- Term Test 1 is on Monday at 6-8pm
 - More information is posted on Quercus

- Extra office hours: 11-1pm on Friday
- TA office hours: 4-6pm on Friday
- Today's Topic: Continuity and limits
- Watch 2.21, 2.22, 3.1-3.5 before Friday

- $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies |f(x)g(x)| < \varepsilon.$
- $\forall \varepsilon_1 > 0, \exists \delta_1 > 0 \text{ s.t. } 0 < |x a| < \delta_1 \implies |f(x)| < \varepsilon_1$
- $\exists M > 0 \text{ s.t. } \forall x \neq 0, |g(x)| \leq M$
- $|f(x)g(x)| = |f(x)||g(x)| < \varepsilon_1 M$
- $\varepsilon = \varepsilon_1 M \implies \varepsilon_1 = \frac{\varepsilon}{M}$

• $\delta = \delta_1$

- WTS: $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies |f(x)g(x)| < \varepsilon.$
- Let ε > 0.
- We know $\lim_{x\to a} f(x) = 0$. In this definition, let $\varepsilon_1 = \frac{\varepsilon}{M}$.
- We know $\exists \delta_1 \in \mathbb{R} \text{ s.t. } 0 < |x a| < \delta_1 \implies |f(x)| < \varepsilon_1 = \frac{\varepsilon}{M}$.

• Assume
$$0 < |x - a| < \delta$$

• Since $\exists M > 0$ s.t. $\forall x \neq 0, |g(x)| \leq M$ $|f(x)g(x)| \leq \frac{\varepsilon}{M} \cdot M = \varepsilon.$

- Since g is bounded, $\exists M > 0 \text{ s.t.} \forall x \neq 0, |g(x)| \leq M$
- Since $\lim_{x \to a} f(x) = 0$, there exists $\delta_1 > 0$ s.t. if $0 < |x a| < \delta_1$, then $|f(x) 0| = |f(x)| < \varepsilon_1 = \frac{\varepsilon}{M}$.

$$|f(x)g(x)| = |f(x)| \cdot |g(x)| \le |f(x)| \cdot M < \varepsilon_1 \cdot M = \frac{\varepsilon}{M} \cdot M = \varepsilon$$

• In summary, by setting $\delta = \min{\{\delta_1\}}$, we find that if $0 < |x - a| < \delta$, then $|f(x) \cdot g(x)| < \varepsilon$.

Undefined function

Let $a \in \mathbb{R}$ and let f be a function. Assume f(a) is undefined.

What can we conclude?

- 1. $\lim_{x \to a} f(x)$ exist
- 2. $\lim_{x \to a} f(x)$ doesn't exist.
- 3. No conclusion. $\lim_{x \to a} f(x)$ may or may not exist.

What else can we conclude?

- 4. f is continuous at a.
- 5. f is not continuous at a.
- 6. No conclusion. f may or may not be continuous at a.

(Assuming these limits exist)

$$\lim_{x \to a} g(f(x)) = g\left(\lim_{x \to a} f(x)\right)$$

What extra condition do we need to add for this to be true?

$$\lim_{x \to a} g(f(x)) = g\left(\lim_{x \to a} f(x)\right)$$

Note: We did not do this question in class

Is it possible to construct functions such that....?

- $\lim_{x\to 1} f(x) = 2$
- $\lim_{u\to 2}g(u)=3$
- 3. $\lim_{x \to 1} g(f(x)) = 42$

We want to prove the following theorem

Theorem

IF f and g are continuous functions THEN $h(x) = \max{f(x), g(x)}$ is also a continuous function.

You are allowed to use all results that we already know. What is the fastest way to prove this?

Hint: What is the number $\frac{a+b+|a-b|}{2}$? There is a way to prove this quickly without writing any epsilons. The only thing we know about the function g is that

$$\lim_{x\to 0}\frac{g(x)}{x^2}=2.$$

Use it to compute the following limits (or explain that they do not exist):

1.
$$\lim_{x \to 0} \frac{g(x)}{x}$$

2.
$$\lim_{x \to 0} \frac{g(x)}{x^4}$$

3.
$$\lim_{x \to 0} \frac{g(3x)}{x^2}$$

Which solution is right?

Compute
$$L = \lim_{x \to -\infty} \left[x - \sqrt{x^2 + x} \right]$$
.
• Solution 1

 $L = \lim_{x \to -\infty} \frac{\left[x - \sqrt{x^2 + x}\right] \left[x + \sqrt{x^2 + x}\right]}{\left[x + \sqrt{x^2 + x}\right]} = \lim_{x \to -\infty} \frac{x^2 - (x^2 + x)}{\left[x + \sqrt{x^2 + x}\right]}$ $= \lim_{x \to -\infty} \frac{-x}{x \left[1 + \sqrt{1 + \frac{1}{x}}\right]} = \lim_{x \to -\infty} \frac{-1}{\left[1 + \sqrt{1 + \frac{1}{x}}\right]} = \frac{-1}{2}$

Solution 2

$$L = \lim_{x \to -\infty} \left[x - \sqrt{x^2 + x} \right] = (-\infty) - \infty = -\infty$$

Note: We did not do this question in class

Compute:

1.
$$\lim_{x \to -3^+} \frac{x^2 - 9}{3 - 2x - x^2}$$
 2. $\lim_{x \to 1^+} \frac{x^2 - 9}{3 - 2x - x^2}$

Computations!

Using that $\lim_{x\to 0} \frac{\sin x}{x} = 1$, compute the following limits:

1.
$$\lim_{x \to 2} \frac{\sin x}{x}$$

2.
$$\lim_{x \to 0} \frac{\sin(5x)}{x}$$

3.
$$\lim_{x \to 0} \frac{\tan^2(2x^2)}{x^4}$$

4.
$$\lim_{x \to 0} \frac{\sin e^x}{e^x}$$

5.
$$\lim_{x \to 0} \frac{1 - \cos x}{x}$$

6.
$$\lim_{x \to 0} \frac{\tan^{10}(2x^{20})}{\sin^{200}(3x)}$$

7. $\lim_{x \to 0} [(\sin x) (\cos(2x)) (\tan(3x)) (\sec(4x)) (\csc(5x)) (\cot(6x))]$

Key takeaway: How do you know when to use $\lim_{x\to 0} \frac{\sin(x)}{x} = 1$?

Note: We did not do this question in class - but it will be on test 1

Compute:

1.
$$\lim_{x \to \infty} (x^7 - 2x^5 + 11)$$

2. $\lim_{x \to \infty} (x^2 - \sqrt{x^5 + 1})$
3. $\lim_{x \to \infty} \frac{x^2 + 11}{x + 1}$
4. $\lim_{x \to \infty} \frac{x^2 + 2x + 3}{3x^2 + 4x + 5}$
5. $\lim_{x \to \infty} \frac{x^3 + \sqrt{2x^6 + 1}}{2x^3 + \sqrt{x^5 + 1}}$
6. $\lim_{x \to \infty} \arctan(x)$
7. $\lim_{x \to \infty} \frac{\sin(x)}{x}$