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Abstract

We discuss the earthquake flow about a simple closed curve α in the context of the
algebraic formalism introduced by Goldman to extend the Weil-Petersson symplectic
form to the PSL2R character variety. We outline the background and ideas behind
Goldman’s argument that earthquake flows are Hamiltonian with respect to the length
functions on Teichmüller space.

1 Teichmüller space

1.1 Basic definitions

Let Sg be a closed oriented surface of genus g ≥ 2. The Teichmüller space is the deformation
space of hyperbolic structures on Sg and a point of Teichmüller space corresponds to Sg
equipped with a hyperbolic structure defined up to isotopy in the following precise sense.
Definition 1. A marked hyperbolic structure on Sg is a (complete) oriented hyperbolic
surface (i.e. equipped with a constant curvature −1 Riemannian metric), X, equipped with
an (orientation preserving) homeomorphism φ : Sg → X. The Teichmüller space of Sg is
the space of marked hyperbolic structures up to homotopy,

T (Sg) := {(X,φ)}/ ∼

where (X,φ) ∼ (Y, ψ) iff there exists an isometry f : X → Y such that f ◦ φ is homotopic
to ψ.

The uniformization theorem tells us we may realize any hyperbolic surface X as a quotient
X = H/Γ where Γ ≤ PSL2R is a discrete subgroup of isometries acting freely and properly
discontinuously. This yields the alternative description of Teichüller space. Covering space
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theory tells us that H/Γ and H/gΓg−1 carry isomorphic hyperbolic structures for any g ∈
PSL2R.
Definition 2. The Teichmüller space of Sg is the space of discrete and faithful representa-
tions of the fundamental group of Sg into the isometry group of H defined up to conjugation{

ρ : π1(Sg)
discrete−−−−→
faithful

PSL2R
}
/PSL2R

See [2] section 10.1 for more details on definition 1 and section 10.3 for details on definition
2 and how one obtains a topology on Teichmüller space. In fact, T (Sg) has the structure of
a complex manifold.

Remark What we have described is better referred to as Fricke-Klein space. This name
emphasizes the fact we are dealing with hyperbolic structures whereas it is understood that
we are studying complex structures when we use the term Teichmüller space. Often times,
we don’t distinguish the two since the uniformization theorem produces a bijection between
the two. People who study both structures simultaneously do make the distinction and the
identification is not as nice as one might hope.

1.2 Fenchel-Nielsen Coordinates

A pairs of paints is a disk minus two disjoint disks. A pants decomposition of a surface Sg is
a collection

P = {α1, . . . , α3g−3}

of disjoint simple closed curves such that Sg \ ∪αj is a disjoint union of pairs of paints.

Figure 1: When shopping for pair of hyperbolic pants, the usual measurements don’t tell
you if they’ll fit. Instead, the lengths of the three boundary curves tell you all you need to
know about the geometry of your pants (and hence if they will fit you). It is generally good
advice to purchase pants that fit.
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Figure 2: The collection of solid blue curves are a pants decomposition of the genus 3 surface
pictured above. In dashed orange are seams for this pants decomposition.

Fix a pants decomposition P of Sg. For each curve α ∈ P , there is an associated length
function

`α : T (Sg)→ R+

which maps the hyperbolic structure X to the length of the geodesic representative of α
in X. Each loop has a unique geodesic representative, so this function is well defined.
The hyperbolic structure on a pair of pants is uniquely determined by the lengths of its
boundary curves. The hyperbolic structure X is, however, not determined uniquely by these
lengths. We can, in fact, recover a unique hyperbolic structure if we record the amount of
”twisting” around each curve when regluing the pants. To define the twisting precisely, we
require an additional set of disjoint simple closed curves on the surface called seams whose
union intersect any pants determined by P in 3 arcs connecting the boundary components
of the pants. The seams allow us to define the twist coordinate about a curve in the pants
decomposition

τα : T (Sg)→ R

.
Theorem 1. The map

T (Sg)→ R3g−3
+ × R3g−3

X 7→
(
`α1(X), . . . , `α3g−3(X), τα1(X), . . . , τα3g−3(X)

)
is a homeomorphism. The length and twist functions are called Fenchel-Nielsen coordinates.
They are in fact real analytic functions.

See [2] section 10.5 for more on pants and section 10.6 for details on these coordinates (in
particular for how the twist coordinates is defined).

2 The Weil-Petersson Metric

Teichmüller space carries a natural symplectic form called the Weil-Petersson form. We
discuss serveral equivalent definitions.
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André Weil introduced a Hermitian metric on Teichmüller space. By identifying the cotan-
gent space of Teichmüller space atX with the space of quadratic differentials onX, TXT (Sg) ∼=
QD(X), we obtain the Weil-Petersson cometric by integrating a pair of quadratic differentials
against the hyperbolic area form, dA, on X,

〈φ, ψ〉 =

∫
X

φψdA

This in fact defines an incomplete Kähler and hence a symplectic form called the Weil-
Petersson symplectic form, obtained by taking the imaginary part of the metric defined
by this cometric. Teichmüller space is Weil-Petersson convex and has negative sectional
curvature with respect to this metric. From this formulation of the metric, it can be seen
that the Weil-Peterssen metric is mapping class group invariant and hence descends to the
moduli space Mg = T (Sg)/MCG(Sg). [8]

In line with our second definition of T (Sg), Goldman introduced a symplectic form on the
character variety Hom(π1,PSL2R)/PSL2R extending the Weil-Petersson symplectic form.

