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1. Background

In classical Hamiltonian mechanics, the phase space may be interpreted as a sym-

plectic manifold, e.g. T ∗Rn. The classical observables are smooth functions over the

phase space. In quantum mechanics, the phase space is replaced by a Hilbert space,

and quantum observables are self-adjoint operators on the Hilbert space.

A quantization program, roughly speaking, aims at designing a scheme that creates a

quantum system from a given classical system. For example, the Weyl quantization (see

e.g. [1]), designs a scheme that quantizes the classical phase space T ∗R to a quantum

Hilbert space L2(R) with the classical position function x quantized to f 7→ xf and the

classical momentum function p quantized to f 7→ − i
~
d
dx
f .

This report gives a brief introduction to a quantization program named geometric

quantization.

Notice: Throughout the report, our conventions for Hamiltonian vector fields and

Poisson brackets and curvature of connections are

ı(Xf )ω = df, {f, g} = LXf
g = −ω(Xf , Xg), X{f,g} = [Xf , Xg],

F∇(X, Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ].

2. Prequantization

We start with the prequantization of a symplectic manifold (M,ω). More precisely,

we shall construct a Hilbert space H0 associated with M and a map assigning to each

smooth real function on M to a skew-symmetric operator on H0. The story begins with

the following lemma.

Lemma 2.1. Let M be a smooth manifold and ω a closed 2-form on M . If ω is integral,

i.e. [ω] ∈ H2
dR(M)Z then there exists a Hermitian line bundle L→M with a Hermitian

connection ∇ whose curvature satisfies
√
−1
2π
F∇ = ω. Here H2

dR(M)Z is the image of

H2(M,Z) in H2
dR(M).

The idea of the proof is as follows ([3]).

Let {Ui} be a good cover of M . On each Ui, ω = dαi for some αi ∈ Ω1(Ui). On each

Uij = Ui ∩ Uj 6= ∅, αi − αj = dfij for some fij ∈ C∞(Uij). Note that fij + fjk − fik is

constant since its differential vanishes. Now [ω] ∈ H2(M,Z) implies that we can choose

{fij} such that fij + fjk − fik ∈ Z. Then we can define cij := exp(2π
√
−1fij). Note

that cijcjk = cik, i.e. a cocycle. Thus {cij} determines a complex line bundle L over M .
1



2 YUCONG JIANG

Now consider a family of one forms {θi := −2π
√
−1αi}. It indeed defines a connection

θ on L. In fact,

θi + cjidc
−1
ji = −2π

√
−1αi + 2π

√
−1dfij = −2π

√
−1αj = θj

i.e. the compatibility holds.

Finally, gluing together the standard Hermitian metric on Ui×C by {cij}, we obtain

a Hermitian metric on L such that θ is a Hermitian connection basically since θ is

imaginary-valued.

In summary, we obtained a Hermitian line bundle L with a Hermitian connection

such that
√
−1
2π
F∇ = ω.

A symplectic manifold is said to be prequantizable if the symplectic form is integral

and a Hermitian line bundle (with a Hermitian connection) constructed above is called

a prequantum line bundle. Now let (M,ω) be a prequantizable symplectic manifold

and (L, h,∇) a prequantum line bundle. We introduce the following inner product over

the space Γc(L) of smooth sections of L with compact supports:

〈s1, s2〉 :=

∫
M

h(s1, s2)
ωn

n!
.

Definition 2.2 (Prequantum Hilbert space). The prequantum Hilbert space H0 is the

completion of Γc(L) with respect to the above inner product.

Example 2.3. Let M = T ∗Rn with coordinates (q1, · · · , qn, p1, · · · , pn) equipped with

the standard symplectic form ωcan =
∑

j dqj ∧ dpj. Then L := M ×C is a prequantum

line bundle with the standard Hermitian metric induced from C and ∇f := df +θf is a

Hermitian connection on L such that
√
−1
2π
F∇ = ωcan, where θ = 2π

√
−1
∑

j(pjdqj) and

f ∈ C∞(M,C). In this case, the prequantum Hilbert space of T ∗Rn is H0 = L2(R2n).

