Symplectic Fibration and Connection

kaidi Ye

August 26, 2019

1 Overview

This talk will give the main idea of proving Thurston's theorem which concerns the construction of a symplectic form ω on a manifold M that is compatible with a given compact symplectic fibration $(\pi : M \longrightarrow B)$ under some suitable conditions.

Notice that such ω need not always exist. For example, consider the Hopf bundle $(S^3 \times S^1, \pi, S^2)$. The Hopf bundle is a compact symplectic fibration and the fibre is just torus $S^1 \times S^1$ with standard symplectic form. However the $S^3 \times S^1$ does not admit a symplectic structure.

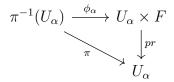
We will begin with some basic set up and some necessary definitions.

2 Basic set up and definitions

Let F be a smooth manifold. A **Fibration** with fibre F over a smooth manifold B consists of a smooth map $\pi : M \longrightarrow B$ such that the following conditions hold:

- 1. M is a smooth manifold.
- 2. π is surjective mapping.
- 3. For every point $p \in B$, there exists an open neighborhood $U \subset B$ and a diffeomorphism $\phi : \pi^{-1}(U) \longrightarrow U \times F$ such that $\pi|_U = pr \circ \phi$ where the map $pr : U \times F \longrightarrow U$ is the projection.

Let B be a connected smooth manifold equipped with an open cover $\{U_{\alpha}\}_{\alpha}$ and $\pi : M \longrightarrow B$ be a fibration with fibre F. For every α , there exists a diffeomorphisms $\phi_{\alpha} : \pi^{-1}(U_{\alpha}) \longrightarrow U_{\alpha} \times F$ such that the following diagram commutes.



We denote by $F_b = \pi^{-1}(b)$ the fibre over $b \in B$ and by $\phi_{\alpha}(b) : F_b \longrightarrow F$ the restriction of ϕ_{α} to F_b followed by the projection onto F.

The **transition map** $\phi_{\beta\alpha}: U_{\alpha} \cap U_{\beta} \longrightarrow \text{Diff}(F)$ is defined by

$$\phi_{\beta\alpha} = \phi_{\beta}(b) \circ \phi_{\alpha}^{-1}(b).$$

Very often, a fibration will carry some extra structure called a **structure group**. Let G be a subgroup of Diff(F). G is a **structure group** of $(\pi, \{\phi_{\alpha}\})$ if transition functions $\phi_{\beta\alpha}$ all take values in G.

Definition 2.1. Symplectic Fibration: Let $\pi : M \longrightarrow B$ be a locally trivial fibration with fiber (F, ω_F) which is a symplectic manifold. π is symplectic fibration if each fibre F_b carries a symplectic structure $\sigma_b \in \Omega^2(F_b)$ such that $\exists \{\phi_\alpha\}$ such that

$$\sigma_b = \phi^*_\alpha(b)\sigma$$

for all $b \in U_{\alpha}$.

Once we have definition of symplectic fibration, we are ready to define the compatible symplectic form.

Definition 2.2. Compatible Symplectic form Let $\pi : M \longrightarrow B$ be a symplectic fibration with fibre (F, ω_F) . A symplectic form $\omega \in \Omega^2(M)$ is called compatible with the symplectic fibration π if, $\omega|_{F_b} = \sigma_b$ for every $b \in B$.

Theorem 2.1. Let $\pi : M \longrightarrow B$ be a locally trivial fibration with connected base B, closed manifold M and $\omega \in \Omega^2(M)$ be a symplectic form such that the fibres are all symplectic submanifold of M. Then $\pi : M \longrightarrow B$ admits the structure of a symplectic fibration which is compatible with ω .

Proof. sketch of proof:

(1) Stokes' theorem implies that the symplectic forms $\sigma_b = \iota_b^* \omega \in \Omega^2(F_b)$ all represent the same cohomology class in $H^2(F)$ under map $\phi_{\alpha}(b)$ where $\iota_b : F_b \longrightarrow M$.

