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Let (M,ω,H) be a triple: symplectic manifold M of dimension 2n with symplectic form
ω and a Hamiltonian function H.

Definition 1. An integral (of motion) is a function f ∈ C∞(M) such that {f,H} = 0.

Note: H is an integral of motion.

Theorem 2 (Part of Arnold Liouville). Given (M,ω,H) and n integrals f1 = H, . . . , fn
such that {fi, fj} = 0 for all i, j. Let c ∈ Rn be a regular value of f = (f1, . . . , fn). Suppose
Mc := f−1(c) is compact and connected. Then

(1) Mc is a Lagrangian submanifold of M .
(2) Mc is diffeomorphic to the torus

T n = (R/2πZ)n = {(ϕ1, . . . , ϕn) (mod 2π)}
(3) There exist angular coordinates ϕ = (ϕ1, . . . , ϕn) such that in the Hamiltonian flow

for H = f1,
dϕ

dt
= h

on Mc, where h ∈ Rn is a constant.

In the following we give an outline of the proof (c.f. section 49,50 of V.I. Arnold).

Outline of Proof. Here we leave a few lemma unproved.
c is a regular value of f means for any p ∈ Mc, df |p = (df1|p, . . . , dfn|p) : TpM → Rn

is surjective. Let W be the image of df |p, so W ⊂ Rn is a linear subspace, and W⊥ has
complementary dimension. Let α = (α1, . . . , αn) ∈ Rn,

n∑
i=1

αidfi|p = 0 ⇔
n∑

i=1

αidfi|p(v) = 0 ∀ v ∈ TpM

⇔
n∑

i=1

αiwi = 0 ∀ w = (w1, . . . , wn) ∈ W

⇔ α ∈ W⊥

Thus c is regular means W = Rn, which is equivalent to W⊥ = {0}. This implies α = 0, i.e.
dfi|p are linearly independent.

The implicit function theorem implies that Mc is an n-dimensional submanifold of M . To
conclude thatMc is Lagrangian, it remains to show that ω = 0 on TMc. LetXfi :Mc → TMc

be the vector fields associated with fi, i.e. ιXfi
ω = dfi.

Xfi are tangent to Mc: Denote c = (c1, . . . , cn). Then Mc = f−1
1 (c1) ∩ · · · ∩ f−1

n (cn). It
suffices to show that Xfi is tangent to f−1

j (cj) for all i, j. Equivalently, show that fj is
constant along integral curves of Xfi , which we know is the condition {fi, fj} = 0.
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Since dfi are independent at every point p of Mc, Xfi generate TMc. Then ω(Xfi , Xfj) =
{fi, fj} = 0, implying w = 0 on TMc. This proves (1).

Let gti , i = 1, . . . , n be the flows ofMc corresponding to the n commuting vector fields Xfi ,
then gsi and gtj commute, i.e. gsi g

t
jx = gtjg

s
ix. Define an action g of the commutative group

{ξ ∈ Rn} on Mc, g
ξ :Mc →Mc, by g

ξ = gξ11 . . . gξnn where ξ = (ξ1, . . . , ξn) ∈ Rn.
Fix x0 ∈Mc. Then we get a continuous map g : Rn →Mc by g(ξ) = gξx0.

Lemma 3. There are neighborhoods V of 0 ∈ Rn and U of x ∈ Mc such that the map
g : V → U by ξ 7→ gξx is a diffeomorphism.

We claim that g : Rn → Mc is onto: Let y ∈ Mc and γ : I → Mc be a path from x0 to y.
The image γ(I) is compact and has an open cover consisting of {Ux}x∈γ(I) where each Ux is
taken from the previous lemma; hence γ(I) is in fact covered by finitely many neighborhoods
U(x0), . . . , U(xm = y) as in the previous lemma.

