of

1. $f(x)=\sqrt{2 x^{2}+x+1}$
2. $f(x)=\sqrt{x+\sqrt{x+\sqrt{x+1}}}$

From the derivative to the function

1. Sketch the graph of a continuous function whose derivative has the graph below
2. Sketch the graph of a non-continuous function whose derivative has the graph below

