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1. Notation and Definitions

In this paper, “manifold” always refers to smooth, finite-dimensional manifold. By
“surface” we mean a dimension 2 manifold. By “closed” we mean a compact manifold with
empty boundary.

We fix the following notation for the rest of this paper. Denote (M,J, g) an almost-
complex manifold of R-dimension 2n, J an almost-complex structure, and g a Hermitian
Riemannian metric on M . Let (S, j) be a Riemann surface with j a complex structure.

We say f : (M,J)→ (S, j) is J-holomorphic if df◦j = J◦df (we will say f is holomorphic
if the context is clear). Note that we will generally drop the type signature if the context
is clear.

We say N ⊆M is a totally real submanifold if N is a submanifold of R-dimension n and
J(TpN) ∩ TpN = {0} for every p ∈ N . We will denote N a totally real submanifold of M .

1.1. Riemannian Geometry. We first recall some definitions and facts from Riemannian
geometry.

A Riemann metric g on M is a Euclidean scalar product gp on TpM at every point
p ∈ M that depends smoothly on p, i.e., for any X,Y vector fields on M , g(X,Y ) : p 7→
gp(X(p), Y (p)) is smoooth. A Riemannian manifold (M, g) is a manifold equipped with a
Riemannian metric.

We have a norm given by g, such that for any p ∈M , ||v||g :=
√
g(v, v) for v ∈ TpM .

For the rest of this paper let γ denote a smooth path γ : [a, b]→M . Then its length is

given by l(γ) :=
∫ b
a ||γ̇(t)||gdt. We can equip (M, g) with a distance dg(p, q) := inf{l(γ)|γ :

[0, 1]→M is a smooth path from p to q}, where p, q are in the same connected component
of M (we can define the distance to be ∞ if they are not path-connected).

Note that any manifold M also embeds into RN for some large N so we also have the
Euclidean distance on the inclusion of M . For the rest of this paper I will denote Br(x) to
be the open ball centered at x of radius r in the Riemannian distance, and and Dr(x) the
ball in the Euclidean distance (for some fixed embedding of M ⊆ RN ).

We say γ is a geodesic if it has constant speed and is locally distance-minimizing for
the Riemannian distance. Then by the local existence and uniqueness of solutions to this
ODE, for any γ(0) = p ∈M and γ̇(0) = v ∈ TpM there is a unique maximal domain Iv 3 0
such that γ : Iv → M is a geodesic. Denote D := {(p, v) ∈ TM |1 ∈ Iv} a neighbourhood
of the 0 section in TM and exp : D →M the exponential map such that exp(p, v) := γ(1)
where γ is the geodesic satisfying γ(0) = p and γ̇(0) = v.
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Note that at every point (p, v) ∈ D, exp is a local diffeomorphism. We can define the in-
jectivity radius at a point p ∈M by inj(p) := sup{r|exp is a local diffeomorphism on {p}×
Br(0)}. Note that since exp is a local diffeomorphism inj(p) > 0. We define the injectivity
radius of the manifold to be inj(M) := inf{inj(p)|p ∈ M}. Note that if M is compact
then inj(M) > 0.

For a Riemannian manifold the sectional curvature at a point is a map Kp : {V ⊆
TpM |dim(V ) = 2} → R. For p ∈ M and a fixed V ⊆ TpM a dimension 2 subspace, we
can let MV ⊆ M to be the subspace of M traversed by geodesics with velocity in V at
the point p. Then MV is a dimension 2 local submanifold of M . Note that V = TpMV ,
and the curvature Kp on V is the Gaussian curvature. We denote the sectional curvature
K : {(p, V ) ⊆ TM |dim(V ) = 2} → R by K : (p, V ) 7→ Kp(V ). Note that if M is a compact
manifold then K is uniformly bounded.