(2) Use Moser's stability theorem to show that the fibres (F_b, σ_b) are all symplectomorphic to a standard fibre (F, σ) . Deduce that the structure group of $(\pi, \{\phi_\alpha\})$ can be reduced to $Symp(F, \sigma)$. Remark. The detailed explanation is on Introduction to Symplectic Topology by D.Mcduff and D.Salamon page 253.

3 Thurston Theorem

Theorem 3.1. Let $\pi : (M, \omega) \longrightarrow (B, \beta)$ be compact symplectic fibration with symplectic fibre (F, σ) and connected symplectic base (B, β) . Define $F_b = \pi^{-1}(b)$ where $b \in B$. Let σ_b be the symplectic form on F_b .

Let $a \in H^2(M)$ be a cohomology class such that for every $b \in B$,

$$\iota_b^*(a) = [\sigma_b]$$

where

$$\iota_b: F_b \longrightarrow M$$

is the inclusion map.

Then for every sufficiently large positive real number k, there exists a symplectic form $\omega_k \in \Omega^2(M)$ which is compatible with the fibration π and represents the class $a + k[\pi(\beta)^*]$.

Proof. Let $\{\phi_{\alpha}\}$ as in **Definition 2.1**. Let open sets $U_{\alpha} \subset B$ in the cover are chosen to be contractible. Let $\tau_0 \in \Omega^2(M)$ be any closed 2-form which represents the class $a \in H^2(M)$. For any α , let $\sigma_{\alpha} \in \Omega^2(U_{\alpha} \times F)$ be the 2-form obtained from (F, σ) via pullback map: $U_{\alpha} \times F \longrightarrow F$. First, we want to show the 2-forms

$$\phi_{\alpha}^* \sigma_{\alpha} - \tau_o \in \Omega^2(\pi^{-1}(U_{\alpha}))$$

are exact.

For fixed α and fixed $b \in U_{\alpha}$, let

$$\iota: F \longrightarrow U_{\alpha} \times F$$
$$x \mapsto (b, x).$$

 $Pr_2 \circ \iota = Id_F$

Then

where

$$Pr_2: U_{\alpha} \times F \longrightarrow F$$
$$(b, x) \mapsto x.$$

For the following commuting diagram:

$$\begin{array}{ccc} H^{2}(F) & \xrightarrow{Pr_{2}^{*}} & H^{2}(U_{\alpha} \times F) & \xrightarrow{(\iota^{*}:\cong)} & H^{2}(F) \\ & & & \downarrow \\ & &$$

$$\iota^* \circ Pr_2^* = (Pr_2 \circ \iota)^* = Id_{H^2(F)}.$$
(1)

It follows that

$$\iota^*[\sigma_\alpha] = [\sigma]$$
$$\iota^*_b[\phi_\alpha^* \sigma_\alpha] = [\sigma_b].$$
 (2)

and therefore

Now we need to check the map ι^* . Notice that ι^* is a linear map and (1) tells us this map should be surjective. Recall that U_{α} is chosen to be contractible. Therefore we have:

$$H^2(U_{\alpha} \times F) \cong \mathbb{R} \otimes H^2(F) \cong H^2(F)$$

This implies that

$$dim(H^2(U_{\alpha} \times F)) = dim(H^2(F)) \tag{3}$$

By compactness of fibre F, we notice that $dim(H^2(F)) < \infty$. Using (3) together will rank-nullity theorem, this implies that ι^* is also an injective map. As ϕ^*_{α} and $\phi^*_{\alpha}(b)$ are isomorphisms, the same holds for ι^*_b . Finally, (2) together with the assumption in the theorem $\iota^*_b(a) = [\sigma_b]$ implies:

$$[\phi_{\alpha}^{*}\sigma_{\alpha}] = a \in H^{2}(\pi^{-1}(U_{\alpha}))$$

and therefore:

$$\phi_{\alpha}^{*}\sigma_{\alpha} - \tau_{o} \in \Omega^{2}(\pi^{-1}(U_{\alpha}))$$

are exact. By exactness, we know there exist a collection of 1-forms $\lambda_{\alpha} \in \Omega^1(\pi^{-1}(U_{\alpha}))$ such that $\phi_{\alpha}^* \sigma_{\alpha} - \tau_o = d\lambda_{\alpha}$.

