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Preface

These notes accompany my course “Introduction to Symplectic Geometry” at the
University of Toronto in Winter Term 2018–19. The course runs over 12 weeks, with
three 50-minute lectures per week.

Here is the formal course description:

This is an introductory course in symplectic geometry and topology.
We will discuss a variety of concepts, examples, and theorems, which
may include, but are not restricted to, these topics: Moser’s method
and Darboux’s theorem; Hamiltonian group actions and momentum
maps; almost complex structures and holomorphic curves; Gromov’s
nonsqueezing theorem.
Prerequisites: Manifolds and differential forms; homology.

An informal goal is to use the course topics as an excuse to reinforce the prerequisites.

Chapters roughly correspond to weeks, and sections roughly correspond to lectures.
This correspondence is only approximate; I will often arrange, or rearrange, these
notes differently from the lectures. But—at least for the duration of this course—I
will try to be consistent with the numbering of the exercises: exercises are numbered
consecutively within each chapter, and the numbered exercises in each chapter are
the ones that are assigned on the corresponding week and are generally due on the
following week.

Certainly I will not be able to write up these notes at the pace that the term pro-
gresses. The best possible scenario would be that I produce reasonable titles with
occasional partial content. Without commitment, I will try to at least include those
exercises that I would like students who are taking the course for credit to submit in
writing. These will be the exercises in the text that are numbered.

Jesse Frohlich has kindly agreed to post his lecture notes on the course website.
Hopefully he will be more consistent than me.

Please let me know of any mistakes / typos / suspicious points that you find in these
notes.

Yael Karshon
karshon@math.toronto.edu
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CHAPTER 0

Review

Here are quick reviews of manifolds and differential forms and of flows. Chapter 6
contains a review of homology.

For details, I highly recommend John Lee’s book “Introduction to Smooth manifolds”
[6].

Crash course on manifolds and differential forms

Here, a good and quick reference is Guillemin-Pollack’s book “Differential Topology”
[4], Chapters 1 (for manifolds) and 4 (for differential forms).

A manifold is a (Hausdorff, second countable) topological space M equipped with
an equivalence class of atlases.

An atlas is an open covering M = ⋃iUi and homeomorphisms ϕi∶Ui → Ωi where
Ωi ⊂ Rn is open, such that the transition maps ϕj ○ ϕ−1

i ∶ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj)
are smooth (that is, are of type C∞: all partial derivatives of all orders exist and are
continuous).

Two atlases {ϕi∶Ui → Ωi} and {ϕ̃j ∶ Ũj → Ω̃j} are equivalent if their union is an atlas,
that is, if ϕ̃jϕ−1

i and ϕiϕ̃j
−1 are smooth for all i, j.

ϕi∶Ui → Ωi is called a coordinate chart.

ϕ−1
i ∶Ωi → Ui is called a parametrization.

One can write ϕi = (x1, . . . , xn). xj ∶Ui → R are coordinates.

Let X ⊂ RN be any subset and Ω ⊂ Rn open. A continuous map ϕ∶X → Ω is called
smooth if every point in X is contained in an open subset V ⊂ RN such that there
exists a smooth function ϕ̃∶V → Ω with ϕ̃∣X∩V = ϕ. A continuous map ψ∶Ω → X is
called smooth if it is smooth as a map to RN . A diffeomorphism ϕ∶X → Ω is a
homeomorphism such that both ϕ and ϕ−1 are smooth.

Theorem. Let M ⊂ RN be a subset that is “locally diffeomorphic to Rn”: for every
point in M there exists a neighborhood U ⊂ M and there exists an open subset
Ω ⊂ Rn and there exists a diffeomorphism ϕ∶U → Ω. Then M is a manifold with atlas
{ϕ∶U → Ω}. (Exercise: the transition maps are automatically smooth.) Such an M
is called an embedded submanifold of RN .

Example. S2 = {(x, y, z) ∣ x2 + y2 + z2 = 1}. For instance, x, y are coordinates on the
upper hemisphere.

7
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A continuous function f ∶M → R is smooth if f ○ ϕ−1
i ∶Ωi → R is smooth for all i (as

a function of n variables).

C∞(M) ∶= { the smooth functions f ∶M → R }.

A (continuous) curve γ∶R→M is smooth if ϕi ○ γ is smooth for all i.

We will define the tangent space TmM = “directions along M at the initial point
m”.

A smooth curve γ∶R → M with γ(0) = m defines “differentiation along the curve”,
which is the linear functional C∞(M) → R,

Dγ ∶ f ↦
d

dt
∣
t=0

f(γ(t)).

We define an equivalence of such curves by γ ∼ γ̃ if Dγ =Dγ̃.

This means that γ and γ̃ have the same direction at the point m = γ(0) = γ̃(0),
that is, they are tangent to each other at this point.

Geometric definition of the tangent space:

TmM = { the equivalence classes of curves in M through m.}

Leibnitz property: Dγ(fg) = (Dγf)g(m) + f(m)(Dγg).

Definition. A derivation at m is a linear functional D∶C∞(M) → R that satisfies
the Leibnitz property.

Theorem. The derivations at m form a linear vector space: if D1, D2 are derivations
and a, b ∈ R then aD1 + bD2 is a derivation.

Theorem. If x1, . . . , xn are coordinates near m then every derivation is a linear
combination of ∂

∂x1 , . . . ,
∂
∂xn . (The proof uses Hadamard’s lemma: for any f ∈ C∞(Rn)

there exist fi ∈ C∞(Rn) such that f(x) = f(0) + ∑xifi(x). Proof of the lemma:

f(x) − f(0) = ∫
1

0
d
dtf(tx)dt = ∑xi ∫

1

0
∂f
∂xi

(tx)dt by the chain rule.)

Corollary. For every derivation D there exists a curve γ such that D = Dγ. TmM
is a linear vector space (identified with the space of derivations at m). If x1, . . . , xn

are coordinates near m then ∂
∂x1 , . . . ,

∂
∂xn is a basis of TmM .

Differential of a function: df ∣m ∈ T ∗
mM = (TmM)∗ is given by

df ∣m(v) = vf,

the derivative of f in the direction of v ∈ TmM .

If x1, . . . , xn are coordinates then

dxi( ∂

∂xj
) = ∂x

i

∂xj
= δij,

so dx1, . . . , dxn is the basis of T ∗
mM that is dual to the basis ∂

∂x1 , . . . ,
∂
∂xn of TmM .

In coordinates, df = ∑
i

∂f

∂xi
dxi.
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A differential form of degree 0 is a smooth function.

A differential form of degree 1, α ∈ Ω1(M), associates to each m ∈ M a lin-
ear functional αm ∈ T ∗

mM . In coordinates: α = ∑i ci(x)dxi. We require that the
coefficients ci(x) be smooth functions of x = (x1, . . . , xn).

A differential form of degree 2, α ∈ Ω2(M), associates to each m ∈ M an al-
ternating (i.e., anti-symmetric) bilinear form αm∶TmM × TmM → R. In coordinates:
α = ∑

i,j
cij(x)dxi ∧ dxj (where

dxi ∧ dxj ∶ (u, v) ↦ det [u
i vi

uj vj
]

if u = ∑uk ∂
∂xk

and v = ∑ vk ∂
∂xk

).

A differential form of degree k:

α = ∑
i1,...,ik

ci1...ik(x)dxi1 ∧ . . . ∧ dxik

(where dxi1 ∧ . . . ∧ dxii is similarly given by a k × k determinant).

Exterior derivative:

dα = ∑
i1,...,ik,j

∂ci1...ik
∂xj

dxj ∧ dxi1 ∧ . . . ∧ dxik .

α is closed if dα = 0; α is exact if there exists β such that α = dβ.

De Rham cohomology: Hk
dR(M) = {closed k-forms}/{exact k-forms}.

An oriented manifold is a manifold equipped with an equivalence class of oriented
atlases. (Jacobians of transition maps must have positive determinants.)

Integration: Let M be an oriented manifold of dimension n. For an n-form with sup-
port in a coordinate neighborhood Ui: write it as f(x)dx1∧ . . .∧dxn where x1, . . . , xn

are (oriented) coordinates and take the Riemann integral of f on Rn. For an arbi-
trary compactly supported form α: choose a partition of unity ρi∶M → R, ∑ρi = 1,
suppρi ⊂ Ui, and define

∫
M
α = ∑

i
∫ (ρiα).

Pullback: f ∶M → N induces f∗∶Ωk(N) → Ωk(M). This enables us to integrate a
k-form over an oriented k-submanifold. Properties: (f ○ g)∗ = g∗ ○ f∗, f∗dα = df∗α,
f∗(α ∧ β) = f∗α ∧ f∗β.

A manifold with boundary is defined like a manifold except that the Ωs are open
subsets of the upper half space. Its boundary ∂M is well defined and is a manifold
of one dimension less.

Stokes’s theorem: ∫M dα = ∫∂M α.

α ∈ Ωk(M) is closed iff ∫N α = 0 whenever N is the boundary of a compact oriented
submanifold-with-boundary of M . If α is exact, ∫N α = 0 for every compact oriented
submanifold N ⊂M . (α is exact iff ∫N α = 0 for every smooth cycle N in M .) If the
integral of a closed form on N is nonzero, informally N “wraps around a hole in M”.



10 0. REVIEW

Theorem: if M is oriented and compact n-manifold then α ↦ ∫M α induces an
isomorphism Hn

dR(M) → R.

Multiplicative structure: [α] ⋅ [β] = [α ∧ β] is a well defined ring structure on
H∗
dR(M). f ∶M → N induces a ring homomorphism f∗∶H∗

dR(N) →H∗
dR(M).

Crash course on flows

Here, good references are Chapter 8 of “Introduction to Differential Topology” by
Bröcker and Jänich [1], Chapter 5 of “A Comprehensive Introduction to Differential
Geometry”, Volume I, by Michael Spivak [8], and Chapters 8 and 9 of John Lee’s
“Introduction to Smooth Manifolds” [6].

Let M be a manifold.

A vector field X on M is a map that associates to each point m ∈ M a tangent
vector in TmM , denoted X ∣m or X(m), that is smooth in the following sense. In local
coordinates x1, . . . , xn, a vector field has the form X = ∑aj(x) ∂

∂xj
; we require that

the functions x↦ aj(x) be smooth.

A flow on M is a smooth one parameter group of diffeomorphisms ψt∶M →M . This
means that ψ0 =identity and ψt+s = ψt ○ ψs for all t and s in R (so that t ↦ ψt is a
group homomorphism from R to Diff(M), the group of diffeomorphisms of M), and
that (t,m) ↦ ψt(m) is smooth as a map from R ×M to M .

Its trajectories, (or flow lines, or integral curves) are the curves t ↦ ψt(m). The
manifold M decomposes into a disjoint union of trajectories. Moreover, if γ1(t) and
γ2(t) are trajectories that both pass through a point p, then there exists an s such
that γ2(t) = γ1(t + s) for all t ∈ R. Hence, the velocity vectors of γ1 and γ2 at p
coincide.

Its velocity field is the vector field X that is tangent to the trajectories at all points.
That is, the velocity vector of the curve t ↦ ψt(m) at time t0, which is a tangent
vector to M at the point p = ψt0(m), is the vector X(p). We express this as

d

dt
ψt =X ○ ψt.

Conversely, any vector field X on M generates a local flow. This means the following.
Let X be a vector field. Then there exists an open subset A ⊂ R ×M containing
{0} ×M and a smooth map ψ∶A ⊂ R ×M such that the following holds. Write
A = {(t, x) ∣ ax < t < bx} and ψt(x) = ψ(t, x).

(1) ψ0 =identity.
(2) d

dtψt =X ○ ψt.
(3) For each x ∈ M , if γ∶ (a, b) → M satisfies the differential equation γ̇(t) =

X(γ(t)) with initial condition γ(0) = x, then (a, b) ⊂ (ax, bx) and γ(t) =
ψt(x) for all t.

Moreover, ψt+s(x) = ψt(ψs(x)) whenever these are defined. Finally, if X is compactly
supported, then A = R×M , so that X generates a (globally defined) flow. References:
Chapter 8 of “Introduction to Differential Topology” by Bröcker and Jänich; Chapter
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5 of “A Comprehensive Introduction to Differential Geometry”, volume I, by Michael
Spivak; John Lee’s “Introduction to Smooth Manifolds”.

A time dependent vector field parametrized by the interval [0,1] is a family of vector
fields Xt, for t ∈ [0,1], that is smooth in the following sense. In local coordinates it
has the form Xt = ∑aj(t, x) ∂

∂xj
; we require aj to be smooth functions of (t, x1, . . . , xn).

An isotopy (or time dependent flow) of M is a family of diffeomorphisms ψt∶M →M ,
for t ∈ [0,1], such that ψ0 =identity and (t,m) ↦ ψt(m) is smooth as a map from
[0,1] ×M to M .

An isotopy ψt determines a unique time dependent vector field Xt such that

(0.1)
velocity field d

dt
ψt =Xt ○ ψt.

That is, the velocity vector of the curve t ↦ ψt(m) at time t, which is a tangent
vector to M at the point p = ψt(m), is the vector Xt(p).

A time dependent vector field Xt on M determines a vector field X̃ on [0,1] ×M by
X̃(t,m) = ∂

∂t ⊕Xt(m). In this way one can treat time dependent vector fields and
flows through ordinary vector fields and flows.

In particular, a time dependent vector field Xt, t ∈ [0,1], generates a “local isotopy”
ψt(x) = ψ(t, x). If Xt is compactly supported then ψt(x) is defined for all (t, x) ∈
[0,1] ×M . If Xt(m) = 0 for all t ∈ [0,1] then there exists an open neighborhood U of
m such that ψt∶U →M is defined for all t ∈ [0,1].

The Lie derivative of a k-form α in the direction of a vector field X is

LXα = d

dt
∣
t=0

ψ∗t α

where ψt is the flow generated by X.

We have

LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ)
and

LX(dα) = d(LXα).
These follow from ψ∗(α ∧ β) = ψ∗α ∧ ψ∗β and ψ∗dα = dψ∗α.

Cartan formula:

LXα = ιXdα + dιXα
where ιX ∶Ωk(M) → Ωk−1(M) is

(ιXα)(u1, . . . , uk−1) = α(X,u1, . . . , uk−1).

(Outline of proof: it is true for functions. If it is true for α and β then it is true for
α ∧ β and for dα.)
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Let αt be a time dependent k-form andXt a time dependent vector field that generates
an isotopy ψt. Then

d

dt
ψ∗t αt = ψ∗t (

dαt
dt

+LXtαt).

(Outline of proof: if it is true for α and for β then it is true for α ∧ β and for dα.
Hence, it is enough to prove it for functions.)

The left hand side, applied to a time dependent function ft and evaluated at m ∈M ,
is the limit as t→ t0 of the difference quotient

ft(ψt(m)) − ft0(ψt0(m))
t − t0

.

This difference quotient is equal to

(ft − ft0
t − t0

) (ψt(m)) + ft0(ψt(m)) − ft0(ψt0(m))
t − t0

.

The limit as t→ t0 of the first summand is

dft
dt

∣
t=t0

(ψt0(m)) = (ψ∗t0
dft
dt

∣
t=t0

)(m).

The limit as t → t0 of the second summand is the derivative of ft0 along the tangent
vector

d

dt
∣
t=t0

ψt(m) =Xt0(ψt0(m));

this derivative is
(Xt0ft0) (ψt0(m)) = (ψ∗t0(LXt0

ft0)) (m).

The section “Review of homology” was moved to Chapter 6; see Page 51.



CHAPTER 1

1. Symplectic structures and volume

A symplectic form on a manifold M is a closed non-degenerate two-form, ω, on
M . A symplectic manifold is a pair (M,ω) where M is a manifold and where ω
is a symplectic form.

By manifold we mean a smooth manifold in the sense that transition functions
are C∞.

Being nondegenerate means that1 “every nonzero vector has a friend”: for every
x ∈ M and every u ∈ TxM ∖ {0} there exists v ∈ TxM such that ω(u, v) ≠ 0. This is
a pointwise property. Being closed means that dω = 0; this is a local property, not a
pointwise property.