We say that M has bounded geometry if M has positive injectivity radius, uniformly
bounded sectional curvature, and uniformly bounded Levi-Civita connection. (Where uni-
formly bounded means uniform over p ∈M as an operator.)

For the rest of this paper we will assume that M has bounded geometry.

1.2. Riemann Surface with Nodes. We now define a Riemann surface with nodes. The
following notation will be used throughout the rest of this subsection.

Let (S, j) be a closed Riemann surface, and let {γi}i∈I be a set of finitely many simple

smooth curves γi : S1 → S, with pairwise disjoint image diffeomorphic to S1. Denote Ŝ the
compactification of S \ ∪i∈Iγi(S1) by attaching two points, xi and x′i to compactify each
of the sides after removing γi. Then the complex structure j on S descends to a structure
(also denoted by j) on Ŝ. Let S̄ be Ŝ/xi ∼ x′i, the space obtained from S after identifying

the image of each γi to a point si, and denote α : Ŝ → S̄ the quotient map. We will endow
S̄ with a complex structure j̄ inherited from Ŝ. We say (S̄, j̄) is a Riemann surface with
nodes.

In the above construction we say the points si ∈ S̄ such that si = α(γi(S
1)) for i ∈ I

are singular points or nodes. Denote si(S̄) the set of all the singular points in S̄.
We now define a node map. Let (S, j), (S′, j′) be two Riemann surfaces with nodes, and

suppose φ : S → S′ is continuous, surjective, and satisfies the following:
(1) For every node x ∈ si(S′), φ−1(x) is either a node, a simple closed curve in int(S),

or if S′ has boundary, a simple closed arc with endpoints in ∂S.
(2) φ is a diffeomorphism outside of the set of singular points, that is φ|S\φ−1(si(S′)) :

S \ φ−1(si(S′)) → S′ \ si(S′) is a diffeomorphism in the usual sense. (It is not clear in
Hummel or Ye’s statement but Gromov’s original paper seems to support this, in it he
describes the pinching of geodesics to points via homeomorphisms.)

Then we say φ is a node map. The idea is that φ may collapse simple curves to points,
but it does not otherwise disturb the topological structure.

We say that a map f : (S̄, j̄) → (M,J) is a cusp curve if f is continuous and f ◦ α :

(Ŝ, j)→ (M,J) is J-holomorphic. We say the area A(f) is A(f ◦ α).
We say that f is cusp curve with boundary in a totally real submanifold N ⊆ M if the

image of ∂S is contained in N .
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We say the genus of a Riemann surface with nodes S̄ is given by genus(S̄) = genus(Ŝ).

We say the connectivity of S̄ is conn(S̄) = conn(Ŝ), the number of boundary components.
We say the homology class of a cusp curve f is given by the homology class of f ◦ α.

Note that after applying a node map the number of nodes is increasing, the genus is
decreasing, and the connectivity is increasing.

We now put a topology on the space of compact cusp curves with image in (M,J). Let
f : S → M be a compact cusp curve (i.e., S is compact). Given ε > 0, a metric on S, a
neighbourhood U ⊆ S of si(S) ⊆ U , we can define a neighbourhood F 3 f as follows. For

any compact cusp curve f̃ : (S̃, j̃) → (M,J), f̃ ∈ F if there exists φ : S → S̃ a node map
such that the following 3 conditions hold:

(1) ||f − f̃ ◦ φ−1||Ck < ε on S \ U .
(2) ||j − φ∗j̃||Ck < ε on S \ U .

(3) |A(f)−A(f̃)| < ε.
In the above definition, ||.||Ck is the Ck-norm, it and A(.) are given from the metric on

M and S.
We call the topology generated by these neighbourhoods the Ck-topology on the space

of compact cusp curves.
We denote C to be the set of compact cusp curves with image in (M,J), and F the set

of closed (i.e., the domain is a closed manifold) cusp curves, F ⊆ C.
By definition, convergence in C∞ means convergence in Ck for all k ≥ 0. Note that in

certain cases, convergence in Ck is equivalent for all k so there is no ambiguity in writing
F̄ for its closure. This is true for the set of closed cusp curves and the set of cusp curves
with boundary in N , which is the assumption of the theorem.

