MAT137

- Tutorials on Monday/Tuesday are cancelled for Term Test 1
- Term Test 1 is on Monday at $6-8 p m$
- If you need to write the early sitting, email me ASAP
- TA office hours: $4-6 \mathrm{pm}$ today
- Today's Topic: EVT, IVT, and derivatives
- Watch 3.6-3.12 before next Wednesday Watch 3.13-3.20, 4.1, 4.2 before next Friday

Existence

Prove that the equation

$$
x^{4}-2 x=100
$$

has at least two solutions.

Extrema

In each of the following cases, does the function f have a maximum and a minimum on the interval I ?

1. $f(x)=x^{2}, \quad I=(-1,1)$.
2. $f(x)=\frac{\left(e^{x}+2\right) \sin x}{x}-\cos x+3, \quad I=[2,6]$
3. $f(x)=\frac{\left(e^{x}+2\right) \sin x}{x}-\cos x+3, \quad I=[-2,2]$
4. $f(x)= \begin{cases}\frac{\left(e^{x}+2\right) \sin x}{x}-\cos x+3, & x \in[-2,0) \cup(0,2], \quad I=[-2,2] \\ 5, & x=0\end{cases}$

Definition of maximum

Let f be a function with domain l.
Which one (or ones) of the following is (or are) a definition of " f has a maximum on I "?

1. $\forall x \in I, \exists C \in \mathbb{R}$ s.t. $f(x) \leq C$
2. $\exists C \in I$ s.t. $\forall x \in I, f(x) \leq C$
3. $\exists C \in \mathbb{R}$ s.t. $\forall x \in I, f(x) \leq C$
4. $\exists C \in \mathbb{R}$ s.t. $\forall x \in I, f(x)<C$

Can this be proven? (Use IVT)

1. Prove that there exists a time of the day when the hour hand and the minute hand of a clock form an angle of exactly 23 degrees.
2. During a Raptors basketball game, at half time the Raptors have 51 points. Prove that at some point they had exactly 26 points.
3. A baby is born with weight 5 kg and height 57 cm . Prove that at some point in his life, his height in centimetres will be exactly equal to 10 times his weight in kilograms.

- Additionally, you know he will be 91 cm tall and weighed 13 kg when he is 2 years old

Limits at infinity

Compute:

1. $\lim _{x \rightarrow \infty}\left(x^{7}-2 x^{5}+11\right)$
2. $\lim _{x \rightarrow \infty}\left(x^{2}-\sqrt{x^{5}+1}\right)$
3. $\lim _{x \rightarrow \infty} \frac{x^{2}+11}{x+1}$
4. $\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+3}{3 x^{2}+4 x+5}$
5. $\lim _{x \rightarrow \infty} \frac{x^{3}+\sqrt{2 x^{6}+1}}{2 x^{3}+\sqrt{x^{5}+1}}$
6. $\lim _{x \rightarrow \infty} \arctan (x)$
7. $\lim _{x \rightarrow \infty} \frac{\sin (x)}{x}$

Derivatives from the definition

Let

$$
g(x)=\frac{2}{\sqrt{x}}
$$

Calculate $g^{\prime}(4)$ directly from the definition of derivative as a limit.

Tangent line from a graph

Below is the graph of the function f. Write the equation of the line tangent to it at the point with x-coordinate -2 .

Absolute value and tangent lines

At $(0,0)$ the graph of $y=|x| \ldots$

1. ... has one tangent line: $y=0$
2. ... has one tangent line: $x=0$
3. ... has two tangent lines $y=x$ and $y=-x$ 4. ... has no tangent line

Absolute value and derivatives

Let $h(x)=x|x|$. What is $h^{\prime}(0)$?

1. It is 0 .
2. It does not exist because $|x|$ is not differentiable at 0 .
3. It does not exist because the right- and left-limits, when computing the derivative, are different.
4. It does not exist because it has a corner.

Estimations

Let f be a continuous function with domain \mathbb{R}.

1. We know $f(4)=3$ and $f(4.2)=2.2$.

Based only on this, give your best estimate for $f(4.1)$.
2. We know $f(4)=3$ and $f^{\prime}(4)=5$.

Based only on this, give your best estimate for $f(4.1)$.
3. We know $f(4)=3$ and $f(4.1)=4$.

Based only on this, give your best estimate for $f^{\prime}(4)$.

Estimations - 2

Note: We have not taken up this question yet
Without using a calculator, estimate $\sqrt[20]{1.01}$ as well as you can.

Hint: Consider the values you know for $f(x)=\sqrt[20]{x}$ and its derivative.