Example. The standard symplectic form on R2n is

ωstd =
n

∑
i=1

dxi ∧ dyi,

where x1, y1, . . . , xn, yn are the coordinates on R2n.

We will prove:

Theorem (Darboux’s theorem). Let (M,ω) be a symplectic manifold. Then near
each point there exist coordinates x1, y1, . . . , xn, yn such that ω = ∑n

i=1 dxi ∧ dyi.

Coordinates x1, . . . , yn in which ω = ∑n
i=1 dxi ∧ dyi are called symplectic coordi-

nates, Darboux coordinates, or (in the context of classical mechanics) canonical
coordinates.

On a symplectic manifold (M,ω), the Liouville volume form2 is
ωn

n!
. It induces

on M an orientation and a measure. In canonical coordinates, it is dx1 ∧ dy1 ∧ . . . ∧
dxn ∧ dyn.

On a two dimensional manifold, a symplectic form is the same thing as an area form,
i.e., a nonvanishing two-form.

A symplectomorphism from a symplectic manifold (M,ω) to a symplectic manifold
(M ′, ω′) is a diffeomorphism ψ∶M →M ′ such that ψ∗ω′ = ω.

1quoting Sue Tolman
2The results of the next section imply that ωn = ω ∧ . . . ∧ ω

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

is non-vanishing.

13
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We will prove, modulo some “black boxes”:

Theorem (Gromov’s non-squeezing theorem). If λ < 1, then there is no symplectic
embedding of the unit ball3 B(1) = {x2

1 + y2
1 + . . . + x2

n + y2
n < 1} into the cylinder

Z(λ) = {x2
1 + y2

1 < λ2}, both equipped with the standard symplectic form ωstd induced
from the ambient Euclidean space R2n.

Remark.

(i) An embedding of B(1) into Z(λ) is a diffeomorphism4 of B(1) with an open5

subset of Z(λ). It is a symplectic embedding if also ψ∗ωstd = ωstd.
(ii) A volume preserving embedding from B(1) into Z(λ) does exist if 2n > 2.

Corollary. There exist volume preserving diffeomorphisms that cannot be uni-
formly approximated by symplectic diffeomorphisms.

Exercise 1.1. Prove that if λ < 1 then there is no isometric embedding of B(1) into
Z(λ) (with respect to the standard Euclidean distance).

This exercise is meant to be easy. In it, you may use the fact that the image of an
isometric embedding ψ∶B(1) → R2n is a ball in R2n of the same radius. Justifying
this fact is another interesting exercise.

Exercise. State and prove the case n = 1 of Gromov’s non-squeezing theorem. (This
is the trivial case of the theorem.)

Example. Let M =M ′ = R2n and ω = ω′ = ∑n
j=1 dxj ∧ dyj. Then

(x1, y1, . . . , xn, yn ) ↦ (λx1, λ
−1y1, . . . , λxn, λ

−1yn )
is a symplectomorphism that takes the unit ball into the cylinder {x2

1+ . . .+x2
n < λ2 }.

(Contrast this with Gromov’s nonsqueezing theorem; note that there is no contradic-
tion.)

Exercise 1.2. Let S2 be the unit sphere in R3. The tangent space TqS2 (as a subspace
of R3) is q⊥. The area form ω on S2 can be written as

ω∣q (u, v) = ⟨q, u × v⟩

where ⟨⋅, ⋅⟩ is the inner product on R3 and × is the vector product on R3.

(i) ω is invariant under rotations of S2.
(a) State this; and (b) Prove this;

without introducing coordinates. Use the fact that, for a rotation A∶R3 → R3,
we have ⟨Au,Av⟩ = ⟨u, v⟩ and Au ×Av = A(u × v) for all u, v ∈ R3.

(ii) Show that, in Cartesian coordinates x, y, z,

ω = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy.
3Unfortunately, some of my best friends denote by B(r) the ball of capacity r, namely, of radius ρ

such that πρ2 = r. Although the capacity is a natural measurement of size in the symplectic context,
it would be inappropriate for me to publicly state my opinion on this non-standard notation.

4A diffeomorphism is a bijection such that both it and its inverse are smooth.
5“Embedding” is defined in footnote 1 on page 21. In our situation, we don’t need to assume

that ψ(B(1)) is open; openness holds a-posteriori.
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(iii) Show that outside the north and south poles, in cylindrical coordinates r, θ, z,
with x = r cos θ and y = r sin θ,

ω = dθ ∧ dz.

The last part of this exercise is essentially a result of Archimedes, by which the
surface area that is enclosed between two lines of latitude is proportional to the
vertical distance between the lines of latitude.

2. Symplectic linear algebra

Let V be a vector space and Ω∶V × V → R a non-degenerate anti-symmetric bilinear
form. Such a pair (V,Ω) is called a symplectic vector space.

Remark. A bilinear form is also called a covariant 2-tensor (in particular by physi-
cists). An antisymmetric bilinear form is also called a 2-covector. A nondegenerate
antisymmetric bilinear form is also called a symplectic tensor.6

The symplectic orthocomplement of a linear subspace S of V consists of the
“vectors that don’t have friends in S”:

SΩ ∶= {u ∈ V ∣ Ω(u, v) = 0 for all v ∈ S}.

Lemma (Symplectic Gram-Schmidt). Let V be a vector space and Ω∶V ×V → R a non-
degenerate anti-symmetric bilinear form. Then there exists a basis e1, f1, . . . , en, fn
such that Ω(ei, ej) = Ω(fi, fj) = 0 and Ω(ei, fj) = δij for all i and j.

Corollary. The dimension of a symplectic vector space is even.

Remark.

(i) Such a basis is called a symplectic basis.
(ii) The above property of the basis e1, . . . , fn is equivalent to

Ω = e∗1 ∧ f∗1 + . . . + e∗n ∧ f∗n
where e∗1, f

∗
1 , . . . , e

∗
n, f

∗
n is the dual basis. (Recall that for α,β ∈ V ∗ we have

α ∧ β = α⊗ β − β ⊗ α, i.e, (α ∧ β)(u, v) = α(u)β(v) = β(u)α(v).)
(c) In the basis e1, . . . , en, f1, . . . , fn, the bilinear form Ω is represented by the

block matrix [ 0 I
−I 0

]:

Ω(u, v) = uT [ 0 I
−I 0

] v

where we identify u and v with their coordinate representations in R2n.

Proof of the lemma. If V = {0}, there is nothing to show. Otherwise, since Ω
is (nondegenerate, hence) non-zero, there exist vectors e1, f1 such that Ω(e1, f1) ≠ 0;

6I learned this term from John Lee [6, Chapter 22]. This term is not (yet?) common in the
literature but I really like it.
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by multiplying one of them by a constant we may arrange that Ω(e1, f1) = 1. Fix
such vectors and let W = span{e1, f1}.

We claim that V =W ⊕WΩ in the sense that the subspaces W and WΩ span V and
their intersection is trivial. Indeed, W ∩WΩ = {0} follows from the nondegeneracy
of Ω on W , and W +WΩ = V follows by writing an arbitrary vector v as Ω(v, f1)e1 +
Ω(e1, v)f1 + some remainder term and confirming that the remainder term is in WΩ.

Exercise 1.3. Ω is nondegenerate on WΩ.

Arguing by induction on the dimension of the vector space, by the induction hypoth-
esis there exists a basis e2, f2, . . . , en, fn for WΩ such that Ω(ei, ej) = Ω(fi, fj) = 0 and
Ω(ei, fj) = δij for all i, j ∈ {2, . . . , n}. The basis e1, f1, e2, f2, . . . , en, fn of V is then as
required. �

Let V be a vector space and Ω an antisymmetric bilinear form on V . Its null-space
is the set of vetors that “do not have friends”:

Null Ω ∶= {u ∣ Ω(u, ⋅) = 0 .

Consider the quotient map

π∶V → V ∶= V /Null Ω .

Exercise 1.4.

(i) There exists a unique antisymmetric bilinear form Ω on V such that Ω = π∗Ω
(i.e. such that Ω(u, v) = Ω(πu,πv) for all u, v).

(ii) Ω is nondegenerate.

Lemma. Let V be a vector space and Ω and antisymmetric bilinear form on V . Then
the following are equivalent.

● Ω is nondegenerate.
● Null Ω = {0}.
● The map Ω♯∶V → V ∗ given by v ↦ Ω(v, ⋅) is a linear isomorphism.
● dimV = 2n is even, and Ωn ≠ 0.

Various notations for the contraction of Ω with v; also called the interior product of
Ω with v:

Ω(v, ⋅) = ιvΩ = ι(v)Ω = v⌟Ω.

Proof of the lemma. The equivalence of the first and second property is from
the definition of “nondegenerate”. Since Null Ω = ker Ω♯, nondegeneracy is equiv-
alent to Ω♯ being one-to-one; by a dimension count this is equivalent to Ω♯ be-
ing onto. If Ω is nondegenerate, then with respect to a symplectic basis we have
Ωn = (e∗1 ∧ f∗1 + . . . + e∗n ∧ f∗n)

n = n!e∗1 ∧ f∗1 ∧⋯ ∧ e∗n ∧ f∗n , which is nonzero. Conversely,

assume that Ω is degenerate and dimV = 2n is even. Then by the exercise Ω = π∗Ω
for π∶V → V = V /NullV , and dimV < dimV . So Ωn = π∗Ωn

, which is zero because

Ω
n
, being a (2n)-covector on a vector space of dimension < 2n, must be zero. �



3. HERMITIAN STRUCTURES 17

Let (V,Ω) be a symplectic vector space. A linear subspace S ⊂ V is symplectic if
Ω∣S (meaning Ω∣S×S) is nondegenerate. A linear subspace S ⊂ V is isotropic if Ω∣S
is zero.

Example. Let e1, f1, . . . , en, fn be a symplectic basis. Then

(span{f1, . . . , fn})Ω = span{e1, . . . , en} ;

(span{e1, f1})Ω = span{e2, f2, . . . , en, fn} .

Exercise 1.5.

(i) S is isotropic if and only if SΩ ⊇ S.
(ii) S is symplectic if and only if V = S ⊕ SΩ (namely, the subspaces S and SΩ

span V and their intersection is trivial).
(iii) Moreover, if S is symplectic, then SΩ is also symplectic.

3. Hermitian structures

The standard Hermitian structure on Cn is

H(u, v) =
n

∑
j=1

ujvj

= g(u, v) + iω(u, v).
Its real part g is the standard inner product on R2n and its imaginary part ω is the
standard symplectic tensor on R2n, when we identify R2n with Cn.

A complex structure on a real vector space V is an automorphism J ∶V → V such that
J2 = −I. (It defines the multiplication by i =

√
−1.)

On a real vector space V can consider the following structures:

g an inner product,

ω a symplectic tensor,

J a complex structure.

The compatibility condition between these structures is

g(u, v) = ω(u, Jv) for all u, v.

The compatibility condition implies that any two of ω, g, J determine the third.

Example. On a real vector space V with a basis e1, f1, . . . , en, fn, the structures ω,
g, J that are given by

ω = ∑ e∗j ∧ f∗j , g = ∑ e∗j ⊗ e∗j + f∗j ⊗ f∗j , Jej = fj , Jfj = −ej
are compatible.

A Hermitian structure on a complex vector space (V, J) is a sesquilinear map H ×
V × V → C (sesquilinear means that it is complex linear in the second variable and

anti-complex-linear in the first variable) that satisfies H(v, u) = H(u, v) for all u
and v and that is positive definite (which means that H(u,u) > 0 for all u ≠ 0).

Remark.



18 1

(i) Such an H is also called a Hermitian inner product or, sometimes, a complex
inner product.

(ii) Some authors define omit positive-definiteness in their definition of a Her-
mitian structure (in contrast to Hermitian inner product).

(iii) Some authors require H to be complex linear in the first variable and anti-
complex-linear in the second variable.

Given bilinear forms ω and g on a complex vector space (V, J), the sum ω + ig is a
Hermitian structure if and only if ω is a symplectic tensor, g is an inner product, and
ω, g, J are compatible: g(u, v) = ω(u, Jv).

Exercise. Let V be a real vector space with a symplectic tensor ω, an inner product
g, and a complex structure J , that are compatible. Then there exists a real linear
isomorphism of V with Cn that takes ω, g, J to the corresponding standard structures
on Cn. (Proof: Gram-Schmidt for the Hermitian structure.)

Let V be a real vector space with a symplectic structure ω, an inner product g,
and a complex structure J , that are compatible. The automorphism groups of these
structures are the symplectic linear group, the complex general linear group, and the
orthogonal group:

Sp(V,ω) ∶= {real linear automorphisms A∶V → V
such that ω(Au,Av) = ω(u, v) for all u, v

} .

GLC(V ) ∶= {complex linear automorphisms A∶V → V }
= {real linear automorphisms A∶V → V such that AJ = JA } .

O(V ) ∶= {orthogonal A∶V → V }

= {real linear automorphisms A∶V → V
such that g(Au,Av) = g(u, v) for all u, v

} .

The intersection of any two of these three groups is the unitary group for the Her-
mitian structure H = g + iω:

U(V ) ∶= {complex linear automorphisms A∶V → V
such that H(Au,Av) =H(u, v) for all u, v

} .

For the standard structures on V = R2n, these groups are the standard groups
Sp(R2n), GLC(n), O(2n), and U(n).

Remark (Warning on notation). Take C2n = R2n ⊗C with the complex bilinear ex-
tension ωC of ω. In Lie theory, the intersection of U(2n) with the group Aut(C2n, ωC)
of complex linear automorphisms of C2n that preserve ωC is often called “the sym-
plectic group” and denoted Sp(2n). But this group is not isomorphic to our group
Sp(R2n) of symplectic linear automorphisms of R2n. Both of these groups are real
forms of Aut(C2n, ωC), in the sense that the complexifications of their Lie algebras
are equal to the Lie algebra of Aut(C2n, ωC). But, for example, the group Sp(2n)
from Lie theory is compact (it is a maximal compact subgroup of Aut(C2n, ωC)), and
our group Sp(R2n) is not compact.

The action of the general linear group GL(V ) on V induces
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● a linear action on the vector space of bilinear forms V × V → R, and
● a linear action on the vector space of linear maps V → V .

Namely, A ∈ GL(V ) takes the bilinear form η∶V ×V → R to (A−1)∗η, where ((A−1)∗η)(u, v) ∶=
η(A−1u,A−1v), and takes the linear map L∶V → V to A∗L, where A∗L ∶= A ○L ○A−1.
(We take (A−1)∗η and not A∗η because our convention is that, unless said otherwise,
groups actions are left actions and not right actions.)

These actions take symplectic forms to symplectic forms, inner products to inner
products, and complex structures to complex structures. For a vector space V with a
fixed choice of a symplectic structure ω, an inner product g, and a complex structure
J , the corresponding subgroups Sp(V,ω), GLC(V ), and O(V ) are the stabilizers in
GL(V ) of ω, J , and g.





CHAPTER 2

4. Compatible complex structures on a symplectic vector space

Fix a symplectic vector space (V,ω).

● An inner product g on V is compatible with ω if there exists a complex
structure J such that g(u, v) = ω(u, Jv) for all u, v.

● A complex structure J on V is compatible with ω if there exists an inner
product g such that g(u, v) = ω(u, Jv) for all u, v.

We denote

J (V,ω) ∶= {compatible complex structures J}, and

G(V,ω) ∶= {compatible inner products g}.

Thus, the compatibility condition g(u, v) = ω(u, Jv) defines a bijection

J (V,ω) → G(V,ω).

We have the following embeddings into (2n)2 dimensional vector spaces:

J (V,ω) ⊂ {linear maps V → V };

G(V,ω) ⊂ {bilinear forms V × V → R}.

We will show that J (V,ω) and G(V,ω) are embedded submanifolds of these ambient
vector spaces and the bijection J (V,ω) → G(V,ω) is a diffeomorphism. Moreover,
we will show that J (V,ω) and G(V,ω) are contractible, and, furthermore, that they
are diffeomorphic to a (lower dimensional) vector space.

The same formula g(u, v) = ω(u, Jv) defines a linear isomorphism J ↦ g from the
ambient vector space of linear maps V → V to the ambient vector space of bilinear
forms V × V → R. The bijection J (V,ω) ↦ G(V,ω) is the restriction of this linear
isomorphism, so it is a diffeomorphism,1 and in particular a homeomorphism.