Let m ∈ N0 and a > 0. Denote Fm,a the set of all f ∈ F such that genus(f) = m
and A(f) ≤ a. Moreover let m′ ∈ N0 and N ⊆ M a totally real submanifold. Denote
Fm,m′,a(N) the set of all f ∈ C such that f(∂S) ⊆ N and genus(f) = m, conn(f) = m′,
and A(f) ≤ a.

1.3. PDE Theory. For f ∈ Lp(U) where U is a domain, α ∈ Nn a multi-index and denote
|α| :=

∑n
i=1 |αi|, the weak derivative Dαf ∈ L1

loc(U) satisfies ∀ψ ∈ C∞c (U) we have that∫
U ψD

αfdx = (−1)|α|
∫
U fD

αψdx, i.e., integration by parts holds. Weak derivatives, when
they exist are unique and agree with the usual derivative when that exists.

For k ∈ N the Sobolev space Hk(U) := {f ∈ L2(U)|Dif ∈ L2(U)∀|i| ≤ k}, the norm

is given by ||f || := (
∑
|i|≤k ||Dif ||22)1/2. Denote H1(S,M) the Sobolev space of functions

f : S →M where integration is taken over S and is dependent on g.
We say f ∈ H1(S,M) is a weak holomorphic curve if J ◦ df = df ◦ j.
For 1 ≤ p < ∞, λ ≥ 0, the Morrey space Lp,λ(U) := {f ∈ Lp(U)|∃B∀x0 ∈ U, r >

0,
∫
Dr(x0)∩U |f |

pdx ≤ Bprλ}. The norm is given by ||f || := (sup{x0 ∈ U, r > 0|r−λ
∫
Dr(x0)∩U |f |

pdx})1/p.
For 1 ≤ p < ∞, λ ≥ 0 the Campanato space Lp,λ(U) := {f ∈ Lp(U)|[f ]p,λ < ∞}

where the seminorm [f ]p,λ := (sup{x0 ∈ U, r > 0|r−λ
∫
Dr(x0)∩U |f − f̄r,x0 |

pdx})1/p, where

f̄r,x0 :=
∫
Dr(x0)∩U f/A(Dr(x0) ∩ U) the average of the value of f in the ball.
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2. Statement of Theorem

The methods in Ye’s paper are used to prove two results. First is the usual Gromov’s
Compactness Theorem for closed holomorphic curves. This says essentially that a sequence
of closed holomorphic curves with the same topological genus and uniformly bounded in
area converges to a cusp curve, in the sense of smooth convergence outside of the singular
points and convergence in area.

The second theorem is Gromov’s Compactness Theorem for holomorphic curves Bound-
ary. This says that the same conclusion holds for if additionally we fix some totally real
submanifold N ⊆ M , and if the sequence of compact holomorphic curves with the same
genus and uniform bound in area also satisfies the additional criteria that they have the
same connectivity and the image of the boundary of S is in N .

Ye also claimed both results are still true if J is allowed to range through a family of
submanifolds parametrized by a compact set, and the second result holds if N is allowed
to range through a compact set of submanifolds. We now state the theorems.

Theorem 1 (GCT for Closed Pseudo-Holomorphic Curves). For any (M,J, g) and Fm,a
defined for such (M,J, g), F̄m,a is sequentially compact.

We use notation as before. Note that if a sequence of cusp curves converge in the
topology above then eventually the genus of the cusp curves will be eventually constant.
Thus if (S∞, j∞) is the Riemann surface at the limit f∞ of the sequence fk on (Sk, jk),
we have that the definition of the topology C∞ implies the existence of the node maps
φk : Sk → S∞. Condition (1) implies the cusp curves fk ◦ φ−1k converge to f∞ in C∞

uniformly on compact sets outside of the singular points of S∞. Condition (2) implies
that the structures φ∗kjk converge to j∞ in C∞ uniformly on compact sets outside of the
singular points of S∞. Condition (3) implies there is no area loss, A(fk)→ A(f∞).

