- Problem Set 2 is due **Tuesday** May 21
 - This is so we have time to mark the problem sets before the term test

- Monday/Tuesday tutorials are cancelled due to Victoria Day
- Today's Topic: Limits and continuity

• Watch 2.14 - 2.20 before Wednesday Watch 2.21, 2.22, 3.1-3.5 before next Friday

Preparation: choosing deltas

1. Find a value of $\delta > 0$ such that

$$|x-3| < \delta \implies |5x-15| < 1.$$

2. Find *all* value of $\delta > 0$ such that

$$|x-3| < \delta \implies |5x-15| < 1.$$

3. Find a value of $\delta > 0$ such that

$$|x-3| < \delta \implies |5x-15| < 0.1.$$

4. Let us fix $\varepsilon > 0$. Find a value of $\delta > 0$ such that

$$|x-3|<\delta\implies |5x-15|<\varepsilon.$$

Your first $\varepsilon - \delta$ proof

Goal

We want to prove that

$$\lim_{x\to 3} (5x+1) = 16$$

directly from the definition.

- 1. Write down the formal definition of the statement (1).
- 2. Write down what the structure of the formal proof should be, without filling the details.
- 3. Write down a complete formal proof.

(1)

Your second $\varepsilon - \delta$ proof

Goal

We want to prove that

$$\lim_{x \to 2} \left(x^2 - 4x + 5 \right) = 1$$

directly from the definition.

- 1. Write down the formal definition of the statement (2).
- 2. Write down what the structure of the formal proof should be, without filling the details.
- 3. Rough work: What is δ ?
- 4. Write down a complete formal proof.

(2)

Goal

We want to prove that

$$\lim_{x \to 0} \left(x^3 + x^2 \right) = 0$$

(3)

directly from the definition.

- 1. Write down the formal definition of the statement (3).
- 2. Write down what the structure of the formal proof should be, without filling the details.
- 3. Rough work: What is δ ?
- 4. Write down a complete formal proof.

Is this proof correct?

Claim:

$$\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t.} \quad 0 < |x| < \delta \implies |x^3 + x^2| < \varepsilon.$$

Proof.

Let ε > 0.

• Take
$$\delta = \sqrt{\frac{\varepsilon}{|x+1|}}$$
.

• Let
$$x \in \mathbb{R}$$
. Assume $0 < |x| < \delta$. Then

$$|x^{3} + x^{2}| = x^{2}|x+1| < \delta^{2}|x+1| = \frac{\varepsilon}{|x+1|}|x+1| = \varepsilon.$$

• I have proven that
$$|x^3 + x^2| < \varepsilon$$
.

Let $a \in \mathbb{R}$. Let f and g be functions defined near a. Assume $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0.$ $\lim_{x\to a}\frac{f(x)}{g(x)}?$ What can we conclude about 1. The limit is 1. 4. The limit does not exist.

- 2. The limit is 0.
- 3. The limit is ∞ .

5. We do not have enough

information to decide.

Is this theorem true?

Claim

Let $a \in \mathbb{R}$.

Let f and g be functions defined near a.

• IF
$$\lim_{x \to a} f(x) = 0$$
,

• THEN
$$\lim_{x\to a} [f(x)g(x)] = 0.$$

Is this statement true or false?

Claim

Let f be a function with domain \mathbb{R} .

If $\lim_{x\to a} |f(x)| = 0$, then $\lim_{x\to a} f(x) = 0$.

Calculate the following limits or explain why they don't exist.

1.
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos(x)}{x}$$

2.
$$\lim_{x \to \infty} \frac{\sin(x)}{x}$$

3.
$$\lim_{x \to -\infty} \frac{7x^3 + \sin(x)}{14 - x^3}$$

4.
$$\lim_{x \to \infty} \frac{\sin(5x^2) + \cos(2x + 3)\sin(8x - 4)}{x^2 - 3}$$

5.
$$\lim_{x \to 0} x^3 e^{\cos \frac{1}{x}}$$

Theorem

Let $a \in \mathbb{R}$. Let f and g be functions with domain \mathbb{R} , except possibly a. Assume

•
$$\lim_{x \to a} f(x) = 0$$
, and

• g is bounded. This means that

$$\exists M > 0 \text{ s.t. } \forall x \neq a, |g(x)| \leq M.$$

THEN $\lim_{x\to a} [f(x)g(x)] = 0$

- 1. Write down the formal definition of what you want to prove.
- 2. Write down what the structure of the formal proof.
- 3. Rough work.
- 4. Write down a complete formal proof.

Kathlyn Dykes

- $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies |f(x)g(x)| < \varepsilon.$
- $\forall \varepsilon_1 > 0, \exists \delta_1 > 0 \text{ s.t. } 0 < |x a| < \delta_1 \implies |f(x)| < \varepsilon_1$
- $\exists M > 0 \text{ s.t. } \forall x \neq 0, |g(x)| \leq M$
- $|f(x)g(x)| = |f(x)||g(x)| < \varepsilon_1 M$
- $\varepsilon = \varepsilon_1 M \implies \varepsilon_1 = \frac{\varepsilon}{M}$

• $\delta = \delta_1$

Note: We did not do this question in class

- WTS: $\forall \varepsilon > 0, \exists \delta > 0 \text{ s.t. } 0 < |x a| < \delta \implies |f(x)g(x)| < \varepsilon.$
- Let ε > 0.
- We know $\lim_{x\to a} f(x) = 0$. In this definition, let $\varepsilon_1 = \frac{\varepsilon}{M}$.
- We know $\exists \delta_1 \in \mathbb{R} \text{ s.t. } 0 < |x a| < \delta_1 \implies |f(x)| < \varepsilon_1 = \frac{\varepsilon}{M}$.

• Assume
$$0 < |x - a| < \delta$$

• Since $\exists M > 0$ s.t. $\forall x \neq 0, |g(x)| \leq M$ $|f(x)g(x)| \leq \frac{\varepsilon}{M} \cdot M = \varepsilon.$

Note: We did not do this question in class

• Since g is bounded, $\exists M > 0 \text{ s.t.} \forall x \neq 0, |g(x)| \leq M$

• Since
$$\lim_{x \to a} f(x) = 0$$
, there exists $\delta_1 > 0$ s.t. if $0 < |x - a| < \delta_1$, then $|f(x) - 0| = |f(x)| < \varepsilon_1 = \frac{\varepsilon}{M}$.

$$|f(x)g(x)| = |f(x)| \cdot |g(x)| \le |f(x)| \cdot M < \varepsilon_1 \cdot M = \frac{\varepsilon}{M} \cdot M = \varepsilon$$

• In summary, by setting $\delta = \min{\{\delta_1\}}$, we find that if $0 < |x - a| < \delta$, then $|f(x) \cdot g(x)| < \varepsilon$.