Next we want to prequantize the classical observables, i.e. smooth real-valued func-

tions over M .

Definition 2.4 (Prequantization map). The prequantization map Q : C∞(M,R) →
End(Γc(L)) is defined by Qf = ∇Xf

− 2π
√
−1f .

Lemma 2.5 ([4]). The prequantization map Qf is skew-symmetric with respect to

〈., .〉 and [Qf , Qg] = Q{f,g}, i.e. Q is a Lie algebra homomorphism from C∞(M,R) to

End(Γc(L)).

Proof. (1): For any two sections s1, s2 of L,

〈Qf (s1), s2〉+ 〈s1, Qf (s2)〉 = 〈∇Xf
s1 − 2π

√
−1fs1, s2〉+ 〈s1,∇Xf

s2 − 2π
√
−1fs2〉

=

∫
M

(h(∇Xf
s1, s2) + h(s1,∇Xf

s2))
ωn

n!
= 0.

The last equality holds since h(∇Xf
s1, s2) + h(s1,∇Xf

s2) = Xf (h(s1, s2)) and∫
M

Xf (h(s1, s2))
ωn

n!
=

∫
M

LXf

(
h(s1, s2)

ωn

n!

)
=

∫
M

dı(Xf )

(
h(s1, s2)

ωn

n!

)
= 0
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by Stokes’ theorem.

(2): Note that

∇Xf
∇Xg −∇Xg∇Xf

−∇[Xf ,Xg ] = 2π
√
−1{f, g}

by expanding the formula F∇(Xf , Xg) = −2π
√
−1ω(Xf , Xg) = 2π

√
−1{f, g}. Now

[Qf , Qg] = Q{f,g} follows from straightfoward calculations:

[Qf , Qg] =∇Xf
∇Xg −∇Xg∇Xf

− 2π
√
−1Xf (g) + 2π

√
−1Xg(f)

=∇[Xf ,Xg ] + 2π
√
−1{f, g} − 2π

√
−1{f, g} − 2π

√
−1{f, g}

=∇X{f,g} − 2π
√
−1{f, g}.

�

3. Polarizations

It turns out that a prequantum Hilbert space is too large. For example, the prequan-

tum Hilbert space of T ∗Rn is L2(R2n). But physicists tell us that the quantum Hilbert

space should be L2(Rn), the space of wave functions.

In this section, we will introduce one more step which enables us to get a right “size”

quantum space from the prequantum Hilbert space. The tool we need is polarizations.

Definition 3.1 (Polarization). Let (M,ω) be a symplectic manifold. A (complex)

polarization P of M is an involutive Lagrangian subbundle of (TMC, ωC) with the rank

of P ∩ P̄ being constant.

Example 3.2. (1) (Vertical polarization [1]) For any smooth manifoldN , the cotan-

gent bundle M := T ∗N is a symplectic manifold with the canonical 2-form ωcan

and a projection π : M → N . Then Pz := T ∗π(z)N
C ⊂ TzM

C forms a polarization

of M with P = P̄ .

(2) (Purely complex polarization [1]) Let (M,J) be a complex manifold. Then the

(−
√
−1)-eigenbundle P of J is a polarization of M with P ∩ P̄ = {0}. In

particular, if (M,ω, J) is Kähler, we call P a Kähler polarization.

(3) [4] Let M := R2 − {0}. Then P := SpanC( ∂
∂θ

) is a polarization of M , where

(r, θ) is the polar coordinates of M .

Now we proceed our discussion of quantizing a symplectic manifold (M,ω). Suppose

M is prequantizable, L is a prequantum line bundle over M and P is a polarization of

M .