1 A map from a subset X of a Euclidean space RN to a Euclidean space RK is smooth if each
point of X has a neighbourhood in RN on which the map extends to a smooth map to RK ; a map
from X to a subset Y of RK is smooth it if is smooth as a map to RK .

A composition of smooth maps is smooth. Smooth maps are continuous with respect to the
subset topologies.

A diffeomorphism from X to Y is a bijection that is smooth and whose inverse is smooth. An
embedding of X into RK is a diffeomorphism of X with a subset of RK .

A subset X of RN is an n dimensional embedded submanifold if and only if for each point of X
there exists a relative open neighbourhood U in X and an open subset Ω of Rn and a diffeomorphism
ϕ∶U → Ω. If so, the set of such diffeomorphisms is an atlas.

21
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Because J (V,ω) and G(V,ω) are homeomorphic, to show that they are contractible,
it is though to show that one of them is contractible.

Lemma (Crucial lemma, first version.). Fix a symplectic vector space (V,ω). Then
there exist a retraction

π∶ {inner products on V } Ð→ G(V,ω).

Recall that a retraction of a topological space to a subset is a map to the subset that
is continuous and that takes each element of the subset to itself.

Note that the set of inner products on V is convex in the vector space of bilinear
forms V × V → R.

Corollary. J (V,ω) is contractible.

Proof of the corollary. Fix any g0 ∈ G(V,ω). Define Ft∶ G(V,ω) → G(V,ω),
for t ∈ [0,1], by

Ft(g) = π ((1 − t)g + tg0) .
Since π is a retraction, F0(g) = g and F1(g) = g0 for all g ∈ G(V,ω). So Ft is a
homotopy between the identity map and a constant map. Having such a homotopy
means that G(V,ω) is contractible. So J (V,ω), being homeomorphic to G(V,ω), is
contractible too. �

Consider a real vector space V and a linear operator B∶V → V . The transpose of B
with respect to an inner product g is the operator BT such that g(u,Bv) = g(BTu, v)
for all u, v. The operator B is symmetric with respect to an inner product g if it is self-
adjoint: g(u,Bv) = g(Bu, v) for all u, v. This holds if and only if B is diagonalizable
and its eigenspaces are g-orthogonal. The operator B is symmetric and positive
definite with respect to g if, additionally, g(u,Bu) > 0 for all u ≠ 0. This holds if and
only if B is diagonalizable, its eigenspaces are g-orthogonal, and its eigenvalues are
positive.

We now prove the crucial lemma (first version), modulo two missing details. At this
point, the proof might not seem very intuitive.

Partial proof of the first version of the crucial lemma.

Start with an inner product g on V .

Define an operator A on V by g(u, v) = ω(u,Av).

Let AT be the transpose of A with respect to g.

Then ATA is positive definite and is symmetric with respect to g. So for all α ∈ R we
can take the operator (ATA)α. Namely, ATA is diagonalizable with positive eigenval-
ues λ1, . . . , λn, and we define (ATA)α to be the operator with the same eigenspaces
and with the eigenvalues λα1 , . . . , λ

α
n. Then (ATA)α is symmetric and positive definite

with respect to g, and any operator that commutes with ATA (which is equivalent
to preserving the eigenspaces of ATA) also commutes with (ATA)α.
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Let J = A(ATA)− 1
2 . We claim but not yet show that J ∈ J (V,ω); this is the first

missing detail.

We define π(g) to be the corresponding element of G(V,ω). Varying g, we get a map
π∶ {inner products on V } → G(V,ω). We claim but not yet show that this map is
continuous; this is the second missing detail.

If we start with g that is already in G(V,ω), then the operator A is the corresponding
complex structure J , and we obtain that π(g) = g. So π is a retraction. �

Furthermore, everything here is Sp(V,ω) equivariant:

The linear action of Sp(V,ω) on (V,ω) induces

● a linear action on the vector space of bilinear forms V ×V → R that preserves
the subset G(V,ω), and

● a linear action on the vector space of linear maps V → V that preserves the
subset J (V,ω).

Namely, A ∈ Sp(V,ω) takes the bilinear form g∶V × V → R to (A−1)∗g, where
((A−1)∗g)(u, v) ∶= g(A−1u,A−1v), and takes the linear map L∶V → V to A∗L, where
A∗L ∶= A ○ L ○A−1. (We take (A−1)∗g and not A∗g because our convention is that,
unless said otherwise, groups actions are left actions and not right actions.)

The linear isomorphism J ↦ g from the space of linear maps V → V to the space of
bilinear forms V ×V → R that is defined by the formula g(u, v) = ω(u, Jv) is Sp(V,ω)
equivariant. Because the Sp(V,ω) actions on these spaces take an inner product to an
inner product and a complex structure to a complex structure, it follows that these
actions preserves the subsets J (V,ω) and G(V,ω). Thus, the group Sp(V,ω) acts
on J (V,ω) and on G(V,ω), and the diffeomorphism J (V,ω) → G(V,ω) is Sp(V,ω)-
equivariant.

The retraction π∶ {inner products on V } → G(V,ω) that is constructed in the proof
of the crucial lemma is also Sp(V,ω)-equivariant. This equivariance will be made
explicit in our upcoming second version of this crucial lemma.

In contrast, the resulting contraction of J (V,ω) is not Sp(V,ω)-equivariant. It relies
on a choice of a Hermitian structure and is equivariant only with respect to the
corresponding unitary group.

Because J (V,ω) and G(V,ω) are diffeomorphic, to show that they are embedded
submanifolds of the corresponding ambient vector spaces and furthermore that they
are diffeomorphic to a (lower dimensional) vector space, it is enough to show this for
one of them. We will show this in a later section.

5. Polar decomposition of the linear symplectic group

Fix a vector space V . We can define Bα, for any α ∈ R and any linear operator B in
the set

{B∶V → V ∣ Spec(B) ⊂ C ∖ (−∞,0]},
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by the Cauchy formula

Bα ∶= 1

2πi ∮
z∈Γ

zα(zI −B)−1dz,

where Γ is a counterclockwise curve in C∖(∞,0] that surrounds Spec(B), and where
we take the branch of zα on C ∖ (−∞,0] in which x > 0 implies xα.

Notes:

● Recall that Spec(B) = {z ∣ /∃ (zI −B)−1}.
● A-priori, the formula defines a complex linear operator on V ⊗C. Moreover,

the same formula defines Bα for any α ∈ C.
● The integral is independent of the choice of such Γ. So we may choose Γ to

be symmetric about reflection through the real axis. With this choice and
when α ∈ R, we see that the complex linear operator Bα on V ⊗C is invariant
under complex conjugation (exercise!), so it restricts to a real linear operator
on V , which we continue to denote Bα.

Properties:

● If B is diagonalizable with positive eigenvalues λ1, . . ., λn, then Bα is diag-
onalizable with eigenvalues λα1 , . . ., λαn on the same eigenspaces.

● If B commutes with an operator A, so does Bα.
(If B is diagonalizable, commuting with B is equivalent to preserving the

eigenspaces of B.)
● For every operator A, we have (ABA−1)α = ABαA−1. I.E., B ↦ Bα is

equivariant with respect to conjugation.
(If B is diagonalizable, conjugating B has the same affect as acting on

the eigenspaces of B while keeping the eigenvalues.)
● The map (B,α) ↦ Bα is smooth (because the integrand is smooth in (B,α)

and the integral is over a fixed compact curve).
● With respect to any inner product ⟨, ⟩ on V ,

– If B is symmetric, so is Bα.
– If B is symmetric and positive definite, so is Bα.

We can similarly define f(B) for any analytic function f that is defined on an open
subset of C that contains Spec(B). In particular we will be interested in the functions
exp(B) (where the definition agrees with the one using power series) and log(B) (with
respect to a branch of the logarithm function that takes positive real numbers to real
numbers).

Criteria for Sp (Rn) and for sp(R2n).

Consider R2n with its standard inner product and standard symplectic tensor. I will
now resort to coordinates. In fact, the criteria below depend on a choice of inner
product but not on a choice of coordinates. For fun, you can try to rewrite them in
a coordinate-free way. The standard symplectic tensor is represented by the matrix

Ω = ( 0 I
−I 0

) . With our current conventions, this is the negative of the matrix that

represents the complex structures.
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We also consider the Lie algebra of the symplectic linear group:

sp(V,ω) ∶= {b∶V → V ∣ ω(bu, v) + ω(u, bv) = 0 ∀u, v}.

Criteria:

B ∈ Sp(R2n) if and only if BT = ΩB−1Ω−1.

b ∈ sp(R2n) if and only if bT = Ω(−b)Ω−1.

Indeed, ω(u, v) = uTΩv for all u, v, so ω(Bu,Bv) = uTBTΩBv for all u, v, and they
are equal if and only if Ω = BTΩB, which is equivalent to the condition above.

Similarly, b ∈ sp(V,ω) if and only if uT bTΩv+uTΩbv = 0 for all u, v, which is equivalent
to bTΩ +Ωb = 0, which is equivalent to the condition above.

Exercise 2.1.

(a) If B ∈ Sp(R2n), then BT ∈ Sp(R2n). If b ∈ sp(R2n), then bT ∈ sp(R2n).
(b) For any α ∈ R, if B is symmetric and positive definite and is in Sp(R2n),

then Bα is symmetric and positive definite and is in Sp(R2n).
(Use the criteria for Sp(R2n) and for sp(R2n).)

Polar decomposition of the symplectic linear group.

Consider Rk with the standard inner product. The map

O(k) × {symmetric positive definite matrices} ≅Ð→ GL(Rk)
given by

C,B ↦ A ∶= CB
is invertible, with inverse A↦ (C,B) with

B ∶= (ATA) 1
2 , C ∶= AB−1.

Exercise 2.2. Show that B is symmetric and positive definite and that C is orthog-
onal.

Since the map (C,B) ↦ CB and its inverse A↦ (A(ATA)− 1
2 , (ATA) 1

2 ) are smooth,
the polar decomposition map is a diffeomorphism.

Claim. If k = 2n is even then, in the polar decomposition, A is in Sp(R2n) if and
only if B and C are in Sp(R2n).

Exercise 2.3. Prove the claim. (Use the criterion for Sp(R2n).)

Recall that O(2n) ∩ Sp(R2n) = U(n). So, by the claim, the polar decomposition of
the general linear group restricts to a diffeomorphism

U(n) × {symmetric positive definite matrices in Sp(R2n)} ≅Ð→ Sp(R2n),

given by (C,B) ↦ A ∶= C ⋅ B, with inverse given by A ↦ (C,B) with B = (ATA) 1
2

and C = AB−1.

It will be convenient for us to consider the polar decomposition of the symplectic
linear group to be the analogous diffeomorphism with the factors reversed:
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{symmetric positive definite matrices in Sp(R2n)} ×U(n) ≅Ð→ Sp(R2n),
(B,C) ↦ B ⋅ C. This is again a diffeomorphism, and it is equivariant with respect
to the right action of U(n) by right multiplication on the U(n) factor in the domain
and on Sp(R2n) in the target.

We would like to show that the space J (V,ω) of compatible complex structures is
a manifold, diffeomorphic to a vector space. For simplicity, we take (V,ω) to be
R2n with its standard symplectic structure, J0 the standard complex structure, and
U(V ) = U(n).

The polar decomposition implies that inclusion into Sp(R2n) descends to a homeo-
morphism

{symmetric positive definite matrices in Sp(R2n)} → Sp(R2n)/U(n).
We would like to argue that this homeomorphism is in fact a diffeomorphism, and,
furthermore, that Sp(R2n)/U(n) is diffeomorphic to J (V,ω). To make sense of this,
we need to declare a manifold structure on Sp(R2n)/U(n) or at the very least some
structure that will allow us to make sense of “diffeomorphic”.

Here are two approaches.

Fact: Sp(R2n) (as a subset of the vector space of matrices) is a manifold, and there
exists a unique manifold structure on Sp(R2n)/U(n) such that the quotient map from
Sp(R2n) is a submersion. Accepting this fact, the polar decomposition implies that
the set of symmetric positive definite matrices in Sp(R2n) (as a subset of the vector
space of matrices) is also a manifold, and that inclusion into Sp(R2n) descends to a
diffeomorphism

{symmetric positive definite matrices in Sp(R2n)} → Sp(R2n)/U(n).

Alternatively: In the next section we show that the set of symmetric positive definite
matrices in Sp(R2n) (as a subset of the vector space of matrices) is diffeomorphic
to a vector space, hence is a manifold. The polar decomposition then implies that
Sp(R2n) (as a subset of the vector space of matrices) is a manifold, that there exists a
unique manifold structure on Sp(R2n)/U(n) such that the quotient map from Sp(R2n)
is a submersion, and that inclusion into Sp(R2n) descends to diffeomorphism from
{symmetric positive definite matrices in Sp(R2n)} to Sp(R2n)/U(n).

We also have a diffeomorphism

Sp(V,ω)/U(n) → J (V,ω),
which takes the coset of an element A of Sp(R2n) to the push-forward A∗J0 (=
AJ0A−1), where J0 is the standard complex structure on R2n. In an exercise in
the next section your will be checking that this map is well defined and is a bijection.
(Hints: the fact that this map is well defined and one-to-one follows from the fact that
U(n) is equal to the stabilizer of J0 in Sp(R2n). The fact that this map is onto follows
from the fact that every complex vector space with a Hermitian inner product has an
orthonormal basis, (which is proved by the Gram-Schmidt procedure for Hermitian
inner products) and is hence isomorphic to Cn = R2n with its standard Hermitian
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structure.) Please believe me for a moment that this map is not only a bijection but
in fact a diffeomorphism. (Also see the next section.) From the previous paragraphs
we conclude that J (V,ω) (as a subset of {linear maps V → V }) is diffeomorphic to
the space of symmetric positive definite matrices in Sp(R2n), and that these diffeo-
morphic spaces are manifolds, diffeomorphic to a vecor space—modulo one missing
detail: and it remains to show that the set of symmetric positive definite matrices in
Sp(R2n) is diffeomorphic to a vector space.

6. Compatible complex structures, again

Recall:

B ∈ Sp(R2n) if and only if BT = ΩB−1Ω−1.

b ∈ sp(R2n) if and only if bT = Ω(−b)Ω−1.

The exponential map on matrices defines a diffeomorphism

exp∶ {symmetric matrices} → {symmetric positive definite matrices};

its inverse is the logarithm map on matrices.

(The domain is a vector space; the target is an open subset of that vector space.)

Exercise.

(a) If b is symmetric and in sp(R2n), then B ∶= exp(b) is symmetric and positive
definite and in Sp(R2n).

(b) If B is symmetric and positive definite and in Sp(R2n), then b ∶= log(B) is
symmetric and in sp(R2n).

By the exercise, the diffeomorphism from symmetric matrices to symmetric positive
definite matrices restricts to a diffeomorphism

exp∶ {symmetric matrices
in sp(R2n) } → {symmetric positive definite matrices

in Sp(R2n) } .

So the set of symmetric positive definite matrices that are in Sp(R2n), (as a subset
of the space of all matrices,) is diffeomorphic to a vector space; in particular, it is a
manifold.

Substituting this diffeomorphism into the polar decomposition, we get a diffeomor-
phism

{symmetric matrices
in sp(R2n) } ×U(n) → Sp(R2n)

given by (b,C) ↦ (exp b) ⋅C, with inverse A↦ (b,C) where b = logB and C = B−1A,

where B = (ATA) 1
2 .
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Let (V,ω) be R2n with its standard symplectic structure and standard inner product;
let J0 be its standard complex structure.

Exercise 2.4.

(a) Prove that the map A ↦ A∗J0 from Sp(V,ω) to J (V,ω) descends to a
bijection Sp(V,ω)/U(n) → J (V,ω).

(b) Optional: Prove that J (V,ω) is closed in the space of linear maps V → V .
(c) Optional: Prove that the map A↦ A∗J0 from Sp(V,ω) to J (V,ω) is proper.

Remark.

(i) In the previous section we sketched why this map is a bijection; here I’d like
you to add just a bit of details to that sketch.