Theorem 2 (GCT for Pseudo-Holomorphic Curves with Boundary). For any (M,J, g) and
N a totally real submanifold, and Fm,m′,a(N) defined for such (M,J, g) and N , F̄m,m′,a(N)
is sequentially compact.

3. Discussion of the Proof

In Gromov’s original proof of the result for closed holomorphic curves the two main
lemmas used were the Gromov-Schwarz Lemma, and an Isoperimetric Inequality. The
former is a generalization of the classical Schwarz Lemma which says for a holomorphic
function on the disk, f : D → D such that f fixes 0, then |f ′(0)| ≤ 1. Gromov extended
this result to the case where (M,J, g) is compact, then there is some ε(M) > 0, C(M) > 0
such that whenever f : H → M is holomorphic with f(H) contained in some ε-ball in M
must satisfy ||df || ≤ C(M), where the norm on df is the norm with respect to g on the
tangent space, and H is the half-plane (equivalently the disk by a mobius map).

An Isoperimetric Inequality relates the length of curve on the boundary of a surface
to the area of that surface. A classical example of this says whenever S has nonempty
boundary and γ : ∂S → Rm is a smooth curve, then γ extends to a smooth map f with
domain S such that 4πA(f) ≤ l(γ)2.
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The same two results are used in Ye’s proof, where the Gromov-Schwarz Lemma is
obtained as part of some regularity results on weak holomorphic curves. This is the interior
regularity argument, which upgrades the regularity of a weak holomorphic closed curve to
a continuous map. By standard results from nonlinear elliptic PDEs continuous can be
upgraded to Holder-continuous and C1. The results used here relies on properties of Morrey
and Campanato spaces. Iteratively repeating the argument allows Ye to obtain smoothness.

The boundary regularity argument treats the case of curves with boundary. Ye repeats
uses essentially the same argument on the interior, then chooses a suitable metric g0 on
M such that J(TpN) ⊥ TpN , i.e. N is pseudo-Lagrangian. This is done by taking a
basis {e1(p), . . . , en(p), Je1(p), . . . Jen(p)} for p ∈ N and letting g be a metric for which

this basis is orthonormal. Let Ñ ⊇ N be a closed submanifold and extend g to a tubular
neighbourhood of Ñ . Interpolating g(J., J.) + g with g Ye obtains a g0 that is is Hermitian
on M , and this g0 satisfies the required property. Then Ye obtains the required by choosing
suitable local coordinates on Ñ and applying the same strategy for nonlinear elliptic PDEs
as in the argument for interior regularity.

The Isoperimetric Inequality follows from choosing a suitable g0 as above and applying
a result by Hartman-Wintner. Then Ye used the Sacks-Uhlenbeck argument for removing
isolated singularities and a ε-regularity theorem to obtain the result. This argument uses
the fact that a holomorphic curve into (M, g0) is harmonic and conformal, so the argument
of Gruter’s regularity theorem for minimal surfaces applies. We will not delve into the
details of this argument.

The advantage of Ye’s proof over Gromov’s original argument is that Ye’s approach also
works for holomorphic curves with boundary. Gromov did not prove the result for curves
with boundary in the general case, and his idea for extending the result in this case relies
on the reflection principle which only works when the boundary has nice enough geometry.
Ye’s argument for the boundary case relies on the symplectic structure which gives rise to
N being a Lagrangian submanifold with respect to a suitable metric g0. This condition is
needed since Ye’s argument uses a theorem of Y. G. Oh which allows for the removal of
isolated singularities at a Lagrangian boundary.
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