Second, we define a 2-form $\tau := \tau_o + \Sigma_{\alpha} d((\rho_{\alpha} \circ \pi)\lambda_{\alpha} \in \Omega^2(M)$ where $\{\rho_{\alpha}\}_{\alpha}$ a partition of unity subordinate to the cover $\{U_{\alpha}\}_{\alpha}$ and we want to check if τ is closed, represents the cohomology class $a \in H^2(M)$ and restricts to the form σ_b on each fibre.

For closedness, just notice that $d\tau = d\tau_o + d\Sigma_\alpha d((\rho_\alpha \circ \pi)\lambda_\alpha) = 0$. Therefore we have $[\tau] = a$.

$$\iota_{b}^{*}\tau = \iota_{b}^{*}(\tau_{o} + \Sigma_{\alpha}d((\rho_{\alpha} \circ \pi)\lambda_{\alpha}))...\textcircled{1}$$

$$= \iota_{b}^{*}\tau_{o} + \Sigma_{\alpha}(\iota_{b}^{*}d(\rho_{\alpha} \circ \pi) \wedge \lambda_{\alpha} + \iota_{b}^{*}((\rho_{\alpha} \circ \pi) \wedge d\lambda_{\alpha}))...\textcircled{2}$$

$$= \iota_{b}^{*}\tau_{o} + \Sigma_{\alpha}\iota_{b}^{*}((\rho_{\alpha} \circ \pi)d\lambda_{\alpha})...\textcircled{3}$$

$$= \Sigma_{\alpha}(\rho_{\alpha} \circ \pi)\iota_{b}^{*}(\tau_{o} + d\lambda_{\alpha})...\textcircled{4}$$

$$= \Sigma_{\alpha}(\rho_{\alpha} \circ \pi)\iota_{b}^{*}(\phi_{\alpha}^{*}\sigma_{\alpha})...\textcircled{5}$$

$$= \iota_{b}^{*}(\phi_{\alpha}^{*}\sigma_{\alpha})...\textcircled{5}$$

$$= \sigma_{b}...\textcircled{7}$$

$$(4)$$

- *Remark.* 1. We can (2) to (3) of equation (4) by using $\iota_b^* d(\rho_\alpha \circ \pi) = 0$ since it vanishes on vectors tangent to the fibre.
 - 2. Recall that $\phi_{\alpha}^{*}\sigma_{\alpha} \tau_{o} = d\lambda_{\alpha}$ and $\phi_{\alpha}^{*}\sigma_{\alpha} \in H^{2}(\pi^{-1}(U_{\alpha}))$. Therefore we can reduce (4) to (5) line of equation (4).

Finally we can construct the 2-form for $M: \omega_k = \tau + k\pi^*\beta$ where k is a positive real number. Thirdly, we want to explain why ω_k is closed and non-degenerate for sufficiently large k. For closed, just notice that $d\omega_k = d\tau + kd\pi^*\beta = 0$. For non-degeneracy:

For arbitrary $p \in M$, define $vert_p = ker(d\pi|_p) \subset T_pM$ and $hor_p = (vert_p)^{\tau} = \{u \in T_pM | \tau(u, v) = vert_p \}$

 $0 \forall v \in vert_p \}.$

Notice that τ is non-degenerate on $vert_p$ as $\iota_b^* \tau = \sigma_b$. Therefore we can do the following splitting:

$$T_pM = vert_p \oplus hor_p$$

In order to finish the proof we need the following claims whose proofs are leave to readers.