(ii) I remind you that (for a continuous map between topological spaces) being
proper means that the preimage of every compact set is compact. Note that
the properness of the map Sp(V,ω) → J (V,ω) implies the properness of the
map Sp(V,ω)/U(n) → J (V,ω).

Keeping in mind the action of Sp(R2n) on {linear maps V → V }, for a moment let’s
discuss smooth Lie group actions on manifolds. Let a Lie group G act on a manifold
M , let x be a point of M , and let H be the stabilizer of x. Then H is closed,
G/H is a manifold (in the sense that it has a unique manifold structure such that
the quotient map G → G/H is a submersion), and the map a ↦ a ⋅ x from G to
M descends to a bijection G/H → M . This bijection is an injective immersion.
Moreover, it is a weak embedding = diffeological embedding = diffeomorphism with
its image in the diffeological sense. In class we didn’t prove these facts nor even define
diffeological(=weak) embeddings or submanifolds.2

Consequently, J (V,ω) is a diffeological (= weakly embedded) submanifold of the
space of linear maps V → V . But if a weak embedding is also proper then it is an
embedding, so the exercise above implies that J (V,ω) is an embedded submanifold
of the space of linear maps V → V , and the map Sp(V,ω)/U(V ) → J (V,ω) is a
diffeomorphism. Since the domain of this map is diffeomorphic to a vector space
(namely to the vector space of symmetric matrices that are in sp(R2n)), so is J (V,ω).

Lemma (Crucial lemma, Version 2). There exists an Sp(V,ω)-equivariant smooth
strong deformation retraction from the set of inner products on V to G(V,ω).

2References for group actions and for diffeological embeddings = weak embeddings:
● Sections 5 (“Submanifolds”) and 7 (“Lie groups”) of John Lee’s “Introduction to smooth

manifolds”;
● Appendix B (“Proper actions of Lie groups”) of my 2002 book with Ginzburg and

Guillemin (google our names to find some online version); (and an erratum is posted
on my website;)

● My 2011 paper “Smooth Lie group actions are parametrized diffeological subgroups” with
Patrick Iglesias-Zemmour.
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This means that there exist Sp(V,ω)-equivariant maps

πt∶ {inner products on V } → {inner products on V }, 0 ≤ t ≤ 1,

such that

(1) (t, g) ↦ πt(g) is smooth.
(2) π0 is the identity map.
(3) πt(g) = g for all g ∈ G(V,ω).
(4) imageπ1 = G(V,ω).

The proof below is the same as in Version 1, except that it contains more details.

Proof of the crucial lemma. Start with any inner product g. Define A = Ag
by g(u, v) = ω(u,Agv). Note that g ↦ Ag is smooth.

Let AT be the transpose of A with respect to g. We claim that AT = −A. Indeed,

g(Au, v) = ω(Au,Av) = ω(−Av,Au) = g(−Av,u) = g(u,−Av).

So −A2, being equal to ATA, is symmetric and positive definite with respect to g,
and so it is contained in the domain of definition of B ↦ Bα for α ∈ R. Define πt(g)
by

πt(g)(u, v) = ω(u,A(−A2)− t
2v).

Note that (t, g) ↦ πt(g) is smooth and that π0 is the identity map. Also note that if
g ∈ G(V,ω) then A is the corresponding complex structure and so −A2 is the identity
map and πt(g) = g.

We claim that πt(g) is an inner product. Indeed, by the definition of A = Ag, we have
that

πt(g)(u, v) = g(u, (−A2)− t
2v).

Because (−A2) is symmetric and positive definite with respect to g, so is (−A2)− t
2 ,

which means that the right hand side of the above equality defines an inner product.

It remains to show that π1(g) ∈ G(V,ω). We already know that π1(g) is an inner
product, so we only need to show that

J ∶= A(−A2)− 1
2

is a complex structure. Indeed,

J2 = (A(−A2)− 1
2 )2 = A2((−A2)− 1

2 )2 = A2(−A2)−1 = −I
where the first equality is from the definition of J and the second is because (−A2,

hence) (−A2)− 1
2 commutes with A. �





CHAPTER 3

7. Weinstein’s proof of Darboux’s theorem using Moser’s method

Theorem 7.1 (Darboux’s theorem). Let (M,ω) be a 2n dimensional symplectic man-
ifold, and let m ∈ M . Then there exists a diffeomorphism ϕ∶U → Ω from an open
neighbourhood U of m in M to an open subset Ω of R2n such that ϕ∗ωstd = ω. I.E.,
writing ϕ = (x1, y1, . . . , xn, yn), we have ω = dx1 ∧ dy1 + . . . + dxn ∧ dyn.

You can find a proof of Darboux’s theorem that uses using coordinates and induc-
tion on n in Shlomo Sternberg’s 1964 book “Lectures on differential geometry” or
in Arnold’s 1978 “Mathematical methods of classical mechanics”. In 1969 Alan We-
instein gave a really nice proof of Darboux’s theorem, which also applies to Banach
manifolds (induction on the dimension won’t work when the dimension is infinite),
using a method that Jürgen Moser introduced in 1965. We will give here Weinstein’s
more general “local normal form”, which implies Darboux’s theorem. (Exercise: de-
duce Darboux’s theorem from Weinstein’s local normal form.)

Theorem 7.2. Let M be a manifold and N ⊆ M an embedded submanifold. Let ω0

and ω1 be closed two-forms on neighbourhoods of N in M that agree and are non-
degenerate at the points of N (i.e., on TM ∣N). Then there exist open neighbourhoods
U0 and U1 of N in M and a diffeomorphism ψ∶U0 → U1 such that ψ(x) = x for all
x ∈ N and such that ψ∗ω1 = ω0.

We begin to prove this theorem.

First, we interpolate:

ωt ∶= (1 − t)ω0 + tω1.

● ωt is a smooth family of two-forms, defined near N .
● ωt = ω0 = ω1 at the points of N . Consequently,

● ωt is non-degenerate along N , hence near N .
● d

dtωt = 0 at the points of N .

● d
dtωt =∶ αt is a smooth family of closed two-forms that vanish along N .

In fact, αt is independent of t.

We pause to state the relative Poincaré lemma.

Lemma 7.3 (Relative Poincaré lemma). Let i∶N ↪M be an embedded submanifold.
Let α be a closed k-form near N whose pullback to N is zero. Then there exists a
k − 1 form β near N such that dβ = α. If α vanishes along N , then β can be chosen
to also vanish along N .
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(Moreover, if αt is a smooth family of closed k forms near N whose pullback to N is
zero, then there exists a smooth family βt of k − 1 forms near N such that dβt = αt,
and if the αt vanish along N , then the βt can be chosen to also vanish along N .)

We defer the proof of the relative Poincaré lemma and return to the proof of Wein-
stein’s theorem.

Moser’s method tells us to look for a smooth family of diffeomorphisms ψt for 0 ≤ t ≤ 1,
defined on neighbourhoods of N , such that ψ∗t ωt = ω0 for all t. The corresponding
velocity vector field will be the time-dependent vector field Xt defined near N that is
defined by d

dtψt = Xt ○ ψt. Conversely, a time-dependent vector field Xt, for 0 ≤ t ≤ 1,
defined near N and vanishing along N , determines a time-dependent flow ψt, for
0 ≤ t ≤ 1, defined on neighbourhoods of N , such that ψ0 is the identity map, and such
that dψt

dt = Xt ○ ψt. This is a consequence of the fundamental theorem of ODEs. See
the “crash course on flows” in Chapter 0.

Moser’s strategy is to find a time-dependent vector field Xt that vanishes along N
such that the corresponding time-dependent flow ψt will satisfy d

dtψ
∗
t ωt = 0.

We differentiate the left hand side of this equation:

d

dt
(ψ∗t ωt) = ψ∗t (

d

dt
ωt +LXtωt)

where Xt is the velocity vector field of ψt. (For this equation, see the “crash course
on flows” in Chapter 0.)

By the relative Poincaré lemma,
d

dt
ωt = dβ

where β vanishes along N . By “Cartan’s magic formula”,

LXtωt = dιXtωt + ιXt dωt°
=0

.

So d
dt(ψ∗t ωt) = ψ∗t d (β + ιXtωt), and it is enough to require

β + ιXtωt = 0.

Given β, we solve for Xt. Explicitly, for m near N ,

ω♯t ∶TmM → T ∗
mM , v ↦ ιvωt

is smooth and invertible, and we take Xt = (ω♯t)−1(−β).

Since β = 0 along N , also Xt = 0 along N . So we can solve the ODE

Ψ0 = Identity,
d

dt
ψt =Xt ○ ψt

near N and obtain a family of diffeomorphisms ψt of neighbourhoods of N that fix
N . Since ψ∗0ω0 = ω0 and d

dtψ
∗
t ωt = 0 (by our choice of Xt), we obtain ψ∗t ωt = ω0 for all

t.

ψ ∶= ψ1 is then a diffeomorphism from a neighbourhood of N to a neighbourhood of
N that fixes N and that satisfies ψ∗ω1 = ω0, as required.
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In the following exercise you are expected to imitate the above arguments and repro-
duce a theorem of Jürgen Moser for which he introduced this method [7]. Here you
will not need the relative Poincaré lemma. You may want to review the material on
flows and on homology in Chapter 0. Here are two relevant facts.

● A time-dependent vector field that is compactly supported can be integrated
to a time-dependent flow that is defined everywhere on the manifold.

● On a k dimensional compact oriented manifold, integration over the manifold
induces an isomorphism from the kth de Rham cohomology to R.

(Yes, you may quote these facts. You may have seen these facts in an introductory
course on manifolds; let me know if you would like me to post a reference.)

Exercise 3.1. Let M be a two dimensional closed (i.e., compact) manifold. Let ω0

and ω1 be area forms on M that induce the same orientation on M and that have
the same total area:

∫
M
ω0 = ∫

M
ω1.

Then there exists a diffeomorphism ψ∶M →M such that ψ∗ω1 = ω0.

8. Homotopy property of the push forward

In preparation for proving the relative Poincaré lemma, we recall the following ho-
motopy property of the fibre integration operator:

Let V be a manifold. Let is∶V → [0,1] × V for 0 ≤ s ≤ 1, be x ↦ (s, x). Let
πV ∶ [0,1] × V → V be πV (s, x) = x. Then for every γ ∈ Ωk([0,1] × V ),

i∗1γ − i∗0γ = (πV )∗dγ + d(πV )∗γ,
where

(πV )∗∶Ωk([0,1] × V ) → Ωk−1(V )
is the pushforward = fibre integration operator. That is, (πV )∗ is a homotopy oper-
ator between i∗0 and i∗1 as morphisms of differential complexes

i∗0, i
∗
1 ∶ (Ω∗([0,1] × V ), d) → (Ω∗(V ), d).

We will soon give the details. We now show how to use this homotopy property to
obtain the relative Poincaré lemma.

Let N be a submanifold of M and let V be a tubular neighbourhood of N , identified
with a disc bundle in νN . Let rt∶V → V be fibrewise multiplication by t ∈ [0,1]. In
particular, r ∶= r0∶V → N is the projection map. Consider

R∶ [0,1] × V → V (t, v) ↦ tv.

Then for every α ∈ Ωk(V ),
i∗1R

∗α = α and i∗0R
∗α = r∗α.

Applying the homotopy property of the pushforward to γ ∶= R∗α, we obtain

α − r∗α = (πV )∗dR∗α + d(πV )∗R∗α.

If α is closed, then dR∗α = R∗dα = 0. If the pullback of α to N vanishes, then r∗α = 0.
So for such α we have α = d((πV )∗R∗α), and we can take β = (πV )∗R∗α. If also α
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vanishes at the points of N , then R∗α vanishes at the points of [0,1] × N , which
implies that β vanishes along N . (In coordinates, write α = ∑ fI,J(x, y)dxI ∧ dyJ
where yj are coordinates along N and xi are coordinates “normal” to N ; then R∗α =
∑ fI,J(tx, y)dxI ∧ dyJ . If fI,J(0, y) = 0 then R∗α = 0.)

We now give the details for the homotopy property of the pushforward.

Push-forward of differential forms. = fibrewise integration.

Define πV ∶ [0,1] × V → V by (t, x) ↦ x. Then

(πV )∗∶Ωk([0,1] × V ) → Ωk−1(V )

is integration with respect to the t ∈ [0,1] variable.

In local coordinates x1, . . . , xn on V , if

γ = ∑
i1,...,ik

fi1,...,ik(x, t)dxi1 ∧ . . . ∧ dxik + ∑
i1,...,ik−1

fi1,...,ik−1(x, t)dt ∧ dxi1 ∧ . . . ∧ dxik−1 ,

then

(πV )∗γ = ∑
i1,...,ik−1

[∫
1

0
fi1,...,ik−1(x, t)dt]dxi1 ∧ . . . ∧ dxik−1 .

- (πV )∗ is well defined;
- (πV )∗ is Diff(V )-equivariant.

More generally, for every fibre bundle π∶E → V with d dimensional fiber, we have

π∗∶Ωk
cv(E) → Ωk−d(V )

where the domain is the set of differential forms on E that are fiberwise compactly
supported. (“cv” stands for “compact vertically”.) See Bott and Tu, page 61 (with
a slightly different sign conventions).

Homotopy property.

Let it∶V → [0,1] × V be the map x↦ (t, x).

For every γ ∈ Ωk([0,1] × V ),

i∗1γ − i∗0γ = (πV )∗dγ + d(πV )∗γ.

That is, (πV )∗ is a homotopy operator between the morphisms of differential com-
plexes

i∗0 , i
∗
1 ∶ (Ω∗([0,1] × V ), d) ÐÐÐ→ (Ω∗(V ), d) .

It follows that i∗0 and i∗1 induce the same map in cohomology.
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Proof. Take γ expressed in coordinates as above. Applying the exterior deriva-
tive,

dγ = ∑
i1,...,ik,j

∂fi1,...,ik
∂xj

(x, t)dxj ∧ dxi1 ∧ . . . ∧ dxik

+ ∑
i1,...,ik

∂fi1,...,ik
∂t

(x, t)dt ∧ dxi1 ∧ . . . ∧ dxik

+ ∑
i1,...,ik−1,j

∂fi1,...,ik−1
∂xj

(x, t)dxj ∧ dt ∧ dxi1 ∧ . . . ∧ dxik−1 .

Applying (πV )∗,

(πV )∗dγ = ∑
i1,...,ik

[∫
1

0

∂fi1,...,ik
∂t

(x, t)dt]dxi1 ∧ . . . ∧ dxik

− ∑
i1,...,ik−1,j

[∫
1

0

∂fi1,...,ik−1
∂xj

(x, t)dt]dxj ∧ dxi1 ∧ . . . ∧ dxik−1 .

Taking the exterior derivative of the expression for (πV )∗ that we had earlier, and

switching the order of the operators ∂
∂xj

and ∫
1

0 ,

d(πV )∗γ = ∑
i1,...,ik−1,j

[∫
1

0

∂fi1,...,ik−1
∂xj

(x, t)dt]dxj ∧ dxi1 ∧ . . . ∧ dxik−1 .

Adding,

(πV )∗dγ + d(πV )∗γ = ∑
i1,...,ik

[∫
1

0

∂fi1,...,ik
∂t

(x, t)dt]dxi1 ∧ . . . ∧ dxik

= ∫
1

0

d

dt
[ ∑
i1,...,ik

fi1,...,ik(x, t)dxi1 ∧ . . . ∧ dxik] = ∫
1

0

d

dt
i∗t γ = i∗1γ − i∗0γ.

�

9. Lagrangian submanifolds and cotangent bundles

A linear subspace S of a 2n dimensional symplectic vector space (V,ω) is
symplectic if ω∣S is non-degenerate;
isotopic if ω∣S = 0, which is equivalent to S ⊆ Sω;
coisotropic if S ⊇ Sω;
Lagrangian if S = Sω, which is equivalent to S being isotropic of dimension n.

Here, ω∣S means ω∣S×S. We already defined symplectic and isotropic; we are now
defining coisotropic and Lagrangian. The fact that being Lagrangian is equivalent to
being isotropic of dimension n follows from the fact that S and Sω have complemen-
tary dimensions, which can be seen by considering the composition

V
ω♯

≅
//

kernel=Sω

88V ∗ restrict to S // // S∗
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and writing dimV = dim kernel + dim image.

