MAT137

- Term Test 1 is on Monday at $6-8 p m$
- More information is posted on Quercus
- Extra office hours: $11-1 \mathrm{pm}$ on Friday
- TA office hours: 4-6pm on Friday
- Today's Topic: Continuity and limits
- Watch 2.21, 2.22, 3.1-3.5 before Friday

Critique this "proof" - \#1

- $\forall \varepsilon>0, \exists \delta>0$ s.t. $0<|x-a|<\delta \Longrightarrow|f(x) g(x)|<\varepsilon$.
- $\forall \varepsilon_{1}>0, \exists \delta_{1}>0$ s.t. $0<|x-a|<\delta_{1} \Longrightarrow|f(x)|<\varepsilon_{1}$
- $\exists M>0$ s.t. $\forall x \neq 0,|g(x)| \leq M$
- $|f(x) g(x)|=|f(x)||g(x)|<\varepsilon_{1} M$
- $\varepsilon=\varepsilon_{1} M \Longrightarrow \varepsilon_{1}=\frac{\varepsilon}{M}$
- $\delta=\delta_{1}$

Critique this "proof" - \#2

- WTS: $\forall \varepsilon>0, \exists \delta>0$ s.t. $0<|x-a|<\delta \Longrightarrow|f(x) g(x)|<\varepsilon$.
- Let $\varepsilon>0$.
- We know $\lim _{x \rightarrow a} f(x)=0$. In this definition, let $\varepsilon_{1}=\frac{\varepsilon}{M}$.
- We know $\exists \delta_{1} \in \mathbb{R}$ s.t. $0<|x-a|<\delta_{1} \Longrightarrow|f(x)|<\varepsilon_{1}=\frac{\varepsilon}{M}$.
- Assume $0<|x-a|<\delta$
- Since $\exists M>0$ s.t. $\forall x \neq 0,|g(x)| \leq M$ $|f(x) g(x)| \leq \frac{\varepsilon}{M} \cdot M=\varepsilon$.

Critique this "proof" - \#3

- Since g is bounded, $\exists M>0$ s.t. $\forall x \neq 0,|g(x)| \leq M$
- Since $\lim _{x \rightarrow a} f(x)=0$, there exists $\delta_{1}>0$ s.t. if $0<|x-a|<\delta_{1}$, then

$$
\begin{aligned}
& |f(x)-0|=|f(x)|<\varepsilon_{1}=\frac{\varepsilon}{M} \\
& \quad|f(x) g(x)|=|f(x)| \cdot|g(x)| \leq|f(x)| \cdot M<\varepsilon_{1} \cdot M=\frac{\varepsilon}{M} \cdot M=\varepsilon
\end{aligned}
$$

- In summary, by setting $\delta=\min \left\{\delta_{1}\right\}$, we find that if $0<|x-a|<\delta$, then $|f(x) \cdot g(x)|<\varepsilon$.

Undefined function

Let $a \in \mathbb{R}$ and let f be a function. Assume $f(a)$ is undefined.

What can we conclude?

1. $\lim _{x \rightarrow a} f(x)$ exist
2. $\lim _{x \rightarrow a} f(x)$ doesn't exist.
3. No conclusion. $\lim _{x \rightarrow a} f(x)$ may or may not exist.

What else can we conclude?
4. f is continuous at a.
5. f is not continuous at a.
6. No conclusion. f may or may not be continuous at a.

True or False?

(Assuming these limits exist)

$$
\lim _{x \rightarrow a} g(f(x))=g\left(\lim _{x \rightarrow a} f(x)\right)
$$

Fix

What extra condition do we need to add for this to be true?

$$
\lim _{x \rightarrow a} g(f(x))=g\left(\lim _{x \rightarrow a} f(x)\right)
$$

A difficult example

Note: We did not do this question in class
Is it possible to construct functions such that....?