Furthermore, we may assume that xi+1 ∈ U(xi)∩U(xi+1) for all 0 ≤ i < m: by subdividing
components of γ(U(xi)), we may assume that their preimages are open intervals in I. If
γ(U(xi)) ⊂ γ(U(xj)), we may remove U(xi) and relabel accordingly. Now order the indices
i according to t+i := sup{t ∈ I : γ(t) ∈ U(xi)}. Note that t+i < t+i+1 with strict inequality,
since otherwise we have γ(U(xi)) ⊂ γ(U(xi+1)) or the reverse inclusion according to whether
t−i ≥ t−i+1, where t

−
i := inf{t ∈ I : γ(t) ∈ U(xi)}.

Starting with i = 0, γ(ti) /∈ U(xi) by assumption (otherwise U(x0), . . . , U(xi) already
cover γ(I) and i = m). Then there is j ≥ i + 1 such that γ(ti) ∈ U(xj). We can pick
j = i + 1 since otherwise t−j ≤ t−i+1, implying γ(U(xi+1)) ⊂ γ(U(xj)). Pick ϵi > 0 such that
x′i+1 := γ(ti − ϵi) ∈ U(xi) ∩ U(xi+1).

Observe that U(xi+1) is also a neighborhood of x′i+1 such that the previous lemma also
holds. Relabel each x′i+1 by xi+1, then the assertion is true.

Since g is onto in each U(xi) ∩ U(xi+1), we can find ηi ∈ Rn such that gηixi = xi+1. Then
g(η0 + · · ·+ ηm−1) = gηm−1 . . . gη0x0 = gηm−1 . . . gη1x1 = · · · = xm = y as required.

Let Γ = {ξ ∈ Rn | gξx0 = x0} be the stabilizer of x0 in Rn.

Lemma 4. Γ is a discrete subgroup, i.e. there is a neighborhood V of 0 ∈ Rn such that
Γ ∩ (ξ + V ) = {ξ} for all ξ ∈ Γ.

The following is a general fact about discrete subgroups of Rn.

Lemma 5. There are linearly independent vectors e1, . . . , ek ∈ Γ with 0 ≤ k ≤ n, such that

Γ =

{∑k
i=1miei | mi ∈ Z

}
.

Let p : R2n → T k × Rn−k be defined by p(ϕ, y) = (ϕ (mod 2π), y), which is an universal
covering space map. Here ϕ1, . . . , ϕk, y1, . . . , yn−k are coordinates on T k ×Rn−k. The points
βi = (0, . . . , 0, ϕi = 2π, 0 . . . , 0, y = 0) map to 0 under p.

Let ei ∈ Γ be as in the lemma, and define A : {(ϕ, y) ∈ Rn} → {ξ ∈ Rn} to be an
isomorphism such that βi 7→ ei.

Rn = {(ϕ, y)} →A Rn = {ξ}
↓p ↓g

T k × Rn−k = {(ϕ, y)} →Ã Mc

Lemma 6. A descends to a diffeomorphism Ã : T k × Rn−k →Mc.
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Since Mc is compact, n = k, which proves (2).
The Hamiltonian flow is ψH

t (x) = gt1x = gt(1,0,...,0)x. Let η = (1, 0, . . . , 0) ∈ Rn.
Now Γ has rank n with basis e1, . . . , en. Let s1, . . . , sn be the standard basis of Rn and let

A : {ϕ ∈ Rn} → {t ∈ Rn} with si 7→ ei be the isomorphism as constructed above.
Since g is onto, for all x ∈Mc there is z ∈ Rn such that g(z) = x. Then

ψH
t (x) = gtηx = gtηg(z) = gtηgzx0 = gtη+zx0 = g(tη + z)

= g(AA−1(tη + z)) = (g ◦ A)(tA−1η + A−1z)

By the above commutative diagram, the same formula holds with g ◦ A replaced by p ◦ Ã.
The diffeomorphism Ã defines angular coordinates ϕ = (ϕ1, . . . , ϕn) in Mc ≃ T n, satisfying
ϕ(t) = ϕ(0) + ht with h = A−1η and ϕ(0) = A−1z. So dϕ

dt
= h. This proves (3). �
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