A submanifold i∶N ↪ (M,ω) of a symplectic manifold is
symplectic if TN ⊆ TM ∣N is symplectic, i.e., i∗ω is symplectic;
isotropic if TN ⊆ TM ∣N is isotropic, i.e., i∗ω = 0;
coisotropic if TN ⊆ TM ∣N is coisotropic,
Lagrangian if TN ⊆ TM ∣N is Lagrangian, i.e., i∗ω = 0 and dimN = 2n.

TM ∣N is a symplectic vector bundle over N , which means that it is a vector bundle
equipped with a fibrewise symplectic tensor (which varies smoothly as a function of
the base coordinates). The subbundle TN is said to be “symplectic”, “isotropic”,
“coisotropic”, or “Lagrangian” if this property holds fibrewise.

Similar adjectives apply to an immersion i.

Let S be a Lagrangian subspace of a symplectic vector space (V,ω). The above
diagram induces a natural isomorphism V /S → S∗:

V
ω♯ //

kernel=Sω=S

33

��

V ∗ restrict to S // S∗

V /S

≅

99

The isomorphism V /S → S∗ is equivariant with respect to the action of linear sym-
plectomorphisms of V that preserve S. It is also “smooth in S” in the sense that it
defines a (smooth) isomorphism of vector bundles over the Lagrangian Grassmannian

Q //

##

D

{{
⎧⎪⎪⎨⎪⎪⎩

Lagrangian
subspaces
S ⊂ V

⎫⎪⎪⎬⎪⎪⎭
.

where Q∣S = V /S and D∣S = S∗.

(There are several ways to define the manifold structure on the Lagrangian Grassman-
nian that are equivalent to each other. If you are familiar with the manifold structure
on the ordinary Grassmannian of n-planes in V , we note that the Lagrangian Grass-
mannian is an embedded submanifold.)

This implies that a Lagrangian embedding i∶L↪ (M,ω) induces an isomorphism

TM ∣L/TL
≅Ð→ T ∗L

from the normal bundle νL of L in M to the cotangent bundle T ∗L of L.

The ordinary tubular neighbourhood theorem gives a diffeomorphism

neighbourhood of L in M
≅Ð→ neighbourhood of the zero section in νL.
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Alan Weinstein used his local normal form to make this a symplectomorphism with
respect to a natural symplectic structure on T ∗L, which we will now describe.

We recall that the cotangent bundle of a manifold N is the disjoint union

T ∗N = ⊔
x∈N

T ∗
xN.

We can write a point in the cotangent bundle as a pair (x,ϕ) where x ∈ N and
ϕ ∈ (TxN)∗. The projection map ψ∶T ∗N → N is π(x,ϕ) = x; its differential takes
a tangent vector ζ ∈ T(x,ϕ)(T ∗N) to a tangent vector π∗ζ ∈ TxN . The tautological
one-form α on T ∗N is

α∣(x,ϕ)∶ ζ ↦ ϕ(π∗ζ).

With respect to local coordinates q1, . . . , qn on N , and the corresponding adapted
coordinates q1, . . . , qn, p1, . . . , pn on T ∗N , we have

α = ∑
i

pidqi.

(The qi on the right are the pullbacks to T ∗N of the coordinate functions on N .)
This formula implies that the exterior derivative dα is symplectic. We define the
canonical symplectic form on the cotangent bundle to be −dα. (In the literature, the
sign convention varies.) In adapted coordinates,

ω = ∑
i

dqi ∧ dpi.

Thus, any adapted coordinates on T ∗N are canonical (=symplectic) coordinates.

(More details: given local coordinates q1, . . . , qn on an open subset U of N , every
covector ϕ ∈ T ∗

xN can be written uniquely as a linear combination of the covectors
dq1∣x, . . . , dqn∣x, and we define the functions p1, . . . , pn on T ∗N ∣U to be the coefficients
of this linear combination. The adapted coordinates on T ∗N ∣U are (q1, . . . , qn, p1, . . . , pn),
where we use the same symbols q1, . . . , qn to denote the pullbacks to T ∗N ∣U of the co-
ordinate functions on U . The topology on T ∗N is defined to be the smallest topology
such that the sets T ∗N ∣U are open and the adapted coordinates q1, . . . , qn, p1, . . . , pn
are continuous. The manifold structure on T ∗N is defined by the atlas whose maps
are the functions (q1, . . . , qn, p1, . . . , pn)∶T ∗N ∣U → R2n.)





CHAPTER 4

Almost complex structures

10. Weinstein’s Lagrangian tubular neighbourhood theorem

Theorem (Weinstein’s Lagrangian tubular neighbourhood theorem). Let L be a La-
grangian submanifold of a symplectic manifold (M,ω). Then there exists a symplec-
tomorphism from a neighbourhood of L in M to a neighbourhood of the zero section
in T ∗L whose restriction to L is the zero section.

The proof uses the following lemma:

Lemma. There exists a Lagrangian splitting TM ∣L = TL⊕E.

This means that there exists a Lagrangian sub-bundle E of TM ∣L that is comple-
mentary to TL.

Sketch of proof of the lemma. The “crucial lemma” implies that there ex-
ists a compatible almost complex structure J ∶TM → TM ; the next section contains
some details. Take E = J(TL). (Exercise: check that this E is Lagrangian and is
complementary to TL.) �

Given an E as in the lemma, the symplectic form ω gives a nondegenerate pairing
between TL and E. Using this to identify E with T ∗L, we obtain a Lagrangian
splitting of symplectic vector bundles over L,

TM ∣L ≅ TL⊕ T ∗L,

which at each x ∈ L takes the given symplectic tensor ω∣x on TxM to the standard
symplectic tensor on TxL⊕ T ∗

xL, which is

((v1, ϕ1), (v2, ϕ2)) ↦ ϕ2(v1) − ϕ1(v2)
for vectors v1, v2 ∈ TxL and covectors ϕ1, ϕ2 ∈ T ∗

xL.

For any vector bundle E′ → L we have

TE′∣L = TL⊕E′

where on the left hand side we identify the zero section with L and on the right hand
side we identify the tangent at 0 to the fibre E′

x with E′
x. Two special cases are

T (νL)∣L = TL⊕ νL = TL⊕ T ∗L

(with the identification νL = T ∗L that is induced from ω), and

T (T ∗L)∣L = TL⊕ T ∗L.

39
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In the last equation, evaluating the canonical symplectic form ωcan on T ∗L at the
points of the zero section again gives the standard pairing on TxL⊕ T ∗

xL.

The ordinary tubular neighbourhood theorem gives a diffeomorphism ψ from a neigh-
bourhood of L in M to a neighbourhood of L in νL whose restriction to L is the
identity map, where we identify L with the zero section. The differential of ψ is then
an isomorphism of vector bundles

dψ∣L∶TM ∣L → T (νL)∣L = TL⊕ νL.

Moreover, in the ordinary tubular neighbourhood theorem we can prescribe the split-
ting: for any splitting TM ∣L ≅ TL ⊕ νL, we can choose the diffeomorphism ψ such
that dψ∣L induces this splitting.

In our case, having chosen a Lagrangian splitting TM ∣L ≅ TL ⊕ T ∗L, we obtain
a diffeomorphism ψ from a neighbourhood of L in M to a neighbourhood of L in
νL = T ∗L such that

dψ∣L∶TM ∣L → TL⊕ T ∗L
is the Lagrangian splitting that we fixed. We then have ψ∗ωcan∣x = ω∣x on TxM for
all x ∈ L, where ωcan is the canonical symplectic form on T ∗L.

Weinstein’s local normal form then gives a diffeomorphism

ψ̃∶ {neighbourhood of L in M} → {neighbourhood of L in M}

such that ψ̃∗(ψ∗ωcan) = ω and ψ̃∣L = IdL. Composing, we obtain a diffeomorphism

ψ ○ ψ̃∶ {neighbourhood of L in M} → {neighbourhood of L in T ∗L}

that satisfies (ψ ○ ψ̃)∗ωcan = ω. This completes the proof of Weinstein’s Lagrangian
tubular neighbourhood theorem.

11. Compatible almost complex structures on a symplectic manifold

An almost complex structure on a manifold M is a smooth fibrewise complex
structure on TM , i.e., a bundle automorphism J ∶TM → TM such that J2 = −I.

A compatible almost complex structure on a symplectic manifold (M,ω) is an al-
most complex structure J such that J ∣x is a compatible complex structure on the
symplectic vector space (TxM,ω∣x) for each x ∈M . We denote

J (M,ω) ∶= {compatible complex structures on (M,ω)}.

Lemma. Let (M,ω) be a symplectic manifold. Then J (M,ω) is non-empty. More-
over, J (M,ω) is contractible.

Proof. The “crucial lemma” of Chapter 2 gives, for each x ∈M , a retraction πx
from the space of inner products on TxM to the space of compatible inner products
on (TxM,ω∣x). These fit together into a retraction

π∶ {Riemannian metrics on M} → {compatible Riemannian metrics on (M,ω)}
where as before “compatible” means compatible on each (TxM,ω∣x).
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Let g0 be any Riemannian metric on M . Then π(g0) is a compatible Riemannian
metric on M , and we get an element of J (M,ω) by taking the corresponding almost
complex structure. Thus, J (M,ω) is non-empty.

Let g0 be any compatible Riemannian metric on M . Then g ↦ π((1 − t)g + tg0), for
0 ≤ t ≤ 1, defines a homotopy from the identity map to a constant map, on the space
of compatible Riemannian metrics on M . Identifying the space of compatible metrics
with J (M,ω), we obtain a contraction of J (M,ω). �

Remark. In the above lemma, some details of the statement and of the proof are
implicit.

Recall that a Riemannian metric is a smooth choice of inner product on each TxM .
In local coordinates, an inner product is represented by a matrix-valued function of
the coordinates, and this function is required to be smooth.

The first detail is that π(g0) satisfies the smoothness condition in the definition of a
Riemannian metric. This is a consequence of the smoothness of the retraction in the
“crucial lemma”. (Exercise: fill the details.)

Next, the topology that we take on J (M,ω), which was not made explicit in the
statement of the lemma, is the C∞ topology. In this topology, a sequence of almost
complex structures converges if all its derivatives of all orders converge uniformly on
compact subsets. More precisely, in a local coordinate chart ϕ = (x1, . . . , xk)∶U → Ω
where k = 2n = dimM , the almost complex structure becomes a smooth map Jϕ∶U →
Rk×k from the open subset U of M to the space of k × k matrices. For every multi-

index I = (i1, . . . , ik) ∈ Zk≥0, let ∣I ∣ = i1 + . . . + ik, and denote DI = ∂ ∣I∣

∂x
i1
1 ⋯∂xik

k

. For every

multi-index I, chart ϕ∶U → Ω, compact subset K ⊂ U , and open subset O ⊂ Rk×k,
consider the set

{J ∈ J (M,ω) ∣ DIJϕ∣q ∈ O for all q ∈K} .
These sets form a sub-basis for the C∞ topology on J (M,ω).

Recall that a retraction from a topological space to a subspace is a continuous map
from the ambient space to the subspace that restricts to the identity map on the
subspace. With the C∞ topology, the map π satisfies the continuity requirement in
the definition of a retraction. We omit the details.

Moreover, the construction in the proof of the “crucial lemma, Version 2” gives a
strong deformation retraction from the space of Riemannian metrics on M to the
space of compatible Riemannian metrics on M . This means that it gives a continuous
family of maps Ft from the space of Riemannian metrics on M to itself such that F0 is
the identity map, F1 is a retraction to the space of compatible Riemannian metrics,
and each Ft restricts to the identity map on the space of compatible Riemannian
metrics.

Furthermore, the deformation retraction Ft is smooth in the diffeological sense. This
means that if we start with a finite dimensional smooth family of Riemannian metrics
then we obtain a finite dimensional smooth family of Riemannian metrics. That is,
if for each y = (y1, . . . , yr) in some open subset V of some Euclidean space Rr we
have a Riemannian metric gy such that in local coordinates x1, . . . , x2n the matrix
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that represents gy depend smoothly on (y1, . . . , yr, x1, . . . , x2n), then the matrix that
represents Ft(gy) depends smoothly on (t, y1, . . . , yr, x1, . . . , x2n).

Exercise 4.1 (Flexibility of compatible almost complex structures). Let (M,ω) be
a symplectic manifold and U ⊂ M an open subset. Let J1 be a compatible almost
complex structure on an open subset of M that contains the closure U of U . Then
there exists a compatible almost complex structure J2 on (M,ω) that coincides with
J1 on U .

Hint: use a partition of unity.

12. An application to Lagrangian intersections

Here are two important examples of Lagrangian submanifolds.

● Let (M,ω) be a symplectic manifold. A diffeomorphism f ∶M →M is a sym-
plectomorphism if and only if1 its graph {(x, f(x)) ∣ x ∈M} is a Lagrangian
submanifold of (M ×M, (−ω) ⊕ ω).

● Let N be a manifold. A one-form β on N is closed if and only if 2 its graph
{(x,β∣x) ∣ x ∈ N} is a Lagrangian submanifold of T ∗N .

Here is an application of Weinstein’s Lagrangian tubular neighbourhood theorem.

Theorem 12.1. Let (M,ω) be a simply connected compact symplectic manifold of
dimension 2n ≥ 2. Let f ∶M →M be a C1-small symplectomorphism. Then f has at
least two fixed points.

The statement of the theorem means that there exists some C1-neighbourhood3 of the
identity map such that every f in this neighbourhood has at least two fixed points.

We now prove the theorem.

By Weinstein’s local normal form, we can identify a neighbourhood U of the diagonal
{(x,x)} in (M ×M, (−ω)⊕ω) with a neighbourhood of the zero section in T ∗M , such
that the diagonal map x↦ (x,x) ∈M×M becomes the zero section x↦ (x,0) ∈ T ∗M .

If f ∶M → M is a C1 small diffeomorphism, then the map x ↦ (x, f(x)) from M to
M ×M is C1 close to the diagonal map x ↦ (x,x). Weinstein’s local normal form

1This is a consequence that the pullback of (−ω) ⊕ ω by the map x↦ (x, f(x)) is −ω + f∗ω.
2This is a consequence of the fact that the pullback of the tautological one-form on T ∗N by the

map (x↦ β∣x)∶N → T ∗N is equal to β.
3The C1 topology can be taken to be the subset topology when we embed the space of dif-

feomorphisms f ∶M → M into the space of continuous maps TM → TM by f ↦ df and take the
compact-open topology on the ambient space. If we fix a chart ϕ = (x1, . . . , xk)∶U → Ω ⊆ Rk (with
k = 2n) on M , a compact subset K of U , and an ε > 0, the set of diffeomorphisms f that take K into
U and whose coordinate representation (f1(x1, . . . , xk), . . . , fk(x1, . . . , xk)) satisfies ∣fj(x) − xj ∣ < ε
and ∣∂fj

∂xi
(x)∣ < ε for all j and i and for all x ∈ K is a C1 neighbourhood of the identity map; the

finite intersections of such sets form a local base for the C1 topology at the identity map.
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takes this map to a map M → T ∗M that is C1 close to the zero section. Its image is
then the graph of a one-form4 β.

The fixed points of f exactly correspond to the zeros of β.

If f is a symplectomorphism, then its graph is Lagrangian in M ×M , so the graph of
β is Lagrangian in T ∗M , and so β is closed. If M is simply connected, every closed
one-form is exact. Writing β = dh for some smooth function h∶M → R, we see that β
must have at least two zeros, obtained from the minimum and maximum of h on the
compact manifold M . So f must have at least two fixed points.

This argument shows a stronger result: on a simply connected symplectic manifold
(M,ω), a C1 small symplectomorphism has at least as many points as the minimum
number of critical points that a smooth function on M must have.

4The composition of the map M → T ∗M with the projection to M is C1 close to the identity
map, so it is a diffeomorphism of M . Precomposing the map M → T ∗M with the inverse of this
diffeomorphism gives a section of T ∗M ; take β to be this section.





