MAT137

- Problem Set 1 is due Wednesday May 15
- Problem Set 2 is available and due Tuesday May 21
- This is so we have time to mark the problem sets before the term test
- Today's Topic: Distance and limits
- Watch 2.7-2.13 before Friday

What is wrong with this proof by induction?

Theorem

$\forall N \in \mathbb{Z}$, in every set of N cars, all the cars are of the same colour.

Proof.

- Base case. It is clearly true for $N=1$.
- Induction step.

Assume it is true for N. I'll show it is true for $N+1$.
Take a set of $N+1$ cars. By induction hypothesis:

- The first N cars are of the same colour.
- The last N cars are of the same colour.

Hence the $N+1$ cars are all of the same colour.

Limits from a graph

Find the value of

1. $\lim _{x \rightarrow 2} f(x)$
2. $\lim _{x \rightarrow 0} f(f(x))$
3. $\lim _{x \rightarrow 2}[f(x)]^{2}$
4. $\lim _{x \rightarrow 0} f(2 \cos x)$

Floor

Given a real number x, we defined the floor of x, denoted by $\lfloor x\rfloor$, as the largest integer smaller than or equal to x. For example:

$$
\lfloor\pi\rfloor=3, \quad\lfloor 7\rfloor=7, \quad\lfloor-0.5\rfloor=-1
$$

Sketch the graph of $y=\lfloor x\rfloor$. Then compute:

1. $\lim _{x \rightarrow 0^{+}}\lfloor x\rfloor$
2. $\lim _{x \rightarrow 0^{-}}\lfloor x\rfloor$
3. $\lim _{x \rightarrow 0}\lfloor x\rfloor$
4. $\lim _{x \rightarrow 0}\left\lfloor x^{2}\right\rfloor$

More limits from a graph

Note: We did not do this question in class

Find the value of

1. $\lim _{x \rightarrow 0^{+}} g(x)$
2. $\lim _{x \rightarrow 0^{+}}\lfloor g(x)\rfloor$
3. $\lim _{x \rightarrow 0^{+}} g(\lfloor x\rfloor)$
4. $\lim _{x \rightarrow 0^{-}} g(x)$
5. $\lim _{x \rightarrow 0^{-}}\lfloor g(x)\rfloor$
6. $\lim _{x \rightarrow 0^{-}}\left\lfloor\frac{g(x)}{2}\right\rfloor$
7. $\lim _{x \rightarrow 0^{-}} g(\lfloor x\rfloor)$

Properties of inequalities

Let $a, b, c \in \mathbb{R}$.
Assume $a<b$. What can we conclude?

1. $a+c<b+c$
2. $a-c<b-c$
3. $a c<b c$
4. $a^{2}<b^{2}$
5. $\frac{1}{a}<\frac{1}{b}$

Properties of absolute value

Let $a, b \in \mathbb{R}$. What can we conclude?

1. $|a b|=|a||b|$
2. $|a+b|=|a|+|b|$

Sets described by distance

Let $a \in \mathbb{R}$. Let $\delta>0$.
What are the following sets? Describe them in terms of intervals.

1. $A=\{x \in \mathbb{R}:|x|<\delta\}$
2. $B=\{x \in \mathbb{R}:|x|>\delta\}$
3. $C=\{x \in \mathbb{R}:|x-a|<\delta\}$
4. $D=\{x \in \mathbb{R}: 0<|x-a|<\delta\}$

Implications

Find all values of A, B, and C that make the following implications true

1. $|x-3|<1 \Longrightarrow|2 x-6|<A$
2. $|x-3|<B \Longrightarrow|2 x-6|<1$
3. $|x-3|<1 \Longrightarrow|x+5|<C$

Warm-up

Write down the formal definition of

$$
\lim _{x \rightarrow a} f(x)=L
$$

Side limits

We know:

Definition

Let $L, a \in \mathbb{R}$.
Let f be a function defined at least on an interval around a, except possibly at a.

$$
\lim _{x \rightarrow a} f(x)=L
$$

means

$$
\forall \varepsilon>0, \exists \delta>0 \text { s.t. } 0<|x-a|<\delta \Longrightarrow|f(x)-L|<\varepsilon
$$

Write, instead, the formal definition of

$$
\lim _{x \rightarrow a^{+}} f(x)=L, \quad \text { and } \quad \lim _{x \rightarrow a^{-}} f(x)=L
$$

Infinite limits

Note: We did not do this question in class

Definition

Let $a \in \mathbb{R}$.
Let f be a function defined at least on an interval around a, except possibly at a.
Write a formal definition for

$$
\lim _{x \rightarrow a} f(x)=\infty
$$

Existence

Write down the formal definition of the following statements:

1. $\lim _{x \rightarrow a} f(x)=L$
2. $\lim _{x \rightarrow a} f(x)$ exists
3. $\lim _{x \rightarrow a} f(x)$ does not exist