- 1. $d\pi|_p : hor_p \longrightarrow T_{\pi(p)}B$ are linear isomorphisms.
- 2. $\exists k_0$ such that for all $k \geq k_0$ the ω_k are non-degenerate on the subbundle hor $\subset TM = \bigcup_{p \in M} T_p M$.
- 3. For every k, ω_k is non-degenerate on subbundle $vert = \bigcup_{p \in M} vert_p$ (notice that $\omega_k|_{vert} = \tau|_{vert}$).
- 4. The tangent bundle of M splits as $TM = vert \oplus hor$. Moreover $\forall k, \forall p \in M, \omega_k|_p(u, v) = 0$ for $u \in hor_p$ and $v \in vert_p$.

 ω_k non-degenerate on M means $\forall \vec{u} \neq 0 \in TM$, $\exists \vec{v} \in TM$ such that $\omega_k(\vec{u}, \vec{v}) \neq 0$. For any non-zero $\vec{u} \neq 0 \in TM$, we can decompose it as $\vec{u} = \vec{h} + \vec{t}$ where $\vec{h} \in hor_p$ and $\vec{t} \in vert_p$. Note that \vec{h}, \vec{t} can't be zero at same time since $\vec{u} \neq 0$.

Let k_0 be the number in the second claim. For every $\vec{h} \in hor_p$ and $\vec{t} \in vert_p$, we need to discuss the following cases:

- 1. Suppose $\vec{h} \neq 0$ and $\vec{t} = 0$. $\exists \vec{p} \in hor$ such that $\omega_k|_p(\vec{u}, \vec{p}) \neq 0$ since ω_k is non-degenerate on hor when $k > k_0$.
- 2. Suppose $\vec{h} = 0$ and $\vec{t} \neq 0$. $\exists \vec{q} \in vert$ such that $\omega_k|_p(\vec{t}, \vec{q}) \neq 0$ by ω_k is non-degenerate on subbundle vert. Therefore, \vec{q} is a vector in TM such that $\omega_k|_p(\vec{u}, \vec{q}) \neq 0$. Moreover, if any of $\omega_k|_p(\vec{h}, \vec{p})$ and $\omega_k|_p(\vec{t}, \vec{q})$ are negative, say $\omega_k|_p(\vec{t}, \vec{q}) < 0$, we can make it to be positive by multiplying -1 on \vec{q} . (ie, if $\omega_k|_p(\vec{t}, \vec{q}) < 0$, pick $q' = -\vec{q}$ to replace \vec{q} . This will give you $\omega_k|_p(\vec{t}, \vec{q'}) > 0$.)
- 3. Suppose both \vec{h}, \vec{t} are non zero vectors and let $k > k_0$. $\exists \vec{p} \in hor$ and $\exists \vec{q} \in vert$ such that $\omega_k|_p(\vec{h}, \vec{p}) > 0$ and $\omega_k|_p(\vec{t}, \vec{q}) > 0$ since ω_k is non-degenerate on subbundle vert and hor. Therefore $\omega_k|_p(\vec{u}, \vec{p} + \vec{q}) = \omega_k|_p(\vec{u}, \vec{p}) + \omega_k|_p(\vec{u}, \vec{q}) = \omega_k|_p(\vec{h}, \vec{p}) + \omega_k|_p(\vec{h}, \vec{q}) + \omega_k|_p(\vec{t}, \vec{p}) + \omega_k|_p(\vec{t}, \vec{q}) = \omega_k|_p(\vec{h}, \vec{p}) + \omega_k|_p(\vec{t}, \vec{q}) \neq 0.$

Therefore, we know ω_k is non-degenerate on M if $k > k_0$.

Overall together with (1)-(4) will imply ω_k is a symplectic form on M which is compatible with the bundle and represents the cohomology class $a + k[\pi^*\beta]$ for sufficiently large k.

4

References

- [1] Ana Cannas da Silva Lectures on Symplectic Geometry Springer, New York, first edition, 2008
- [2] D.Mcduff and D.Salamon Introduction to Symplectic Topology Oxford University Press Inc, New York, 2nd edition, 1998