CHAPTER 5

Holomorphic maps

13. Complex manifolds

Definition: a complex atlas is an atlas whose maps take values in Cn and whose
transition maps are holomorphic. Complex atlases are equivalent if their union is a
complex atlas. A complex manifold is a manifold equipped with an equivalence class
of complex atlases.

Example. The complex projective space CPn is a complex manifold, with the charts
ϕj ∶Uj → Cn on Uj ∶= {[z0 ∶ z1 ∶ . . . ∶ zn] ∣ zj ≠ 0} given by ϕj([z0 ∶ z1 ∶ . . . ∶ zn]) =
( z0zj , . . . ,

zj−1
zj
,
zj+1
zj
, . . . , znzj ).

A function f ∶Ω → C on an open subset Ω of C is holomorphic if and only if it is
C1 and its differential df ∣x∶C → C is complex linear for every x ∈ Ω. Indeed, writing
z = x + iy and f = g + ih, the function f is holomorphic if and only if its real and
imaginary parts g and h are C1 and satisfy the Cauchy-Riemann equations ∂g

∂x =
∂h
∂y

and ∂g
∂y = −

∂h
∂x . These equations can be written as df ○ i = i ○ df , which means that the

real linear map df is also complex linear.

For a function f = (f (1), . . . , f (m))∶Ω → Cm on an open subset Ω of Cn, being holo-
morphic can be defined as holomorphicity of each f (i)(z1, . . . , zn) separately in each
zj. A function f ∶Ω → Cm is holomorphic if and only if df ∣x∶Cn → Cm is complex
linear for each x ∈ Ω, i.e., df ○ j = J ○ df where j∶Cn → Cn and J ∶Cn → Cn are the
complex structures (multiplications by

√
−1)).

A complex manifold M is naturally almost complex: for any point x ∈ M and any
complex coordinate chart U → Ω with x ∈ U ⊆M and Ω ⊆ Cn, the differential of the

chart is a real linear isomorphism TxM
≅Ð→ Cn. The induced complex structure on

TxM is independent of the chart because the differentials of the transition maps are
complex linear.

A map ψ∶M → N between almost complex manifolds is defined to be holomorphic
if the differential dψ∣x∶TxM → Tf(x)N is complex linear for every x ∈ M . Often
in the literature this property is called “pseudo-holomorphic”, but in fact the term
“holomorphic” is not ambiguous: by the above discussion, if the almost complex
structures on M and N come from complex structures, then ψ is holomorphic in this
new sense if and only if it is holomorphic in the usual sense, when written in terms
of the coordinates of complex atlases.

On a 2n dimensional almost complex manifold (M,J),
45
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● typically there exist many holomorphic curves (i.e., holomorphic maps from
Riemann surfaces to M , for example with domain a disc D2 ⊂ C);

● if dimM > 2, typically there are no holmorphic functions M → C.

If near each point there exists a biholomorphic map U → Cn, then the set of all
such maps is a maximal complex atlas. (“Biholomorphic” means that the map is a
bijection and it and its inverse are holomorphic.) Thus, on a complex manifold, the
almost complex structure determines the complex structure.

An almost complex structure J ∶TM → TM is integrable if it comes from a complex
structure.

An almost complex structure on a two-dimensional manifold is always integrable. In
two dimensions, an almost complex structure is equivalent to a conformal structure
(inner product up to scaling) together with an orientation. Moreover, in two dimen-
sions, every conformal structure admits “isothermal” coordinates, i.e., coordinates in
which the conformal structure is represented by the standard Euclidean metric. Find-
ing such coordinates amounts to solving the so-called Beltrami equation. favourite

reference?

More generally, the obstruction to integrability of an almost complex structure J is
given by the Nijenhuis tensor NJ ∶TM ⊗ TM → TM , which is characterized by the
fact that, for vector fields X and Y ,

NJ(X,Y ) = [JX,JY ] − J[JX,Y ] − J[X,JY ] − [X,Y ].

(Exercise: this is a tensor. I.E. its value at a point of M depends only on the values of
the vector fields X and Y at that point.) The Newlander-Nirenberg theorem asserts
that J is integrable if and only if NJ ≡ 0. See Hörmander’s book on complex analysis
or—for the real analytic case—the book by Kobayashi-Nomitzu. If the dimension of
the manifold is two, then the vanishing of NJ can be seen by noting that (in any
dimension) NJ is antisymmetric and NJ(X,JX) = 0.

A Kähler manifold is a symplectic manifold (M,ω) equipped with a compatible
complex structure. (For complex geometers, a Kähler manifold is a complex manifold
equipped with a fibrewise Hermitian structure on TM whose imaginary part—which
is a nondegenerate two form—is closed. This is the same as our definition; the only
difference is that we start with the symplectic structure and they start with the
complex structure.) An almost Kähler manifold is simply a symplectic manifold
equipped with a compatible almost complex structure.

A submanifold N of a complex manifold M is complex if and only if it is almost
complex, i.e., J(TN) = TN where J is the almost complex structure on M .

A complex submanifold N of a Kähler manifold is Kähler, and in particular symplec-
tic. (By compatibility, if v is a non-zero vector in TN , then Jv is a “friend” of v in
TN .)

We will later show that CPn is Kähler; its symplectic form is called the Fubini-Study
form. It will follow that every smooth projective variety is symplectic.
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14. The Fubini-Study form on CPn.

Recall that the complex projective space CPn is defined as the set of one dimensional
complex subspaces of Cn+1 and can be identified with the following quotients.

CPn = (Cn+1 ∖ {0})/C× = S2n+1/S1.

There exists a unique complex manifold structure on CPn such that the quotient map
Cn+1 ∖ {0} → CPn is holomorphic. It is given by the charts

CPn ⊃ Uj ∶= {zj ≠ 0}
ϕjÐ→ Cn , [z0, z1, . . . , zn] ↦ (w0,w1, . . . ,wj−1,wj+1, . . . ,wn)

where w` = z`/zj. Moreover, the quotient map Cn+1 ∖ {0} → CPn is a (holomorphic)
principal C×-bundle: a local trivialization from the preimage of Uj to Uj ×C× is given
by (z0, z1, . . . , zn) ↦ ([z0, z1, . . . , zn], zj).

Similarly, the quotient map π∶S2n+1 → CPn is a principal S1 bundle: a local trivial-

ization from π−1Uj to Uj × S1 is given by (ζ0, ζ1, . . . , ζn) ↦ ([ζ0, ζ1, . . . , ζn], ζj∣ζj ∣).

There exists a unique symplectic structure ωFS on CPn such that π∗ωFS = i∗ωCn ,
where i and π are the inclusion and quotient maps:

S2n+1 �
� i //

π
��

Cn+1

CPn

On U0, we can see this directly by considering the commuting diagram

B2n(1) × S1

projection

��

≅ // π−1U0

π

��
B2n(1) ≅ // U0 ,

where B2n(1) is the open unit sphere in Cn and where the top horizontal arrow is
the S1-equivariant diffeomorphism

( ζ , eiθ ) ↦ (
√

1 − ∣ζ ∣2 , ζ) ⋅ eiθ

You can (please do!) check that the pullback of i∗ωCn+1 under this diffeomorphism is

ωCn ⊕0. In particular, the bottom arrow ζ ↦ [
√

1 − ∣ζ ∣2, ζ] is a symplectic embedding
B2n(1) ↪ CPn whose image is U0, and its inverse is a Darboux chart on U0. A similar
argument holds on U1, . . . , Un.

In fact, we obtain CPn = B2n(1) ⊔CPn−1, even symplectically.

Moreover, CPn is Kähler (see below). As mentioned earlier, this implies that smooth
complex projective varieties are Kähler. (Note: some people say “projective” to mean
that there exists a projective embedding. To obtain the two-form one needs to fix a
projective embedding.)

Here is another approach for the existence of ωFS.
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Reminders about principal bundles:

Let G be a Lie group. A principal G bundle is a manifold P and a (right) G action
on P and a manifold B and a G-invariant map π∶P → B such that for every p ∈ B
there exists a neighbourhood U and a diffeomorphism (a “local trivialization”)

π−1U → U ×G

that is G equivariant and whose composition with the projection map U × G → U
is π.

Theorem. Let a compact Lie group G act freely on a manifold P . Then there exists
a unique manifold structure on B ∶= P /G such that the quotient map π∶P → B is a
submersion. Moreover, P → B is a principal G bundle.

The theorem follows from the slice theorem for compact group actions. The conclu-
sion of the theorem remains true if the group G is not compact but the action of G
is proper. See [3, Appendix B].

In the case of CPn we have

π∶S2n+1 → CPn.

The S1 action is generated by the vector field ξ =
n

∑
j=0

xj
∂

∂yj
− yj

∂

∂xj
. We have kerπ =

R ⋅ ξ at each point of S2n+1. The pullback map gives a bijection

{differential forms on CPn} π∗

≅
// {basic forms on S2n+1}

where a differential form is basic if

● α is S1 horizontal (i.e., the contraction of α with ξ vanishes: ιξα = 0); and
● α is S1 invariant (equivalently, the Lie derivative of α along ξ vanishes: Lξα = 0).

To obtain the Fubini Study form, we need check that i∗ωCn+1 is basic. S1-invariance
follows from that of ωCn+1 . We now check that i∗ωCn+1 is horizontal:

ιξi
∗ωCn+1 = i∗ι(∑xj

∂

∂yj
− yj

∂

∂xj
)∑dxk ∧ dyk

= −i∗(∑xjdxj + yjdyj)

= −i∗(1

2
d∑(xj2 + yj2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡ 1 on S2n+1

)

= 0

We now check that ωFS is compatible with the complex structure.

Consider the complex sub-bundle

W ⊂ TCn+1∣S2n+1
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given by

Wz = TzS2n+1 ∩ iTzS2n+1

= z⊥ with respect to the complex inner product

⊂ TzCn+1 = Cn+1.

Since dπz ∶Wz → Tπ(z)CPn is a complex linear isomorphism for all z (by holomorphicity
of π), the almost complex structure J ∶TCPn → TCPn is induced from J ∶W →W .

Since W is complementary to the (tangents of the) fibres of the projection π∶S2n+1 →
CPn, the two-form ωFS descends from ωCn+1 ∣W .

Because J and ωCn+1 are compatible on the fibres of W , we conclude that the complex
structure and ωFS are compatible on CPn.

15. Differential forms and vector fields on almost complex manifolds

Let z1, . . . , zm be local complex coordinates on a complex manifold. Write zj = xj+iyj
and zj = xj − iyj. Then, at each point q of the domain of the coordinate chart,

dzj = dxj + idyj and dzj = dxj − idyj
are a basis for the complex vector space

{real linear functionals TqM → C}
≅ {complex linear functionals TqM ⊗C→ C}
≅ T ∗

qM ⊗C.

The dual basis, to TM ⊗C, is (at each point)

∂

∂zj
= 1

2
( ∂

∂xj
− i ∂
∂yj

) and
∂

∂zj
= 1

2
( ∂

∂xj
+ i ∂
∂yj

) .

The standard symplectic structure on Cn can be written as i
2 ∑dzj ∧ dzj.

A function f to C is holomorphic if and only if ∂f
∂zj

= 0 for all j; this is just another

way of writing the Cauchy-Riemann equations.

We have df = ∂f + ∂f where ∂f = ∑ ∂f
∂zj
dzj and ∂f = ∑ ∂f

∂zj
dzj.

A complex formula for Fubini-Study (see Homework 12 of Cannas da Silva’s book
[2]): the pullback of ωFS via the map

Cn → CPn z ↦ [1, z]

equals
i

2
∂∂ log(1 + ∣z∣2).

(Warning: Writing ζj = zj√
1+∣z∣2 , we have ωFS = ∑j d

xj√
1+∣z∣2 ∧ d

yj√
1+∣z∣2 . But ζj are not

complex coordinates. So we cannot write this as i
2 ∑j ∂ζj ∧ ∂ζj.)
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On an almost complex manifold, typically there do not exist holomorphic functions
from open subsets ofM to C. But there exist “approximately holomorphic” functions,
and these can be extremely useful, as we learned from Donaldson []. To start, if
(M,w,J) is an almost Kähler manifold and f ∶M → C is a smooth function such that
∣∂f ∣ < ∣∂f ∣ whenever f = 0, then {f = 0} is a symplectic submanifold of M . This
follows from the exercise below.

Exercise 5.1. Let A∶Cn → C be a real linear map. Let A′ = 1
2(A−iAi) and A′′ = 1

2(A+
iAi) be its complex linear and anti-complex-linear parts. Assume that ∣A′′∣ < ∣A′∣.
Then codimR(kerA) = 2, and kerA is symplectic.
(Disclaimer: I’m not sure what’s the best way to solve this.)

For a C1 map f ∶ (M1, J1) → (M2, J2) between almost complex manifolds, we define
∂f = 1

2(df + J2 ○ df ○ J1). The map f is holomorphic if and only if ∂f = 0.

For a C1 map u∶ (Σ, j) → (M,J) from a Riemann surface to an almost complex
manifold, we often use the notation ∂J to emphasize the dependence on the choice of
J . The map u is holomorphic if and only if ∂Ju = 0. Such a u is called a holomorphic
curve, or a pseudo-holomorphic curve, or a J-holomorphic curve.

On an almost complex manifold M , the complexification of J defines a fibrewise
complex linear map J ∶TM ⊗ C with J2 = −I. We have a decomposition TM =
(TM)1,0⊕(TM)0,1 into the i and −i eigenspaces of J . We have (TM)1,0 = {v−iJv ∣ v ∈
TM} and (TM)0,1 = {v + iJv ∣ v ∈ TM}. In the integrable case, in terms of complex
coordinates z1, . . . , zn, we have (TM)1,0 = span{ ∂

∂zj
} and (TM)0,1 = span{ ∂

∂zj
}.

Dually, we still have the decomposition T ∗M⊗C = (T ∗M)1,0⊕(T ∗M)0,1 and, on com-
plex valued differential forms, Ωm = ⊕k+`=mΩk,`. But the exterior derivative usually
does not map Ωk,` into Ωk+1,` ⊕Ωk,`+1.

Differential forms on a complex manifold decompose as Ωm(M ;C) = ⊕k+`=mΩk,`(M ;C)
where Ωk,` consists of those differential forms that in local coordinates can be written
as ∑aIJ(z)dzi1 ∧⋯∧dzik ∧dzji ∧⋯∧dzj` . The exterior derivative on differential forms

then decomposes as d = ∂+∂ where ∂∶Ωk,` → Ωk+1,` and ∂∶Ωk,` → Ωk,`+1. The equation

d2 = 0 implies that ∂2 = 0, ∂
2 = 0, and ∂∂ = −∂∂.

Vector fields with complex coefficients are smooth sections of TM ⊗C. The space of
such vector fields decomposes as Vect(M ;C) = Vect1,0(M) ⊕ Vect0,1(M). The ordi-
nary Lie brackets of vector fields extends to a Lie bracket operation on Vect(M ;C).
If the almost complex structure J is integrable, then each of the subspaces Vect1,0 and
Vect0,1 is closed under the Lie brackets (in other words, the sub-bundles T 1,0M and
T 0,1M are involutive). In complex coordinates, [a(z) ∂

∂zj
, b(z) ∂

∂zk
] = a ∂b

∂zj
d
zk
− b ∂a∂zk

d
zj

.

The converse is true too: J is integrable if and only if [Vect1,0,Vect1,0] ⊆ Vect1,0. This
inclusion is equivalent to the vanishing of the Nijenhuis tensor.



CHAPTER 6

Homological aspects of symplectic manifolds

16. Review of homology and cohomology

Here, good references are Chapter 18 of John Lee’s “Introduction to Smooth Mani-
folds” [6], and Chapters 2.1 and 3.1 of Allen Hatcher’s “Algebraic Topology” [5].

Homology.

Let M be a manifold. A singular k-chain in M is a formal finite integer combination

∑mj σj

of continuous maps σj ∶∆k → M from the standard k-simplex to M . The boundary
map ∂ takes singular k-chains to singular (k−1)-chains for each k. Cycles are chains
with zero boundary. Singular homology is

Hk(M) = {k-cycles}/{k-boundaries}.

Smooth singular homology is defined similarly with smooth maps σj ∶∆k → M . The
natural map from smooth singular homology to Hk(M) is an isomorphism.

