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1 Overview

This talk will give the main idea of proving Thurston’s theorem which concerns the construction of
a symplectic form ω on a manifold M that is compatible with a given compact symplectic fibration
(π : M −→ B) under some suitable conditions.

Notice that such ω need not always exist. For example, consider the Hopf bundle (S3×S1, π, S2).
The Hopf bundle is a compact symplectic fibration and the fibre is just torus S1×S1 with standard
symplectic form. However the S3 × S1 does not admit a symplectic structure.

We will begin with some basic set up and some necessary definitions.

2 Basic set up and definitions

Let F be a smooth manifold. A Fibration with fibre F over a smooth manifold B consists of a
smooth map π : M −→ B such that the following conditions hold:

1. M is a smooth manifold.

2. π is surjective mapping.

3. For every point p ∈ B, there exists an open neighborhood U ⊂ B and a diffeomorphism
φ : π−1(U) −→ U × F such that π|U = pr ◦ φ where the map pr : U × F −→ U is the
projection.

Let B be a connected smooth manifold equipped with an open cover {Uα}α and π : M −→ B
be a fibration with fibre F . For every α, there exists a diffeomorphisms φα : π−1(Uα) −→ Uα × F
such that the following diagram commutes.

π−1(Uα) Uα × F

Uα

φα

π
pr
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We denote by Fb = π−1(b) the fibre over b ∈ B and by φα(b) : Fb −→ F the restriction of φα to
Fb followed by the projection onto F .
The transition map φβα : Uα ∩ Uβ −→Diff(F) is defined by

φβα = φβ(b) ◦ φ−1α (b).

Very often, a fibration will carry some extra structure called a structure group. Let G be a
subgroup of Diff(F). G is a structure group of (π, {φα}) if transition functions φβα all take values
in G.

Definition 2.1. Symplectic Fibration: Let π : M −→ B be a locally trivial fibration with fiber
(F, ωF ) which is a symplectic manifold. π is symplectic fibration if each fibre Fb carries a symplectic
structure σb ∈ Ω2(Fb) such that ∃ {φα} such that

σb = φ∗α(b)σ

for all b ∈ Uα.

Once we have definition of symplectic fibration, we are ready to define the compatible symplectic
form.

Definition 2.2. Compatible Symplectic form Let π : M −→ B be a symplectic fibration with
fibre (F, ωF ). A symplectic form ω ∈ Ω2(M) is called compatible with the symplectic fibration π if,
ω|Fb = σb for every b ∈ B.

Theorem 2.1. Let π : M −→ B be a locally trivial fibration with connected base B, closed manifold
M and ω ∈ Ω2(M) be a symplectic form such that the fibres are all symplectic submanifold of M .
Then π : M −→ B admits the structure of a symplectic fibration which is compatible with ω.

Proof. sketch of proof:
(1) Stokes’ theorem implies that the symplectic forms σb = ιb

∗ω ∈ Ω2(Fb) all represent the same
cohomology class in H2(F ) under map φα(b) where ιb : Fb −→M .
(2) Use Moser’s stability theorem to show that the fibres (Fb, σb) are all symplectomorphic to a
standard fibre (F, σ). Deduce that the structure group of (π, {φα}) can be reduced to Symp(F, σ).

Remark. The detailed explanation is on Introduction to Symplectic Topology by D.Mcduff and
D.Salamon page 253.

3 Thurston Theorem

Theorem 3.1. Let π : (M,ω) −→ (B, β) be compact symplectic fibration with symplectic fibre
(F, σ) and connected symplectic base (B, β). Define Fb = π−1(b) where b ∈ B. Let σb be the
symplectic form on Fb.
Let a ∈ H2(M) be a cohomology class such that for every b ∈ B,

ι∗b(a) = [σb]
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where
ιb : Fb −→M

is the inclusion map.
Then for every sufficiently large positive real number k, there exists a symplectic form ωk ∈

Ω2(M) which is compatible with the fibration π and represents the class a+ k[π(β)∗].

Proof. Let {φα} as in Definition 2.1. Let open sets Uα ⊂ B in the cover are chosen to be
contractible. Let τ0 ∈ Ω2(M) be any closed 2-form which represents the class a ∈ H2(M). For any
α, let σα ∈ Ω2(Uα × F ) be the 2-form obtained from (F, σ) via pullback map: Uα × F −→ F .
First, we want to show the 2-forms

φα
∗σα − τo ∈ Ω2(π−1(Uα))

are exact.
For fixed α and fixed b ∈ Uα, let

ι : F −→ Uα × F

x 7→ (b, x).

Then
Pr2 ◦ ι = IdF

where
Pr2 : Uα × F −→ F

(b, x) 7→ x.

For the following commuting diagram:

H2(F ) H2(Uα × F ) H2(F )

H2(π−1(Uα)) H2(Fb)

Pr2
∗ (ι∗:∼=)

(φα
∗:∼=) (φα

∗(b):∼=)

(ιb
∗:∼=)

ι∗ ◦ Pr2∗ = (Pr2 ◦ ι)∗ = IdH2(F ). (1)

It follows that
ι∗[σα] = [σ]

and therefore
ι∗b [φα

∗σα] = [σb]. (2)
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Now we need to check the map ι∗. Notice that ι∗ is a linear map and (1) tells us this map should
be surjective. Recall that Uα is chosen to be contractible.
Therefore we have:

H2(Uα × F ) ∼= R⊗H2(F ) ∼= H2(F )

This implies that
dim(H2(Uα × F )) = dim(H2(F )) (3)

By compactness of fibre F , we notice that dim(H2(F )) < ∞. Using (3) together will rank-nullity
theorem, this implies that ι∗ is also an injective map. As φ∗α and φ∗α(b) are isomorphisms, the same
holds for ι∗b . Finally, (2) together with the assumption in the theorem ι∗b(a) = [σb] implies:

[φα
∗σα] = a ∈ H2(π−1(Uα))

and therefore:
φα
∗σα − τo ∈ Ω2(π−1(Uα))

are exact. By exactness, we know there exist a collection of 1-forms λα ∈ Ω1(π−1(Uα)) such that
φα
∗σα − τo = dλα.

