MATH1344 PRESENTATION TOPIC: INTEGRABLE SYSTEMS

BEN CHANG

Let (M,w, H) be a triple: symplectic manifold M of dimension 2n with symplectic form
w and a Hamiltonian function H.

Definition 1. An integral (of motion) is a function f € C*°(M) such that {f, H} = 0.
Note: H is an integral of motion.

Theorem 2 (Part of Arnold Liouville). Given (M,w,H) and n integrals fi = H,..., f,
such that {f;, f;} =0 for all i,j. Let c € R™ be a reqular value of f = (fi1,..., fn). Suppose
M. := f~Y(c) is compact and connected. Then

(1) M. is a Lagrangian submanifold of M.

(2) M. is diffeomorphic to the torus

T" = (R/27Z)" = {(¢1,- .., ¢Pn) (mod 27)}
(3) There ezist angular coordinates ¢ = (¢1,...,¢n) such that in the Hamiltonian flow
fOT' H = f17
d¢ _

dt
on M., where h € R™ is a constant.

h

In the following we give an outline of the proof (c.f. section 49,50 of V.I. Arnold).

Outline of Proof. Here we leave a few lemma unproved.

c is a regular value of f means for any p € M., df|, = (dfilp, ..., dfnlp) : T,M — R"
is surjective. Let W be the image of df|,, so W C R™ is a linear subspace, and W+ has
complementary dimension. Let o = (ay,...,a,) € R",

Zaidfib =0« Zaldf”p(l}) =0 V we TpM
=1 =1

@Zaiwizo Vo ow=(wy,...,w,) €W
i=1

sae Wt

Thus c is regular means W = R", which is equivalent to W+ = {0}. This implies o = 0, i.e.
df;|, are linearly independent.

The implicit function theorem implies that M, is an n-dimensional submanifold of M. To
conclude that M, is Lagrangian, it remains to show that w = 0 on T'M,. Let Xy, : M, — T'M,
be the vector fields associated with f;, i.e. tx, w = df;.

X, are tangent to M,: Denote ¢ = (cy,...,¢,). Then M, = fi ' (ci) NN fil(cn). Tt
suffices to show that Xy, is tangent to f]-’l(cj) for all 4,j. Equivalently, show that f; is

constant along integral curves of X, which we know is the condition {f;, f;} = 0.
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Since df; are independent at every point p of M., Xy, generate T'M,. Then w(Xy, Xy,) =
{fi, f;} =0, implying w = 0 on T'M,. This proves (1).

Let ¢gf,i =1,...,n be the flows of M, corresponding to the n commuting vector fields Xy,
then g7 and g} commute, i.e. gigix = gjgiz. Define an action g of the commutative group
{€ e R"} on M,, ¢¢ : M, — M,, by ¢¢ = ¢ ... ¢& where € = (&,...,&,) € R™.

Fix 2y € M,. Then we get a continuous map g : R* — M, by g(£) = g°x.

Lemma 3. There are neighborhoods V' of 0 € R™ and U of v € M, such that the map
g:V = U by & — ¢z is a diffeomorphism.

We claim that g : R® — M, is onto: Let y € M, and v : I — M, be a path from x, to y.
The image (/) is compact and has an open cover consisting of {Uy }yc(r) where each U, is
taken from the previous lemma; hence (7) is in fact covered by finitely many neighborhoods
U(zg),...,U(x, =y) as in the previous lemma.

Furthermore, we may assume that x;11 € U(z;)NU(x;51) for all 0 < i < m: by subdividing
components of y(U(xz;)), we may assume that their preimages are open intervals in I. If
Y(U(z;)) C v(U(x;)), we may remove U(z;) and relabel accordingly. Now order the indices
i according to ¢} := sup{t € I : v(t) € U(x;)}. Note that ¢;7 < ¢, with strict inequality,
since otherwise we have v(U(x;)) C v(U(x;11)) or the reverse inclusion according to whether
t; >t., where t; :=inf{t € I : y(t) € U(z;)}.

Starting with i = 0,~(¢;) ¢ U(z;) by assumption (otherwise U(xy),...,U(x;) already
cover y(/) and ¢ = m). Then there is j > ¢ 4+ 1 such that v(¢;) € U(z;). We can pick
j =i+ 1 since otherwise t; < t;,,, implying v(U(w:1)) C v(U(x;)). Pick ¢ > 0 such that
.T2+1 = ’}/(tl - 6,’) S U(.Tl) N U(.Ti+1).

Observe that U(z;41) is also a neighborhood of z/,; such that the previous lemma also
holds. Relabel each ] ; by x;11, then the assertion is true.

Since g is onto in each U(x;) N U(x;41), we can find 7; € R™ such that ¢"x; = z;41. Then
gno+ -+ m1) =gt gMrg = g™t . gTxy =+ = 1, =y as required.

Let T = {¢€ € R" | gz = zo} be the stabilizer of zy in R".

Lemma 4. I' is a discrete subgroup, i.e. there is a neighborhood V of 0 € R™ such that
I'nE+V)=A{¢&} forall €.

The following is a general fact about discrete subgroups of R™.

Lemma 5. There are linearly independent vectors ey, ... e, € I' with 0 < k < n, such that
I' = {Zflmzez | m; € Z}

Let p : R?" — T* x R"* be defined by p(¢,y) = (¢ (mod 27),y), which is an universal
covering space map. Here ¢1,..., 0w, Y1, .., Yni are coordinates on T% x R"~*_ The points
Bi=1(0,...,0,¢; = 2m,0...,0,y =0) map to 0 under p.

Let e; € T' be as in the lemma, and define A : {(¢,y) € R"} — {£& € R"} to be an
isomorphism such that ; — e;.

R = (6.0} -4 A
TH xR ={(g.y)} =" M,

Lemma 6. A descends to a diffeomorphism A : TF x R"* — M.
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Since M, is compact, n = k, which proves (2).

The Hamiltonian flow is 1 (z) = glz = g"*% 0z, Let n = (1,0,...,0) € R™.

Now I' has rank n with basis eq,...,¢e,. Let sq1,...,s, be the standard basis of R™ and let
A:{p € R"} — {t € R"} with s; — ¢; be the isomorphism as constructed above.

Since ¢ is onto, for all = € M, there is z € R™ such that g(z) = z. Then

Vi (x) = g"x = g"g(2) = ¢"g*xo = ¢ 2y = g(tn + 2)

= g(AA™ (tn + 2)) = (g0 A)(tA™'n + A™'2)

By the above commutative diagram, the same formula holds with g o A replaced by p o A.
The diffeomorphism A defines angular coordinates ¢ = (¢1,...,¢,) in M, ~ T", satisfying
¢(t) = ¢(0) + ht with h = A~ and ¢(0) = A~'2z. So % = h. This proves (3). O
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