The tangent space space at a (representative of a) representation ρ can be identified with
the 1st cohomology group of S with coefficients in the Lie algebra sl2R of PSL2R twisted
by the adjoint representation of ρ, Ad ρ : π1 → sl2R. This cohomology group, notated
H1(S,Ad ρ), can be described as follows. Let S̃ be the universal cover of Sg and make

Cn(S̃,Z) into a Z[π1]–module by composing a singular chain with the action π1 on S̃. The
twisted cohomology groups are defined as the homology of the complex

C∗(S,Ad ρ) = HomZ[π1](C∗(S̃,Z), sl2R)

There is a cup product on the twisted cohomology groups where the coefficients are paired
using an Ad–invariant inner product on the Lie algebra sl2R.

From the identification
TρT (Sg)

∼−→ H1(S,Ad ρ)

we obtain a bilinear form on TρT (Sg)

ω : H1(S,Ad ρ)×H1(S,Ad ρ)
^−→ H2(S,R)

∫
−→ R

This form is antisymmetric and nondegenerate. It extends the Weil-Petersson symplectic
form to the entire (smooth locus of the) PSL2R character variety. Goldman’s construction
generalizes to any Lie group admitting a nondegenerate Ad–invariant bilinear form on its
Lie algebra. See [1] or [3] for more details on the above construction (the second reference
also contains details for the general construction).

Wolpert later gave a third description of the Weil-Petersson form as

ωWP =
∑

d`αj
∧ dταj

in Fenchel-Nielsen coordinates discussed above. [5], [6]
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3 Twist Flows

3.1 Earthquakes

We now describe the earthquake flow on Teichmüller space which will depend on a fixed
simple closed curve α ⊂ Sg (or more generally on a measured geodesic lamination). We do
so by describing the flow lines. That is given a point (X0, φ0) ∈ T (Sg), we construct a new
point (Xt, φt) obtained by applying the earthquake flow for time t.

First we describe how to obtain the hyperbolic structure Xt. Let (X0|α) denote the hyper-
bolic surface X0 split along α. It is a bordered hyperbolic surface with geodesic boundary,
∂(X0|α) = {α+

0 , α
−
0 }, together with a gluing isometry ια : α+

0 → α−0 such that (X0|α)/ια ∼=
X0. We change the hyperbolic structure by changing the gluing. Consider the family of
isometries θt : α+

0 → α−0 determined by θ0 = ια and the property that for all x ∈ α+
0 , the

path t 7→ θt(x) is a unit speed trajectory in α−0 . Define Xt to be the hyperbolic surface
obtained by identifying the geodesic boundaries of (X0|α) via θt, that is Xt := (X0|α)/θt.

Figure 3: A surface split along a curve α

Now it remains to describe the marking. Let γ be a loop intersecting α (transversely). The
curve split along α, (γ|α) ⊂ (X0|α), is a disjoint union of arcs with endpoints on α+

0 and α−0
such that we recover γ from the gluing ια. In particular, under the gluing θt, (γ|α)/θt is no
longer a loop. For each endpoint x ∈ α+

0 we insert to our curve (γ|α) the curve s 7→ θst(x) for
0 ≤ s ≤ 1. In the quotient Xt, we obtain a closed curve γt. This produces an isomorphism

π1(X0)→ π1(Xt)

γ 7→ γt

from which we recover a homotopy equivalence ht : X0 → Xt. The marking is then just
φt = ht ◦ φ0.
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Figure 4: To illustrate the point that a curve split along α (in magenta) is a disjoint union
of arcs, note curves on surfaces can get very complicated (pictured in orange).

3.2 Generalized twist flows

Noting the earthquake flow about α doesn’t affect curves not intersecting α, Goldman defined
a generalized twist flow as one occuring ”upstairs” on Hom(π1, G) which descends to a trivial
deformation ”downstairs” on the character variety.
Definition 3. A generalized twist flow about a simple closed curve α is a flow {ηt}t∈R on
Hom(π1,PSL2R) such that for all φ ∈ Hom(π1,PSL2R) and any component C of (S|α) there
is a path gt = gt(C) in PSL2R with ηtφ(γ) = gtφ(γ)g−1t for all γ ∈ π1(C) ⊂ π1(Sg).

The descriptions here for earthquakes and generalized twists follow Goldman [4].

4 Earthquakes are Hamiltonian

Theorem 2. Let α ⊂ Sg be a simple closed curve and let f : PSL2R → R be conjugation

invariant. Define f̃α : Hom(π1,PSL2R) → R by f̃α(φ) = (f ◦ φ)(α). This descends to
a function fα : Hom(π1,PSL2R)/PSL2R. Then the Hamiltonian flow determined by fα is
covered by a generalized twist flow {ηt}t∈R about α on Hom(π1,PSL2R).

As a corollary, Goldman recovers Wolpert’s duality (see [4], [7])
Theorem 3. The earthquake flow about a simple closed curve α is Hamiltonian with respect
to the Weil-Petersson form and the length function, `α, determined by α

Note that any curve α ∈ π1(Sg) determines a length function (i.e. we do not require α to be
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Figure 5: In magenta is the curve α we are twisting about. In orange is γ some curve
intersecting α and in red is the segment we attach to close the loop.

in a pants decomposition as discussed above for the definition of `α to make sense).

Goldman proves this result of Wolpert by first constructing a generalized twist flow covering
the earthquake flow about α. Using this and an explicit formulas he obtains in proving the-
orem 2, he concludes this generalized twist flow also covers the Hamiltonian flow associated
to fα = `α and hence conclude that the two flows coincide.
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