Definition 3.3. Let ΓP (L) denote the space of polarized sections of L, i.e which are

convariantly constant along the directions of P :

ΓP (L) = {s ∈ Γ(L) : ∇Xs = 0 for allX ∈ Γ(P )}.

Example 3.4. Let us continue Example 2.3. Let P be the vertical polarization of

T ∗Rn. It turns out that ΓP (L) = {f ∈ C∞(R2n) : f(q, p) = f(q, p′),∀p, p′ ∈ Rn}.
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Remark 3.5. If the polarization we choose is not so good, then the space ΓP (L) may

be zero. E.g. this is the case in part (3) of Example 3.2.

Even if the space ΓP (L) is nontrivial, in general, it is not so easy to make it into a

Hilbert space. One way to solve this issue is by doing the half-form correction (ref. [1],

[4]).

Example 3.6 ([1]). Let (M,ω, J) be a Kähler manifold and P the Kähler polarization

of M . Assume ω is integral and (L, h,∇) is a prequantum line bundle. With the above

datum, L has a holomorphic structure such that the restriction of ∇ to P is ∂̄L and

ΓP (L) is the space of holomorphic sections of L (see e.g. Theorem 23.31 in [1]).

By Hodge theory, ΓP (L) is a finite-dimensional vector space if M is compact [2].

Moreover, by Kodaira’s embedding theorem [2], for sufficiently large k, the holomorphic

line bundle L⊗k has a global nonzero holomorphic section. Thus if M is a symplectic

manifold equipped with the symplectic form kω, then L⊗k is a prequantum line bundle

and ΓP (L⊗k) is nonzero. Due to this reason, geometric quantization works well for

compact Kähler manifolds.

Example 3.7 (Quantization of CP n). Let M = CP n, ω = ωFS, the normalized Fubini-

Study form and P be the Kähler polarization.

The hyperplane bundle O(1) has global holomorphic sections z0, · · · , zn (coordinates

of Cn+1) and they induce a Hermitian metric h on O(1) by h(s, s) = |ψ(s)|2∑
j |ψ(zj)|2

, where

ψ is any local trivialization of O(1). (see e.g. [2]).

Then the hyperplane bundle L = O(1) with the Chern connection is a prequantum

line bundle. The space ΓP (L) is the global holomorphic sections of O(1), i.e. complex

polynomials in n+ 1 variables of degree one.

We conclude our report by quantizing classical observables. We say a function f ∈
C∞(M,R) is polarization-preserving or quantizable if [Xf , X] ∈ Γ(P ) for anyX ∈ Γ(P ).

Let C∞P (M) be the space of quantizable functions over M .

Theorem 3.8 ([4]). The algebra C∞P (M) is a Lie subalgebra of C∞(M) with respect to

the Poisson bracket. In addition, Q(C∞P (M)) ⊂ End(ΓP (L)) and the map Q|C∞
P (M) :

C∞P (M)→ End(ΓP (L)) is a Lie algebra homomorphism.

Proof. (1): For any f, g ∈ C∞P (M), Using the fact that X{f,g} = [Xf , Xg] and Jacobi’s

identity, we see that

[X{f,g}, X] = [[Xf , X], Xg] + [Xf , [Xg, X]] ∈ Γ(P ).

(2):Let f ∈ C∞P (M) and s ∈ ΓP (L). Then

∇X(Qfs) = ∇X(∇Xf
s− 2π

√
−1fs) = ∇X∇Xf

s− 2π
√
−1(Xf)s− 2π

√
−1f∇Xs.

The last term on the right hand side vanishes since s ∈ ΓP (L). The first two terms

on the right hand side cancel with each other since ∇X∇Xf
s = −2π

√
−1ω(X,Xf )s =

2π
√
−1(Xf)s by investigating the formulas F∇(X,Xf )s = −2π

√
−1ω(X,Xf )s and

ı(Xf )ω = df .
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(3): By Lemma 2.5, we conclude that Q|C∞
P (M) is a Lie algebra homomorphism. �
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