1. $\lim _{x \rightarrow 1} f(x)=2$
2. $\lim _{u \rightarrow 2} g(u)=3$
3. $\lim _{x \rightarrow 1} g(f(x))=42$

New continuous functions

We want to prove the following theorem

Theorem

IF f and g are continuous functions
THEN $h(x)=\max \{f(x), g(x)\}$ is also a continuous function.
You are allowed to use all results that we already know. What is the fastest way to prove this?

Hint: What is the number $\frac{a+b+|a-b|}{2}$?
There is a way to prove this quickly without writing any epsilons.

A question from last year's test

The only thing we know about the function g is that

$$
\lim _{x \rightarrow 0} \frac{g(x)}{x^{2}}=2
$$

Use it to compute the following limits (or explain that they do not exist):

1. $\lim _{x \rightarrow 0} \frac{g(x)}{x}$
2. $\lim _{x \rightarrow 0} \frac{g(x)}{x^{4}}$
3. $\lim _{x \rightarrow 0} \frac{g(3 x)}{x^{2}}$

Which solution is right?

Compute $L=\lim _{x \rightarrow-\infty}\left[x-\sqrt{x^{2}+x}\right]$.

- Solution 1

$$
\begin{aligned}
L & =\lim _{x \rightarrow-\infty} \frac{\left[x-\sqrt{x^{2}+x}\right]\left[x+\sqrt{x^{2}+x}\right]}{\left[x+\sqrt{x^{2}+x}\right]}=\lim _{x \rightarrow-\infty} \frac{x^{2}-\left(x^{2}+x\right)}{\left[x+\sqrt{x^{2}+x}\right]} \\
& =\lim _{x \rightarrow-\infty} \frac{-x}{x\left[1+\sqrt{1+\frac{1}{x}}\right]}=\lim _{x \rightarrow-\infty} \frac{-1}{\left[1+\sqrt{1+\frac{1}{x}}\right]}=\frac{-1}{2}
\end{aligned}
$$

- Solution 2

$$
L=\lim _{x \rightarrow-\infty}\left[x-\sqrt{x^{2}+x}\right]=(-\infty)-\infty=-\infty
$$

Rational limits

Note: We did not do this question in class

Compute:

1. $\lim _{x \rightarrow-3^{+}} \frac{x^{2}-9}{3-2 x-x^{2}}$
2. $\lim _{x \rightarrow 1^{+}} \frac{x^{2}-9}{3-2 x-x^{2}}$

Computations!

Using that $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, compute the following limits:

1. $\lim _{x \rightarrow 2} \frac{\sin x}{x}$
2. $\lim _{x \rightarrow 0} \frac{\sin e^{x}}{e^{x}}$
3. $\lim _{x \rightarrow 0} \frac{\sin (5 x)}{x}$
4. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$
5. $\lim _{x \rightarrow 0} \frac{\tan ^{2}\left(2 x^{2}\right)}{x^{4}}$
6. $\lim _{x \rightarrow 0} \frac{\tan ^{10}\left(2 x^{20}\right)}{\sin ^{200}(3 x)}$
7. $\lim _{x \rightarrow 0}[(\sin x)(\cos (2 x))(\tan (3 x))(\sec (4 x))(\csc (5 x))(\cot (6 x))]$

Key takeaway: How do you know when to use $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$?

Limits at infinity

Note: We did not do this question in class - but it will be on test 1

Compute:

1. $\lim _{x \rightarrow \infty}\left(x^{7}-2 x^{5}+11\right)$
2. $\lim _{x \rightarrow \infty}\left(x^{2}-\sqrt{x^{5}+1}\right)$
3. $\lim _{x \rightarrow \infty} \frac{x^{3}+\sqrt{2 x^{6}+1}}{2 x^{3}+\sqrt{x^{5}+1}}$
4. $\lim _{x \rightarrow \infty} \frac{x^{2}+11}{x+1}$
5. $\lim _{x \rightarrow \infty} \frac{x^{2}+2 x+3}{3 x^{2}+4 x+5}$
6. $\lim _{x \rightarrow \infty} \arctan (x)$
7. $\lim _{x \rightarrow \infty} \frac{\sin (x)}{x}$
