MAT137

- Problem set 4 due next Wednesday
- If you have a conflict with Test 2 (June 20 at 2 pm), you must email me before June 13
- Today's Topic: Inverses and local extrema
- Watch 5.5-5.12 before Friday

One-to-one functions

1. Write the definition of one-to-one
2. Let f be a function defined by $f(x)=2 x^{3}+7$. Prove that f is one-to-one.
3. Let g be a function defined by $g(x)=2 x^{2}+7$. Prove that g is not one-to-one.

Composition of one-to-one functions - 2

Assume for simplicity that all functions in this problem have domain \mathbb{R}.

Is the following claim TRUE or FALSE? Prove it or give a counterexample.

Claim

Let f and g be functions.
IF $f \circ g$ is one-to-one,
THEN f and g are one-to-one.

Definition of arctan

1. Sketch the graph of tan.
2. Prove that \tan is not one-to-one.
3. Select the largest interval containing 0 such that the restriction of tan to it is one-to-one. We define arctan as the inverse of this restriction. Let $x, y \in \mathbb{R}$.

$$
\arctan y=x \quad \Longleftrightarrow \quad ? ? ?
$$

4. What is the domain of arctan? What is the range of arctan? Sketch the graph of arctan.
5. Compute

$5.1 \arctan (\tan (1))$	$5.4 \arctan (\tan (-6)))$
$5.2 \arctan (\tan (3))$	$5.5 \tan (\arctan (0))$
$5.3 \arctan \left(\tan \left(\frac{\pi}{2}\right)\right)$	$5.6 \tan (\arctan (10))$

Derivative of arctan

Obtain (and prove) a formula for the derivative of arctan.

Hint: Differentiate the identity

$$
\forall t \in \ldots \quad \tan (\arctan (t))=t
$$

Computation

Note: We did not do this in class but it is a good exercise
Compute the derivative of

$$
f(x)=2 x^{2} \arctan \left(x^{2}\right)-\ln \left(x^{4}+1\right)
$$

and simplify it as much as possible.

Draw a graph from properties

Last question from Friday's class
Sketch the graph of a function g satisfying all the following properties:

1. The domain of g is \mathbb{R}.
2. g is continuous everywhere except at -2 .
3. g is differentiable everywhere except at -2 and 1 .
4. g has an inverse function.
5. $g(0)=2$
6. $g^{\prime}(0)=2$
7. $\left(g^{-1}\right)^{\prime}(-3)=-2$.

A question from last year's test

Draw the graph of a function f satisfying all of the following:

1. The domain of f is \mathbb{R}
2. f is differentiable everywhere
3. The restriction of f to $[0, \infty)$ is one-to-one, and its INVERSE has a vertical tangent line at 2
4. The restriction of f to $(-\infty, 0]$ is one-to-one, and its INVERSE has a derivative of 2 at 2

Definition of local extremum

Find local and global extrema of the function with this graph:

What can you conclude?

We know the following about the function f.

- f has domain \mathbb{R}.
- f is continuous
- $f(0)=0$
- For every $x \in \mathbb{R}, f(x) \geq x$.

What can you conclude about $f^{\prime}(0)$? Prove it.
Hint: Sketch the graph of f. Looking at the graph, make a conjecture.
To prove it, imitate the proof of the Local EVT from Video 5.3.

A sneaky function

Note: We did not do this question in class but it is a good exercise
Construct a function f satisfying all the following properties:

- Domain $f=\mathbb{R}$
- f is continuous
- $f^{\prime}(0)=0$
- f does not have a local extremum at 0 .
- There isn't an interval centered at 0 on which f is increasing.
- There isn't an interval centered at 0 on which f is decreasing.

Trig extrema

Note: We did not do this question in class but it is a good exercise
Let $f(x)=\frac{\sin x}{3+\cos x}$.
Find the maximum and minimum of f.

How many zeroes?

Note: We did not do this question in class but it is a good exercise
Let

$$
f(x)=e^{x}-\sin x+x^{2}+10 x
$$

How many zeroes does f have?