Second, we define a 2-form τ := τo + Σαd((ρα ◦ π)λα ∈ Ω2(M) where {ρα}α a partition of unity
subordinate to the cover {Uα}α and we want to check if τ is closed,represents the cohomology class
a ∈ H2(M) and restricts to the form σb on each fibre.
For closedness, just notice that dτ = dτo + dΣαd((ρα ◦ π)λα) = 0.
Therefore we have [τ ] = a.

ιb
∗τ = ιb

∗(τo + Σαd((ρα ◦ π)λα))... 1©
= ιb

∗τo + Σα(ιb
∗d(ρα ◦ π) ∧ λα + ιb

∗((ρα ◦ π) ∧ dλα))... 2©
= ιb

∗τo + Σαιb
∗((ρα ◦ π)dλα)... 3©

= Σα(ρα ◦ π)ιb
∗(τo + dλα)... 4©

= Σα(ρα ◦ π)ιb
∗(φα

∗σα)... 5©
= ιb

∗(φα
∗σα)... 6©

= σb... 7©

(4)

Remark. 1. We can 2© to 3© of equation (4) by using ιb
∗d(ρα ◦π) = 0 since it vanishes on vectors

tangent to the fibre.

2. Recall that φα
∗σα − τo = dλα and φ∗ασα ∈ H2(π−1(Uα)). Therefore we can reduce 4© to 5©

line of equation (4).

Finally we can construct the 2-form for M :ωk = τ + kπ∗β where k is a positive real number.
Thirdly, we want to explain why ωk is closed and non-degenerate for sufficiently large k.
For closed, just notice that dωk = dτ + kdπ∗β = 0.
For non-degeneracy:
For arbitrary p ∈ M , define vertp = ker(dπ|p) ⊂ TpM and horp = (vertp)

τ = {u ∈ TpM |τ(u, v) =
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0∀v ∈ vertp}.
Notice that τ is non-degenerate on vertp as ιb

∗τ = σb. Therefore we can do the following splitting:

TpM = vertp ⊕ horp
In order to finish the proof we need the following claims whose proofs are leave to readers.

1. dπ|p : horp −→ Tπ(p)B are linear isomorphisms.

2. ∃k0 such that for all k ≥ k0 the ωk are non-degenerate on the subbundle hor ⊂ TM =
∪p∈MTpM .

3. For every k, ωk is non-degenerate on subbundle vert = ∪p∈Mvertp (notice that ωk|vert = τ |vert).

4. The tangent bundle of M splits as TM = vert ⊕ hor. Moreover ∀k, ∀p ∈ M , ωk|p(u, v) = 0
for u ∈ horp and v ∈ vertp.

ωk non-degenerate on M means ∀~u 6= 0 ∈ TM , ∃~v ∈ TM such that ωk(~u,~v) 6= 0. For any

non-zero ~u 6= 0 ∈ TM , we can decompose it as ~u = ~h+ ~t where ~h ∈ horp and ~t ∈ vertp. Note that
~h,~t can’t be zero at same time since ~u 6= 0.
Let k0 be the number in the second claim. For every ~h ∈ horp and ~t ∈ vertp, we need to discuss the
following cases:

1. Suppose ~h 6= 0 and ~t = 0. ∃~p ∈ hor such that ωk|p(~u, ~p) 6= 0 since ωk is non-degenerate on
hor when k > k0 .

2. Suppose ~h = 0 and ~t 6= 0. ∃ ~q ∈ vert such that ωk|p(~t, ~q) 6= 0 by ωk is non-degenerate on
subbundle vert. Therefore, ~q is a vector in TM such that ωk|p(~u, ~q) 6= 0.

Moreover, if any of ωk|p(~h, ~p) and ωk|p(~t, ~q) are negative, say ωk|p(~t, ~q) < 0, we can make it to
be positive by multiplying −1 on ~q. (ie, if ωk|p(~t, ~q) < 0, pick q

′
= −~q to replace ~q. This will

give you ωk|p(~t, ~q′) > 0.)

3. Suppose both ~h,~t are non zero vectors and let k > k0. ∃~p ∈ hor and ∃~q ∈ vert such
that ωk|p(~h, ~p) > 0 and ωk|p(~t, ~q) > 0 since ωk is non-degenerate on subbundle vert and hor.

Therefore ωk|p(~u, ~p+~q) = ωk|p(~u, ~p)+ωk|p(~u, ~q) = ωk|p(~h, ~p)+ωk|p(~h, ~q)+ωk|p(~t, ~p)+ωk|p(~t, ~q) =

ωk|p(~h, ~p) + ωk|p(~t, ~q) 6= 0.

Therefore, we know ωk is non-degenerate on M if k > k0.
Overall together with (1)-(4) will imply ωk is a symplectic form on M which is compatible with

the bundle and represents the cohomology class a+ k[π∗β] for sufficiently large k.
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