Functoriality: f ∶M →M ′ induces f∗∶Hk(M) →Hk(M ′).
● (g ○ f)∗ = g∗ ○ f∗;
● if f = identityM then f∗ = identityHk(M);
● if f is a diffeomorphism then f∗ is an isomorphism.

If M is an oriented closed connected n-dimensional manifold then Hn(M) ≅ Z, gen-
erated by the fundamental class [M].

Consequently, an oriented closed embedded k-submanifold of M , and more generally
a continuous map from an oriented closed manifold to M , represents a k-cycle in M .

If M,M ′ are oriented closed connected manifolds of the same dimension, the degree
of a map Ψ∶M → M ′ is the integer d ∈ Z such that Ψ∗[M] = d[M ′]. If Ψ is an
orientation preserving diffeomorphism then d = 1; if Ψ is an orientation reversing
diffeomorphism then d = −1.

(A finite triangulation of an oriented closed connected k-manifold gives a k-cycle that
represents the fundamental class. But the definition of the fundamental class pointer

within Hatcher? doesn’t rely on a triangulation.)
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Cohomology.

A singular k-cochain with coefficients in an abelian group R such as Z or R is a
homomorphism ϕ∶ {singular k-chains} → R. The differential = coboundary map

δ∶ {singular k-cochains} → {singular (k + 1)-cochains}

is (δϕ)(a) = ϕ(∂a); it takes singular k-cochains to singular (k + 1)-cochains for
each k. Singular cohomology is the subquotient of {k-cochains} given by Hk(M ;R) =
ker δ/ image δ for each k.

Integration of a differential k-form α over a smooth cycle A gives

∫
A
α ∈ R.

(If A = ∑jmjσj with σj ∶∆k →M , then ∫Aα ∶= ∑jmj ∫∆k σ∗jα.)

For f ∶M →M ′, we have ∫f∗Aα = ∫A f∗α.

If f ∶M → M ′ is a diffeomorphism between oriented closed connected manifolds and
α is a differential form on M ′ of top degree, then ∫M f∗α = ±∫M α, depending on
whether f preserves or reverses orientation.

● By Stokes’s theorem, if α is closed then A ↦ ∫Aα is a cocycle, and if α is exact
then A ↦ ∫Aα is a coboundary. Consequently, integration on smooth chains
gives a homomorphism from Hk

dR(M) to Hk(M ;R).
● If a cochain ϕ∶ {k-chains} → R is a cocycle, then it vanishes on boundaries; if it is

a coboundary, then it vanishes on chains. Consequently, we get a homomorphism
from Hk(M ;R) to Hom(Hk(M);R).

● The inclusion of {Z-cochains} into {R-cochains} gives a homomorphism from
Hk(M ;Z) ⊗R to Hk(M ;R).

These homomorphisms are isomorphisms:

Hk
dR(M) ≅ Hk(M ;R) ≅ Hom(Hk(M);R) ≅ Hk(M ;Z) ⊗R.

Integral structure. The integral de Rham cohomology Hk
dR(M)Z is defined to be

the image of the composition Hk(M ;Z) ⊗RÐ→ Hk(M ;R) ≅Ð→ Hk
dR(M). It consists of

those classes [α] such that ∫Aα ∈ Z for every smooth cycle A. For an oriented closed
connected manifold M , we have an isomorphism

Hn
dR(M)Z ≅ Z via [α] ↦ ∫

M
α.

Ring structure. If the abelian group R has a ring structure, as it does when R is
Z or R, then we get the cup product operation a, b ↦ a ∪ b on cohomology with R
coefficients. In de Rham cohomology,

[α] ∪ [β] = [α ∧ β]

for α,β closed differential forms.
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17. Cohomology of a symplectic manifold

Let (M,ω) be a 2n dimensional compact symplectic manifold. Since ωn is a volume
form and M is compact, [ω]n = [ωn] ≠ 0.

Here are some corollaries.

● Let (M,ω) be a 2n dimensional compact symplectic manifold. Then there
does not exist a symplectic embedding of (M,ω) into any R2N .

● The only even dimensional sphere S2n that admits a symplectic form is S2.
● The product S2 × S4 does not admit a symplectic form.

Here are some examples and some more corollaries, following a preparatory exercise.

Exercise. Show that the integral over CP1 of the Fubini-Study form ωFS is π. Show
that the integral over S2 of the standard area form is 4π. Find a diffeomorphism
CP1 → S2 that pulls back the standard area form to 4 times the Fubini–Study form.

Example. The nonzero homology groups of CPn are

H2k(CPn) = Z[CPk] for k ∈ {0, . . . , n} ,
where CPk ↪ CPn is induced from Ck+1 ↪ Cn+1. The nonzero integral de Rham
cohomology groups of CPn are

H2k
dR(CPn)Z = [ωk] for k ∈ {0, . . . , n} ,

where ω = 1
πωFS.

Corollary: If (M,ω) is a symplectic manifold that admits a symplectic embedding
into (CPn, ωFS), then 1

π [ω] ∈H2
dR(M)Z.

Example. The nonzero homology groups of S2 × S2 are

H0(S2 × S2) = Z[point] ,
H2(S2 × S2) = Z[S2 × point] ⊕ Z[point × S2] ,
H4(S2 × S2) = Z[S2 × S2].

The nonzero integral de Rham cohomology groups of S2 × S2 are

H0
dR(S2 × S2)Z = Z[1] ,

H2
dR(S2 × S2)Z = Z[π∗1ω] ⊕ Z[π∗2ω] ,

H4
dR(S2 × S2)Z = Z[π∗1ω ∧ π∗2ω ] ,

where π1, π2 are the projections to the two components of S2 ×S2, and where ω is 1
4π

times the standard area form on S2.

S2 × S2

π1

zz

π2

$$
S2 S2.

Corollary: If a ≥ b > 0 and a/b is irrational, then there does not exist a symplectic
embedding of (S2 × S2, ωa,b) into (CPn, rωFS) for any r > 0.
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In solving the following exercises you may rely on the above examples.

Exercise 6.1. Prove that if n is even then there does not exist an orientation reversing
diffeomorphism of CPn.

Exercise 6.2. On the product S2 × S2, consider the split symplectic structure ωa,b =
aω ⊕ bω ∶= aπ∗1ω + bπ∗2ω, where ω is the rotation-invariant area form on S2 with total
areq equal to 1. Prove: if (S2 × S2, ωa,b) is symplectomorphic to (S2 × S2, ωa′,b′) and
a ≥ b > 0 and a′ ≥ b′ > 0, then a = a′ and b = b′.

Exercise 6.3. Assuming Gromov’s nonsqueezing theorem, show that, ifD2(a)×D2(b)
is symplectomorphic to D2(a′) ×D2(b′) and a ≥ b > 0 and a′ ≥ b′ > 0, then a = a′ and
b = b′. Here, D2(r) is the disc of radius r, and products of discs are equipped with
the standard symplectic structure dx1 ∧ dy1 + dx2 ∧ dy2.

Any compact Kähler manifold of complex dimension n and real dimension 2n has the
following hard Lefschetz property : reference? (Griffiths-Harris?)

Hard Lefschetz property: For all k ∈ {0, . . . , n}, the map

a↦ a ∪ [ω]n−k

is an isomorphism

Hk
dR(M) ≅Ð→H2n−k

dR (M).

Some compact symplectic manifolds—for example, the Kodaira–Thurston manifold—
do not have the hard Lefschetz property, hence are not Kähler in the sense that they
do not admit compatible complex structures. (This is in contrast to the fact every
symplectic manifold admits a compatible almost complex structure.) Students: I might

tell you about the Kodaira-Thurston manifold in class later in the semester. I will give this a higher priority

if you request it.

We do not know a simply connected compact symplectic manifold with a circle action
with finitely many fixed points that does not satisfy the hard Lefchetz property.

18. Indecomposable homology classes

A homology class in H2(M) is spherical if it is in the image of the Hurewicz homo-
morphism π2(M) →H2(M), that is, if it is represented by a map ϕ∶S2 →M .

A symplectic manifold (M,ω) is symplectically aspherical if [ω] vanishes on
spherical homology classes; equivalently, if for any smooth map ϕ∶S2 → M we have

∫S2 ϕ∗ω = 0.

Example: If π2(M) = 0, then (M,ω) is aspherical. In particular, any closed surface
of genus ≥ 1 equipped with an area form is an aspherical symplectic manifold.

More examples of aspherical symplectic manifolds: the torus R2n/Z2n with the stan-
dard symplectic form induced from R2n; the cotangent bundle T ∗S2 with the canon-
ical symplectic form (which is exact); more generally, any exact symplectic manifold.
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Example: Robert Gompf, “On symplectically aspherical symplectic manifolds with
nontrivial π2”, Math. Res. Letters 5 (1998), 599–603. Gompf’s example is a sym-
plectic branched covering of the product Σg1 ×Σg2 of two surfaces of positive genera1

g1, g2, branched over a codimension 2 symplectic submanifold that is obtained from
the union (Σg1×{point})∪({point}×Σg2) by “smoothing” the double point according
to the model {z1z2 = 0} ↦ {z1z2 = ε}.

(The notion of a symplectic branched covering, of a symplectic manifold along a
codimension 2 symplectic submanifold, was introduced by Gromov in his thesis/“partial

differential relations”? Transversely to the submanifold, it looks like the map z ↦ zk

on C.)

Let A ∈ H2(M) be a spherical homology class with ω(A) > 0. Then A is indecom-
posable if there is no decomposition A = A′ +A′′ such that A′ and A′′ are spherical
and ω(A′) and ω(A′′) are positive.

(Warning: this definition of “indecomposable” is not uniform in the literature.)
(Note: if A = A′ + A′′ such that A′ and A′′ are spherical and ω(A′) and ω(A′′)
are positive, then A is spherical and ω(A) is positive.)

Example: if the subgroup ω(π2(M)) of R is discrete and is generated by ω(A), then
A is indecomposable.

Examples below will use the following remark.

Remark. For any u∶S2 →M1 ×M2 we can write u = (u1, u2) where u1∶S2 →M1 and
u2∶S2 → M2. We can deform u by deforming each u1 and u2 such that u1 becomes
constant on the upper hemisphere and u2 becomes constant on the lower hemisphere.
On the level of cohomology, we obtain [u] = [u1] × [point] + [point] × [u2].

Non-example: Identify CP1 = C ∪ {∞}. Let u∶CP1 → CP1 × CP1 be the diagonal
map, u(z) = (z, z). Then [u] = [CP1 × {point}] + [{point} × CP1]. So [u] is not
indecomposable in (CP2 ×CP2, ωFS ⊕ ωFS).

Example: Let M = CP1 ×V and ω = ωFS⊕ωV where (V,ωV ) is symplectically aspher-
ical. Then A ∶= [CP1 × {point}] is indecomposable.

The proof is deferred to Chapter 9 because we ran out of time.

1‘genera’ is the plural of ‘genus’





CHAPTER 7

Outline of proof of Gromov non-squeezing

19. Passing to a compact target

Recall Gromov’s non-squeezing theorem: Let λ > 0. Assume that there exists a
symplectic embedding of the open unit ball B2n(1) into the radius λ cylinder B2(λ)×
R2n−2, where the ball is given by x1

2 + y1
2 + . . .+xn2 + yn2 < 1 the cylinder is given by

x1
2 + y1

2 < λ2, and the symplectic form is ∑dxj ∧ dyj. Then 1 ≤ λ.

Note: “Embedding” means a diffeomorphism with a subset of the target. When
the domain and target are open subsets of Rm for the same m, an embedding—or,
more generally, an injective immersion—is necessarily a diffeomorphism with an open
subset of the target. Indeed, because the map is injective, as a map to its image it
has an inverse; by the inverse function theorem, the map is a local diffeomorphism,
so its image is open and its inverse is smooth.

(More generally—by Brouwer’s 1912 “invariance of domain” theorem, an injective
continuous map from an open subset U of Rm into Rm is necessarily a homeomorphism
with an open subset of Rm. This is a consequence of Brouwer’s fixed point theorem
(that a continuous function from the closed ball to itself must have a fixed point).
Terrence Tao has a nice blog post on this from 2011.)

Back to Gromov non-squeezing: it is enough to prove the following result.

If there exists ε > 0 such that B2n(r + ε) symplectically embeds in
B2(R) ×R2n−2, then r ≤ R.

Indeed, assume that this result is true. Assume that B2n(1) embeds in B2(R)×R2n−2.
Let ε > 0. The result with r = 1−ε implies 1−ε ≤ λ. Since ε > 0 can be chosen arbitrarily
small, λ ≥ 1.

We turn to prove this result. Let

ϕ∶B2n(r + ε) → B2(R) ×R2n−2

be a symplectic embedding. The image of the composition

B2n(r + ε
2
) ϕÐÐ→ B2(R) ×R2n−2 projectionÐÐÐÐÐ→ R2n−2

is compact, hence bounded; choose λ that is greater than its diameter. Then com-
posing with the projection map R2n−2 → R2n−2/λZ2n−2, we still get a symplectic
embedding

B2n(r + ε
2
) Ð→ B2(R) ×R2n−2/λZ2n−2.

57
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Further composing with the image of the symplectic embedding of B2(R) (as the
complement of a single point) in (CP1,R2ωFS),1 We obtain a symplectic embedding

ψ∶B2n(r + ε
2
) Ð→ (M,ω)

where

M = CP1 ×R2n−2/λZ2n−2 and ω = R2ωFS ⊕ ωstd,

where ωstd denotes the symplectic form on R2n−2/λZ2n−2 that is induced from the
standard symplectic form on R2n−2.

20. Using J-holomorphic spheres

“Flexibility of almost complex structures” implies that there exists a compatible al-
most complex structure J ∈ J (M,ω) whose restriction to the open subset ψ(B2n(r))
is ψ∗Jstd, where Jstd is the almost complex structure on B2n(r) that is induced from
the ambient space R2n = Cn.

A (very) “Big Lemma”:

For every point p in M there exists a J-holomorphic sphere

ϕ∶CP1 →M

in the homology class [ϕ] = [CP1 × {point}] that passes through p.

Example. Let J0 ∶= JCP1 ⊕ Jstd be the split almost complex structure on M = CP1 ×
R2n/λZ2n, where JCP1 is induced from the standard complex structure on CP1 and
Jstd is induced from the standard complex structure on R2n = Cn. Then, for any point
p = (z0, v0) in CP1 ×R2n/λZ2n, the map z ↦ (z, v0) is a J0-holomorphic sphere in M
in the homology class [CP1 × {point}] that passes through p.

The “Big Lemma” guarantees that, for our choice of J , there exists a J-holomorphic
sphere ϕ∶CP1 → M in the homology class [CP1 × {point}] that passes through the
point π(0). Fix such a ϕ. Then the map

f ∶= ψ−1 ○ ϕ

is well defined on the set N ∶= {z ∈ CP1 ∣ ϕ(z) ∈ ψ(B2n(r))} and takes values in
B2n(r). By its definition, this map fits into the following (pullback) diagram.

N
f //

� _

inclusion
��

B2n(r)
ψ

��
CP1

ϕ // M

Exercise. The map f ∶= N → B2n(r) is a proper holomorphic curve that passes
through the origin.

1The existence of such an embedding is a consequence of the fact that B2m(1) symplectically
embeds as an open dense set in (CPm, ωFS).
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Here, we take the standard complex structures, on N as an open subset of CP1 and
on B2n(r) as an open subset of Cn. “Proper” means that preimages of compact sets
in B2n(r) are compact in N .

By a consequence of the so-called Wirtinger’s inequality that we will prove later, the
symplectic area of a proper holomorphic curve in B2n(r) that passes through the
origin is ≥ πr2. Thus,

∫
N
f∗ωstd ≥ πr2.

Since ϕ∶CP1 →M is J-holomorphic, and since J is compatible with ω, the pullback
ϕ∗ω is compatible with the given complex structure on CP1, hence is an area form
compatible with the complex orientation, at each point where dϕ ≠ 0 (and is zero at
each point where dϕ = 0). This further implies that restricting to a subset of CP1

does not increase the symplectic area:

∫
N

ϕ∗ω ≤ ∫
CP1

ϕ∗ω.

We now complete the argument.

πr2 ≤ ∫
N
f∗ωstd by the aforementioned consequence of Wirtinger’s inequality

= ∫
N
ϕ∗ω because ϕ = ψ ○ f and ψ∗ω = ωstd

≤ ∫
CP1

ϕ∗ω because ϕ is holomorphic and N ⊂ CP1

= ∫
CP1×{point}

ω because [ϕ] = [CP1 × {point}] in H2(M)

= R2π because ω = ωFS ⊕ ω′.

The “Big Lemma” does not rely on our particular choice of J . When allowing J to
be arbitrary, the “big lemma” can be rephrased as follows. Let A = [CP1 ×{point}] ∈
H2(M). Consider the Universal moduli space,

MA ∶= {(f, J) ∣ J ∈ J (M,ω); f ∶CP1 →M is J-holomorphic ; [f] = A} .

The projection map

π∶MA → J (M,ω) , (f, J) ↦ J

and the evaluation map

ev∶MA ×CP1 →M , ((f, J), z) ↦ f(z)

fit together into a map

MA ×CP1 π×evÐÐ→ J (M,ω) ×M , ((f, J), z) ↦ (J, f(z)).

The “Big Lemma” then asserts:

The map π × ev is onto.
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Here, it is enough to assume that M = CP1 ×M ′ and ω = ωFS ⊕ ω′ where (M ′, ω′) is
compact and symplectically aspherical.

21. Proper maps (and an exercise)

Digression to point-set topology – proper maps:

Here is an exercise that I’d like you to hand in:

Exercise 7.1. Let g∶A→ B be a continuous proper map from a topological space to
a metrizable topological space. Prove that g is a closed map.

Parts of this exercise occur as parts of the not-for-credit exercises below.

Recall that a continuous map g∶A → B between topological spaces is proper if the
preimage of every compact subset of B is a compact subset of A.

Exercise. ● The composition of proper maps is proper.
● The inclusion map of a closed subset is proper.
● Thus, the restriction of a proper map to a closed subset of its domain is proper.
● The level sets of a proper map are compact.
● Given a continuous map g∶A → B, if g is proper and B′ is a subset of B, then

the restriction of g to the preimage of B′ is proper as a map to B′. (Warning: it
might not be proper as a map to B.)

● Given a continuous map g∶A → B, if g is a closed map (i.e., images of closed
subsets of A are closed subsets of B) and its level sets are compact, then g is a
proper map.

● Given a continuous map g∶A→ B, if B is Hausdorff (in particular, every compact
subset of B is closed) and A is compact, then g is proper.

A Hausdorff space B is compactly generated2 if, for every subset C of B, the set
C is closed if and only if its intersection with every compact subset of B is compact.3

Exercise. ● Any metrizable space is compactly generated.
● Any locally compact Hausdorff space is compactly generated.

Exercise. Let g∶A → B be a continuous map between topological spaces. Assume
that the target space B is Hausdorff and compactly generated.

● If g is proper, then the image of g is closed.

Consequently,

2The name “compactly generated” was introduced in Steenrod’s 1967 paper “A convenient cate-
gory of topological spaces”. Steenrod’s definition of “compactly generated” included the assumption
that the space is Hausdorff.

3The “only if” direction is automatic; the “if” direction is meaningful.
Let K be a compact subset of B. For any subset of K, if the subset is closed in B then it is closed

in K, and if it is closed in K then it is compact. Because we are assuming that B is Hausdorff, this
last condition implies that the subset is closed in B. So a Hausdorff space B is compactly generated
if and only if, for every subset C of B, the set C is closed if and only if its intersection with every
compact subset K of B is closed (closed in B or closed in K; it doesn’t matter which one).
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● If g is proper, then g is a closed map.
● If g is proper and its image is dense, then g is onto.
● If g is a proper bijection, then g is a homeomorphism with its image.

For any compact symplectic manifold (M,ω), the space J (M,ω) of compatible al-
most complex structures, equipped with the C∞ topology, is metrizable, hence com-
pactly generated. The map π × ev∶MA × CP1 → J (M,ω) ×M is not proper, but it
descends to a proper map once we mod out by reparametrizations.

Reparametrization:

Given a J-holomorphic sphere f ∶CP1 →M and a holomorphic map h∶CP1 → CP1 of
degree one, the composition f ○ h∶CP1 → M is a J-holomorphic sphere in the same
homology class: [f] = [f ○ h] in H2(M).

We write

CP1 = C ⊔ {∞}.

Fact:

{ holomorphic maps CP1 → CP1 of degree one }

= { Möbius transformations of CP1 }

= {z ↦ az + b
cz + d

∣ a, b, c, d ∈ C and ad − bc ≠ 0}

≅ GL2(C)/C× ≅ SL2(C)/C×

=∶ PSL2(C).

h ∈ PSL2(C) acts on MA ×CP1 by

((f, J), z) ↦ ((f ○ h−1, J), h(z)).

This action preserves π × ev.

Gromov’s compactness theorem (which we are not stating here) implies that the map

π∶MA/PSL2(C) → J (M,ω)

that is induced by π∶MA → J (M,ω) is proper.

Exercise. It follows that the map

π × ev∶ (MA ×CP1)/PSL2(C) → J (M,ω) ×M

that is induced from π × ev is also proper.

Gromov’s compactness theorem, for which I recommend the book by Hummel, is
another big result that we are not discussing in detail. I am not even including its
statement here; I am only noting its consequence, that π is proper.

Here, I am referring to our particular example with M = CP1 × R2n/λZ2n and A =
[CP1 × {point}]. But for the properness of π we only need to assume that the sym-
plectic manifold (M,ω) is compact and the homology class A is indecomposable.
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Because the map π × ev is proper, the image of the map π× ev is closed. To conclude
the “Big Lemma”, it remains to show that this image is dense. This again is a big
result; we will later say something about it but we will not prove it in any detail.



CHAPTER 8

Digression: flat connections modulo gauge; momentum maps

I’m not assigning any exercises-for-credit in this chapter.

22. Flat connections modulo gauge (placeholder)

The first two-hour lecture for this week was replaced by a one-hour guest lecture
by Lisa Jeffrey, about flat connections on 2-manifolds and representations of the
fundamental group of orientable 2-manifolds.

Notes from Lisa’s lecture are linked from the course website (thanks, Jesse Frohlich!).

23. An empty section (placeholder)

24. Followup, and momentum maps (placeholder)

Lisa suggested to Yael to give following “punchline” (due to Atiyah and Bott, 1982),
which Lisa did not state in her guest lecture, but for which she gave all the ingredients:

The gauge group action on the vector space of all connections is Hamiltonian.

The momentum map1 sends a connection to its curvature.

Yael then gave a followup to Lisa’s lecture, which included the definition of “Hamil-
tonian action” and “momentum map” (for finite dimensional symplectic manifolds).
The notes are linked from the course website (thanks, Jesse Frohlich!).

Lie groups and Lie algebras

(See Jesse’s notes.)

Hamiltonian group actions; momentum maps; symplectic reduction.

(See Jesse’s notes.)

1Lisa calls it “moment map”. Yael converted a few years ago and now calls it “momentum
map”. Both words are used in the literature.
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25. Area measurements (placeholder, and an exercise)

For now, please see Caleb’s or Jesse’s notes.

Here is an exercise that I’d like you to hand in:

Exercise 9.1. Let (M,ω,J) be an almost Kähler manifold. Let ϕ∶CP1 → M be a
J-holomrophic sphere that is not constant. Then the homology class [ϕ] is non-zero
in H2(M).

26. Consequence of Wirtinger’s inequality (placeholder)

For now, please see Caleb’s or Jesse’s notes.

27. Odds and ends for Gromov non-squeezing

More on indecomposable homology classes

At the end of Chapter 6 we gave an example and didn’t have time to give its proof.
In a moment we recall this example and give its proof.

Remark. For any map u∶S2 → M1 ×M2, we can write u = (u1, u2) where u1 and
u2 are respectively maps from S2 to M1 and M2. Deform each of u1 and u2 such
that u1 becomes constant on the upper hemisphere and u2 becomes constant on the
lower hemisphere, we obtain a new map, representing the same class in π2(M) as
the original map u, from which we obtain the equality [u] = [u1 × c2] + [c1 × u2] in
π2(M), hence in H2(M), where c1 and c2 are the constant maps that take values in
the basepoints of M1 and of M2, respectively.

Here is the example from the end of Chapter 6:

Let M = CP1 × V and ω = ωFS ⊕ωV where (V,ωV ) is symplectically aspherical. Then
A ∶= [CP1 × {point}] is indecomposable.

Proof. Seeking a contradiction, suppose that A = A′ + A′′ where A′ and A′′

are spherical classes and ω(A′) > 0 and ω(A′′) > 0. Applying the above remark to
representatives of A′ and of A′′, and noting that H2(CP1) = Z[CP1], we obtain

A′ = a′ [CP1 × point] + [point × B′]
and A′′ = a′′ [CP1 × point] + [point × B′′]
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with a′ and a′′ integers and with B′,B′′ spherical classes in H2(V ).

Because ω = ωFS ⊕ ωV , we have ω(A′) = a′ωFS(CP1) + ωV (B′), and similarly for A′′.

Necessarily, a′ + a′′ = 1 (for example, we can see this by evaluating ωFS ⊕ 0). Because
a′ and a′′ are integers with sum 1, without loss of generality we may assume that
a′ ≥ 1 and a′′ ≤ 0.

Then B′′ is a spherical class in H2(V ), and ωV (B′′) = ω(A′′)−a′′ωFS(CP1) is positive.
(ω(A′′) is positive by assumption; ωFS(= π) is also positive; and −a′′ is non-negative.)
This contradicts the assumption that (V,ωV ) is symplectically aspherical. �

More on Möbius transformations

Here are some details that we didn’t give in class but that I would like to include in
these notes.

In Chapter 7 we claimed that the holomorphic maps CP1 → CP1 of degree one are
exactly the Möbius transformations. Let’s recall why this is true.

Note that every Möbius transformations is a holomorphic map of degree one and that
the Möbius transformations form a group.

Recall that a regular point is a point where the differential is onto and that a regular
level set is a level set in which all the points are regular. Recall that (when the
domain and target have the same dimension) near each regular point the map is a
local diffeomorphism and that the degree of the map is equal to the number of points
in a regular level set at which this local diffeomorphism preserves orientation minus
the number of points in the regular level set at which this local diffeomorphism
reverses orientation. (When the map is proper and the target is connected, the
resulting number is independent of the choice of the regular level set.)

Let h∶CP1 → CP1 be a holomorphic map. By (a baby case of) the Weierstrass
preparation theorem, near each point there are complex local coordinates in which
we can write the map as h(z) = zk for some non-negative integer k. (Thus, h is a
branched covering, ramified over the points where h′(z) = 0.) Such a point contributes
the non-negative number k to the degree (when the degree is calculated by counting
points in a nearby regular level set). Thus, if there is such a point with k ≥ 2, then
the degree is ≥ 2. If there is such a point with k = 0, then by analytic continuation
the map h is constant, and so the degree of h is zero. Thus, if the degree of h is one,
then at each such point we have k = 1, and so h is a biholomorphism (an invertible
map such that it and its inverse are holomorphic).

After composing with a Möbius transformation we may assume that h(∞) = ∞;
because h is a diffeomorphism, it then restricts to a biholomorphism C→ C. Further
composing with a linear map, we may assume that h(0) = 0 and h′(0) = 1. So we can
write h(z) = z+∑∞

k=2 ckz
k. Since h is a biholomorphism near ∞, the map z ↦ 1/h(1/z)

has a removable singularity at z = 0; this further implies that ck = 0 for all k ≥ 2.

More on the outline of Gromov’s non-squeezing

We recalled in class the outline of Gromov’s non-squeezing theorem. See Chapter 7.
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We said a few more words on Gromov’s compactness theorem. We still didn’t state
this theorem. But we gave an example that illustrates “bubbling” in the case that the
homology class A is not indecomposable. Recall that in Chapter 7 we used (without
proving) the “Big Lemma”, which says that the map

π × ev∶MA ×CP1 → J (M,ω) ×M , ((f, J), z) ↦ (J, f(z)),

is onto. Here we assume that M = CP1 × V , that ω = ωFS ⊕ ωV where (V,ωV ) is
compact and symplectically aspherical, and that A = [CP1 × {point}].

Recall that Gromov’s compactness theorem (which we didn’t prove either) implies
that the induced map

π × ev∶ (MA ×CP1)/PSL2(C) → J (M,ω) ×M

is proper. So to prove that the map π×ev is onto it is enough to prove that its image
is dense.

The denseness of this image is again a big result that we are not going to prove here.
But we will now explain how we should think of this result (even though the actual
proof in the literature is more technical than this). We would like to think of the
map π × ev as a proper smooth map between manifolds.1 By Sard’s theorem2, the
set of regular values of a smooth map (has a complement of measure zero, hence) is
dense. By degree theory3, because the map is proper and smooth and its target space
is connected, if there is a regular value whose level set contains exactly one point,
then the preimage of every regular value contains an odd number of points, hence
is non-empty. Together with Sard’s theorem, we then deduce that the image of the
map is dense; because the image is closed, the map is onto.

We would like to apply this idea4 to the map π × ev. Let J0 = JCP1 ⊕ JV be a split
almost complex structure on M = CP1×V , where JCP1 is the standard almost complex
structure on CP1 and JV is a compatible almost complex structure on (V,ωV ). We
claim that any J0-holomorphic sphere u∶CP1 →M = CP1 × V in the homology class
[CP1 × {point}] must have the form u(z) = (h(z), q0) for some Möbius transforma-
tion h∶CP1 → CP1 and for some point q0 in V . This follows from Exercise 9.1 and
from the fact that a holomorphic map CP1 → CP1 of degree one must be a Möbius
transformation. It implies that, for any point p ∈ M , the preimage of (J0, p) is a
single PSL2(C)-orbit inMA ×CP1. Once we outrageously pretend that everything is
finite dimensional, this and regularity of (J0, p) imply (by degree theory, as sketched
above) that π × ev is onto, as required.

1Beware! In practice the domain and target of this map are infinite dimensional. In fact J (M,ω)
is a Fréchet manifold. I can quote a theorem in the literature that says that MA is also a Fréchet
manifold but at the moment I am not convinced of the proof that is provided there. Nevertheless,
this is how we want to think of this map.

2Beware! Sard’s theorem works for finite dimensional manifolds. There is also a version for
Fredholm maps between Banach manifolds. There is a more recent version for Fréchet manifolds.

3For degree theory, see Chapter 4 of the book “Differential Topology” by Victor Guillemin and
Alan Pollack; for infinite dimensional versions, see the book “Topics in nonlinear functional analysis”
by Louis Nirenberg.

4Beware! In practice the proofs in the literature do something a bit different; see the references
below.
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Details of the actual argument that does work in this infinite dimensional setup can
be found in the following books.

● “J-Holomorphic Curves and Symplectic Topology”, by Dusa McDuff and
Dietmar Salamon.

● “Holomorphic Curves in Symplectic Geometry”. Editors: Michèle Audin
and Jacques Lafontaine.

● “Symplectic Geometry; an introduction based on the seminar in Bern, 1992”,
by B. Aebischer, M. Borer, M. Kälin, Ch. Leuenberger, and H. M. Reimann.
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[1] Bröcker and Jänich, “Introduction to Differential Topology”.
[2] Ana Cannas da Silva, “Lectures on Symplectic Geometry”, Springer-Verlag, Lecture Notes in

Mathematics 1764, revised 2006.
[3] Viktor Ginzburg, Victor Guillemin, and Yael Karshon, “Moment maps, cobordisms, and Hamil-

tonian group actions”, American Mathematical Society, Mathematical surveys and monographs
98, 2002.

[4] Victor Guillemin and Alan Pollack, “Differential Topology”.
[5] Allen Hatcher, “Algebraic Topology”.
[6] John Lee, Introduction to Smooth Manifolds, 2nd edition.
[7] Jürgen Moser, On the volume elements on a manifofld, Trans. Amer. Math. Soc. 120 (1965),

286–294.
[8] Michael Spivak, “A Comprehensive Introduction to Differential Geometry”, Volume I.

69


